时间:2022-06-18 09:57:59
导语:在化学成分论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
近年来,由于教学改革,分析化学课时逐渐减少,教师由于教学内容多、课时少,往往采用满堂灌教学,学生很少参与到教学过程中来,无法发挥学生学习的主观能动性;大部分教师上课照本宣科,教学内容枯燥,远离现实生活,无法激发学生的学习兴趣.近几年,由于江苏省高考制度的改革,化学不再是高考的必考科目.据调查,目前我们院很多化学专业的学生在高考时都没有选化学作为考试科目.他们在高二小高考结束之后便完全不接触化学课程,导致很多学生化学基础薄弱,知识结构不完整,甚至出现了化学知识断层,因此,他们在学习过程中对化学课程无从下手.同时,分析化学是一门实践性很强的学科,而现阶段大部分学校的理论教学和实践教学是分开进行的,学生很难将理论知识融入到实践中,教学耗时费力,教学效果却不佳.现在的实验课基本上是由实验员准备妥当,教师在实验课上先讲一遍实验步骤、注意事项等,学生只需照着实验步骤做一遍,至于为什么这么做学生很少思考,这种教学模式很难激发学生的积极性和创造性,甚至无法培养学生分析和解决实际问题的能力,导致到做毕业设计和毕业论文时,部分学生对于导师选定的课题根本无法独立完成,更无法满足用人单位对于学生的实际需求.因此,如何发挥学生学习的主观能动性,激发学生的学习兴趣,培养学生分析解决实际问题的能力,进一步培养学生的创新和创造能力是急需探讨和解决的问题.
2提高教学质量的思考和建议
2.1贴近生活,激发学生学习兴趣
由于分析化学涉及的内容范围较广,知识零散,如果教师在课堂上只是照本宣科,机械地讲解一些基本原理和方法,远离实际生活和生产实践,容易使学生觉得该课程难以致用、枯燥乏味,很难激发学生的学习兴趣.例如,在绪论课的授课过程中,如果教师只是平淡地介绍分析化学课程的定义、性质、分类、任务等,会让学生觉得整个课程枯燥、乏味,感受不到学习该门课程的实际用处,难以提升兴趣.如果教师适当融入现实事例进行介绍分析,如食品安全领域苏丹红事件,三聚氰胺事件等;环境领域水质、空气污染等监测问题,学生将通过身边发生的事例体会到该课程的重要性和实用性,远比教师多次口头强调该课程的重要程度、考试的严格程度更容易激发学生的学习兴趣.在实验教学中,我们为了使学生更加充分理解、牢固掌握和灵活运用分析化学的理论知识,在实验项目上进行了一定的调整,设定了一些趣味性强且贴近实际生活的实验项目.如“食醋中有机酸含量的测定”、“方山地区自来水硬度的测定”等实验.在自来水硬度的测定实验中,可以先向学生介绍水的硬度包括暂时硬度和永久硬度,暂时硬度可以通过加热煮沸来消除,而永久硬度却无法消除,而饮用硬度超标的水会影响人体的健康.如果硬度过大,饮用后对人体健康和日常生活有一定的影响,如:用硬水烹调鱼肉、蔬菜,就会因不易煮熟而破坏或降低营养价值;用硬水做豆腐不仅会使产量降低,而且会影响豆腐的营养成分等.[1]随后即让学生利用络合滴定法来测定自来水的硬度,看其硬度是否超标.这些实验内容与现实生活中大家较为关注的问题密切相关,既能激发学生的学习兴趣、调动学生的学习积极性,又能使学生认识到理论到实践其实就是一步之遥.
2.2巧妙设疑,引导学生开展讨论
传统的分析化学授课方式通常采用的是填鸭式教学方式,这种讲授法有其自身的优点,比如该方法便于在较短时间内让学生获得大量的系统知识,然而这种方法实际教学效果并不理想,学生在这种教学方式中处于被动的学习状态,根本无法充分发挥学生的学习主动性和积极性,教师也难以及时获得学生的反馈信息,因此教师可以根据不同的教学内容、学生情况等,灵活组合不同的教学方式,如启发式、讨论式、探究式等注重师生互动的多样化教学方式,可以充分发挥学生在教学活动中的主导地位,激发学生的学习积极性.[2]例如,在《分析化学》第三章“滴定分析概述”的教学内容中,几乎全是抽象的概念、定义等,如:标准溶液、基准物质等,在往年的教学过程中,笔者采用的是传统的讲授法,向学生一一讲授相关定义和原理,但这种教学效果并不理想,学生对一些基本定义和原理的理解并不透彻.在今年的教学过程中,笔者摒弃了以往的教学方式,没有像以往一样唱“独角戏”,而是通过巧妙设疑,和学生展开了积极的讨论互动.通过提问,学生经过思考,适当的时候教师加以点拨,学生将会自己得出一些定义和概念,有效地加深了学生对所学知识的理解,激发了学生解决问题的积极性,同时锻炼了学生的创新思维能力.如先向学生提出问题1:“如何测量某种酸的浓度?在早期没有现代的测量手段时是如何完成的?”可以先启发学生酸会有什么样的性质,学生经过思考会指出酸会使某些物质变色,酸会腐蚀金属,通过观察酸对金属的腐蚀程度来确定酸的浓度.但这只是对酸进行了定性分析,而我们分析化学的主要任务是进行定量分析.若要知道酸确定的浓度,我们必须找到更准确的方法.假定有一种标准碱,这时学生会想到酸碱会发生反应,但是采用什么样的方式进行反应呢?紧接着要解决这个随之而来的问题,如果只是把两种物质进行简单地混合,这样产生的误差会很大,学生会自然地想到采用“滴定”的方式.这时引入问题3:“如何确定反应终点?”可以和学生一起回忆以前学过的一些反应,有的反应会有颜色的变化,通过颜色的变化来确认终点,有的反应会有沉淀和气体生成,可以通过观察实验现象来确定反应的终点,而有的反应没有任何实验现象,如酸碱反应“氢氧化钠和盐酸反应”,这样的反应又如何确定终点呢.这时可以启发学生,在酸碱滴定过程中会有哪个物理量发生变化,学生会想到溶液的pH值,这时可以提出在《无机化学》中用过的酸碱指示剂如:酚酞、甲基橙等为什么可以指示酸碱反应的终点?学生通过思考会想到酚酞、甲基橙等这些酸碱指示剂的颜色会随着溶液pH的改变而发生变化,这样就得出了酸碱指示剂的变色原理.在整个章节的教学过程中都贯穿了提问、思考、启发、得出结论这样一个过程,整堂课气氛活跃、讨论热烈,学生积极主动地参与到了教学过程中,同时通过自己思考、总结,对整个概念和原理的理解更加透彻.这样的教学方式,不仅教学效果良好,同时也培养了学生分析和解决问题的能力,在接下来几章具体的滴定分析的学习过程中,学生都采用类似的思维思考和解决问题,教学效果得到了极大地改善.
2.3理实一体,培养学生分析解决问题能力
分析化学是一门实践性很强的学科,分析化学实验教学是分析化学教学的重中之重.目前,我们的学时安排为理论课程50课时,实验教学56课时,虽然实践技能训练在教学时间中占有不小的比例,但分析化学理论教学和实验教学是分开进行的,同时开设《分析化学》和《分析化学实验》,这样课程设置有优势,但也有许多不足.[3]首先,理论课程和实验课程是由不同的教师担任的,不利于教师对学生在理论课和实验课学习中的全方位把握;其次,容易出现理论课和实验课衔接问题,导致某些知识点重复讲、漏讲等问题;时间和空间的转换也使学生难以将理论融合在实践中,特别是这学期的教学进度安排,有的实验在理论授课之前进行,学生对所用原理一知半解,只是重复实验步骤,得出简单的结论,这样的教学方式耗时费力,教学效果却不如人意.同时,在这两年的实验教学过程中发现,学生不重视实验,没有主动性,虽然会要求学生预习并写预习报告,但多数学生只是把有关内容抄到报告上面,很少去思考为什么用该试剂,为什么称取这么多,用什么精度的天平称取,为什么用该种指示剂等等,而且在实验项目进行之前,实验课教师为实验做的准备工作过多,学生甚至不知道一些药品如何配制,学生在实验课上只是按照标准的程序进行验证,可对为什么那样做却不甚了解.如果可以将理论和实验统筹安排,在理论知识的讲解过程中,适当地融入实验项目,穿插提问实验中可能会遇到的问题,让学生思考,并布置学生对所要进行的实验项目进行预习.理论授课后,学生经过短暂的思路整理随即进入实验室,针对讲解用实验来验证理论,这样的安排有利于强化学生对于理论的掌握、对现象的记忆和对操作的熟悉.如果能实现同堂教学,将相关理论和实训技能放置在同一教学单元中进行,在授课的过程当中可以随时停下来观察实验现象,或是对实验过程中出现的问题随时进行分析和讲解,在学生最想弄明白问题的时候引导学生去思考,并利用所学的理论知识给出合理的解释,教师和学生处于整体性教学区域中,教师边教边做,学生边做边学,这样将会解决理论和实践脱节,教与学脱节的问题.[3]在同堂化教学中,也可以把一些传统的验证性实验改为简单的设计性实验,实验时设置一系列问题由学生回答,比如“氢氧化钠标准溶液的配制与标定”实验中,可以先向学生提出一系列问题,如氢氧化钠标准溶液可不可以采用直接法配制?称取氢氧化钠应该用什么精度的天平?可以利用哪些基准物质来标定氢氧化钠溶液?称取基准物质的质量范围应该如何确定,又采用什么精度的天平进行称量?学生通过对这些问题进行思考、总结、讨论和交流即会整理出一份完整的实验方案,这样将会达到事半功倍的效果,同时将会培养学生思考、分析问题和解决问题的能力,可以促进学生的个性化发展,更有利于培养学生的学习能力、实践能力和创新能力.
2.4融入科研,培养学生的创新能力
随着交叉学科的发展,分析化学与环境科学、食品科学、材料科学、生命科学的联系变得越来越紧密.现代分析化学的使命已由单纯提供分析数据,发展到提供更全面的信息和知识,以解决其他学科提出的新任务.所以教师在阐明经典分析理论和方法的同时,要根据分析化学发展动态,及时更新教学内容,把本学科发展前沿的新知识、发展动态融入到教学中,引入各个领域中分析化学的新进展和新成果,使得分析化学和分析化学实验这两门基础课不再局限于简单的“基础”,而是让学生明确自己专业学科的方向和未来.通过在教学中不断渗透前沿学科,不仅使分析化学教育富有生命力、感染力和时代感,而且也激发了学生的学习热情,培养了学生的科学素养和创新能力.[4]对于有科研项目的教师,可以让学生适当地参与到自身的科研项目中.教师可将自己的课题分解成若干子任务,详细给学生介绍课题背景,讲解要解决的问题和预期效果,引导学生查阅相关文献,并鼓励学生设计实验方案,在课余时间和假期耐心指导实验,这样不仅可以提高学生的综合能力,还能培养学生实验计划的组织能力,为学生将来从事科研工作打下扎实的基础.在分析化学教学中开展科研实践,有利于提高学生的学习积极性,从而提高教学质量;让学生参加必要的科研活动,亲自参与科研实践,可使学生通过科研实践把抽象的理论知识具体化,有利于理论联系实际,培养学生获取知识、应用知识、创造知识的能力;有利于扩大学生的知识面,培养学生的创新能力.学生在科研实践中将会养成严谨求实的科学作风和不断进取、不断探索的精神,学生所必需的基本技能和素质、动手能力、创新能力等得到强化,知识面不断扩大,分析问题和解决问题的能力得到明显提高.
3结语
本人长期为事业默默无闻地探索着,为了社会的发展,国家的进步,始终以那种艰苦奋斗,自强不息的精神无私地奉着,并在本岗位上取得了令人瞩目的成就。受到了上级领导和同志们的好评。近几年来,先后发表多篇文章,其中“运用检测手段分析降低原料消耗增加企业利润的途径”获省级一等奖;“浅议烤烟四十级标准烟叶的化学成份与烟叶质量的相关性”获省级二等奖等。最近“浅谈烟叶主要化学成份与卷烟配方的相互关系”一文刊载在《中国发展探索世纪优秀文库》一书中,并获一等奖。由于自己在平时工作中不断努力,通过了高级化验员考核,并取得了合格证书。自学了科技日语并达到一定水平,学习了计算机技术及各仪器的操作技术。结合平时的工作实际写出论文10余篇,其中多篇获奖。
在平时工作中,个人尊重科学、尊重实践、努力探索本行业新路子,自己的劳动也得到了社会的承认。
烟叶的主要化学成份是决定烟叶内在品质的因素之一。现在已发现烟叶和烟气中各种化学成分已达5259种。长期以来国内外的烟草科研工作者,均想从烟草化学上来探索出一种用化学成份表示烟草质量的方法。近几年来,随着化学分析技术的提高和现代化的分析仪器的应用,只能够说明烟草的主要化学成份对其质量的影响,但还不能完全用化学成份的含量来表示烟草在“吃味”、“香气”方面的特性。
从长远来说,对烟草所含更多的化学成份的探讨还是一个任重而道远的长期研究课题。从目前卷烟生产对烟叶的要求来看,我们必须掌握烟叶的主要化学成份和特性以及对烟草质量产生的影响,为设计卷烟配方提供参考。
一、烟叶的主要化学成份及特性
1.碳水化合物
烟叶中的碳水化合物有可溶性的糖和不可溶性的多糖。
(l)可溶性糖有单糖和双糖。烟叶中的葡萄糖和果糖属于单糖,蔗糖和麦芽糖属于双糖。因为葡萄糖分子结构中含有醛基(-CHO)又称醛糖,果糖分子中含有酮基(-C=O)也称为酮糖,醛基和酮基在碱性溶液中都能还原酒石酸铜,所以在烟草化学分析中,用这一性质来检测烟叶中单糖含量,烤烟单糖含量一般在10%—25%之间,单糖含量的高低是衡量烟叶优劣的重要因素。
双糖属非还原性糖,只有在酸性条件下水解成单糖之后,才能与酒石酸铜在碱性溶液中发生还原反应。
(2)不溶性的多糖属于高分子碳水化合物,烟叶中的多糖包括淀粉、纤维素和果胶等,多糖与单糖双糖不同,它即不溶于水,也无还原能力,但在酸性条件下和酶的作用也能水解成单糖,但数量很少,所以在烟叶中起的作用也较少。淀粉在成熟的烟叶中的含量为10%—30%,在于制和发酵过程中转化为单糖、双糖及糊精,所以为提高烟叶内在质量,烟叶发酵是一个重要步骤,发酵技术的高低直接影响淀粉的转化率。
纤维素是构成烟叶细胞组织和骨架的基本物质,烟叶中含纤维素的量一般在11%左右,它随着烟叶等级的下降而增加。
果胶在烟叶中含量为12%左右,果胶影响烟叶的弹性韧性等物理性能,由于果胶的存在,当烟叶含水份多时烟叶的弹性韧性就增大,含水少时就发脆易碎,果胶分子结构中还含有甲醇,影响烟草吃味,因果胶分子易水解,烟叶在发酵过程中在酶的催化下,果胶发生水解便可除掉甲醇,提高烟叶质量。
2.含氮化合物
烟叶含氮化合物较多,主要有蛋白质、烟碱和游离碱。
(1)蛋白质:烟叶中的蛋白质对烟叶质量影响较大,在燃烧时产生一种臭鸡蛋味,其含量在5%—15%之间,蛋白质中氮元素的平均含量为16%,在检测烟叶化学成份时不直接检测蛋白质,而是通过测得的氮元素来换算出蛋白质含量,从烟株部位来看,中部烟叶含量低于上部烟叶.它随着烟叶等级的下降而增加,以顶叶含量最高。
(2)烟碱:烟草之所以能区别于其他植物主要是因为含有烟碱,烤烟含烟碱在0.5%-3%,而晾晒烟含量在5%以上,从烟株部位来看,上部烟叶含量最高。烟碱容易和酸进行化学反应,与草酸、柠檬酸作用,生成草酸盐和柠檬酸盐,与硅钨酸作用生成烟碱硅钨酸的白色沉淀,用此法可检测烟叶中烟碱含量。在50℃左右烟碱与水反应生成水合物,并具有和水蒸气共同挥发而不分解的特性,利用此性质可提取烟碱。
(3)游离碱:烟叶中还有一种游离碱,虽然含量很低,但对卷烟质量影响很大,卷烟在燃烧时,挥发碱受热进入烟气中,对人的感官产生一种辛辣刺激,但烟气中还必须有一定量的挥发碱,用以中和酸度较大的烟气,使烟气丰满,吸食后感到舒适。
3.有机酸
烟叶甲含有机酸在200多种以上,大部分为二元酸和三元酸,其中以柠檬酸、苹果酸、草酸、琥珀酸含量最多,这四种酸占烟叶中的有机酸的70%,虽然含量高但不是挥发酸,所以对卷烟香气元明显影响,但对卷烟的吸食品质影响较大。它可增用烟气酸性,中和游离碱降低烟气的辛辣、呛喉现象,使烟气变得甜润舒适,所以在卷烟生产中,经常加入有机酸来调整卷烟吸味品质,尤其对用那些含糖量低,含氮量较高的烟叶,在生产中加适量有机酸更为重要。
4.矿物质
烟叶中的矿物质种类繁多,一般含量为10%上下,从烟株的部位来分,以下部烟叶含量较高,其中对烟草影响较大的有钾和氯。
烟叶含钾高则燃烧性和阴燃持火力都较强,烟灰也好。氯离子在烟叶中含量高低,直接影响烟草的燃烧性,若含量在1%以下可使烟草柔软减少破碎,若超过1%则燃烧性较差,当氯离子达到1.5%以上时烟草就熄火,以上是一种概括的说法,确切的说要看钾氯比值,二者比值在4以上燃烧性就好;阴燃持火力强,若在2以下则烟草熄火,所以应把钾氯比调制到适当的比例。
二、烟叶的主要化学成份对卷烟质量的影响
卷烟质量分外在质量和内在质量,外在质量是指卷烟各种物理性能指标,如硬度、吸阻、重量等,这些指标受卷烟生产过程各个环节的影响。内在质量是卷烟在燃烧后,所产生的烟气中的各种化学成份含量及比例关系,对人的感官产生的各种感觉的一个总的反映。近一二十年来烟草企业都将烟气分析做为衡量卷烟质量的重要依据,卷烟烟气的质量优劣主要是由烟叶所含的主要化学成份及比例关系的协调性决定的,所以在设计卷烟配方时,烟叶的主要化学成份指标.是选评烟叶优劣,确定各等级烟叶比例及卷烟烟气质量的重要依据。
为了设计出一个优质卷烟产品或保持卷烟内在质量的稳定,就应以烟叶的主要化学成份为依据,结合配方师的经验来设计卷烟配方。
1.总糖量对卷烟质量的影响
烟叶的含糖量一向被认为是体现卷烟良好吃味的重要标志,在一定的幅度范围内,含糖量高则卷烟的品质好,由于糖在燃烧后产生的烟气呈酸性,可以中和烟气中的游离碱(氨),消除烟气产生的辛辣和呛喉的刺激。
烟叶中的蛋白质对卷烟是一种不利因素,燃烧后产生一种使人不愉快的气味,为了调节好烟气,苏联专家施本克教授寻找了用糖和蛋白质的比值来说明卷烟吸味品质和
烟叶品质,
称之为施木克值,比值高表明卷烟含糖量高,含蛋白质低,卷烟档次高品质好。
糖的存在对卷烟质量起到一定的作用,但不能认为糖是决定卷烟质量的决定性因素,更不能认为烟叶含糖越高越好,蛋白质含量越低越好,各自应有一个适宜范围,糖一般在18%—25%为佳,蛋白质一般在5%—10%为好。而且两者应有一个比较适宜的比例关系,所以施木克值也不是越高越好,一般掌握在2~3之间比较适宜。糖是卷烟的有利因素,但在卷烟中不能单独发挥其作用,还必须和烟碱协调起来,才能使烟气丰满、醇和、吃味甜润、舒适。若糖高烟碱低烟气无劲头,吸味平淡,香气不足吸食后不过瘾;若烟碱高糖低,烟气劲头大、不醇和、吸后无舒适感。为此国内外的卷烟配方师们,又在长期的研究和实践中,寻找出糖和烟碱适宜的比例关系,称为糖碱比值,此值一般在10:1—15:1为准。
2.烟碱含量对卷烟质量的影响
烟碱俗称尼古丁,是烟草特有的植物碱,是影响烟叶质量的重要化学成份,具有产生兴奋的刺激作用,同时也是卷烟产品质量稳定的主要标志,所以控制卷烟产品中的烟碱含量是卷烟质量的一项重要指标。
配方师在选择烟叶拟定配方时,必须掌握住各等级烟叶的烟碱含量和配方烟丝中的烟碱含量,一般要求烟碱含量控制在1.2%—2.2%之间比较适宜,但这不是硬性规定,配方师可根据设计产品的需要和当地消费者的口味来确定烟碱的高低。
现在卷烟生产方向为中焦油和低焦油卷烟,但降低焦油的同时烟碱也会降低。配方师必须采取措施保证烟碱在低焦油卷烟中的含量,或者说烟破和焦油之间要有一个适当的比例关系。经研究和实践认为10:1至15:1适宜,也就是说每支烟含焦油10~15毫克含烟碱1毫克,配方师在设计卷烟配方时应特别重视这个比例关系,而且要保持它的稳定性。
烟叶除了烟碱外,还含有一种挥发碱(游离态烟碱)它的含量高低不决定烟的劲头,而决定烟气是否辛辣、呛喉。为了控制挥发碱的含量,引用了一个尼古丁值来表示,此值是烟叶中的总烟碱被总挥发碱除所得的商值,称尼古丁值,此值越大表明挥发碱含量低,烟气就显得舒适平和,此值越小烟气就越加辛辣、呛喉,由此可见尼古丁值与卷烟质量呈正相关系,在一定范围内此值越高,卷烟档次越高质量越好。
三、加强对烟叶化学分析,为卷烟配方提供依据
1.1课程设置改革
首先,资源环境科学专业是文理兼收的,故选择叶芬霞主编的“无机及分析化学”和“无机及分析化学实验”作为教材。本课程作为专业基础课,课程大纲要求学生掌握分析化学的基本原理和方法以及无机及分析化学试验的基本操作技能,培养严谨的科学态度、分析解决环境科学问题的能力,并为学习后续课程和将来从事环境监测工作和环境化学的学习奠定基础。因此本课程确定选取容量分析(酸碱滴定法、沉淀滴定法、氧化还原滴定法、配位滴定法)和仪器分析(吸光光度法、原子吸收分光光度法、离子色谱法等)作为重点教学内容,设定教学计划,理论环节50学时,实验环节22学时,实验分别设计入门项目、验证性项目、综合性项目等多种层次的8个实验项目来反复训练学生,培养学生获得整体行动能力,同时注重与本专业其他课程的衔接和渗透,真正通过本课程学习为后续专业理论学习和实践能力的培养打下良好的基础。
1.2理论教学改革
在分析化学的理论教学中,既要讲授分析化学的基本原理和方法,使学生严格树立起“量”的概念,培养学生从事理论研究和实践的严谨的科学作风和能力。又要将新发现的现代分析方法和技术巧妙的融合到经典分析化学中,如介绍分析化学在环境监测、环境毒理学、环境化学等课程方面的应用,特别是环境污染治理、生命科学在分析化学方向使学生认识到分析化学的重要性,充分调动学生的积极性,激发学生学习兴趣,积极参与到教学活动中。教师教学不应重在讲授,而应重在“授之予渔”,引导学生提出问题,指导学生解决问题。首先,教师提出能够涵盖课堂教学所有知识点的问题,让学生课前带着问题去预习,既培养独立自主学习能力又可让学生发现自己遇到的难点。然后,通过启发引导,鼓励学生提出问题,引导学生寻找解决问题的途径和方法,并给出一定的时间让学生去思考,去查阅相关的资料,培养学生独立解决问题能力,同时让学生自己挖掘每个问题所涵盖的知识点,并引导其掌握问题在实际中的应用,以学生为主体通过问题的解决而掌握相关的知识点,不但帮助学生自主分析、解决问题,还提高了学生学习的兴趣,使所学知识体系和创新能力不断提高和发展。比如新课前先留下问题水中Cl-和CrO4-同时存在,缓慢加入浓的AgNO3哪种离子先沉淀呢?实验现象又如何?学生带着问题去预习,学习分步沉淀的原理,同时鼓励学生小组设计实验,理论课前可以先进行实验,观察现象,通过查找资料分析原因,课堂上教师根据学生解答问题情况讲授新课,理论与实践相结合,充分调动学生学习的积极性,培养了学生自主学习、团结协作分析解决问题的能力。课堂教学过程中注重灵活引导学生掌握学习方法,如对比方法,包括将有关同类滴定分析方法原理知识进行横向或纵向的比较、几种常规容量分析法的相似点不同点、化学键与分子间作用力的异同点、三种银量法的异同点等,又如如何选择最适的指示剂,重点讲根据酸碱滴定曲线中滴定突跃选择指示剂,而配位滴定和氧化还原滴定,就不再详细讲授,让学生分组讨论学习,而且滴定分析重在应用,加以案例分析教学,有助于提高学习兴趣,让学生学以致用,了解本方法的用途,进而开展实践教学。
1.3创新实践教学模式,多种实验教学模式相结合
现阶段分析化学实践教学中,多数是老师为学生准备好试验水样、土样、药品试剂等,学生仅按照试验步骤依次操作即完成实验,这并不能满足全面提升学生综合实践能力、创新能力的培养要求,针对上述问题,我对分析化学实践教学做如下改革。以学生为主体、教师为引导,强调以工作任务为驱动组织实践教学,开展实验,同时提倡让学生参与试验的布点、采样、试剂配制、试验耗材准备等实验整个过程的教学模式。即根据工作任务让学生分小组完成任务分配表,包括试验样品的选取、实验药品用量的计算和配制方法、实验原理、实验注意事项等,在实践教学方法上注重互动式、启发式教学模式,鼓励学生小组筹备实验,实验过程中出现问题,引导学生查找分析问题原因,注重培养学生能够掌握基本的分析原理和方法基础上,培养学生进行自主式探索研究,能够自主提出问题、分析问题、并通过分工合作解决实际问题,真正实现教学相长。整个实验过程,不仅提高了解决分析问题能力,也培养了学生团队合作精神。实践教学中工作任务的设置应注重基础实验和综合设计实验相结合,如基础项目、验证性项目、自主性项目、综合性项目等多种层次的8个实验项目来反复训练学生。基础项目的选取以学生基本操作规范、实验常用仪器使用方法为主。如天平的使用、基本仪器操作规范及注意事项等。验证性项目则在规范操作基础上,与课程教学大纲相结合,学会如何着手解决工作任务,教师给出概要的指导性问题和解决问题可选择的途径,学生通过实验过程记录现象和课后查阅资料分析现象,形成总结报告,教师根据结果用部分课堂时间予以点评,如开设水中氯化物含量测定、硫代硫酸钠的标定、EDTA的配制和标定等等。自主性项目则以小组为单位,进行自主式探索研究,分工合作,引导可以选择食用米醋酸度的测定、食用盐中碘含量的测定、自来水中总硬度的测定等。综合性项目为设计研究跨课程的大型综合项目,如草溪河水体富营养化评价等,根据所学的知识和操作技能和查阅相关资料,小组合作写出设计方案,在教师论证其可行性后筹备实验,完成实验,写出实验小论文。
1.4改革考试方式,推行全面而科学的考核方法
改革以考核知识的积累、实践能力为目标,考核采取全过程考核,考核方式有闭卷笔试、实验操作、平时作业、实验报告等多种形式,既注重结果又注重过程。理论部分占总成绩的60%,实验部分占总成绩的30%,考勤占10%,共100分。考核内容以应用为主,主要考核学生掌握知识点和灵活运用能力,达到培养学生综合应用能力的目标。
2成果与展望
1.1实际操作能力差
学生通过实验这个环节,可以提高其动手能力、独立思考的能力、解决问题的能力以及实践能力等,为将来从事科研项目奠定了基础。然而,高校中的大多数学生进行实验的能力普遍较差,达不到探究性教学这一要求,主要因为学生们的实验操作能力较差,不能根据课堂所学的理论知识进行实际操作,遇到问题就束手无策,独立思考的能力较差。
1.2课程内容单一
如今的高校有机化学教学课程较单一,几乎所有学校的学生都学习相似的内容,同一高校的学生更是学习同样的教学书籍内容。所以,有机化学这门课程缺乏创新,选择性较差,综合能力差,知识的相互关联性有待加强,不能形成一个完善的有机化学课程群。因此,有些学生无法系统地掌握有机化学的理论知识,实践能力较差,从而无法解决实验过程中遇到的一些问题。
2.完善高校有有机分析化学教学的措施
2.1改善教学理念和方法
一方面,在高校有机化学教学中主要实施探究性的启发式教学。即教学者在有机化学教学中对学生进行诱导式教育,充分调动学生主动学习的能力和积极性。教师不能对学生进行大量灌输抽象的理论知识以及强迫学生背诵记忆,这会导致学生厌恶有机化学的学习,并且在实际操作中无法解决遇到的问题,不能正确、有效的学习这门课程。所以,这种探究性启发式的教学模式不仅能够开发学生主动学习有机化学的兴趣,提高学生自主学习的能力,而且提高了学生的学习效率,培养学生的思考能力,为以后更深层的学习奠定了坚实的而基础。另一方面,还应注重培养学生解决问题的能力。这就要求教学者要针对学生的具体实际情况,即学生掌握基本知识的水平、接受知识的能力、兴趣爱好等,进行适当地专业知识传授和实验指点,不仅是单纯领略到该专业知识,更重要的是提高学习的能力,走出误区,突破盲点,不仅提高了学生主动学习的能力和兴趣、加深对专业知识的理解能力和掌握能力,也提高了学生的独立思考能力和学习能力。
2.2注重科学素养教育
首先,在高校有机化学教学体系中应重视对新知识的更新、补充。更新是高校当今进行教学改革中十分重要、紧迫的一项任务,更新教学内容,使教学知识现代化,不仅要求教育思想方面的更新、改革,还要求对专业技术方面问题的研究和解决。高校中有机化学教学模式中一些内容的理论性比较强或是知识比较陈旧,内容比较抽象,不好理解。所以,应适当将近年相关专业知识的一些成就、创新引入有机化学教育课堂上,不仅充实了学生的课堂学习和对有机化学更深刻、形象地理解,而且使学生了解该专业的发展现状和具体应用,提高了学生对有机化学的理解深度,培养了学生的学习兴趣。其次,教学者应结合实际生活中的案例进行课堂教学,丰富课堂活动。有机化学知识的呈现与人们的生产生活息息相关,人们的生活环境中处处体现有机化学,如各种食品健康问题,都是进行化学处理从而危害人们的健康。所以,任课教师应根据实际生活中的各种实例来阐述相应的原理知识,强调有机化学专业学科的重要性,开拓学生的视野。并且相应进行化学实验,培养学生思考和解决问题的能力,进行实践从而处理遇到的问题,进行科学探究和知识创新等。
2.3完善专业课程体系
首先,高校有机化学教学方法应符合该课程的综合化趋势。而在设计综合化专业课程过程中通常都重视内容而忽略学习活动的综合,相应对内容综合化研究的较多。然而课程的综合化是内容综合与学习活动综合的统一、结合,两者应共同发展。在有机化学课程综合化过程中,传统的无机、有机、分析以及物化这四个研究方向之间的联系越来越紧密,相互渗透,相互综合。其次,在进行有机化学课程的综合化改革时应着眼于教育系统中的整个课程体系,不仅从科学技术和社会环境生活,以及相互作用等各个角度去考虑该课程综合化的内涵,还应各学科一体化教学以及课程和教学的一体化的角度来建立综合化课程。最后,增设高等有机化学、有机合成等专业选修课程,加深学生对有机化学的学习,拓展学生关于有机化学的知识面,深刻理解相关基本知识,为学生以后的学习、研究打下坚实的基础。
【关键词】青蒿挥发油气相色谱-质谱联用
Abstract:ObjectiveToanalyzechemicalconstituentsofthevolatileoilfromArtemisiaannuaL.MethodsThevolatileoilwasextractedfromArtemisiaannuaL.bysteamdistillation.ThecomponentsofthevolatileoilwereseparatedandidentifiedbyGC-MS.Therelativecontentofeachcomponentwasdeterminedbyareanormalization.ResultsFifty-onekindsofcomponentswereseparated.Amongthem,forty-threecomponentswereidentified,accountingabout98.9%ofthetotalvolatileoil.ConclusionThemaincomponentsinthevolatileoilofArtemisiaannuaL.areBisabolol(23.47%),BisabololoxideB(11.31%),BisabololoxideA(6.27%)andTrans-Nerolidol(10.04%)ect.
Keywords:ArtemisiaannuaL.;Volatileoil;GC-MS
中草药青蒿,学名黄花蒿ArtemisiaannuaL.,属菊科春黄菊族蒿属植物,为一年生草本植物,临床上常以全草入药,有清热解暑、除蒸截疟等功效,用于治疗暑邪发热,阴虚发热,夜热早凉,骨蒸劳热,湿热黄疸等疾病。原产于中国,现澳大利亚、阿根廷、保加利亚、法国、美国等许多国家均有栽培[1]。
青蒿中化学成分分为四类:挥发油、倍半萜、黄酮和香豆素[2]。其中倍半萜类化合物研究较多,从中可以分离出多种倍半萜内酯,其中之一青蒿素(Artemisinin)是一种倍半萜内酯类化合物,在救治凶险的脑型疟疾方面具有高效、速效、低毒、使用安全等特点,是国内外公认的抗疟药物,但其中挥发油少有研究。河西走廊生长大量的野生青蒿,该地区有独特的生态环境和气候特征,气候干燥,气温日差较大,光照充足,对植物生长极为有利[3]。为了进一步研究河西走廊产青蒿的化学成分,开发利用野生自然资源,笔者对该属植物青蒿的挥发油进行了研究,从其干燥地上部分的挥发油中分离鉴定出了43种成分,发现其中甜没药萜醇(Bisabolol)及其氧化物的含量较高,具有开发和应用价值。本实验采用水蒸气蒸馏法,提取河西走廊野生青蒿挥发油成分,然后采用气相色谱-质谱-计算机系统进行定性分析,再以峰面积归一化法计算了各组分在挥发油中的相对百分含量[4]。
1仪器与试药
GC-MS(TRACEGC2000气相,DSQ质谱,THERMOTR-35MS毛细管柱,30m×0.25mm,0.25μmfilm。Xcalibur处理软件);实验用青蒿采自甘肃省河西走廊祁连山脚,经笔者鉴定为野生青蒿,凭证标本存化学成分研究室植物标本室。本实验取秋季花盛开后割取地上部分,阴凉处自然风干待用。
2方法与结果
2.1挥发油的提取将干燥的青蒿粉碎后,取粉末500g,按2005年版《中国药典》Ⅰ部附录方法提取,得到有特殊浓香气味的挥发油,无水硫酸钠干燥,收率约0.70%。
2.2GC-MS分析条件
2.2.1气相色谱条件载气为氦气(99.99%),流速为1ml/min,进样量为1μl。进样口温度220℃;程序升温,45℃保持1min,再以15℃/min升至280℃稳定5min;传输线温度250℃。
2.2.2质谱条件电离方式为EI源,源温250℃,电离电压为100ev,质量范围m/z38-400全程扫描。质谱检索标准库为NIST库。
2.3实验结果将总离子流图中各峰经质谱扫描后得到质谱图,通过Xcalibur工作站NIST标准质谱图库进行检索分析,鉴定了含量较多的43个成分,采用峰面积归一定量法,求得它们的各化学成分在挥发油中的相对百分含量(见表1)。
3讨论
通过GC-MS技术,共分离鉴定了43种组分的化学结构与相对含量,鉴定成分占总组分相对含量的98.9%。河西走廊野生青蒿中挥发油成分主要为萜类及其含氧衍生物。从相对含量的高低可以看出,甜没药萜醇(Bisabolol,23.47%)、甜没药萜醇氧化物B(BisabololoxideB,11.31%)、甜没药萜醇氧化物A(BisabololoxideA,6.27%)、反-橙花叔醇(Trans-Nerolidol,10.04%)等为其主要成分。
挥发油主要成分甜没药萜醇又名红没药醇,具有消炎、灭菌、愈合溃疡、溶解胆结石等药效的护肤作用,也可作为空气清香剂的主要成分,不仅在医药工业,而且在香料、香精和化妆品中应用广泛[5]。它还可用于口腔卫生产品中,如牙膏和漱口水中。
青蒿的挥发油有兰草花香味。用青蒿粉作为磨擦剂或护理剂制备的牙膏对除口臭、除口腔异味有特效,且口气倍感清新、持久,具有很高的应用价值。表1青蒿挥发油化学成分分析结果
【参考文献】
[1]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:137.
[2]杨云,张晶,陈玉婷,等.天然产物化学成分提取分离手册[M].北京:中国中医药出版社,2003:439.
[3]王素萍,宋连春,韩永翔,等.河西走廊地区气候和绿洲生态研究的若干进展[J].干旱气象,2006,24(2):78.
【关键词】高良姜化学成分
高良姜RhizomaAlpiniaeOfficinarum别名良姜、小良姜、贺哈,始载于《名医别录》,列为中品,因出于高良郡(今广东省湛江地区的茂名市一带)故名,历版《中国药典》均有收载,为姜科山姜属(Alpinia)植物高良姜AlpiniaofficinarumHance的干燥根茎,主产于广东、广西、海南、台湾等省区。本品性热味辛,归脾、胃经,具温胃散寒、消食止痛的功效,用于脘腹冷痛、胃寒呕吐、嗳气吞酸等[1]。
随着研究的深入,高良姜不再仅仅作为调料或配药使用,其药用价值进一步表现出来。为了更好地开发利用高良姜资源,本文就其已发现的化学成分作简要总结。
1二苯基庚烷类
二苯基庚烷类化合物是一类具有1,7-二取代芳基,以庚烷骨架为母体结构的化合物总称。高良姜中的二苯基庚烷类化合物均呈线性,在C-4位存在双键,其特征为芳基取代位置在庚烷骨架的1,7位,芳基上取代基为羟基或甲氧基,位置在间位、对位;在庚烷的母体结构中,至少在C-3位上有酮羰基、羟基或甲氧基等含氧取代基存在。此外,在二苯基庚烷类化合物中还有存在双键,位置在C-4位。目前国内关于高良姜中二苯基庚烷类化合物的研究不多,日本学者[2~6]从中分离了多种二苯基庚烷类化合物,其结构见图1。
2挥发油类
作为辛温类药材,辛香气味是判断其质量优劣的一个指标,2005年版《中国药典》以桉油精为对照品作为高良姜的控制指标。高良姜中挥发油含量较高,其中主要的成分是1,8-桉油素(1,8-cineoleoreucalyptol,C10H8O),其次为β-蒎烯(β-pinene,C10H6)、茨烯(camphene,C10H16)、α-松油醇(α-terpineol,C10H18O)、樟脑(camphor,C10H16O)和葑酮乙酸盐(α-fenchylacetate,C12H2OO2)等[7,8]。结构式见图2。
罗辉等[9]采用GC-MS-计算机联用技术从高良姜根、茎、叶挥发油中分别鉴定出24,21和16种化学成分,其中有13种成分为3个部位所共有,但根、茎、叶的含油量及同一成分在不同部位的含量差异较大,以根最为丰富。
罗辉等[10]采用GC-MS-Computer联用技术从鲜品和干品高良姜挥发油中分离鉴定出27和23种成分。高良姜鲜品与干品挥发油的组成及含量无明显差别,说明高良姜挥发油有较高的稳定性。
林敬明等[11,12]对高良姜采用SFE-CO2萃取挥发油,解析釜Ⅰ挥发油分离出62个成分,解析釜Ⅱ挥发油分离出172个成分,并且应用GC-MS联用技术和计算机信息检索方法分别确定了其中27个和111个化合物。用SFE法萃取的挥发油成分比用水蒸馏、乙醇、醚等提取的挥发油成分多。
罗辉等[13]采用GC-MS计算机联用技术从湛江、汕头和梅州3产地高良姜挥发油中分别鉴定出32,30,32种化学成分,其主要成分为1,8-桉叶素。在所鉴定的组分中,有22种为3产地高良姜挥发油所共有,且占总量的比例也较大。周漩等[14]对广东徐闻、广西、海南、云南、福建各原产地的高良姜进行挥发油含量测定,发现广东与广西产的高良姜比较相似,而福建与海南产的比较相似,云南产的与其它地域的差异较大,应该是由于它特殊的地理位置和气候所决定的。产地不同挥发油的化学成分及其含量也不完全相同,说明中药的化学成分与其种植的土壤及气候环境有关。
3黄酮类
黄酮是一类多酚类化合物,结构为含15个碳原子的多元酚化合物。安宁等[15]从高良姜的乙醇提取物中得到8个黄酮类化合物,分别为高良姜素(Ⅰ)、高良姜素-3-甲醚(Ⅱ)、山柰素-4′-甲醚(Ⅲ)、山柰酚(Ⅳ)、槲皮素(Ⅴ)、乔松素(Ⅵ)、二氢高良姜醇(Ⅶ)、儿茶精(Ⅷ)。化合物Ⅵ和Ⅶ为首次从该植物中分离得到。结构式如图3。
4糖苷类
安宁等[16]通过大孔树脂、聚酰胺和凝胶柱色谱分离得到2个糖苷类化合物,其结构分别为4''''-羟基-2''''-甲氧基苯酚-β-D-{6-O-[(4''''''''-羟基-3,''''''''5''''''''-二甲氧基)苯甲酸]}-吡喃葡糖苷(Ⅰ)和正丁基-β-D-吡喃果糖苷(Ⅱ)。化合物I为新化合物,命名为高良姜苷A,结构式见图4。化合物II为首次从该属植物中分离得到。日本学者Ly等[17]采用反相高效液相色谱、MS/NMR技术分离鉴定了新鲜高良姜根茎的甲醇提取物中的9种糖苷类化合物,包括(1R,3S,4S)-反式-3-羟基-1,8桉树脑-D-葡萄糖吡喃糖苷等3种已知结构化合物和1-羟基-2-O-D-葡萄糖吡喃糖基-4-烯丙基苯、去甲基丁香酚--D-葡萄糖吡喃糖苷等6种全新结构化合物。结构式如图4。
5苯丙素类
日本学者Ly等[18]从新鲜高良姜根茎中分离出7种苯丙素类化合物,包括(E)-β-香豆素醇-γ-O-甲基醚和(E)-β-香豆素醇等2种已知结构化合物和(4E)-l,5-双(4-羟苯基)-1-甲氧-2-(甲氧甲基)-4-戊烯立体异构体(2a和2b)、(4E)-1,5-双(4-羟苯基)-2-(甲氧甲基)-4-戊烯-1-醇等5种全新结构化合物,7种化合物全部为首次在高良姜根茎中分离得到。
6微量元素
罗辉等[19,20]对不同产地的高良姜及高良姜不同部位无机元素含量作了研究,结果表明湛江、汕头和梅州3产地的高良姜均含有Ag,Al,B,Ba,Ca,Cd,Co,Cu,Fe,Mg,Mn,Na,Ni,Se,Si,V,Zn,K,P,S等20种元素,湛江产的高良姜大多数元素的含量要高于其它两地。其中Zn,Mn,Fe,Cu等几种人体必需的微量元素含量丰富,而对人体危害较大的As,Pb,Cd等元素在高良姜中未被检出或含量极微;高良姜根,茎,叶3个不同部位均含有Ag,B,Ba,Ca,Co,Cu,Fe,Mg,Mn,Na,Ni,Se,Si,Zn,K,P,S17种元素,其中Na,K,Mg,Ca的含量最高,其次是S,P,Mn,Zn,Fe,Ni,Ba,Cu,B。Al在根部含量较高,但在茎、叶却未检出。绝大多数元素在地下部位的含量要比地上部位低,其中Na,K,Ca,Mg,Mn,Ni,Se,B,P,S的含量分布是根<叶<茎,只有Co,Cu的含量分布是根>茎>叶,这可能与植物的组织结构和功能有关。
7结语
高良姜在我国主产于广东、广西、海南和台湾等省区,亩产可达1500~1800kg。目前国内关于高良姜化学成分的研究多为挥发油和黄酮类。为了更好地开发利用高良姜资源,应加强其中其它化学成分及相关药效学的研究。产地不同,高良姜中挥发油及微量元素的含量不同,说明药材质量与生态环境密切相关,在以后的研究中应积极探求药材质量和生态环境的相关性,以寻求道地药材的形成规律。
【参考文献】
[1]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:202.
【关键词】绞股蓝;化学成分;皂苷;多糖
Abstract:WithmoreexploitationandutilizationofGynostemmapentaphyllum,peoplehavelearnedmoreaboutchemicalingredientsinit.Inthispaper,somenewachievementsinchemicalingredientresearchwereintroduced,whichisfavorabletofurtherresearchofchemicalingredientsofGynostemmapentaphyllu.
Keywords:Gynostemmapentaphyllu;Chemicalingredients;Saponin;Polysaccharide
绞股蓝Gnostemmapentaphyllum(Thunb.)Makino又名七叶胆,为葫芦科绞股蓝属植物。主要分布在东南亚及我国长江以南的广大地区,资源丰富。绞股蓝中含有皂苷、多糖、黄酮类化合物、有机酸和微量元素等多种化学成分。绞股蓝能够有效地保护心、脑、血管和肝脏,降低血脂、降胆固醇、降转氨酶、调节免疫和抗诱变,而且在抗衰老、抗疲劳、抗辐射和消除自由基的同时,还能改善神经系统功能、抗溃疡、抑制胆结石形成和调节内分泌活动[1~3]。因此,研究绞股蓝中的化学成分,有利于进一步开发和利用绞股蓝,明确绞股蓝中的药理活性成分。本文主要介绍了绞股蓝皂苷和多糖等成分的研究进展,为绞股蓝的开发提供参考。
1绞股蓝皂苷成分的研究现状
1976年日本人永井正博等在绞股蓝中分离得到了人参二醇和2α-羟基人参二醇,首次揭示了绞股蓝中含有达玛烷(dammarane)型皂苷类成分。随后,人们对绞股蓝的化学成分进行了大量的研究,迄今发现的绞股蓝皂苷(Gyp)总共达136种,其中有绞股蓝皂苷(Gyp)Ⅲ、Ⅳ、Ⅷ、Ⅻ与人参皂苷(Gin)-Rb1,-Rb3,-Rd和-F2完全相同,此外还分离得到了人参皂苷Rd3,K,其余为人参皂苷的类似物。由于绞股蓝的产地不同,其中的皂苷成分和含量也有很大的不同。覃章铮[4]等曾经对1990年以前发现的84种皂苷成分进行过综述性报道,但由于绞股蓝皂苷具有较好的药理疗效,因此,对绞股蓝皂苷成分的研究一直是热点。1990年后,又有52种绞股蓝皂苷被相继报道。根据苷元结构相近的程度,本文将这52种皂苷分为11类。
第1类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β201[5]C47H76O172-ara-glc-rha(S)2[5]C47H76O17
2-ara-glc-rha(R)3[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(S)4[6]C49H78O18MeCO
-glc-rha3|6|2xyl-H(R)5[6]C47H76O17-glc-rha3|2xyl-H
(S)6[6]C47H76O17-glc-rha3|2xyl-H(R)7[6]C48H78O18-glc-rha3|2glc-H(S)8[6]C51H80O19MeCO
-glc-rha6||43|2xylMeCO-H(R)
第2类绞股蓝皂苷结构通式及特点:
序号分子式C-位2α3β20(S)9[7]C54H90O23-OH2-glc-glc6-glc-rha10[7]C53H88O23-OH2-glc-glc6-glc-xyl11[8]C54H90O20-Hrha
-glc-rha3|2|6rha-H
第3类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1920(S)2112[7]C48H80O192-glc-glc-CH2OH-glc-H13[9]C55H92O22CH3CO-glc-rha|36|2xy1-CH3-H-O-glc14[9]C54H92O22-glc-rha3|2rha-CH3-H-O-glc15[9]C53H90O21-glc-rha3|2xyl-CH3-H-O-glc16[9]C52H88O21-ara-rha3|2xyl-CH2OH-H-O-glc17[9]C53H90O22-glc-rha3|2xyl-CH2OH-H-O-glc18[10]C54H92O222-glc-glc-CH2OH6-glc-rha-H19[10]C54H90O222-glc-glc-CHO6-glc-rha-H20[10]C47H78O172-ara-glc-CHO-glc-H
第4类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β232421[11]C41H70O132-xyl-glcH(S)22[11,12]C42H72O142-glc-glcH(S)23[11,12]C41H70O132-xyl-glcH(R)24[11,12]C41H70O142-xyl-glcOH(R)(S)25[13]C41H70O142-glc-xyl-OH(S)(S)
第5类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β23(S)26[9]C46H78O18-glc-xyl6|2xyl-OH27[9]C47H78O19-glc-glc6|2xyl-OH28[9]C41H70O142-xyl-glc-OH29[9]C41H70O142-glc-xyl-OH30[9]C42H70O142-xyl-xyl-OAc31[9]2-glc-xyl-OAc32[9]C48H80O19-glc-xyl6|2xyl-OAc
第6类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1933[14]C49H82O18MeCO-glc-xyl2|6|3rha-CH334[14]C46H76O17-ara-xyl2|3rha-CHO
第7类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β192135[14]C46H74O17-ara-xyl2|3rha-CHO-OH36[14]C47H78O17-glc-xyl2|3rha-CH3-OH37[14]C49H80O18OAc-glc-xyl2|6|3rha-CH3-OH38[14]C48H78O17-ara-xyl2|3rha-CHO-OEt39[14]C49H82O17-glc-xyl2|3rha-CH3-OEt40[15]C47H78O16-lyx-glc3|2rha-CH3-OH
第8类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β121920(S)21252641[5]C53H90O222-ara-glc-H-CH3-rha-H-OH-glc42[9]C52H86O23-ara-xyl2|3rha-H-CHO-H-O-glc-OOH-H43[13]C46H76O18-ara-xyl2|3rha-H-CHO-H-OH-OOH-H44[9]C53H90O242-glc-glc-OH-CH3-xyl-glc-H-OOH-H45[13]C53H90O21-glc-xyl2|3rha-H-CH3-H-O-xyl-OCH3-H
第9类绞股蓝皂苷结构通式及特点:
序号分子式C-位2α3β121920(S)212446[5]C52H88O22-H2-ara-glc-H-CH3-H-O-glc-rha47[9]C52H86O22-H-ara-xyl2|3rha-H-CHO-H-O-glc-H48[16]C36H62O10-OH-H-OH-CH3-glc-H-H
第10类绞股蓝皂苷结构通式及特点:
序号分子式C-位3β1949[14]C49H80O18OAc-glc-xyl2|6|3rha-CH350[14]C46H74O17-ara-xyl2|3rha-CHO
第11类绞股蓝皂苷结构通式及特点:
第12类绞股蓝皂苷结构通式及特点:
glc=β-D-吡喃葡萄搪基,xyl=β-D-吡喃木糖基,rha=α-L-吡喃鼠李糖基,ara=α-L-吡喃阿拉伯糖基,lyx=β-D-来苏糖基,Ac代表乙酰基,Me代表甲基,键上的数字代表键合的位置
随着人们对绞股蓝皂苷成分研究的不断深入,新的绞股蓝皂苷的不断发现,且在结构上有很大的差别。第1类、第4类、第5类、第6类、第7类、第10类和第11类在二十位碳上成环,但是在其成环的类型上又存在着很大的差别。第11类所成的环为含氧的双环。第1类、第4类、第6类、第7类和第10类所成的环为五元环,而其中的第1类、第4类和第7类为含氧的五元环,第6类和第10类为不含氧的五元环,而且即使在含氧的五元环中氧所在的位置也有所不同。第5类为含氧的六元环。此外,碳碳双键的有无和位置也有很大的区别,第4类、第5类、第6类和第11类不含碳碳双键,其他的几类都含有碳碳双键,第1类、第2类、第3类、第7类和第12类的碳碳双键在24和25位碳上,第8类的碳碳双键在23和24位碳上,第9类和第10类的碳碳双键在25和26位碳上。
2绞股蓝多糖的研究现状
多糖也是绞股蓝中含量比较多的化学成分,在研究皂苷的同时,对多糖的研究也逐渐地引起了人们的关注。王昭晶等[18]对碱提绞股蓝水溶性多糖进行了研究,并得到一种粗多糖AGM。经葡聚糖凝胶(G-100)柱层析检测其糖分布情况,表明AGM可能由两种多糖组成,其中一种含有结合蛋白质。而且经高效液相色谱确定了AGM的单糖组成为:鼠李糖∶木糖/岩藻糖(其中至少含有木糖或者岩藻糖中的一种)∶阿拉伯糖∶葡萄糖∶半乳=2.43∶1.00∶3.02∶2.59∶3.46。宋淑亮(《绞股蓝多糖的分离纯化及其药理活性研究》,2006山东中医药大学硕士论文)对绞股蓝多糖进行了较为系统的研究,共分离出了3种绞股蓝多糖GPS-2,GPS-3和GPS-4,并对其中的两种GPS-2,GPS-3进行了深入的研究,确定了GPS-2的分子量为10700Dal,GPS-3的分子量为9100Dal。GPS-2成分中含有鼠李糖和木糖,GPS-3成分中含有鼠李糖、木糖、阿拉伯糖、半乳糖、果糖和葡萄糖。
3其它化学成分的研究现状
绞股蓝中除了含有皂苷和多糖外,还含有黄酮类化合物、萜类、有机酸、生物碱、多糖、蛋白质等以及锌、铜、铁、锰、硒等微量元素,但是,在最近几年里对这几方面的研究都比较少,对黄酮化合物的研究也只是对其含量的测定和精制上[19,20],目前,除了20世纪80年代报道过的商陆素、芦丁、商陆苷及丙二酸等十多种黄酮类物质外,未见有新的化学成分的报道。
4结束语
研究绞股蓝中的化学成分,将有利于进一步明确绞股蓝的药理活性。目前,国内外学者对绞股蓝中的化学成分进行了大量的研究,且取得了一定的进展,特别是在绞股蓝皂苷的成分研究中,发现了多种新绞股蓝皂苷,这些发现将有助于进一步对绞股蓝的开发和利用。此外,对绞股蓝中多糖的研究也引起了国内一些学者重视,而且也取得了一定的进展,但是近几年对绞股蓝中黄酮化合物成分的研究未见报道。由此可见,对绞股蓝多糖和黄酮类化合物成分的研究还有待进一步深入。
【参考文献】
[1]张瑞哲,张常胜,于慧敏.绞股蓝药理及临床作用研究进展[J].黑龙江医药,2000,13(5):295.
[2]任颖,王秋玉,吴泽民,等.绞股蓝皂甙的药理研究进展[J].中华实用中西医杂志,2001,14(5):988.
[3]侯慧丽,傅童生.绞股蓝的化学成分与药理作用研究进展[J].动物医学进展,2006,27(Z1):59.
[4]覃章铮,赵蕾,毕世荣,等.绞股蓝的皂苷成分及资源[J].天然产物研究与开发,1992,4(1):83.
[5]SoniaP,CosimoP.Newdammarane-typeglycosidesfromgynostemmapentaphyllum[J].JournalofNaturalProducts,1995,58(4):512.
【关键词】卷丹百合成分提取
Abstract:ThisarticleintroducedtheresearchadvancementofLiliumlancifoliumThunb.andL.browniiF.E.BrownVar.viridulumBakerchemicalcompositionsandtheextractionmethodinrecenttenyears,mainlyconcentratedinthesteroidsaponin,thepolysaccharideandthecolchicine,thesteroidsaponinextractionhasethanolextract-thepocketresinabsorptionlawandethanolextraction-thenormalbutylalcoholextractionmethod;thepolysaccharideextractionhaswaterextractandethanoltosink,thecompoundenzymelaw;thecolchicineextractionhastheorganicsolventextractionprocessandthesupercriticalcarbondioxidefluidextractionmethod.
Keywords:LiliumlancifoliumThunb.;L.browniiF.E.BrownVar.viridulumBaker;Ingredient;Extraction
中药百合来源于植物卷丹LiliumlancifoliumThunb.百合L.browniiF.E.BrownVar.viridulumBaker和细叶百合L.pumilumDC.的干燥肉质鳞叶,最早记载于《神农本草经》,细叶百合主要分布于东北,野生为主,市场少见。卷丹和百合在全国分布较广,在长江流域广为栽培,为百合药材的主要来源。其主要成分有皂苷类、多糖、生物碱、微量元素及蛋白质、磷脂、无机元素等。研究表明,百合在止咳化痰、抗疲劳与耐缺氧、升高外周白细胞、降血糖及抑制迟发过敏性反应、催眠安神等方面均具有显著效果。
1化学成分
1.1皂苷类
近几年来百合皂苷的研究主要集中于甾体皂苷,侯秀云等[1]从百合中分离得到β-谷甾醇(Ⅰ)、胡萝卜苷(Ⅱ)、正丁基-β-D-吡喃果苷(Ⅲ)、26-O-β-D-吡喃葡萄糖3β,26-二羟基-5-胆甾烯-l6,22-二氧3-O-α-L-吡喃鼠李糖-(12)-β-D-吡喃葡萄糖苷(Ⅳ)、26-O-β-D-吡喃葡萄糖3β,26-二羟基胆甾烷-16,22-二氧-3-O-α-L-吡喃鼠李糖-(12)-β-D-吡喃葡萄糖苷(Ⅴ)[2]。其中Ⅳ和Ⅴ为新化台物,初步药理实验证明,这两种皂苷对二氧化硫引起的小鼠咳嗽有镇咳作用[2]。Ⅰ,Ⅱ和Ⅲ为首次从该植物中分得。吉宏武等[3,4]以卷丹鳞茎为原料,通过光谱与HPLC等手段鉴定百合皂苷有两种,一种为含有提果皂苷元与3个糖基的甾体皂苷,一种为含有薯蓣皂苷元与3个糖基的甾体皂苷。吴晓斌等[5]以龙山百合为原料,发现百合皂苷与薯蓣皂苷有相同的薯蓣皂苷元。百合总皂苷提取物对自由基的清除作用比人参皂苷强[6]。杨秀伟等[7]分离并鉴定卷丹中两种甾体皂苷,麦冬皂苷D(ophipogoninD),其结构为薯蓣皂苷元-3-O-﹛O-α-L-鼠李糖基-(12)-O-[β-D-木糖基(13)]-β-D-葡萄糖苷﹜,另一化合物为薯蓣皂苷元-3-O-﹛O-α-L-鼠李糖基-(12)-O-[α-L-阿拉伯糖基(13)]-β-D-葡萄糖苷﹜,经鉴定是一种新的化合物,定名为卷丹皂苷A(1ililancifolosideA)。
1.2多糖类姜茹等[8]
从百合鳞叶中首次分离出一种水溶性多糖BHP,酸水解,薄层展开进行多糖组分分析,呈现D-半乳糖、L-阿拉伯糖、D-甘露糖、D-葡萄糖、L-鼠李糖等斑点。该多糖作用于机体免疫系统,对小鼠免疫功能有明显的调理作用。刘成梅等[9,10]从新鲜百合的鳞叶中,分离得到LP1,LP2两种多糖,在多糖的组分分析中LP1由葡萄糖、甘露糖组成,比例为1∶2.46,LP2由葡萄糖、甘露糖、阿拉伯糖、半乳糖醛酸组成,比例为1∶0.73:2.61∶1.8∶0.84。这两种多糖单体对四氧嘧啶引起的高血糖小鼠有明显的降血糖功能,并且与浓度呈正相关。百合多糖LP2降血糖作用强于百合多糖LP1。赵国华等[11]从百合块茎中分离得到LBPS-I多糖,是一种纯粹的非淀粉类葡聚糖,是由α-D-(1,4)-Glcp和α-D-(1,3)-Glcp以2∶1的比例交替形成主链,并有α-D-(1,6)-Glcp侧链的葡聚糖。该多糖单体对移植性黑色素B16和Lewis肺癌有较强的抑制作用。ManalMShehata等[12]从百合中分离得到百合水溶性非淀粉多糖(WSNSP)。体外实验结果表明,百合球茎中WSNSP组分B可以直接抑制肿瘤细胞的生长;体内实验结果表明,WSNSP组分B具有抗癌功效,可以抑制小鼠S180肉瘤增殖,抑瘤率在45.68%以上。
1.3生物碱类百合中生物碱研究早在20世纪60年代就有报道,主要集中在秋水仙碱。贺世洪等[13]利用极谱法,采用二阶导数直接测定其中秋水仙碱的含量,达0.0064%。何纯莲、李新社等[14,15]采用超临界萃取法和高效液相测得湖南龙山产卷丹鳞片中秋水仙碱含量。百合中秋水仙碱,能抑制癌细胞的增殖,尤其对乳癌的抑制效果比较好[16]。
2提取
2.1皂苷及其苷元类
2.1.1皂苷类甾体皂苷的提取分离有3种方法:醇提—大孔树脂吸附法、醇提—正丁醇萃取法和色谱法。吴晓斌、任凤莲等[5,17]分别讨论了温度、乙醇用量、回流时间和提取次数对百合总皂苷提取率的影响。采用正交实验法得出了百合总皂苷的最佳提取条件为:用80%乙醇(其体积为百合质量的6倍),在70℃回流提取3次,3h/次。吴晓斌等[5]考虑百合总皂苷的含量和工业中的实际生产情况,确定最佳提取条件为6倍于药材量的乙醇(浓度为70%),在60℃提取3次,3h/次。用AB-8大孔吸附树脂柱分离,无水乙醇、丙酮-乙醚混合液沉淀干燥得百合皂苷,得率为0.253%。吉宏武等[18]采用微波处理卷丹百合,烘至含水量6%左右粉成80目。选用甲醇为提取剂,采用超声波提取和水饱和正丁醇萃取百合中总皂苷,所建立的方法具有干扰小、准确度高、分析速度快等优点,抽提皂苷完全、适合于大量试样的分析。
2.1.2皂苷元甾体皂苷元的提取有醇提酸水解—有机溶剂提取法、酸或酶水解—有机溶剂提取法。百合中甾体皂苷元的提取采用的是前者,百合皂苷经酸水解,乙醚萃取,氮气吹干,即得甾体皂苷元[3,4,19]。
2.2百合多糖
2.2.1水提醇沉法刘成梅等[20]以浸提温度、固液比、浸提时间为考察对象,进行正交实验,发现对百合多糖提取率影响程度为:温度>时间>固液比,确定百合多糖浸提最佳工艺参数:浸提温度95℃,时间2h,固液比1:5。去蛋白采用酶-Seveag联用法,沉淀多糖。滕利荣等[21]分别就提取时间、溶剂体积、浸提温度进行单因素实验,发现热水提取百合多糖的最佳条件为:加水比70:1,浸提时间6h,浸提温度60℃,在此条件下提取率可达10.87%。Sevag试剂离心除蛋白质,测定多糖含量。杨林莎等[22,23]讨论提取时间、提取次数、溶剂体积、浸提温度等因素对多糖得率的影响,采用正交实验法进行优选。影响百合多糖提取的主次顺序为温度>溶剂体积>浸提次数>浸提时间,最佳工艺为温浸温度80℃,但考虑到多糖解聚及淀粉糊化、变性,浸提温度设为65℃,溶剂体积l5倍量,浸提3次,浸提时间4h。Sevag法除蛋白,以多糖得率为指标,采取正交实验法探讨Sevag法中的氯仿与正丁醇的配比及与样品体积的比例关系,最佳工艺为氯仿-正丁醇体积比为3:1,样品-氯仿正丁醇体积比为5:2,振摇时间10min。测定多糖得率为5.2%。杨华等[24]用三氯三氟乙烷与seveage法联用脱蛋白,得百合粗多糖水溶液。以乙醇沉淀,丙酮、乙醚洗涤,冷冻干燥后得粗多糖。孙丽华等[25]用Sevag法脱蛋白,分离纯化所得活性多糖的得率为4.5%,多糖含量为96.8%。
2.2.2复合酶法百合块茎中除多糖物质外,还含一定量的蛋白质、胶质、粗纤维及脂肪。这些物质的分解有利于多糖的分离和纯化。复合酶法提取百合多糖具有条件温和、杂质易除、提取率高和生物活性高等特点。因此选用复合酶系,将复合酶[ω(纤维素酶):ω(果胶酶):ω(胰酶)=2:2:1]加入百合块茎干品中,考察pH、酶促反应温度、酶促反应时间对提取率的影响,确定酶法提取多糖的最佳反应条件:pH值是影响百合多糖提取率的显著因素,浸提液pH7.0,浸提温度50℃,酶促反应时间90min。在上述最佳条件下,测定了加酶量对多糖提取率的影响,最佳加酶量为3%。在最适酶提条件下提取率达31.03%,是热水提取法的2.85倍[21]。
2.3秋水仙碱
2.3.1有机溶剂提取法李新社等[15]考察了溶剂种类、提取时间及提取方式对提取效果的影响,确定提取剂为乙醇,提取时间为8h,碱化百合粉能显著改善提取效果,提取率从0.95%提高到1.77%。何纯莲等[26]研究了提取温度、提取时间、溶剂用量、粒度4个因素对秋水仙碱提取的影响,确定萃取温度﹥溶剂用量﹥提取时间﹥粒度。最佳工艺条件为原料过20目筛,提取溶剂选用乙醇。80℃,溶剂用量6∶1,提取10h,即可达到在此实验条件范围内的最佳提取效果。采用高效液相色谱法测得秋水仙碱的含量为43.2mg,含量为0.36‰。李谷才等[27]筛选出乙醇提取百合中秋水仙碱的最佳工艺条件:75℃时,用乙醇将过50目筛的百合粉以5:1,提取5h,可得秋水仙碱45.78mg。在此条件下,用HPLC法测得百合中的秋水仙碱含量为4.58%。
2.3.2超临界二氧化碳流体萃取法何纯莲、李新社、任凤莲、李谷才等[14,15,26,27]选取萃取温度、萃取压力、提携剂(乙醇)用量、萃取时间4个因素为变量,发现各因素的影响秩序为:萃取温度﹥萃取时间﹥萃取压力﹥提携剂用量。最佳条件为:40℃,18Mpa下,以300ml乙醇作提携剂萃取2h。测得萃取物粗品中含秋水仙碱24.5mg,含量为6.38%。经HPLC法测定,测得百合中秋水仙碱含量为0.0485%。
3小结
目前,对百合化学成分的研究已经有了较丰富的文献积累,但缺乏百合构效关系的研究,药理作用机理研究也不够深入,从整体上看缺乏横向的联系,因此要对百合进行系统全面的研究,可谓任重而道远。
百合化学成分提取分离研究,文献报道较多的百合皂苷和多糖类,其良好前景使得对它的提取有待于进一步研究改进,主要集中在简化工艺流程和引入新的研究方法,提高产物富集率和纯度上。
在水提醇沉法除蛋白方法比较中,从脱蛋白后的水溶性百合多糖损失和蛋白质去除效果来看,酶法与Seveage联用法优于Seveage法和三氯三氟乙烷与Seveage联用法,是一种很有效的植物多糖中脱蛋白方法。无论采用哪种,所得的水溶性百合多糖中蛋白质含量均在10%以上,其原因可能是百合水溶性多糖中部分蛋白质与多糖结合成紧密的糖蛋白复合物[28]。
百合是中华人民共和国卫生部审批通过的首批药食两用的植物,不仅临床上有着广泛的应用,而且作为加工保健产品的原料也极具有开发前景。因此对百合的栽培技术、功能因子的结构、含量、作用及在食品中稳定性等方面进行深入研究,使其最大限度地保留活性,是百合研究开发的趋势。
【参考文献】
[1]侯秀云,陈发奎.百合化学成分的分离和结构鉴定[J].药学学报,1998,33(12):923.
[2]侯秀云,陈发奎,吴立军.百合中的甾体皂苷的结构鉴定[J].中国药物化学杂志,1998,8(1):49.
[3]吉宏武,丁霄霖.百合皂苷的提取分离与结构初步鉴定[J].林产化学与工业,2001,21(3):48.
[4]吉宏武,丁霄霖,陶冠军.液相色谱-电喷雾电离质谱与电子轰击质谱联用筛选百合中的甾体皂甙[J].色谱,2001,19(5):403.
[5]吴晓斌,任凤莲,邱昌桂,等.百合皂苷的提取、纯化及其鉴定[J].广州化学,2005,30(2):36.
[6]吴晓斌,任凤莲,邱昌桂,等.百合皂苷的提取、纯化及其对羟自由基的清除作用[J].天然产物研究与开发,2005,17(6):777.
[7]杨秀伟,吴云山,崔育新,等.卷丹中新甾体皂苷的分离和鉴定[J].药学学报,2002,7(11):863.
[8]姜茹,匡永清,吴少华.百合免疫活性多糖的分离及其组成[J].第四军医大学学报,1998,19(2):188.
[9]刘成梅,付桂明,游海,等.百合多糖的纯化与化学结构鉴定研究[J].食品科学,2002,23(5):114.
[10]刘成梅,付桂明,涂宗则,等.百合多糖降血糖功能研究[J].食品科学,2002,23(6):113.
[11]赵国华,李志孝,陈宗道.百合多糖的化学结构及抗肿瘤活性[J].食品与生物技术,2002,21(1):62.
[12]ManalMShehata,王璋.百合中水溶性非淀粉多糖的分离与提纯[J].无锡轻工大学学报,2002,21(5):503.
[13]贺世洪,任凤莲,宋鸽.秋水仙碱的二阶导数极谱测定[J].湘潭大学自然科学学报,2001,23(4):78.
[14]何纯莲,李谷才,任凤莲,等.超临界流体萃取——高效液相色谱法测定百合中秋水仙碱[J].天然产物研究与开发,2003,15(1):5.
[15]李新社,王志兴.溶剂提取和超临界流体萃取百合中的秋水仙碱[J].中南大学学报(自然科学版),2004,35(2):244.
[16]郭朝晖,蒋生祥.中药百合的研究和应用[J].中医药学报,2004,32(3):27.
[17]任凤莲,邱昌桂,连琰.百合总皂甙的提取工艺[J].中南大学学报(自然科学版),2005,36(1):69.
[18]吉宏武,丁霄霖.百合总皂苷定量测定方法的研究[J].林业化学与工业,2003,23(4):54.
[19]吉宏武,丁霄霖.百合甾体皂苷元的气——质联用分析及其结构鉴定[J].无锡轻工大学学报,2003,22(3):84.
[20]刘成梅,付桂明,涂宗财,等.百合多糖提取的影响因素研究[J].食品科学,2002,23(2):87.
[21]滕利荣,孟庆繁,刘培源,等.酶法提取百合多糖及其体外抗氧化活性[J].吉林大学学报(理学版),2003,10(4):538.
[22]杨林莎,李玉贤,李秋杰,等.百合多糖提取、纯化工艺优选[J].中医研究,2005,18(1):25.
[23]杨林莎,李玉贤,李明丽,等.苯酚-硫酸比色法测定百合多糖的含量[J].中国中医药信息杂志,2004,8(11):704.
[24]杨华,阮振寰,姚宏.百合多糖的提取及蛋白含量测定[J].美中国际创伤杂志,2005,4(2):53.
[25]孙丽华,周彦钢,盛清,等.百合活性多糖的分离纯化与鉴定[J].浙江省医学科学院学报,2000,6(42):27.
[26]何纯莲,向建南,伍伟青.百合中秋水仙碱的分离应用研究[D].湖南大学硕士学位论文,2003,10:17,32.
[关键词]农村;初中化学;新课程
当前农村初中实施化学新课程的成绩巨大,效果显著,但也存在着一些影响化学新课程实施的具体问题,对这些问题的处理与否,将直接影响到农村课程改革的深化和发展。
一、当前农村初中化学新课程实施中存在的主要问题及原因分析
当前农村初中还存在着一些与新课程不相适应的问题,成为新课程实施的“阻力”因素。这些问题主要表现在教师、学校和社会等3个层面上。
(一)教师层面——思想认识不够,其教学行为与新课程理念之间存在落差
少数教师对国家实施课程改革的重要性认识不足。其表现:一是“消极”思想,认为课程改革是政府的事,学校发展是校长的事,缺少实施新课程的主动性、积极性。二是“守旧”思想,这部分教师或者昔日教学成绩斐然,还沉浸在过去创造的“辉煌”中,不希望改变现有的一切;或者在学校年龄大、资历老,认为自己已经“船到码头车到站”,缺少进取、创新的精神。三是“畏难”思想,认为实施新课程条件不够,困难太多,担心实施新课程影响教学质量,缺乏面向未来和教书育人的责任感和使命感。
课堂教学是新课程实施的主阵地,从看课、调研中发现,有些教师的课堂教学改革还停留在口头上,一边喊着要改变教学观念,一边却一如既往地重复昨天的“故事”,没有把新课程理念内化为自己的教学行为。具体表现在:
一些地方把新课程倡导的“自主学习”等理念演绎为“放任自流”,过于强调学生的主体性,把时间还给学生,把书本还给学生,把课堂还给学生……把一切都还给了学生,教师的主导作用何在?学生活动缺乏教师恰当地点拨和指导,因而学习效率低、效果差是可想而知的。
处处“科学探究”,实际上是“泛化”探究教学,是对新课程理念倡导的“以科学探究为主的多样化的学习方式”理解不够,重于形式而失于内涵。
生硬的、标签式的“情感、态度与价值观”,使课堂教学显得沉闷、僵硬,失去了课堂教学应有的活力。如此等等的一些行为,其根本原因在于有的教师对以学生的终身发展为根本的素质教育的核心理念认识不够,没有把新课程教学理念内化为自觉的教学行为,导致其教学行为与新课程理念之间存在落差。
(二)学校层面——实验室建设不达标,教师负担偏重,班级人数过多
新课程的实施是一项庞大而系统的教育改革工程,学校的基础设施和建设是保证新课程实施的物质基础。调查表明:相当部分的农村初中学校实验室建设不达标,教师工作负担偏重,部分班级人数过多等。
就化学实验室建设来看,有相当部分农村初中学校的实验教学条件目前还达不到完成教学任务的要求。其表现有:第一,实验仪器、药品缺少。数据统计显示:42.1%的老师反映学校实验药品缺少或非常缺少,仪器药品配备齐全的仅占6.8%。第二,实验室数量配备不足。33.7%的老师反映学校实验开出率不到50%,只有41.6%的老师反映学校实验室能满足2~4人/组实验的要求。第三,实验室利用效率不高。学校化学实验室能对学生开放的仅占15.3%;有些实验条件相对好一点的学校,实验室利用效率也不高。我们考察的一所山区初中学校,全校十多个班级,化学和生物共用一个简陋的实验室,18张水泥台面作为实验桌,室内座椅不全,通风设备、电源等没有安装到实验桌上,平时无专人管理和打扫,卫生环境也不好。
农村教师工作负担偏重主要表现在课时多、兼职(课)多和班级学生过多等方面。问题最为突出的矛盾还是由于学校合并及人口增长而导致的班级人数过多现象。统计表明:85.7%的老师所带班级超过国家规定50人/班的规模,更有12%的教师所任班级人数超过80人。由于班级人数过多而导致的学生管理困难、活动组织困难、教师身心疲惫、教育质量滑坡等负面影响,已成为制约新课程实施的主要问题之一。
(三)社会层面——升学压力大,教师待遇偏低
由于目前还没有形成完善的素质教育评价体系,特别是中考和高中招生只看考试分数,导致社会上形成了一种“对学生的进步看名次,对教师的工作看学生的考试成绩,对学校的业绩看升学率”的唯考试论。这种观念又导致课堂上教师将教学目标指向中考,教学内容紧扣中考,教学方法服从中考。“教师满堂灌,学生听和看”的现象成为初中化学课堂上一道挥之不去的“风景”。有些农村中学的教师一边学理念,口口声声“喊”课改,一边战题海,扎扎实实抓备考,“应试教育”的思想根深蒂固,素质教育流于形式。
造成以上现象的原因是多方面的。从历史看,传统的“一考定乾坤”的思想影响很深,这是“应试教育”的思想基础和历史渊源。从现实看,是生存忧患意识在教育中的反映,这是“应试教育”的社会基础和根本原因。从评价方式看,统一、单调的纸笔测试支持了上述现象的存在,这是素质教育评价的制度缺憾。从这次的调查问卷中可以看出,绝大多数(72.2%)教师认为“升学考试压力太大”是影响新课程实施的最大阻力。所以,要消除“应试教育”的负面影响,不是教师和学校能独立完成的任务,必须是全社会的共同努力。
教师是课程改革的主力军,教师的生活状况直接或间接地影响新课程的有效实施。调查表明:近几年,随着国家经济条件的好转,特别是对义务教育阶段的经费统筹和管理实施了“以县为主”的模式后,农村中学教师的生活状况有了较大的改善,但“一费制”的实施也减少了学校办学经费的一个重要来源,政府的补贴还不能完全满足学校办学所需,特别是少数地方拖欠教师工资的现象仍然没有杜绝。
二、关于进一步推进农村初中化学新课程实施的建议
农村化学新课程的实施面临一些问题和困难,需要依靠政府的政策支撑,需要学校领导的高度重视,也需要教师发挥主观能动性。换言之,需要人们冷静地分析问题,勇敢地面对困难,为新课程的顺利实施和深入发展创造条件。
(一)采取多种途径,提高农村初中化学教师队伍的整体素质
实施新课程,关键在于有一支思想素质和业务能力过硬的师资队伍。针对农村教师队伍整体素质与全面实施素质教育的要求还存在一定差距的现状,建议实施以提高农村教师素质为目的的“造血工程”“活血工程”等,增强农村教师竞争意识和竞争能力,提高农村师资队伍的整体素质。
以“农村教师素质提高工程”为载体,实施“造血工程”,构建农村教师专业发展的新机制。首先,要加强学科骨干教师队伍建设。在农村培养和建立一支有思想、有学识、有水平的中青年骨干教师队伍,充分发挥骨干教师在教学中的引领、示范和辐射作用。
其次,要在教育行政部门的指导下,有计划地组织不同形式、不同层次的培训活动,如新课程培训、现代技术教育培训、化学教材教法培训等。传授先进教育理念和教育教学方法,发挥专家引领作用,促进农村学校师资水平的不断提高。
再次,要加大对远程教育资源运用方式的探索,改变农村中小学远程教育资源闲置的现状,保证远程教育资源“超市”的有效利用。转以“城镇教师援助农村教育行动计划”为载体,实施“活血工程”,构建城镇教师援助农村教育的交流机制,即:由省、市教育行政部门统筹教师资源,建立区域内骨干教师“巡回授课制”,城镇教师到乡村学校“支教服务制”,城乡优秀教师定期“对调工作制”等,缩小城乡教师队伍专业水平的差距。同时,要在各级教研部门的组织下,根据各地实际情况,定期开展“联片教研”“网络教研”等活动,整合优质资源,实现课程信息和资源共享,提高教研工作的覆盖面,逐步建立和完善以城带乡、城乡互动、相互促进、共同提高的城乡教师教研交流协作体。
(二)改革评价制度,建立与我国国情相符合的素质教育评价体系
建立一整套测量学校实施素质教育质量的评价体系,是促进新课程实施、提高教育教学质量的重要举措。要充分发挥教育评价在学校课程设置、教师课堂教学、学生自主学习中的导向作用。特别是要改变当前一部分地方以中考成绩的好坏作为学校工作唯一评价依据的现状,让教师能全身心地投入到工作中,研究新课程、实践新课程。
初中化学处于特别学段,复习备考是初中化学教学不可回避的任务之一。当前,统一、单调的纸笔测试根本无法全面反映学生的学习状况和多元能力的发展,不能全面考察学生的综合能力。将纸笔测试和实验操作考察结合起来,作为学生化学学科素质评价的标准,是中考改革的有效方案之一,值得决策部门认真考虑。
(三)加强实验教学,努力改善农村中学化学实验教学条件
就农村中学化学教学而言,努力改善化学实验条件是新课程顺利实施的重要保证。
第一,要使实验室建设能基本满足教学需要。建议根据义务教育九年级化学课程标准和在校学生人数,制订初中化学实验室建设的最低标准和规模,实验室建设的一次性投入和使用期补充投入应有据可依,把实验室建设经费落实到位。同时把实验室建设水平作为学校工作考核的项目之一,以引起学校领导的高度重视。部分农村或山区学校可以在政府统筹建设和管理的框架内,尝试吸纳社会资金,以建设“冠名实验室”等形式,解决资金不足的问题。规模极小的偏远山区中学,还可以适当降低要求,建设小型实验室,同时发挥教师的主观能动性,就地取材、因地制宜,努力完成实验教学任务。
第二,充分发挥评价的导向作用,把学生素质评价及学校工作评价与学校实验室建设结合起来,并将化学实验操作考核纳入学生发展评价体系中,其考核成绩记入中考成绩,这样才能从制度上确保实验教学落到实处。
第三,加强实验室工作的管理与评价,提高化学教师及化学实验员的劳保补贴,使实验室切实发挥应有的作用。要定期对实验室进行检查和评估,以确保化学实验教学的顺利进行。
(四)建立有效机制,提高农村教师的工资、福利待遇
第一,要加大对义务教育的经费投入,国家对义务教育经费的划拨应作为硬性指标,纳入到政府预算框架。要根据国家课程计划和学校规模,制定义务教育阶段生均拨款的最低保障线,以保障政府对义务教育特别是农村义务教育的投入。