摘要:拓扑结构是逻辑代数研究领域的重要研究内容之一,为了揭示否定非对合剩余格上的拓扑结构,基于正规模糊理想诱导的同余关系在否定非对合剩余格上构造一致拓扑空间并讨论其拓扑性质.证明了:(1)一致拓扑空间是第一可数,零维,非连通,局部紧的完全正则空间;(2)一致拓扑空间是T1空间当且仅当是T2空间;(3)否定非对合剩余格中格运算和伴随运算关于一致拓扑都是连续的,从而构成拓扑否定非对合剩余格.同时,获得了一致拓扑空间是紧空间和离散空间的充分必要条件.最后,讨论了拓扑否定非对合剩余格中代数同构与拓扑同胚间的关系.对从拓扑层面进一步揭示否定非对合剩余格的内部特征具有一定的促进作用.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
热门期刊
学衡