摘要:针对粒子群优化BP神经网络模型存在的不足,该文在粒子群算法中引入混沌理论,建立混沌粒子群算法优化BP神经网络的组合优化模型。以四川省凉山彝族自治州某滑坡的位移监测数据为例,将混沌粒子群算法优化BP神经网络模型与其他优化粒子群算法与BP神经网络组合模型的预测结果进行对比分析。实验结果表明,基于混沌粒子群算法优化BP神经网络的预测模型,滑坡水平位移与垂直位移的预测值与相应的实测值相对误差的平均值分别为1.05%和0.78%,平均绝对误差分别为0.825 0和0.460 1mm,均方根误差分别为1.000 5和0.527 5mm,实验结果验证了该文预测模型结果能更好地反映滑坡位移趋势,具有较好的实用性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社