时间:2023-01-04 13:35:00
导语:在gps技术的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:导航;gps;气象;探空仪;测风
中图分类号:P412.23 文献标识码:A
文章编号:1004373X(2008)0317903
Study on the Technology of GPS Sonde
LIU Xiaoqin1,CAI Delin2,XU Changlei1
(1.Department of Electronic Science and Technology,Anhui University,Hefei,230039,China;
2.The 38th Research Institute,China Electronics and Technology Group Corporation,Hefei,230031,China)
Abstract:It is an important trend of international meterological sounding that using GPS technologycarry out meterological sounding.In China,the upper―air sounding system is relatively backward.It is imperative to develop the technology of GPS in our sounding system and make the sounding development of our country and the international simultaneously.Through the research of GPS meteorological sounding way,the working principle and the process flow of GPS sonde are expounded.System structure diagram of GPS sonde is presented.The research shows that using GPS technology to achieve meteorological sounding can improve the accuracy of meterological sounding.
Keywords:navigation;GPS;meteorology;sonde;anemography
1 引 言
近年来,卫星导航定位系统,特别是美国的全球定位系统(Global Position System,GPS)[1,2]发展极为迅速。GPS能够为地球表面和近地空间的广大用户提供全天候、实时、高精度的位置、速度和时间等导航服务信息。GPS是一种新兴的全球定位技术,他具有定位精度高、使用方便的特点。
GPS高空探测系统是新一代探空系统,他采用数字化测量电路测量大气温、压、湿,并运用GPS测量大气风向、风速。采用GPS技术实现气象探空,能够大大提高气象探空的准确性,降低地面接收系统的成本,提高气象探空系统的自动化程度。国际上一些先进国家已将该GPS技术应用到气象探空和高空测风当中,国内一些研究单位也相继开展了相关技术的研究。
探空仪主要为电子探空仪,国际先进的电子探空仪主要有芬兰Vaisala公司RS92探空仪。我国是惟一还在使用机械电码式探空仪的国家,应尽快发展我国GPS探空技术。
2 GPS气象探空的实现
GPS气象探空[3]主要有空中射频转发和空中数字转发两种方式:如图1和2所示。
图1 射频转发方案框图
由图1可见,射频转发方案是将球载设备接收到的GPS射频信号直接下变频到气象探空专用频率,放大后与温湿压传感器输出的数字信号合成后转发到地面接收机,也就是说球载部分只有射频接收部分没有定位解算部分的电路。地面接收机将接收到的射频信号分离成温湿压信号和GPS射频信号,在地面接收机内实现GPS的定位解算。主要技术难题是GPS射频信号与温湿压数字信号电平相差悬殊所带来的电磁兼容问题,以及抗干扰和地面解算的频率基准问题。而且射频转发方案的通信链路设计复杂,体积大,因此一般采用数据转发方案。
图2 数字转发方案框图
图2中数字转发是将GPSOEM板的定位数据直接与温湿压数据合成编码后转发。数字转发的优点是减少探空仪设备的复杂程度,把大量处理过程转移到地面,降低探空仪的成本。采用数字转发方式,发射功率利用率较高,避免发生自激,工作频点可调,可避开环境的干扰。
3 GPS探空仪的系统组成
GPS探空仪的系统结构如图3所示,他由两部分组成:球上设备和地面设备。
图3 GPS探空仪系统结构框图
球上设备由PTU数据处理单元、GPS单元、通信单元三部分构成。
PTU数据处理单元 由单片机和测量电路构成,完成数据采集、处理、传输。既可以测量电阻感应元件,又可以测量电容感应元件。
GPS单元 用于接收GPS卫星信息,提供气球的位置信息(经纬度、高度)和时间信息。
通信单元 接收PTU数据和GPS数据,进行编码、合成,将数字信息进行FSK调制,转变成射频信号,发送给地面接收系统。
地面设备由通信单元、基站GPS处理机、终端数据处理和指示单元等三部分构成。
通信单元 接收探空仪发射的射频信号,解调出数字信息,进行解码,输出为GPS通道数据以及PTU测量数据(温湿压);
基站GPS处理机 对接收的球上GPS通道数据进行处理,接收基站GPS位置数据;
终端数据处理单元 由计算机、打印机、调制解调器组成。计算机收集探空仪发来的数据和基站位置数据,对信息进行预处理,显示温、压、湿数据,对测风信息进行处理,解算出风向、风速数据。调制解调器用于通过电话线路与气象计算机网络通信,传送探空数据。
4 工作原理
4.1 温、湿、压测量
PTU设备测量原理如图4所示,通过温湿度、气压传感器探头探测的电阻、电容变化量转化为电压或频率变化量,这些变化量均为模拟量,经过运算放大器进行小信号放大,A/D变换为数字量,同时查表进行修正、数字编码,由外时钟采集同步输出传感器数据。
探空仪采集的空中的气压、温度和相对湿度数据(简称PTU数据)经探空仪的转发器电路转发到地面基站,经硬件解调设备和软件处理后得到所需的探测气象要素数据。由于遥测噪声、调制电路、下行链路、解调电路、辐射及外界不确定气候条件等因素影响,导致PTU原始数据出现物理上的不一致数据点和丢失的数据点。这就要求我们必须利用物理方程、数学算法及气象学理论模型对原始数据做编辑处理。
图4 PTU设备测量原理框图
关键词:GPS;RTK;测量;测绘技术
一、GPS测量原理
(一)GPS概念
全球定位系统(Global Positioning System,简称GPS),又称全球卫星定位系统,是一个中距离圆形轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。系统由美国国防部研制和维护,可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和计时的需要。
(二)GPS系统的特点及构成
GPS系统拥有如下多种特点:全天候,不受任何天气的影响;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。GPS系统主要由空间星座部分、地面监控部分和用户设备部分组成。
(三)观测量的误差来源
在GPS定位中,观测量的误差来源主要有:第一,与卫星有关的误差;第二,与接收设备有关的误差;第三,与信号传播有关的误差;第四,其它误差来源。
(四)绝对定位原理
以GPS卫星和用户接收机天线之间的距离观测量为基础,确定用户接收机的点位可通过已知的卫星瞬时坐标进行,这就是利用GPS进行了绝对定位的基本原理。GPS绝对定位可以实现动态和静态的绝对定位。
(五)相对定位原理
利用GPS进行相对定位,可分为静态和动态相对定位两种。相对定位可以消除由于各种不同的因素导致系统性误差。
二、RTK简介
一种新的常用的GPS测量方法――RTK(Real - time kinematic)实时动态差分法。RTK能够实现在野外实时得到厘米级定位精度的测量。基于载波相位观测值的实时动态定位技术就是RTK定位技术,在制定坐标系中,测站点三维定位结果能够实时地被RTK定位技术提供。基准站将其观测值和测站坐标信息在RTK作业模式下一起通过数据链传送给流动站。采集GPS观测数据都是由流动站产生的,并对在系统内组成差分观测值进行实时处理,同时厘米级定位结果将被给出,一共只需一秒钟的时间。无论是静止状态,还是运动状态,流动站都可处于任何一种中;也就是说,可以直接进入动态条件开机,也可先在固定点上进行初始化后再进入动态作业,并周模糊度的搜索求解需在动态环境下完成。
三、GPS RTK测量仪器在各种测量中的应用
(一)地籍测量的应用
在地籍测量应用中,要想测定每一宗土地的全界址点和测绘地籍图可采用RTK技术来实现,RTK技术使得有关界址点的位置能够实时的测绘,最终达到厘米级的精度,地籍图和房产图在测得数据处理后可以被及时的得到。常规仪器可用在卫星信号不好的地方,进行细部测量采用解析法或者图解法。界桩位置可以通过RTK技术实时地被测定,然后土地使用界范围被确定,计算用地面积,从而较轻松的进行地籍测量工作。
(二)公路测量建设中的应用
在控制测量领域中GPS测量得到了广泛的应用,它具有以下的优点:高精度和高效率。在公路工程中实时GPS测量可完成以下工作。
(1)绘制大比例尺地形图
一般情况下,在大比例尺带状地形图上进行高等级公路选线。传统的测图方法,首先要进行控制网的建立,其次,进行碎部测量,从而进行大比例尺寸地形图的绘制。其工作量较大,花费时间较长,速度也比较慢。如果测量时采用GPS RTK动态测量,获得每点坐标只需花费几分钟就行,碎部点的数据是由输入的点特征编码及属性信息构成的,在室内可由绘图软件完成。从而使得测图的难度大大降低了,节省了时间又节省了精力。
(2)工程控制测量
GPS建立控制网的最精密的方法是静态测量。对于大型的建筑物静态测量比较适合。实时GPS动态测量则被用于一般的公路工程的控制测量。这种方法可停止观测,使得作业效率大大提高。而通视对于点与点之间是被做要求的,这使得测量更加快捷了。
(3)公路中线测设
在大比例尺带状地形图上设计人员进行定线后,在地面需将公路中线标定出来。如果实时GPS测量被使用,那么只需在GPS接收机中输入中线桩点的坐标,放样的点位就会有系统定出。在这里,累积误差是不会产生的,因为每个点的测量的完成都是相对独立完成的,各点放样精度一致。
(4)公路纵、横断面测量
确定公路中线后,通过绘图软件,利用中线桩点坐标,即路线断面和各桩点的横断面就可以绘出了。测绘地形图时采集的数据都是被用在测量中,所以到现场进行纵。横断面测量是没有必要的,这使得外业工作大大的减少了。也可采用实时GPS测量进行现场断面测量。
(三)地质工程测量的应用
测量钻孔、探槽、剖面端点、地质点是地质工程测量中常见的工作。不停地搬站是常规测量很麻烦的一点,而且如果通视条件不好,则测站点就需要补测。而RTK测量仪器则不需要通视每个点,只需要有两台仪器,有一台仪器在基准站,而另一台仪器架在测点上,只需几分钟进行测量。用常规测量时,有时由于一个点就要浪费很多时间和精力。
参考文献:
[1] 张云志,. 浅谈GPS在公路测量中的应用[J].中国西部科技, 2009,(02) .
关键词:RS、GIS、GPS;测绘技术;土地规划;优势
0 前言
土地规划是指土地行政主管部门根据土地开发利用的自然和社会经济条件、历史基础和现状特点以及国民经济发展的需要等,对一定地区范围内的土地资源进行合理的组织利用和经营管理的一项综合性措施。国内外早已将数理统计、运筹学、线性规划和重力模型等运用于土地规划和管理。但这些方法的分析对象仅是各个规划要素的属性数据,难以对设计对象实施空间分析,规划成果不直观、不完善[ 1]。随着科学技术的发展与进步,特别是计算机和空间信息技术的广泛应用,我国土地规划与管理经过多年的发展,以遥感技术 ( Remote Sensing,以下简称 RS)、地理信息系统( Geographical Information System,以下简称 GIS)、全球定位系统 (Global Positioning System,以下简称GPS)为代表的测绘技术已广泛应用于土地规划和管理领域[ 2,3]。
1 RS、GIS、GPS技术介绍
1.1 RS
RS(遥感技术)是一种远距离、非接触的目标探测技术和方法。它通过对目标的探测来获取目标的信息,然后对所获取的信息加工处理,从而实现目标的定位、定性和定量的描述。遥感技术包括遥感器(也称传感器)技术,信息传输技术,信息处理、提取和应用技术,目标信息特征的分析与测量技术等等。
1.2 GIS
GIS(地理信息系统)是由计算机硬、软件和不同方法组成的系统,该系统设计用来支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划、决策和管理问题。地理信息系统处理和管理的对象是多种地理空间实体数据及其关系,包括空间定位数据、图形数据、遥感图像数据和属性数据等,用于分析和处理在一定地理区域内分布的各种现象和过程,解决复杂的规划、决策和管理问题。
1.3 GPS
GPS是美国海陆空联合研制的全球性、全天候、具有实时三维导航与定位能力的卫星导航系统。系统由地面控制部分(主控站、地面天线、监测站和通讯辅助系统 )、空间部分 ( 21颗实用卫星和 3颗备用卫星组成 )、用户装置部分 (主要由 GPS接收机和卫星天线组成 )等构成。其主要特点有:全天候、全覆盖、高精度三维定速定时、快速省时高效、应用广泛功能多。GPS的应用前景十分光明,除用于各种交通工具和武器的导航定位和制导外,还可用于航天器定位、全球授时、地形测绘、国界测定、海岛与礁石联测、山体测高、测量板块和地壳运动、交通管制和工程建设等。
特别是近几年发展起来的 GPS RTK技术,是基于载波相位观测值的实时动态定位技术。GPS RTK系统通常由3部分组成,即 GPS信号接收部分 (GPS接收机及天线)、实时数据传输部分 (数据链, 俗称电台 )和实时数据处理部分( GPS控制器及其随机实时数据处理软件 )。GPS RTK以实时定位、厘米级定位精度、作业时间短和效率高等优点逐步在资源调查、城市规划和地质勘探等方面得到广泛应用[1]。
2 RS、GIS、GPS技术在土地规划中的应用
2.1 RS在土地规划中的应用
遥感影像是土地规划与利用的主要数据来源。传统的地面调查
需要耗费大量的人力、物力和财力,特别是在南方山区等条件困难的地区,进行野外实地调查更是难度大、体力劳动强度大、成图周期
长。而利用RS进行土地资源调查,可大大减轻劳动强度,节省调查
费用。
近几年对地观测技术的迅速发展,我们可以获得多时相、多平台、多分辨率的遥感数据,这就为准确研究小范围内土地利用特征、空间结构变化提供了便利。遥感影像与该区采样的数据信息结合能更全面更准确地表达地物的属性特征,这就为规划利用中对之进行判别和分类提供了便利。此外,遥感卫星的传感器不同,产生的遥感影像也不同。遥感影像有全色卫星遥感影像、多光谱遥感影像、多波段的卫星遥感影像、多时相的卫星遥感影像、高分辨率卫星遥感影像等,我们可以根据需要选取较合适的影像或者根据需要对影像进行不同效果的增强,如对同一地区多时段的遥感影像的叠加融合,可以产生一个在原有的地物信息不变的情况下获取包含更多有用信息的卫星影像。
2.2 GIS在土地规划中的应用
土地规划和利用实质上是按照相关法律的规定对土地资源进行合理开发、利用及保护。所以,规划本身的科学性以及现势性对土地管理工作开展的成效有着直接影响,同时还会在一定程度上影响社会经济的发展速度和布局情况。现如今,随着社会经济的迅猛发展,以往传统的规划方式越来越无法满足土地规划和利用的现势性要求,并且也无法充分体现出土地利用的总体规划对管理工作的指导作用。由于土地利用规划涉及较多的图形、数据处理、统计和空间分析等问题,因此,必须采用 GIS 技术并配以其它一些现代化技术,建立起相应的规划管理信息系统,只有这样才能使土地利用规划管理工作真正实现科学化、标准和规范化。
2.3 GPS在土地规划中的应用
土地规划中最重要的基础工作莫过于土地勘测定界,在土地勘测定界中,无论是外业前端数据采集,还是内业图形数据处理,均可广泛采用以GPS为基础的测绘技术。在土地勘测定界的外业工作中,可使用GPS RTK技术进行定位,将基准站的已知数据和观测数据发送给流动站,流动站接收基准站数据,并采集GPS观测数据,形成差分观测值,通过相对定位原理实时计算出流动站的三维坐标及其精度。该测量方式可以提高土地勘测定界精度,并且无需通视,观测时间短,操作简便[ 4]。在土地勘测定界的内业工作中,采用 GIS与数据库技术相结合的方式对土地勘测定界测量和土地征收数据进行管理具有可行性和优越性,能保证从外业到内业数据处理的一致性,能实现内业数据处理的自动化,保证数据统计的准确性以及方便数据的查询[ 5]。
3 结语
土地规划是社会经济发展动态与规划相对静态矛盾不可避免的产物,在其信息化的过程中应尽快建立起统一的管理办法和技术规程,确保其作为土地信息化建设的一部分健康发展。RS、GIS、GPS等测绘技术对土地利用总体规划形成强有力的技术支撑,更好地发挥土地利用总体规划的宏观调控作用,为社会经济的可持续发展提供帮助。
参考文献
[1] 丁莉东. 测绘新技术在土地规划与管理中的应用[J].安徽农业大学,2010,38( 24):13432- 13433,13436.
[2] 蓝运超,肖映辉,陈燕中. 城市规划管理现代化 [M]. 武汉:武汉测绘科技大学出版社,1999.
[3] 王成芳. GIS和RS技术在城市规划设计中的应用探讨[ J].测绘科学,2008,33( 5):218- 219.
关键词:地籍测量 GPS技术 应用
中图分类号: C35 文献标识码: A
一、前言
地籍测量为地基管理的前提以及土地管理的技术基础,国家要想搞好国家建设,必须做好的工作之一便是地籍测量。随着时代的变迁,社会的发展,很多土地问题纷纷出现,所以,地籍测量已经成为一种经常性事务。和普通测量相比,地籍测量并非仅仅注重技术,将地形现状呈现出来,而是综合技术和法学的应用,重点是确定界址,因此,地籍测量人员需要掌握测绘技能,还需要熟悉相关法律章程。GPS技术的发展,给地籍测量工作带来了革命性影响。该技术速度快、精度准、布点灵活、节省开支,为建立地籍平面控制网的最好方法。GPS技术既能够用于静态定位,还能够用在动态定位。下文将对其在现代地籍测量中的应用进行相关研究。
二、地籍测量以及GPS技术原理简介
2.1 地籍测量
地籍测量实际上就是测绘的一种,通过地籍测量所测绘的图件即为地籍图。按照内容标准进行划分,地籍图有地籍要素以及地形要素两种。地籍测量有地籍控制测量和地籍碎部测量两种。
地籍控制测量即为测设地籍基本控制点以及地籍图根控制点,是为开展初始土地登记、建立基础地籍资料、以及日常地籍的动态管理而布设的平面测量控制。采取GPS技术建立地籍测量控制网,点间无需都通视,任何点只需两个方向通视即可,有些只需一个方向通视即可。点间距离无需考虑图形结构,可长可短。
作为地籍测量的重要构成,地籍碎部测量主要是为了真实准确地测定每宗土地的权属界址点、线、等地籍要素。地籍调查规程有具体要求,地籍平面控制测量基础上的地籍碎部测量,城镇街坊界址点和街坊内明显界址点间距可以存在10厘米的误差,城镇街坊内部隐蔽界址点和村庄内部界址点之间可以存在15厘米的误差。
2.2 GPS技术原理
该技术的定位原理,就是利用空间分布的卫星和卫星与地面点间距离,交会形成地面点的位置。所以,如果假定卫星的位置已经清楚,并且可以准确测定地面点A到卫星间的距离,A点则必定在以卫星为中心、以所测得距离为半径的圆球上。如果能够同时测定点A到另外两颗卫星的距离,那么该点必定在三圆球相交的两点上。
三、GPS技术在现代地籍测量中的应用
3.1 采取GPS技术建立地籍首级控制网
GPS控制网网形设计原则:其一,通常情况下,GPS网使用独立观测边形成闭合图形,以提高网的稳定可靠度。其二,GPS网相邻点间基线向量精度要均匀分布。其三,GPS网店需要和缘由地面控制点相结合。其四,GPS网点需要和水准点相重合。其五,GPS网点通常需要布设于视野开阔以及交通便利之地,以方便GPS的测量,提高其精准度。其六,GPS网点附近布设方位点,通视必须良好,以便于联测或者扩展。其七,GPS网需要和非同步独立观测边形成很多闭合环或者附和线路。
拟定观测方案:GPS定位精度受着观测卫星的几何分布影响,因此,拟定观测方案过程中,需要编制好GPS卫星可见图,以确定最佳观测时段,之后其进程方案和网的规模大小,精度情况,作业接收机数量以及后勤保障条件等都有这密切关系,需要根据最优化原则来进行科学拟定观测方案。
3.2 GPS-RTK建立地籍图根控制网
地籍图根控制网的建立,传统方法使用导线法,需要耗费较长的时间,点间需要通视,并且精度分布缺乏均匀性,一旦观测完毕回到处理环节,如有精度不符情况,则需要进行重新测量。采用PTK技术作地籍图根控制测量,则不受外在环境的约束,比如天气、地形等,整个操作过程较为简单,灵活性强,所耗费的时间较少,精度高,误差小且均匀分布。
3.3 PTK的碎部测量
上文已经提及作为地籍测量的重要构成,地籍碎部测量主要是为了真实准确地测定每宗土地的权属界址点、线、等地籍要素。从允许的误差来看,采取GPS-PTK技术能够满足其精度要求。有些影响着GPS卫星信号接收的遮蔽地带,可以使用测量工具比如全站仪,通过解析交会法、图解交会法、极坐标法等测量方法,以加快地籍碎部测量的测量速度。
不过,PTK测量技术也具有一定的局限性。该测量技术在地籍碎部测量中,无论农村还是城市,都只是适用于空旷地带,流动站的工作效率为全站仪工作效率的1.5倍,但是却不能采集到隐蔽点的界址点RTK。由此,对于高楼林立形成的隐蔽点RTK采集需要寻求另外的方法来解决。虽然具有一定的局限性,PTK技术在地籍测量中的实践应用效果良好,并且随着测量技术的不断完善更新,该技术所发挥的作用越来越明显,只是还有许多值得改进完善的地方。
四、小结
地籍为政府进行决策以及规划的重要依据和参考资料,建立完善的现代地籍资料甚至影响着经济的发展。而现代地籍资料的手段即为现代地籍测量,可见,GPS技术在现代地籍测量中的意义重大。正是GPS技术的出现和广泛使用,传统的测量方法得以改变,地籍测量的精准度得以提高,工作效率得以提高。GPS 由于定位精度高、误差分布均匀不累计、可以全天候进行定位、使用方便快捷、不受时间和通视条件的限制等特点,在现代地籍测量的基础控制测量、图根控制测量以及地籍图碎部测量中被广泛使用。本文受到篇幅影响,无法对GPS在现代地籍测量的应用进行具体细致性研究,也没有结合实例进行证实,这也正是笔者在后续研究中所要突破的。我国经济的快速发展,北斗定位卫星组网也已经投入使用,中国定会发展定位卫星接收机以及定位技术,北斗定为卫星将会为我国的地籍测量中发挥重要作用。而现在所使用的GPS为美国的全球定位系统,并且和其他卫星系统的组件还尚未完成。可见,中国的北斗导航系统将在和其他导航定位系统的组建中发挥更为重要的作用,会使得GPS技术更为完善,以为地籍测量服务。
参考文献
[1]刘祥. GPS技术在现代地籍测量中应用研究[D].吉林大学,2012.
[关键词]地籍测绘;GPS;新技术;应用
中图分类号:P228.4;P271 文献标识码:A 文章编号:1009-914X(2016)09-0376-01
引言
每个行业的发展都离不开技术,而当今社会正处在一个新技术不断蓬勃发展的转变时期,这从根源上对各个行业的发展都起到了极大的助力作用。在实际操作中,对这些技术的灵活使用,就能够大大提高地籍测绘的准确性并且提高地籍测绘的效率。
一 GPS新技术定位原理
(一)常规GPS定位原理
GPS技术的基本原理是利用卫星在测量位置和卫星之间信号的折返时间来进一步定位出卫星到测量位置之间的实际距离,然后针对多个卫星对测量位置距离位置的反馈,使得测量位置的得多维的进一步的确认。
(二)RTK技术和精密单点定位技术原理
目前可以使GPS技术进一步进行提高的技术手段主要有两种,一个是RTK技术,二是精密单点定位技术,这两种技术原理能够使原始的GPS技术原理得到一个大幅度的提升,这两种定位技术的不断发展以及应用范围的不断扩大,都能够使GPS技术得到大幅度提升,从而有效地保证地籍测绘的精度和准度。
静态,快速静态,动态测量等常规的GPS测量方法,都必须在测量后对数据结算才能使精度上升到厘米级的精度水平,从专业角度来说,网络RTK又名虚拟参考站技术,是对载波相位进行实时观测从而对观测位置进行精准定位的技术,然后对GPS参考站进行实时监控,从而准确地提供指定坐标系的三维定位结果。
GPS RTK的技术进步之处在于可以使地籍测量工作流动站通过数据链接收来自基准站的数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时不足一秒钟。通过这一技术的不断发展,能够使得地籍测量的各项测量都能得到巨大的突破,为各种控制测量和变量的控制都得到了极大的保障,极大地提高了外业作业时间和内业的工作效率。
二 GPS新技术在地籍测绘中的应用
在地籍测量中应用GPS卫星定位技术,为了对常规地籍控制测绘中控制点点位选择的不利条件的排除,将其变成GPS网状结构,这样能够最大程度地避免对GPS精度定位精度的影响。在地籍测绘过程中使用GPS新技术,可以将流程大大简化,不需要进行点对点的相互通视,仅仅需要控制单点的选取,从而确定GPS点位的选取要求。不需要要求在进行等边三角形测量时进行对角线测量,极大地简化了流程,能够有效地提高测绘的准确性还能够节约测绘的时间,给我一个支点我能翘起地球,我们的新技术就是撬起地球的那个支点,我们测绘结果的精准和快速就是我们翘起的地球,通过这个技术的应用,我们能够在现有情况条件下最大程度上保证地籍测绘控制的精准度,这也就是技术革新所带来的明显变化。
(一) 控制GPS地籍网点的精度和密度
在地籍测量中最重要的是整个测量区的数据进行有效地控制和测量,这一环节是进行地籍图件测绘并且进行专业数据采集,同时对数据进行处理。如何对地籍测绘的精度和密度进行控制,怎样才能有效地达到精度和密度控制的目标,这就必须要求我们对地籍控制网点进行有效而又精密的控制,这种地籍控制网点的精度和密度的本质其实是为了精准定位界址点而服务的,界址点的定义则是测量土地权属范围的特征点。
基本控制测量和地籍控制测量是地籍测绘的两个重要组成部分,这两部分的评判标准不一,基本控制测量有四个等级,而基于基本控制测量的地籍控制测量则分为两个等级。这两种控制测量的方法均可以应用相应等级的三角网、侧边网、导线网和GPS网对GPS地籍测绘来进行控制。
(二) 建立GPS地籍控制网
1. 地籍控制网的布置原则
地籍控制网的布置原则主要有以下几个方面:首先,地籍平面的控制网主要可以布设为三种等级的三角、三边、网边、角网以及两种等级的GPS网;然后,对地籍测量规模先进行一个初步的估量,然后根据这个初步估计再将各个等级的地籍平面控制网点作为首级控制对象;最后,在利用GPS技术对地籍测绘进行控制的时候,同时也可以利用近似等边三角形代替常规的三角形来对地籍进行控制。
2. 地籍控制网的基准设计原则
网的位置基准、方向基准、尺度基准同时组成了GPS基准设计,通过这三个部分共同组成了对GPS网的基准确定,而GPS网的确定基准是利用网的整体平差数据进行计算而得出的最终结果。GPS网的位置基准问题是GPS基准设计的重中之重。
若要确定GPS网的位置基准,必须先确定GPS网的基准点。这个基准点的确定通常有两种方法,一种是选择该GPS网中的任意一点然后对该点进行固定,还有一种方法是利用稳拟平差或违逆平差的方法,虽然不选取固定的基准点但是仍然可以对GPS网的位置进行基准确定。通过这两种方法对GPS网进行平差确定,使得平差前后GPS网的方向和尺度精度等都没有大的疏漏,但是网的点位精度却没有办法得到保证。但是如果在GPS网中选择若干点进行GPS位置基准点的控制,则会对确定网的位置产生一个较大的影响,这种方法能够极大影响所取观测值的精度,同时也与所取值得约束条件有着非常大的关系。
3. GPS选点与观测方案的拟定原则
当利用GPS新技术对地籍控制进行测量时,不要求点与点之间必须相互通视,同时对网的图形结构也可以灵活选用,相比较GPS常规技术的选点工作,GPS新技术的选点工作更为灵活也更为简便,也更加具有可执行性,同时,出于对GPS定位重要性的考虑,因此在进行GPS选点之前应该对所测绘地区的环境和地理位置进行充分的了解和数据的处理,同时便于确定适宜的观测站位置。
同时所选点应该对空通视,同时必须远离天线,电视塔,雷达等有信号发射的地方,此外,基准点位置的选取也不能选取在斜坡上,这也是一个不利于观测的条件。在进行GPS地籍测绘控制建立地籍控制网布置的时候,无需满足所有点均通视的原则,只需要每个点可以达到与另一点通视的条件即可以满足测量条件。
结语
综上所述,每个行业想要进一步发展都离不开技术的革新,而当今社会正处在一个新技术不断蓬勃发展的转变时期,这从根源上对各个行业的发展都起到了极大的助力作用。随着GPS卫星定位新技术在地籍测绘中应用的不断加深,尤其是RTK实时动态测量技术在地籍测绘中的应用,这是地籍测量领域的一个技术革新的转折时期,它的技术优越性在于RTK新技术可以在点与点之间不通视的情况下,远距离得实现三维坐标位置的数据传输,凭借其技术优越性在实际地籍测绘使用中占有及其重要的地位,同时也使得地籍测绘能够在更多更复杂的情况下顺利开展。
参考文献
[1] 彭萍.测绘技术在地籍测绘中的应用分析[J].低碳世界,2014,13:133-134.
GPS系统是利用卫星进行测时、测距的系统。GPS的定位方式分为绝对定位和相对定位。GPS相对定位用于大地测量。目的是要测量被测量点相对于某一已知点的位置。不是直接测量被测点在WGS-84地心坐标系的绝对位置。而对于运动的目标瞬间位置和运动速度的测量是采用GPS绝对定位方式。无论那一种方式,都是由GPS同时观测4颗以上的卫星,根据每颗卫星的位置和每颗卫星与被测点的伪距数值,建立伪距定位方程组,通过对方程组求解和进行误差校正运算,得到被测点在WGS-84地心坐标系的坐标,然后转换成‘新1954年北京坐标系’的坐标。
对于建立GPS移动目标跟踪系统的关键技术是将GPS的广播电文通过通信平台发送出去。实现手段有两种:一是申请专用的频率,建立专用的通信平台;二是利用现有的共用移动通信网络建立通信平台。对于前者,由于频率资源的限制,申请频率将很难,即使申请到了专用的频率,但建系统的费用将很大,用户的使用费用将会很高。由此造成普遍使用的困难。因此,相比之下,后一种手段更为可行。随着GPS组网技术成本的下降、使用成本的下降,以及GPS本身价格的下降,GPS技术在发达国家相当普及,早已进入了民用,但是在中国却一直没有普及,原因之一就是通信平台问题。现在全球移动通信系统(GSM)在我国东部、中部地区,尤其是在城市已经相当普及,因此利用GSM系统作为组成城市的公共汽车调度系统,出租车的调度系统,贵重物品运输车的跟踪系统,机动车防盗系统等通信平台,应该是非常容易的事情。
1.技术手段
以GSM系统为通信平台传送GPS的广播电文有两个途径:一是数据通道,二是语音通道。如果使用GSM数据通道传送GPS的广播电文,移动终端要由终端适配器、 满足CCITTV24协议和V.21至 V.32协议的调制解调器组成。传输速率最高可达到9600bit/s 。移动终端的结构比较复杂,成本高,适用于实时性强、信息量大的传输。
用GSM的语音通道传送GPS的广播电文的方法是将GPS的广播电文转换成音频信号,再由GSM系统将音频信号进行语音编码将其变换成13kbit/s的数字化语音信号,数字信号经过高频调制、功率放大等处理,以电磁波的形式发射到自由空间,经过有关的网络,最后由接收端的天线检测到这个信号,进行语音解码,还原成GPS的广播电文。这种方法传输速度慢,适用于要求数据传输量较少的用户。移动终端可以由现成的GSM手机和数字/音频转换卡组成,结构简单,成本低。
2.移动目标跟踪系统组成
本篇文章介绍的系统由GSM移动端机和显示座机组成,移动端机能将GPS的定位信息转换成话音信号和2FSK信号,通过GSM网送到网络另一端的移动用户的手机、固定用户的听筒或者显示座机中。显示座机将2FSK信号转换成HEX码或ASCII码再经过RS232口接入电子地图平台,直观地显示出被查询设备所处的位置。而对于移动用户和固定用户可以通过语音的播报,直接获得移动目标所处的位置(经度、纬度、椭球、高度)和经度方向、纬度、椭球高度方向移动的速度。
(1)GPS移动端机 GPS移动端机的硬件结构如图1所示。其中,GPS25-LP是GRAMIN公司生产的同时跟踪12颗卫星的GPS接收机,从TX1口输出的广播电文为ASCII码NMEA-0183格式或者从TX2口输出二进制的位置数据、伪距和载波相位数据、星历数据。二进制的位置数据格式如附表。
ISD4002-120是数码语音合成芯片,工作于SPI同步串行协议。PIC16C65的8位单片机,有4×8BIT的程序存储区、同步和异步串行通信口、通用的输入输出口、8位和16位的定时器和计数器,并有内置式的看门狗,以及多种中断,同时有很强的抗干扰能力。GPS25-LP与单片机之间的数据交换通过RS232串行通信口。MT8870是DTMF解码器,CMX624是能够检测呼叫的2FSK信号的编码/解码器。CMX624与单片机之间的数据交换是采用同步串行通信方式进行。移动端机提供两种方式传送GPS数据。一种是将GPS的数据通过单片机编译成语音合成芯片中对应的语音信号的地址,通过地址的控制将GPS的数据转换成语音,再通过GSM网用语音方式向用户播报。另一种将GPS的定位数据、历书数据等以ASCII码或HEX码的型式经过RS232口送到PIC16C65,由单片机送到CMX624编码成2FSK信号,以数据的形式通过GSM网传送到端机或用户。2FSK信号的频率范围从300~3000Hz,在音频范围内。目前GSM网采用的在语音编码方案是13kbit/s RPE-LTP码。L2000将音频信号按8kHz取样,按照每20ms划分为一个语音帧,每一帧有160个样值点,延时参数和采样相位值在语音帧中每5ms传一次,每帧为260bit的数据块。因此完整传送一个语音帧包括延时参数和采样相位值至少要25ms。接收端收到语音编码的数据块,经过LPT(长期预测)滤波器和LPC(线性预测)滤波器重组,再经过一个特定的去加重网络加以复原,恢复成语音信号。对于DTMF信号的命令码,每个码长要大于50ms。要使以2FSK方式调制信号在GSM网语音信道无失真传输,且传输误码率限制在万分之一以下,码率应小于600bps 。移动端机自动摘机、挂机的控制电平是单片机通过L2000的免提接口提供。端机工作在主叫状态下的流程图如图2所示,图3为座机工作在被叫状态下的程序流程图。
关键词:工程测绘;GPS测量技术
中图分类号: E271 文献标识码: A
引言
随着经济的快速发展和科技的不断进步,越来越多的先进技术应用在工程测绘中,GPS技术是现代科学技术中,发展起来的一种先进的卫星系统定位技术,GPS全球卫星定位系统作为最新形式的测量系统,已经广泛使用于地形测量、航空摄影测量、工程测量以及大地测量等多个方面的测量工作。GPS全球定位系统(Global Positioning System)在近两年的公路铁路工程、水利水电工程的实际测量工作当中得到了非常广泛的应用,这主要是GPS技术具有自动化程度高、速度高、精度高、全天候和不受地形条件约束等优点。
一、GPS测量技术的概述
1、GPS系统的组成
GPS系统主要由GPS卫星星座、地面监控系统、GPS信号接收机等三大部分组成,其中GPS卫星星座是由3颗轨备卫星、21颗工作卫星共同组成的,这24颗卫星按照每组4颗卫星平均分配在6条相互成60°的轨道平面上运行,其运行周期为24h,因此无论在地球那个方位,都能在任何时间观测到最少有4颗属于GPS系统的卫星,GPS空间星座的主要作用是观测目标,并将观测信息转换成载波信号,传输到地面监控系统中,实现目标定位。地面监控系统主要由主控制站、监测站、地面天线几部分组成,主要负责收集空间卫星传输回来的信息,然后利用这些数据计算出卫星星历等数据。GPS信号接收机也就是用户端,它能搜索、捕捉卫星,然后卫星传输的数据进行处理,计算出GPS信号接收机所在位置的经纬度及高度。
2、GPS测绘技术的特点
2.1 定位精度高。随着科技的不断进步,GPS测量精度也在不断的提高,GPS测绘技术的测量精度十分高,在100km以外、500km以内,其测量精度能达到106-107,对于500km的基线范围,其测量精度能达到1-2×106。
2.2 观测时间短。GPS测绘技术的观测时间很短,尤其是在近几年,随着GPS技术的快速发展,其观测时间也越来越短,传统的静态定位方法,受卫星数目及精度的影响,需要花很长时间进行观测,但新兴的GPS技术只需要在几分钟,甚至是几秒钟就能完成观测。
2.3 观测站之间不需要通视。在进行工程观测时,对通视有很高的要求,同时对测量网络的几何结构也有很高的要求,由于两者间存在很大的矛盾,对工程测绘造成很大的影响。GPS技术能有效地解决这个问题,它不需要各观测站之间通视,能灵活的选用观测点,极大的提高了观测效率。
2.4 提供三维坐标。在传统的工程测绘中,需要通过观测、计算得出高程及平面坐标,采用GPS测绘技术能同时获得高程以及平面坐标,直接提供三维坐标。
3、GPS测量技术的优势
分析GPS测量技术的优势,如:(1)测绘效率高,能够在最短的时间内,获取工程测绘的信息,效率远高于传统测绘,高效的测绘促使GPS测量技术应用在多个领域,满足测绘需求;(2)定位准确,通过静态定位的方法,保障每个定位点的准确度,排除定位点的误差影响,促使GPS测量技术在不同的工程测绘中,均可发挥定位准确的优势;(3)自动化能力高,GPS测量技术中基本不需要人为参与,实现高水平的自动化,为智能化发展提供基础条件。
4、GPS工程测量原理
在工程中,GPS测绘技术有两种方法测量出被测对象的信息,一种是测量伪距离,另一种利用载波相位进行测量。测量伪距离是根据接收机接收到的GPS卫星发出的测距码及电文内容,根据信号发射到用户接收信息的时间,计算出卫星与接收机天线之间的距离,由于用户接收机的时钟难以与GPS卫星时钟保持同步,计算出来的数据有一定的误差,因此,称为伪距离。用载波相位进行测量是测定GPS卫星载波信号在传播路径上的相位变化,从而计算出信号传播距离[1]。
二、GPS技术在工程测量中的应用流程
GPS测量技术在工程测绘流程方面的要求较高,需要缜密的流程,才能确保GPS的精准度。分析GPS测量技术的应用流程,如下:
1、定位测量点
选择测量点时必须遵循便捷、安全的原则,便于布设GPS设备,尽量定位在视野开阔的作业环境内,避免影响GPS设备信号的传输与接收,排除外界电磁的影响,确定GPS的测量点后,需要记录到测绘图纸内,为后期测绘提供图纸依据。
2、构建测量标志
GPS技术中的测量标志,主要是起到指示、提示的作用,待测量点定位完成后,需要安置测量标志,用于指导GPS测量的整个过程。由于工程测绘环境的影响,测量标志的构建并没有统一的方法,基本按照测量人员的经验设置,比较常见的方法时埋入标石,既可以发挥标识作用,又可以稳定标志。
3、测量观测
测量观测是GPS技术中的重要环节,GPS测量属于室外作业,促使GPS需要严格遵循室外观测的要求。例如:某地籍项目测绘中,在GPS室外观测中增加卫星导航,两者需在协调状态下才能实现高质量的测绘服务,该项目人员设置到GPS技术后,利用卫星收集测量信息,通过导航系统观测GPS接收的卫星信号,充分利用开机观测的方法,保障测量观测的技术性[2]。
4、数据分析
GPS测量数据的分析,基本是由计算机完成,利用计算机中的外业检测,确保数据分析的准确度,确保数据结果贴近工程实际,完善GPS测量中的数据库。
三、GPS测量技术在工程测绘中的应用探究
近几年,工程建设行业的快速发展,拓宽GPS测量技术的应用范围,体现GPS的测绘优势。结合GPS测量技术的基本特性,分析其在工程测绘中的应用,如下:
1、水下测绘
水下测绘一直是我国工程测绘中的难点,因为水下的情况复杂,而且受到水位影响,所以水下测绘的难度系数比较高,如果在水下工程中采用人工测绘,必须要排除流速、压强等因素的干扰,无法保障测绘结果的准确度。我国水下工程的发展速度越来越快,对水下测绘的依赖性也逐渐提高,促使水下测绘成为水下工程的重要部分。GPS测量技术具有显著的优点,可以在横、纵两个方向,实现精准测绘,GPS测量设备的体积非常小,不会对水下测绘区域产生影响,其在测量过程中,将收集到的水下资料迅速传递到地面的计算机系统内,通过软件分析得出最终的数据结果,排除水下环境的干扰,降低水下测绘的难度。水下测绘在GPS测量技术的推动下,取得良好的测量结果,如超生测量等,优化水下测绘的环境[2]。
2、形变测量
形变是工程测绘中的主体项目,大部分工程内都存有形变影响,尤其是受到地质、人为等因素的影响,更是增加形变控制的难度。针对形变控制,需通过GPS提供测量信息,便于提出科学的控制途径。例如:某矿业现场的地基出现形变,表现出严重的沉降危害,该矿业人员通过GPS测量技术,及时分析引发地基变形的原因,同时测量地基沉降的基础参数,有效控制形变发生,降低地基形变对整个矿业现场的危害,GPS测量技术在该矿业中发挥定位与监测的作用,利用三维定位的方式,监测地基形变中的细微变化,控制在安全范围内,避免出现大规模的形变或沉降,保障该矿业现场的安全运营,而且提高了矿业现场抵御变形风险的能力。
3、城市测绘
城市建设是我国经济发展的重点项目,多样化的城市建筑投入施工,由此必须保障测绘达到规范的标准。GPS测量技术在城市测绘中的使用频率最高,其与GIS、RS组合,高效完成城市测绘的定位、遥感等,提高城市测绘数据的准确度。例如:某城市测绘时,涉及到大面积的控制网,总共包括三级导线测绘,需要GPS的准确测绘,该城市测绘过程中,受到基础建筑的影响,导致不同层次的导线测绘均遭受不同程度的破坏,增加GPS测量技术的压力,此时该城市选择GPS静态测绘,同时利用GPS中的RTK技术,排除城市两个测绘基点的通视,完成直接性的测量连接,不会破坏该城市原本设定好的测绘基点,还可以高效率的完成城市测绘,方便建筑施工和城市规划[3]。
4、网点控制
网点控制主要体现在大地测量中,传统的测量技术耗时、耗力,影响网点的控制。我国在工程建设中,重新规划了控制网点,为保障网点控制的精准度,需要利用GPS测量技术,完成长距离的准确测绘。GPS测量技术在网点控制中,能够适应大规模的大地测量,在保障效率的基础上,快速完成网点测绘。GPS测量技术在网点控制中的应用,还要避免对城市控制产生影响,以免干扰整体测绘的精度,造成数据误差。
结束语
综上所述,GPS测量技术朝向自动化的方向发展,在很大程度上降低了人工作业的强度,优化工程测绘的整个过程,促使其更加适应现代工程行业在测绘方面的需要。GPS测量技术在工程测绘中得到广泛应用,一方面提高数据测绘自动化的能力,另一方面GPS成为工程测绘的基础技术,融合其他测量技术,共同推进工程测绘的发展,提供优质的测绘服务。
参考文献:
[1]杜芳华.GPS测量技术在工程测绘中的应用及特点[J].低碳世界,2013(12):113-114.
[关键词]GPS技术 地形测绘 应用
[中图分类号] P228.4 [文献码] B [文章编号] 1000-405X(2014)-1-137-2
随着我国城市化进程的不断加快,城市规划和各类工程建设不断增多,对地形测绘数据的质量和精度要求也越来越高,这也推动了GPS技术在地形测绘中的应用。现目前GPS测绘技术主要有快速动态测量技术、快速静态测量技术以及常规静态测量技术,并在地形测绘中都得到了广泛应用,已成为主要的地形测绘方式。
1GPS技术概述
GPS系统即全球定位系统,是上世纪70年代美国研制的卫星定位导航系统,利用导航卫星来进行测时以及测距,具有全球性、全天候、连续性和实时性导航定位和定时功能,其保密性和抗干扰能力也相对较高,能够为不同用户提供精确的速度、时间以及三维坐标。随着GPS技术的不断发展,GPS技术被广泛应用于各个领域中,尤其是工程测量领域。GPS系统由空间部分的卫星星座、地面控制部分的地面监控系统以及用户设备部分的GPS信号接收机组成。GPS技术有着低成本、高精度以及高效率的优点,被广泛应用在现目前各种测绘中。GPS技术的原理是将高速运行的卫星瞬时位置最作为起算数据,使用空间距离交会方法来确定测绘点的准确位置,由于卫星位置已经相当准确,因此,GPS观测中获得的接收机至卫星间的距离也相对准确,便能够准确推算出用户GPS接收设备所在区域的相关参数,如时间、经纬度、海拔高度以及运动速度等相关参数。
2GPS技术优点
随着科技的不断发展,GPS技术由于其独特的技术优点被广泛应用于工程测量领域之中,GPS技术优点具体体现在以下几方面:
2.1定位精度高
通过大量的工程实践应用和试验证明,GPS技术所采用的载波相位观测量来进行静态相对定位,其定位精度非常高。运用GPS技术进行测量时,在基准线小于50km时,精准度能够达到1×10-6~2×10-6;在基准线小于100~500km时,精准度能够达到10-6~10-7。随着近年来GPS技术的不断发展,在基准线在1000km以上时,GPS测量的精准度能够达到或超过10-8。此外,GPS RTK能够达到厘米级和分米级的定位精度,能够有效满足现目前大多数工程测量需求,其精度如表1所示。
2.2观测时间短
采用GPS技术进行测量时,其观测时间相对较短。对200km以内基线的观测时间,采用GPS的静态定位观测单频接收机需要1h左右,双频接收机仅需要15~20min。若测量时采用GPS RTK实时动态定位,流动站点的观测时间仅需1~5min,便能完成准确观测,每站观测只需要几秒钟便能完成,大幅度提高观测作业效率。
2.3观测站间无需通视
现目前,一些测绘方法对通视要求条件相对较高,需要良好的通视,否则无法开展测绘工作,且测控网还需要有良好的图形结构。然而采用GPS技术进行测绘时,由于测绘站与观测站间的信号收发均为垂直收发,因此,观测站间无需通视,也不需要建造观测觇标,只需保证测绘点上方15°角的空间区域开阔便能开展测绘工作。采用GPS技术进行测绘时,不会受到图形结构的限制,使得测绘点的选择更加灵活,能够根据实际测量需求来进行观测点的选择,减少测绘工作量,如无需进行传统测量的过渡点等工作。值得一提的是,在实际的测绘过程中,GPS往往会和其他的测量方法联合使用,这时需要保证至少一个方向具有良好通视条件。
3地形测绘中GPS技术应用
地形测绘是土地测绘的一项重要任务。在地形测绘时,采用GPS动态测绘技术,不受通视条件和图形结构的限制,可以根据实际的测绘需要灵活选择测绘点,没有常规三角网布设时要求近似等边及精度估算偏低时应加测对角线或增设起始边等繁锁要求,只需保证测绘使用的GPS动态仪器的精度与地形控制测量的精度相匹配,测量点便符合GPS测绘动态选点要求。随着科技的不断发展,GPS技术的测绘精度和测绘速度不断提高,广泛应用于现目前的地形测绘中。GPS测绘技术主要有快速动态测量技术、快速静态测量技术以及常规静态测量技术,并都得到了广泛应用,已成为主要的地形测绘方式。对于边长在5km以内的一、二级地形控网基线进行地形测绘时可以采用动态测量模式,对于边长在10~15km的基线进行地形测绘时可以采用快速静态测量模式。GPS技术在地形测绘中应用如下:
3.1GPS地形控制网点的精度和密度
全测区的控制测量是地形测绘的首要任务,同时也是参数采集以及地形图件采集的基础。GPS地形控制网点的密度和精度,其主要目的是为测量土地的界址点服务。GPS地形控制网点的密度可以按照测绘区域的范围以及先后顺序分成加密网点和基本网点。城镇地区的界址点密度相对较大,为了确保GPS地形控制网点的点位精确,地形控制点密度应当增大,达到测定界址点的目的。相对其他常规网边长,GPS各边边长变化幅度更大,长短边的结合方式也更加灵活,因此应当分期布设各级网可视或一次性混合布设到密度需求量。
3.2位置基准点偏差对GPS测绘的影响
在采用GPS技术建立地形控制网时,GPS定位得到的三维坐标差是WGS-84坐标系的,GPS测绘数据与GPS在参考椭圆面上的位置基准有关。经度方向上的位置基准偏差能够导致GPS网产生整体旋转,对于精度要求较低的GPS网来说,位置偏差的影响可以忽略不计,对于高差要求较高的GPS网要求有精确的起算数据,因此,在测定高程时,为了避免误差,可以采用常规的测量方法。
3.3GPS地形控制网的优化
在传统的地形测绘中,兼顾成本、进度以及可靠性的地形测绘优化已取得一定成就。GPS测绘技术相比于传统的地形测绘技术,有着随机的模型以及复杂的函数,使得GPS地形测绘技术有着高精度、快速以及灵活的布网方式的特点,然而GPS测绘技术在地形控制网的设计方面仍然处在一些问题,需要不断进行优化,才能不断提高GPS测绘技术的精度和效益,保证地形测绘的效率和科学性。
4结束语
随着科技不断发展,推动了GPS技术的发展,使得GPS技术的精度和效率不断提高,并广泛应用于地形测绘中。GPS测绘技术主要有快速动态测量技术、快速静态测量技术以及常规静态测量技术,有着定位精度高、观测时间短以及观测站间无需通视的优点,在地形测绘中得到了广泛应用,已成为主要的地形测绘方式,然而为了保证地形测绘的准确性和精度,仍然需要对GPS技术进行不断优化。
参考文献
[1]孟凡东.浅谈GPS技术在地形测绘中的应用[J].科技资讯,2012,(25):27-27.
【关键词】GPS技术;国土测绘管理;应用
国土测绘管理的核心是地籍测量,而地籍测量是调查和测定土地及其附着物的界线、位置、面积、权属和利用现状等基本情况及其几何形状的测绘工作。地籍测量与城市测量有着密切的联系,只不过城市测量偏重于土地的整体利用与城市规划;而地籍测量则偏重于城镇宗地单元的权属和界址。因此,地籍测量同其他测量一样,应用GPS技术,能够有效保证各项测量结果的精准度,从而为国土测绘管理工作打下坚实的基础。
1 应用GPS技术的地籍控制测量工作
随着我国科技水平的快速提升,全球定位系统的研发、设计以及应用取得了长足进步,GPS技术为国土测绘管理、地籍测量、地籍控制测量等工作带来了巨大的变化与影响。依据由我国土地局颁布的各项标准、规程等内容中的具体要求,布设地籍平面控制网的方式主要包括:一级、二级小三角网;二、三、四等三角网;一、二级GPS网;边角网、三变网等。需要注意的是,根据国内不同城镇的不同规模,可将等级不同的地籍平面控制网点作为首级控制。在实际的地籍控制测量工作中应用GPS技术,不仅有效避免了以往常规、传统测量控制的点位选取方式所带有的局限性,同时在一般情况下GPS网状结构并不会对GPS网的精准度产生影响,各个点位之间并不需要做到互相通视。GPS技术,凭借其实时观测功能、点位布设灵活、操作简便、数据与信息的处理速度快、测量精准度较高等优势,在我国的国土测绘管理与各城镇的地籍控制测量工作中得到了广泛的应用与推广。值得注意的是,在实际进行地籍测量的控制时,倘若采用了GPS技术,在缺少传统三角网的情况下,估算精度、近似等边的结果偏低,此时应另行测定对角线、布置起始边,尽可能保证等级控制的精度与GPS设备的精度相匹配,由此才能保证选取GPS点位的要求与选取控制点位相符,此时已布设GPS网的精准度能够充分满足我国地籍测量标准、规程中的各项要求。
2 GPS地籍网的密度、精度
在实际进行地籍测量的过程中,为保证采集各类信息、数据时准确性,以及各种测绘地籍图件的精准度,控制测量的具体活动主要集中在全测区。此外,为充分满足测量土地权属范围时的各项要求、数据需求,必须针对地籍控制网点的密度、精度采取有效控制。在具体的工作中,GPS地籍网可根据其目标测量区域的范围或排列顺序,将点位密度分别以加密、基本的布网形式分为两类。由于我国多数城镇GPS地籍网的界址点较为密集,从而需要在保证各点位具备一定精准度的前提下,最大限度的加大、扩张控制点密度,以便测量、选定目标区域的界址点。除此之外,还可在GPS地籍网下加密一级图根导线,由此便可根据图根点来直接测定目标地区的界址点。值得注意的是,GPS地籍网的各个边长,相较于传统地籍网各边,不仅有着较大的变化幅度,同时长短边的连接较为方便、灵活,不同等级的GPS地籍网,可根据不同的需要而选择分期布设、一次性混合布设。
3 进一步改进、完善GPS地籍控制网
长期以来,对于以往传统的经典三角测量的控制网,为进一步提高其准确性、可靠性、全面性以及降低成本费用,我国的有关部门、专家、学着经过长时间研究、反复的应用,已编制、提出了多种优化设计方案。相较于经典观测,采用GPS技术的观测网有着更为专业、复杂、庞大的随机模型与函数,虽然多元化、可随机调配的布网方式大幅提高了观测工作的精准度与效率,但GPS地籍控制网的设计仍存在诸多问题有待改进、完善。针对GPS地籍控制网进行优化设计,能够有效运用、充分发挥GPS卫星定位技术高效率、高精度的优势,从而为地籍调查工作打下基础。值得注意的是,在设计、建立GPS地籍控制网时,应综合考虑各种能够影响控制网精准度的因素。其中,地球自转、相对论效应、磁场变化等自然因素造成的误差,以及信号传播过程中的误差、数据信号接收系统与设备的误差,不仅直接影响到了观测数据的准确性,同时也将关系到控制网的精准度。
4 GPS地籍网的基准点
GPS地籍网的基准点主要包括三个方面,即方向、位置、尺度,而对于GPS地籍网基准点的确定,需要通过对网的整体平差计算来获得具体数值、参数。在实际设计GPS地籍网的基准点时,主要是以计算、确定地籍网的位置基准为首要任务。在实际的工作中,位置基准的确定可在GPS地籍网中选取一个点位的坐标值,通过固定、适当放权或全不固定的方式,利用稳拟平差、自由网伪逆平差,计算、选取、确定GPS地籍网的位置基准。在进行GPS地籍网的平差时,运用此种最小约束法,对于该网尺度、定向并不产生影响,待计算处理完毕后,虽然GPS网的方向、尺度、相对精度基本保持一致,但该网点位的精准度与位置基准将有所不同。值得注意的是,倘若在GPS地籍网中选取了多个点位的坐标值,对其进行的固定、适当放权,虽然能够确定GPS网的位置基准,但将影响到该网的尺度、方向,具体的影响程度主要取决于获取、使用各项观测数据的精准度,以及各项约束条件的多少。在设计、建立GPS地籍控制网的过程中,GPS定位系统所使用的各项数据、参数,主要是WGS-84坐标系中的三维坐标差。由此可见,在GPS参考椭球面的前提下,GPS的网形主要取决于位置基准。此外,在经度方向上,GPS地籍网倘若产生整体旋转,其主要是受位置基准的偏差影响而造成的;而在一般情况下,高差相对较小、拥有一定范围的GPS地籍网,其位置基准在经度、纬度方向上的偏差在一百米以内,而此种情况对于在椭球上投影的网形所产生的影响较小,对于高差相对较大的GPS地籍网则必须保证各项起算数据的精准度。
5 结束语:
综上所述,我国地籍测量工作的数据更新频率较大、界址点测量较多、目标范围较广,作为一种先进的测绘技术,在地籍测量中应用GPS技术,能够有效缩减人工劳务成本、实时完成测量处理,具有操作简便、定位精准度高等优点,大幅提高了地籍测量工作的效率、质量,从而为国土测绘管理工作打下了坚实的基础。
参考文献:
[1]曹玉钧. 土地测绘技术的变迁及GPS技术的应用[J]. 硅谷, 2008,(22) .
[2] 杜保伦,张明福,史先良. GPS在土地测绘中的应用与开发[J]. 价值工程, 2010,(04) .
[3] 马春艳,郭敏,郑秀明. GPS在1:1000数字化地形图测绘中的应用[J]. 全球定位系统, 2009,(05) .