时间:2022-11-16 00:32:32
导语:在抗干扰设计论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
[论文关键词]铁路电力远动终端干扰
[论文摘要]研究分析电磁干扰产生的原因、特点及干扰对电力远动系统的影响,从设计的角度对铁路电力远动监控系统进行抗干扰分析研究。
抗干扰设计是电力远动监控系统安全运行的一个重要组成部分,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,在强电场干扰下,很容易出现差错,使整个电力远动监控系统无法正常运行或出错误(误跳闸事故等),无法向站场和区间供电,影响铁路行车安全。
一、电磁干扰产生的原因及特点
(一)传导瞬变和高频干扰
1.由于雷击、断路器操作和短路故障等引起的浪涌和高频瞬变电压或电流通过变(配)电所二次侧进入远动终端设备,对设备正常运行产生干扰,严重还可损坏电路。2.由电磁继电器的通断引起的瞬变干扰,电压幅值高,时间短、重复率高,相当于一连串脉冲群。3.铁路电力供电中,特别是现代高速铁路对电力要求都比较高,一般都是几路电源供电,母线投切转换比较频繁,振荡波出现的次数较多。
(二)场的干扰
1.正常情况下的稳态磁场和短路事故时的暂态磁场两种,特别是短路事故时的磁场对显示器等影响比较大。2.由于断路器的操作或短路事故、雷击等引起的脉冲磁场。3.变电所中的隔离开关和高压柜手车在操作时产生的阻尼振荡瞬变过程,也产生一定的磁场。4.无线通信、对讲机等辐射电磁场对远动终端会产生一定的干扰,铁路中继站通常会和通信站在一处,通信发射塔对中继站电力远动终端设备的干扰比较大。
(三)对通信线路的干扰
1.铁路变电所远动终端的数据由串口通信经双绞线进入车站通信站,再经过转换成光信号沿铁通专用通信光缆送至电力远动调度中心,遥信和遥控数据在变电所到通信站的过程走的是电信号,由于变电所高低压进出线缆很多,远动终端受的干扰比较大。2.中继站一般距铁路都比较近,列车通过时的振动对远动终端设备有一定的干扰。
(四)继电器本身原因
继电器本身可能由于某种原因一次性未合到位而产生干扰的振动信号,或负荷开关、断路器、隔离开关等二次侧产生振动信号。
二、干扰对电力远动系统的影响
无论交流电源供电还是直流供电,电源与干扰源之间耦合通道都相对较多,很容易影响到远动终端设备,包括要害的CPU;模拟量输入受干扰,可能会造成采样数据的错误,影响精度和计量的准确性,还可能会引起微机保护误动、损坏远动终端设备和微机保护部分元器件;开关量输入、输出通道受干扰,可能会导致微机和远动终端判断错误,远动调试终端数据错误远动终端CPU受干扰会导致CPU工作不正常,无法正常工作,还可能会导致远动终端程序受到破坏。
三、抗干扰设计分析
(一)屏蔽措施
1.高压设备与远动终端输入、输出采用有铠装(屏蔽层)的电缆,电缆钢铠两端接地,这样可以在很大程度上减小耦合感应电压。2.在选择变电所和中继站电力设备时尽量选设有专门屏蔽层的互感器,也有利于防止高频干扰进入远动终端设备内部。3.在远动终端设备的输入端子上对地接一耐高压的小电容,可以有效抑制外部高频干扰。
(二)系统接地设计
1.一次系统接地主要是为了防雷、中性点接地、保护设备,合适的接地系统可以有效的保障设备安全运行,对于断路器柜接地处要增加接地扁铁和接地极的数量,设备接地处增加增加接地网络互接线,降低接地网中瞬变电位差,提高对二次设备的电磁兼容,减少对远动终端的干扰。2.二次系统接地分为安全接地和工作接地,安全接地主要是为了避免工作人员因设备绝缘损坏或绝缘降低时,遭受触电危险和保证设备安全,将设备外壳接地,接地线采用多股铜软线,导电性好、接地牢固可靠,安全接地网可以和一次设备的接地网相连;工作接地是为了给电子设备、微机控制系统和保护装置一个电位基准,保证其可靠运行,防止地环流干扰。
3.由于高低压柜本身都是多都是采用镀锌薄钢板材料,本身也有屏蔽作用,将高低高柜都可靠接地。4.远动终端微机电源地和数字地不与机壳外壳相连,这样可以减小电源线同机壳之间的分布电容,提高抗共模干扰的能力,可明显提高电力远动监控系统的安全性、可靠性。
(三)采取良好的隔离措施
1.为避免远动终端自身电源干扰采取隔离变压器,电源高频噪声主要是通过变压器初、次级寄生电容耦合,隔离变压器初级和次级之间由屏蔽层隔离,分布电容小,可提高抗共模干扰的能力。2.电力远动监控系统开关量的输入主要断路器、隔离开关、负荷开关的辅助触点和电力调压器分接头位置等,开关量的输出主要是对断路器、负荷开关和电力调压器分接头的控制。3.信号电缆尽量避开电力电缆,在印刷远动终端的电路板布线时注意避免互感。4.采用光电耦合隔离,光电耦合器的输入阻抗很小,而干扰源内阻大,且输入/输出回路之间分布电容极小,绝缘电阻很大,因此回路一侧的干扰很难通过光耦送到另一侧去,能有效地防止干扰从过程通道进入主CPU。
(四)滤波器的设计
1.采用低通滤波去高次谐波。2.采用双端对称输入来抑制共模干扰,软件采用离散的采集方式,并选用相应的数字滤波技术。
(五)分散独立功能块供电,每个功能块均设单独的电压过载保护,不会因某块稳压电源故障而使整个系统破坏,也减少了公共阻抗的相互耦合及公共电源的耦合,大大提高供电的可靠性。
(六)数据采集抗干扰设计
1.在信息量采集时,取消专门的变送器屏柜,将变送器部分封装在RTU内,减少中间环节,这样可以减少变送器部分输出的弱电流电路的长度。2.遥信由于合闸一次不到位或由于二次侧振动而产生的误遥信干扰信号,并且还会产生尖脉冲信号,也可能对遥信回路产生干扰误遥信号。
(七)过程通道抗干扰设计
(八)印刷电路板设计。在印刷电路板设计中尽量将数字电路地和模拟地电路地分开;电源输入端跨接10~100μF的电解电容。
(九)控制状态位的干扰设计
(十)程序运行失常的抗干扰设计
(十一)单片机软件的抗干扰设计
(十二)对于终端至通信站的数字通信电缆加穿钢管,特别是穿越其他电力电缆时,避免和其他电力电缆等同沟敷设并保持一定的交叉距离。
关键词:电力工程;二次系统;接地系统;抗干扰
1引言
我国电力事业发展迅速,电力系统容量越来越大。随着继电保护技术和计算机技术的高速发展,系统中微机型继电保护已应用的极为广泛。为了工作和安全的需要,电力系统及其电气设备的某些部分与大地相连接,这就是接地。电力系统的接地是必须的,也是必要的。
本论文主要针对电力二次系统的接地方法展开探讨分析,并对其中的抗干扰设计进行研究,以期从中找到可靠有效的电力二次系统的接地设计与抗干扰设计方法,并以此和广大同行分享。
2电力二次系统接地分析
2.1 常用的接地种类
接地的种类主要有以下凡种:
(1) 工作接地:工作接地是为系统正常工作而设置的接地。如为了降低电力设备的绝缘水平,在110kV及以上电力系统中采用中性点接地的运行方式,在两线一地的双极高压直流输电中也需将其中性点接地。
(2) 防雷接地:为了避免雷电的危害,避雷针、避雷线和避雷器等防雷设备都必须配以相应的接地装置以便将雷电流引入大地。
(3) 安全接地:为了保证人身的安全,将电气设备外壳设置的接地。
2.2 电力二次系统接地方法
具体来说,二次系统的接地问题,也就是二次装置和二次回路及二次电缆屏蔽层的接地,主要分为以下几种情况:
(1) 保护系统和信号系统的接地
继电保护装置的工作环境中干扰是严重的,这些干扰的特点是频率高,幅度大,因而可以顺利通过各种分布电容的耦合;另一方面这些干扰持续时间短。继电保护的可靠性要求体现在两个方面:不误动和不拒动。
对于微机型保护装置,由于其工作是在时钟节拍的严格控制下高速同步进行的,这些干扰一旦闯入,轻则引起动作延迟,重则导致程序中止或出错,甚至元件损坏,所以抗干扰是微机保护的一个重要内容,除了在软硬件设计中进行抗干扰外,降低干扰是最直接和最根本的抗干扰方法,而接地是降低干扰最有效的措施,所以微机保护的接地是极其重要的。保护系统的接地方式有三种:悬浮接地,单点接地和多点接地。
(2) 二次回路的接地
二次回路的接地主要是互感器回路的接地。电力系统中互感器主要作用是将大电流变成小电流或将高电压变成低电压以便于测量,同时利用互感器将二次回路与一次高压电路隔开,以保证二次回路、仪器和人身的安全。
(3) 二次电缆屏蔽层的接地
现阶段,电力系统及测控领域所用的控制电缆和信号电缆均采用屏蔽电缆,其首要因素是屏蔽电缆具有良好的抗干扰性能,这对于广泛应用的微机系统和电子设备尤为重要。这些屏蔽线,有用于低频设备的单芯、两芯及多芯屏蔽线,双绞屏蔽线和用于高频设备的同轴电缆等。由于其使用环境、条件及信号的不同,因此在实施屏蔽时的接地方式也不同。
3电力二次系统抗干扰探讨
3.1 电力二次系统的常见干扰源
干扰源大致可分为以下几类:
(1) 电磁耦合干扰:电力系统一次设备和二次之间凡乎都是通过电磁耦合进行工作的,同时,电场效应和磁场效应也无处不在,因此,一次设备本身的高压电场可通过电容耦合到二次设备;大电流产生的磁场也可通过电感耦合到二次设备。
(2) 射频干扰:由于天线效应,大型变压器、大型发电机和电动机、高压导线等都会发射出工频和谐波频率的电磁辐射。
(3) 雷电干扰:雷电流平均20kA,最高可达200kA,其发生时间处于μs级,雷电流对二次的影响主要是在二次电缆上的干扰。雷电流经避雷器入地,使得地网上的电位分布极不均匀,另外引起地电位升高,将对屏蔽层接地的电缆上产生干扰。
(4) 操作引起的干扰:一次系统中的开关操作,断路器、隔离开关的操作会引起电气回路状态变化,特别是隔离开关动作时,没有灭弧装置,产生多次电弧重燃引起的电磁能量振荡。一般认为开关操作是引起干扰和过电压的重要原因。
其他的干扰源,如短路电流、二次回路操作、局部放电及电力二次系统内部的电子元器件等等,都会产生干扰。
3.2 电力二次系统形成干扰的原因分析
电力系统的二次系统是由二次电缆和二次设备组成的。电力系统二次设备的种类和型号很多,所处的运行环境异常复杂。二次回路干扰形成的主要原因有下列凡种:
(1) 雷电流注入接地网所造成的干扰;
(2) 工频短路电流注入接地网所造成的干扰;
(3) 一次、二次设备的操作引起的干扰。
(4) 强电场环境下,由于电磁场作用引起的干扰。
这些干扰可能对电力系统的正常运行产生影响,轻则引起二次系统及设备的运行稳定性,重则会导致保护误动作,造成停电,甚至会形成更大的事故。
3.3 电力二次系统的抗干扰设计
在设计电力二次系统时,在硬件上采用一些抗干扰措施,可以有效抑制干扰信号的侵入,提高装置的抗干扰能力。主要措施如下:
(1) 隔离
为了抑制共模干扰,保护装置中与外界连接的线路如模拟量、输入输出开关量、数字量和电源线等,经由光电隔离或隔离变压器隔离后再进入装置内部。其中光电隔离主要通过光电耦合器将外部开关量信号及开关量输出和内部电气回路进行隔离,隔离变压器主要通过专用变压器将一、二次侧的交流回路隔离。
(2) 屏蔽
屏蔽的实质是通过具有良好导电性的金属所构成的全封闭壳体来隔离和衰减电磁干扰,如微机保护的壳体,将核心数字部件、A/D转换器等器件装在内屏蔽壳体内。常见的屏蔽方式有抑制寄生电容耦合干扰的电场屏蔽(如电压、电流变换器一、二次侧绕组之间隔离)和防止电磁耦合及感性耦合的磁场屏蔽等。
(3) 滤波、退耦与旁路
抑制横模干扰的主要方法是采用滤波和退耦电路。交流信号输入通道都有前置模拟低通滤波器,兼有抗干扰的作用。交直流信号输入通道两个端子间应装上0.01-0.047pF的退耦电容,为高频横模干扰信号提供旁路。从抗干扰角度考虑,RC滤波器比LC滤波器好,因为RC滤波器是耗散式滤波器,把噪声能量变成热能耗散掉了,而LC滤波器则会产生附加的磁场干扰,所以电感要加屏蔽罩。在电源系统中,对每个电路或每个组件都要采用退耦电路供电。
4结语
电力系统的二次回路数量多,系统复杂,所处的工作环境亦复杂多样。系统的各种继电保护装置、动装置和各种监控系统随着微机产品的大量应用,对工作环境条件的要求也越来越严格,发电厂和变电站中的各种干扰是影响这些系统正常运行的主要因素。接地一方面是保证电力系统正常运行的必须条件,同时也是抗干扰的一项重要措施。在二次系统中,屏蔽电缆屏蔽层的接地、盘柜的接地、二次交流回路的接地、微机系统的接地等是非常重要而又复杂的工作,因此有必要对其做进一步的总结和研究。
参考文献:
[1] 国家电力调度通信中心.电力系统继电保护典型故障分析[M].北京:中国电力出版社,2001.
关键词:电力工程;二次系统;系统接地;抗干扰
1、引言
随着电力系统自动化水平的提高,变电站内采用的弱电设备及系统越来越多,如数据采集系统、通信系统、控制和继电保护系统等。变电站中的二次系统处在一个强电磁环境中,工频电流、电压和系统短路故障、开关操作、雷电侵扰、交直流混联以及多种放电现象等的通过不同途径引发的各种干扰,将不可避免地影响二次系统的正常工作。随着变电站一次系统电压的升高、容量的增大,电磁干扰更加严重如果不采取有效措施防御,容易造成继电保护装置的误动或拒动,造成监控系统的混乱、死机等现象,对电网安全构成严重的威胁。
为此,本论文将主要针对电力工程中二次系统的接地及其抗干扰问题展开分析探讨,以期从中找到合理有效的电力工程二次系统的接地抗干扰设计方法,并以此和广大同行分享。
2、电力工程二次系统干扰来源及其危害分析
变电站综合自动化系统运行中,电力系统发生短路故障,变电站内进行一次系统的操作,变电站遭遇雷击时的雷电流通过架空线路传入变电站的母线,运行、检修人员使用步话机,以及由于各种原因产生的静电放电,现场使用一些不符合电磁兼容标准的试验仪器和和电子设备,当然也有微机型继电保护装置及二次回路自身原因形成的干扰等,都构成影响继电保护及安全自动装置安全可靠工作的干扰源。
这些干扰不可避免地通过感应、传导和辐射等各种途径引入到二次设备中,当干扰水平超过了这些电子设备的耐受能力时,将导致这些设备不正确动作。更重要的是在系统发生故障情况下,这些重要的设备将因干扰的影响发生不正确动作行为,直接影响到系统的安全稳定,其后果将可能是十分严重的。因此,解决微机型监控系统和保护及安全自动装置的抗干扰问题就成了一个不可回避和不容忽视的重要问题。
随着综合自动化系统的应用,使变电站无人值守成为可能,并得到广泛的应用。这样,综自系统通讯的可靠性日益显现出其重要性,干扰的引入会导致通讯系统工作不正常、信号误报或整体通讯瘫痪,变电站失去相应的监控,极大影响变电站综自系统的运行。
3、电力工程二次系统的接地及抗干扰分析
3.1 电力二次系统接地保护策略分析
1) 建立独立的继电保护二次接地系统,将完全独立的继电保护二次接地系统与变电站的接地网用绝缘瓷瓶完全隔离后,在近控制室或保护室一侧与变电站主接地网一点连接,即开关场部分和保护室部分均与主地网绝缘。
2) 将开关场端子箱处沿电缆沟铺设100平方毫米的铜排或是铜缆至保护室,并将安装在保护室的二次接地系统(也是使用100平方毫米的铜排构成)用绝缘瓷瓶完全隔离后,在近控制室或保护室一侧与变电站接地网一点连接,即开关场部分不与主地网绝缘。
3) 将开关场端子箱处沿电缆沟铺设100平方毫米的铜排或是铜缆至保护室,与保护室的二次接地系统(也是使用100平方毫米的铜排构成),在近控制室或保护室一侧与变电站接地网一点连接,即开关场部分和保护室部分均不与主地网绝缘。
4) 所有的接地铜排要求不小于100平方毫米的铜排。
5) 在电流互感器和电压互感器的引出接线端子盒到接线端子箱的连接电缆使用屏蔽电缆。
6) 隔离刀闸的控制电缆使用屏蔽电缆。或隔离刀闸就地控制箱到端子箱的连接电缆使用屏蔽电缆。
7) 屏蔽电缆的屏蔽层接地工艺符合要求,不能造成电缆绝缘损坏,起不到抗干扰的作用。
8) 发电厂厂用系统的低厂变、馈线、电动机等保护柜内的微机保护使用屏蔽电缆。
9) 对用于防止电压互感器二次过电压保护的放电间隙的定期检定。
3.2 二次系统接地过程中的注意事项
系统的接地应当注意以下几点:
l) 参照设备的接地注意事项;
2) 设备外壳用设备外壳地线和机柜外壳相连;
3) 机柜外壳用机柜外壳地线和系统外壳相连;
4) 对于系统,安全接地螺栓设在系统金属外壳上,并有良好电连接;
5) 当系统内机柜、设备过多时,将导致数字地线、模拟地线、功率地线和机柜外壳地线过多。对此,可以考虑铺设两条互相并行并和系统外壳绝缘的半环形接地母线,一条为信号地母线,一条为屏蔽地及机柜外壳地母线;系统内各信号地就近接到信号地母线上,系统内各屏蔽地及机柜外壳地就近接到屏蔽地及机柜外壳地母线上;两条半环形接地母线的中部靠近安全接地螺栓,屏蔽地及机柜外壳地母线接到安全接地螺栓上;信号地母线接到信号地螺栓上;
6) 当系统用三相电源供电时,由于各负载用电量和用电的不同时性,必然导致三相不平衡,造成三相电源中心点电位偏移,为此将电源零线接到安全接地螺栓上,迫使三相电源中心点电位保持零电位,从而防止三相电源中心点电位偏移所产生的干扰;
7) 接地极用镀锌钢管,其外直径不小于50mm,长度不小于2.0m;埋设时,将接地极打入地表层一定深度,并倒入盐水,一般要求接地。
3.3 电力工程二次系统抗干扰接地对策
1) 屏蔽接地
各种信号源和放大器等易受电磁辐射干扰的电路应设置屏蔽罩。由于信号电路与屏蔽罩之间存在寄生电容,因此要将信号电路地线末端与屏蔽罩相连,以消除寄生电容的影响,并将屏蔽罩接地,以消除共模干扰。
2) 设备接地
一台设备要实现设计要求,往往含有多种电路,比如低电平的信号电路(如高频电路、数字电路、模拟电路等)、高电平的功率电路(如供电电路、继电器电路等)。为了安装电路板和其它元器件、为了抵抗外界电磁干扰而需要设备具有一定机械强度和屏蔽效能的外壳。
设备的接地应当注意以下几点:
① 50 Hz电源零线应接到安全接地螺栓处,对于独立的设备,安全接地螺栓设在设备金属外壳上,并有良好电连接;
② 为防止机壳带电,危及人身安全,不许用电源零线作地线代替机壳地线;
③ 为防止高电压、对低电平电路大电流和强功率电路(如供电电路、继电器电路)(如高频电路、数字电路、模拟电路等)的干扰,将它们的接地分开。前者为功率地(强电地),后者为信号地(弱电地),而信号地又分为数字地和模拟地,信号地线应与功率地线和机壳地线相绝缘。
4 结语
电力系统的二次回路数量多,系统复杂,所处的工作环境亦复杂多样。系统的各种继电保护装置、自动装置和各种监控系统随着微机产品的大量应用,对工作环境条件的要求也越来越严格,变电站中的各种干扰是影响这些系统正常运行的主要因素。接地一方面是保证电力系统正常运行的必须条件,同时也是抗干扰的一项重要措施。本论文对于电力工程二次系统的接地方法及其抗干扰措施都进行了分析,具有一定的实用性,因而是值得推广的。
参考文献:
[1] 江苏省电力公司.电力系统继电保护原理与实用技术[M].北京:中国电力出版社,2006.
[2] 孙竹森,张禹方,张广州.500kV变电站电磁骚扰和防护措施的研究(一)[J].高电压技术,2000, 26(l):16-18.
[3] 王保仓.电力二次系统接地及抗干扰方法研究[D].南京:东南大学,2006.
论文摘要:本文论述了激光探测系统信息接口技术;讨论了激光探测接口的一般设计思想。
1 引言
激光具有波长单一和良好的方向性,所以和传统的探测方法相比,激光探测具有精度高,抗干扰能力强等特点,在激光测距、激光雷达、激光告警、激光制导、目标识别等军事领域,都得到了广泛应用。针对不同武器系统的需求,激光探测系统接口呈现出多样性。
近年来,随着应用需求和集成化度的增加,激光探测系内部、激光探测系统和各武器平台之间集成了不同厂商的硬件设备、数据平台、网络协议等,由此带来的异构性给探测系统的互操作性、兼容性及平滑升级能力带来了问题。
对激光探测系统而言,接口技术的设计是整个系统集成的关键技术。一个激光探测系统的设计、实施,有很大的工作量是在接口的处理上,好的接口设计可以提高系统的稳定性、运行效率、升级能力等,本文以激光探测系统接口技术为研究对象,着重分析其接口技术类型、设计考虑因素和验证方法。
2 激光探测系统几种主要接口技术
接口是多要素或多系统之间的公共边界部分,对激光探测系统的接口包括机械接口、电气接口、电子接口、软件接口等,本文着重讨论电子接口。按物理电气特性划分,常用的激光探测系统接口类型可分为以下几类:
1 TTL电平接口:最通用的接口类型,常用做系统内及系统间接口信号标准。驱动能力一般为几毫安到几十毫安,在激光探测系统中主要应用是作为长距离的总线数据和控制信号的传输
2 CMOS电平接口:速度范围与TTL相仿,驱动能力要弱一些。
3 ECL电平接口:为高速电气接口,速率可达几百兆,但相应功耗较大,电磁辐射与干扰与较大。
4 LVDS电平接口:在标准中推荐的最大操作速率是655Mbps,电流驱动模式,信号的噪声和EMI都较小。
5 GTL接口电平:低电压,低摆幅,常用作背板总线型信号的传输,虽然使用频率一般在100MHz以下,但上升沿一般都比较陡,特别是对沿敏感的信号,如时钟信号。
6 RS-232电平接口:为低速串行通信接口标准,电平为±12V,用于DTE与DCE之间的连接。RS-232接口采用不平衡传输方式,收、发端的数据信号是相对于信号地的电平而言,其共模抑制能力低,传输距离近,多用于点对点接口通讯。
7 RS-422/RS-485接口:采用平衡方式传输,采用差分方式,使其在通讯速率、抗干扰性和传输距离较RS-232接口有较大改善。多用于多点接口通迅。RS485电平接口可驱动32个负载,忍受-7V到12V共模干扰。
9 光隔离接口:能实现电气隔离,更高速率的器件价格较昂贵。
10 线圈耦合接口:电气隔离特性好,但允许信号带宽有限
11 以太网:经常采用的是10Base-T和100Base-T两种主流标准,主要应用激光探测系统和分系统之间的接口通讯和数据传输。以太网接口具有性价比高、数据传输速率高、资源共享能力强和广泛的技术支持等众多优点。
12 USB接口:USB总线接口是一种基于令牌的接口,USB主控制器广播令牌,总线上的设备检测令牌中的地址是否与自身相符,通过发送和接收数据对主机作出响应,其最大的优点是安装配置简单。
3 激光探测系统接口方案设计考虑因素
随着大规模数字处理芯片和高速接口芯片的迅猛发展,激光探测系统也呈现出智能化、小型化、模块化的趋势。在激光探测系统中,信息接口的设计逐渐向标准化、网络化、多节点、高速等方向展
3.1 接口信号传输中的干扰噪声
3.1.1 接口信号传输中的主要干扰形式
a)串模干扰:杂散信号通过感应和辐射的方式进入接口信道的干扰。串模干扰的产生原因主要是传输中插件等所产生的接触电势、热电势等噪声引起的。
b) 共模干扰:干扰同时作用在两根信号往返线上,而且幅指相同。共模干扰产生的原因,主要是传输线路较长,在发送端和接收端之间存在着接地的电位差。
3.1.2 接口信号传输中的抗干扰措施
a)传输线的选择
为了抑制由于杂散电磁场通过电磁感应和静电感应进入信道的干扰,接口传输线应尽量选用双绞线和屏蔽线,并将屏蔽层接地,而且屏蔽层的接地要于激光探测系统一端浮地的结构形式配合,不要将屏蔽线层当作信号线和公用线。
b)传输线的平衡和匹配
采用平衡电路和平衡传输结构是抑制共模干扰的有力措施。目前广泛使用的是差分式平衢性线电路,例如RS-422/RS-485标准串口电路。
接口信号传输时还要考虑与传输线特性阻抗的匹配问题。一般长线传输的驱动器接收器都适用于驱动特性阻抗为50Ω—150Ω的同轴电缆和双绞线,一般接口接收器的输入阻抗要比传输线的特性阻抗大,因此要设法将两者匹配,最好将发送端和接收端匹配。
控制信号线的具体配置:控制信号线要和强电、数据总线、地址总线分开,尽量选用双绞线和屏蔽线,并将屏蔽层接地。
c)隔离技术:电位隔离是常用的抗干扰方法,接口信号采用光电隔离和电磁隔离可以切断接口内外线路的电气连接,从而减弱露流、地阻抗耦合等传导性干扰的影响。
3.2 接口硬件的选择原则:
3.2.1 为各类接口选择合适的总线接口芯片、接口总线,并设计具体的接口电路。
3.2.3 选择接口芯片时应根据激光探测系统CPU/MPU类型,总线类型/宽度和系统所完成的功能并按照高效、经济、可靠,方便、简单的原则来确定。
3.2.4 设计具体的接口电路应具体考虑电源问题
3.2.5 数据/命令的锁存和驱动
激光探测系统内部及激光探测系统和其他系统间实施数据/命令传输时,一般采用数据锁存技术来适应双方读写的时间要求。
3.3 接口的实时性
由于激光探测系统对数据处理和传输的实时性要求很高,设计时要使时钟抖动、通道间时延、工作周期失真以及系统噪声最小化,所以设计接口时尽量选用高通讯速率和同步工作方式。
接口软件的设计原则
同步通讯系统软件设计要充分考虑数据流量的控制,最好在数据发送方发送数据时每隔一段时间插入一段空闲时间,从而保证数据同步传输的可靠性。
异步通讯系统软件设计要充分考虑合理的数据校验方式,可以根据系统要求选择冗余校验、校验和、冗余校验的方法。
4 激光探测系统接口方案设计验证
构建高速有效的激光探测系统接口是非常有挑战性的,并且设计者需要在设计接口前后就考虑多个因素,详细的系统级的验证都是必须的。
4.1 设计前的验证
基于指令集模拟器和硬件模拟器软硬件模拟技术是一种高效、低代价的系统验证方法。接口设计软件采用汇编,C,C++等语言编写,用户编写的接口源程序经过交叉编译器和连接器编译,输入到软件指令集模拟器进行软件模拟。而接口硬件验证则采用硬件描述语言如VHDL设计,经过编译后由硬件模拟器模拟。但设计前的验证也有一定的局限性,比如只能验证数字接口和验证环境理想化等缺点。这些都需要设计后的验证
4.2 设计后的验证
最常见的验证方法是制作模拟激光探测系统内部接口和系统间外部接口的通用信号源,通用信号源可以模拟探测系统内部的如主回波、时统、显示、键盘等信号,也可以模拟输入外部操控命令,并将激光探测系统状态、测量数据等信息显示输出。
4.3 通过验证,发现问题,修改设计,然后再模拟,最终完成满足要求的软硬件接口设计。
【关键词】卫星导航系统;频域抗干扰;快速离散傅里叶变换;窗函数
1.引言
本文首先介绍了卫星导航频域抗干扰的基本原理以及重叠加窗DFT抗干扰算法的框架流程,然后将算法框架分解归纳为加窗处理、重叠处理、FFT/IFFT运算、门限估计、干扰零陷五个关键问题,进行深入探讨如何才能达到最佳的抗干扰效果,针对频域抗干扰算法中前两个问题,提出了采用Kaiser窗作为最优化的加窗处理,以及重叠相加再加窗的重叠处理方案。对于频域抗干扰中窗函数的选取,本文建立明确了唯一的评价标准,认为在频谱抗干扰中采用Kaiser窗能够实现对干扰泄露的最佳抑制。对于重叠处理,本章分析比较了重叠选择、重叠相加、重叠相加再反加窗三种处理方式的信噪比损耗,重叠相加再反加窗可以实现原始时域信号的准确重构,信噪比损耗可忽略不计,适合在抗干扰算法中使用。
2.频域抗干扰基本原理
频域抗干扰的基本原理,是导航信号与环境热噪声整体上呈现高斯白噪声特性,频谱十分平坦;而窄带干扰信号能量经过傅里叶变换后则集中在少部分频点上,呈现出高而窄的脉冲形状,只要通过合理的检测手段估计出环境热噪声的频谱包络,即可区分出干扰谱线,然后采用合适的陷波算法将干扰滤除。图1给出了GNSS导航信号在环境热噪声淹没下,并混合有多个窄带干扰的频谱图,频域上很容易识别出干扰谱线来,干扰抑制方法简单明了,处理迅速。
在实际的频谱分析中,由于计算资源与存储空间有限,需要对输入信号分块后再进行DFT运算,但如果直接DFT,分块数据周期拓展后的非连续性会产生严重的频谱泄露现象,使得干扰能量在整个频谱中扩散,影响后续的干扰识别和干扰滤除。为了缓解频谱泄露问题,通常先对输入信号经过时域加窗(非矩形窗)处理,再进行DFT运算[1]。加窗处理在减轻频谱泄露的同时,也带来了分块数据在边缘处的畸变,这会对信噪比造成一定损耗。所以,频谱干扰抑制技术中大都采用了重叠处理的方式,来弥补加窗带来的信噪比损耗[2]。
图1 含窄带干扰混合信号的频谱分析图
重叠处理是指在分块进行加窗DFT的数据块中,相邻的数据块之间有一部分数据重叠,在经过频谱分析、干扰抑制,又逆变换回时域后,通过重叠相加,或者舍弃两头保留中间(下文中称为重叠选择)的方法来去除重叠。这在实现上是采用有固定延迟区别的多路数据,分别干扰抑制处理后,再进行重叠融合。
对于DFT运算的实现,实际应用中都会采用快速算法FFT。在抗干扰算法中我们关心的是所选FFT/IFFT的长度,即分块处理的块长,这直接关系到频谱分辨率,以及固定带宽内的干扰抑制能力。
在进行了FFT运算之后,可以通过自适应算法合理地估计出噪声与干扰之间的门限,区分出干扰谱线,然后采用陷波算法将干扰滤除。对于频谱门限的估计有众多自适应算法:N-sigma算法[3]、条件中值滤波[4]、最大似然门限估计[5]等。干扰陷波算法[6]则有:直接零陷、非线性钳位、幅度倒置等。总结起来,门限估计和干扰陷波就是一个将含干扰的混合频谱进行白噪化处理的过程。
综上所述,整个重叠加窗DFT抗干扰算法的原理框图如图2所示,主要可分为加窗处理、重叠处理、FFT/IFFT长度选择、门限估计、干扰陷波这五个关键问题。本章的主要目的是深入分析前2个问题,探讨如何才能达到最佳的窄带干扰抑制性能,以及兼顾计算复杂度方面的考虑。
图2 重叠加窗DFT抗干扰算法的原理框图
3.窗函数的优化选取
对于频域抗干扰中窗函数的选取问题,已有众多文章对此进行了分析讨论[5,6,7]。在这些文章中,选取窗函数的标准其实都一样,包括两个方面:一是窗函数扭曲有用信号带来的信噪比损耗,二是窗函数对干扰泄露的抑制能力,也即窗函数自身的幅频特性。由于窗函数在这两方面的性能没有必然联系,要在这两者之间寻找一种平衡或者折衷也就十分困难,所以上述文章都没有给出一个在频域抗干扰中窗函数选择的最优结果。
本文认为,频谱抗干扰算法中窗函数的选择可以不必考虑加窗带来的信噪比损耗问题,因为后续的重叠处理可以准确重构或近似重构原始信号,重叠加窗整体的信噪比损耗可忽略不计,详细内容在下一小节中讨论。前人在选择窗函数时之所以纠缠加窗的信噪比损耗问题,只是因为在重叠加窗DFT抗干扰框架下没有找到准确重构原始信号的重叠处理方法。而本文选取窗函数的评价标准只有一个,就是窗函数对DFT谱分析时对干扰泄露的抑制能力。
假设输入窄带干扰信号为一个CWI,经过加窗DFT后,干扰谱线包络就是窗函数的幅频响应,其主瓣内的谱线一般会明显高于噪声电平,旁瓣则淹没于噪声之下无法识别,记窗函数的傅里叶变换为。随后的自适应滤波会将主瓣内的谱线识别为干扰进行抑制处理,而旁瓣内的干扰则被残留下来。由于干扰谱线处理的同时也损害了有用信号,所以希望主瓣内的谱线尽量少,即窗函数幅度谱的主瓣宽带越窄越好。同时也希望旁瓣尽量低,残留在旁瓣内的干扰功率就小,这可以等效为最小化旁瓣功率比重,或最大化主瓣功率比重的问题:
(2?1)
上式中,表示主瓣宽带的一半,;为环境热噪声功率谱密度。对于各种窗函数的幅频特性,文献[2]作出深入分析研究,Kaiser窗作为一种设计灵活的窗函数,可以实现主瓣功率的尽量集中,在具有相同旁瓣电平水平情况下,比其它窗函数的主瓣更窄。因此,在本文的重叠加窗DFT抗干扰算法中,选择了最优的Kaiser窗。这不同于[3]所采用的Blackman-Harris窗,也不同于[8]所推荐的Hann窗。下面的分析结果可以看出,采用Kaiser窗的抗干扰性能更好。图3给出了几种常用窗函数的幅频特性。
图3 常用窗函数幅频特性
同时,表1给出了上述几种窗函数的主瓣宽带和最大旁瓣电平。需要注意的是主瓣宽带与窗函数长度(或FFT点数)无关,最大旁瓣电平可以近似为旁瓣功率比重。
表1 常用窗函数特性比较
窗函数 主瓣宽带(2π/N) 最大旁瓣(dB)
Triangle窗 4 -25.07
Hann窗 4 -31.47
Blackman-Harris窗 8 -92.03
Kaiser窗(β=8.96) 6 -66.01
Kaiser窗(β=15.2) 10 -115.70
对于潜在的GNSS应用中,抗干扰算法需要应对干噪比(Jamming-to-Noise Ratio)为60dB的CWI干扰,如果分别采用上述5种窗函数与FFT做谱分析,那么根据图3所示,频域滤波要处理的谱线个数分别为35、13、7、5、9个。如果同样是使用1024点FFT,能够容忍10%有用信号带宽被滤除,那么,分别采用上述窗函数的频域抗干扰算法能够抑制的CWI干扰数量分别为2、7、14、20、11个。显然,采用β=8.96的Kaiser窗,频域滤波需要处理的谱线数最少,对有用信号的损害最小,相同带宽内能抑制更多干扰,明显优于文献[11,12]中的干扰抑制能力;并且滤波后残留的干扰功率极小,仅为旁瓣功率。
4.重叠处理算法的优化
非矩形的窗函数处理都会带来信噪比损耗,加窗后重叠处理可以缓解此损耗,那么本小节将探讨如何进行重叠处理使得信噪比损耗尽量小。Capozza提出了50%重叠选择输出算法[3],采用两路信号处理通道,第一路直接进行加窗DFT,第二路先进行50%块长的延迟再做加窗DFT,两路数据合成时分别选择对应于窗函数中部扭曲较小的部分输出,此算法使得Blackman-Harris窗损耗由无重叠时的-3.02dB降低为-0.59dB。Harris则提出了重叠相加算法[2],即两路数据合成时将相邻数据块的重叠部分相加输出,根据重叠比例的不同分为25%重叠相加、50%重叠相加、75%重叠相加等,重叠比例越大,信噪比损耗越小,计算量也越大。常用的重叠输出处理方式有重叠相加与重叠选择,对于同样的窗函数,重叠相加一般都比重叠选择的损耗更小[9]。近年来,又有杨晓波提出了反加窗的方式来改善加窗损耗[10],但由于窗函数两端边缘处权值较小,其倒数变化幅度很大,直接反加窗效果并不十分理想。本文基于以上算法,提出重叠相加后再反加窗的重叠处理方式,由于50%重叠相加等效窗的权系数变化平缓,所以与其倒数成正比的反加窗权系数也变化平缓,可以做到准确重构或近似重构原始信号,使得加窗带来的信噪比损耗可忽略不计。
设定窗函数的时域表达形式为w(n),,其中N为窗函数长度,亦为DFT块长。那么直接加窗带来的信噪比损耗可以表示为:
(2-2)
下面在最常见的50%重叠比例情况下,比较重叠选择、重叠相加、重叠相加再反加窗三种重叠处理方式的信噪比损耗。
对于50%重叠选择输出方式,等效窗函数可表示为:
(2-3)
而50%重叠相加输出方式,等效窗函数为:
(2-4)
对于50%重叠相加再反加窗,等效窗函数就是矩形窗:w3(n)=1,。图4以Blackman-Harris窗为例,给出了上述三种重叠处理方式的等效窗函数的时域波形。
图4 重叠处理方式比较
依据公式(2-4),可以计算出几种常用窗函数分别采用上述三种重叠处理方式后的信噪比损耗结果,如表2所示,其中窗函数长度选择为1024。
表2 重叠加窗的信噪比损耗比较
窗函数 无重叠(dB) 50%重叠选择(dB) 50%重叠相加(dB) 50%重叠相加再反加窗(dB)
Triangle窗 -1.25 -0.16 0 0
Hann窗 -1.76 -0.15 -0.01 0
Blackman-Harris窗 -3.02 -0.59 -0.32 0
Kaiser窗(β=8.96) -2.44 -0.36 -0.10 0
Kaiser窗(β=15.2) -3.52 -0.86 -0.64 0
综上所述,不管是选择什么窗函数,50%重叠相加再反加窗都可实现原始信号的准确重构。由于50%重叠相加等效窗的权系数变化平缓,所以与其倒数成正比的反加窗权系数也变化平缓,在硬件实现时权系数定点量化误差较小,使得重叠相加后的反加窗切实可行。基于上述分析,重叠加窗DFT抗干扰算法的原理框架可以改进如图5所示。
图5 改进的重叠加窗DFT抗干扰算法的原理框图
5.小结
重叠加窗DFT抗窄带干扰算法是目前应用最为广泛的抗窄带干扰算法之一,它能够对窄带干扰信号进行快速识别和准确滤除,且实现简单。本章首先详细介绍了频域抗干扰算法的基本原理,分析了采用重叠加窗处理的原因,给出了经典的重叠加窗DFT抗窄带干扰算法的原理框图。然后将此抗干扰算法归纳分解为加窗处理、重叠处理、FFT/IFFT长度选择、门限估计、干扰陷波五个关键问题,分别进行了深入详细的研究。对于窗函数的选取,本章明确了唯一的评价标准,认为在频谱抗干扰中采用Kaiser窗能够实现对干扰泄露的最佳抑制。对于重叠处理,本章分析比较了重叠选择、重叠相加、重叠相加再反加窗三种处理方式的信噪比损耗,重叠相加再反加窗可以实现原始时域信号的准确重构,信噪比损耗可忽略不计,适合在抗干扰算法中使用。上述加窗与重叠处理方法在插入损耗与相同带宽内的抗窄带干扰能力方面均优于前人的算法效果。本章通过上述两个方面的深入研究,提出了优化的加窗与重叠处理方法,并兼顾干扰抑制性能与算法复杂度,给出了一套性能优良的重叠加窗DFT抗窄带干扰算法的实现方案。
参考文献
[1]应启珩.离散时间信号分析和处理[M].北京:清华大学出版社,2001:103-105,228-234.
[2]Harris F J.On the use of windows for harmonic analysis with the discrete Fourier transform[J].Proceedings of the IEEE,1978,66(1):51-83.
[3]Capozza P T,Holland B J,Hopkinson T Ml.A singlechip narrow-band frequency domain excisor for a global positioning system(GPS)receiver[J].IEEE Journal of Solidstate Circuits,2000,35(3):401-410.
[4]T.Kasparis,M.Georgiopoulos,E.Payne.Non-linear Filtering Techniques for Narrow-Band Interference Rejection in Direct Sequence Spread-Spectrum Systems[M].Department of Electrical Engineering,1991:360-364.
[5]薛巍,向敬成,黄怀信.基于门限估计的直扩通信系统窄带干扰变换域抑制方法[J].电子与信息学报,2003, 25(7):990-994.
[6]Jeffrey A.Young,James S.Lehnert.Analysis of DFT-Based Frequency Excision Algorithms for Direct-Sequence Spread-Spectrum Communications[M].IEEE Trans.on Communication 1998,46(8):1076-1087.
[7]Jones,K.R.Jones.Narrowband interference suppression using filter-bank analysis/synthesis techniques.IEEE MILCOM Conference,San Diego,California,1992:38-41.
[8]吴国亮.基于变换域抗窄带干扰技术研究及FPGA设计[硕士学位论文].西安:西安电子科技大学,2009.
[9]曾祥华.扩频系统频域窄带干扰抑制算法加窗损耗研究[J].电子与信息学报,2004,26(8):1276-1281.
关键词:PC,多DSP,串行通信,协议
1. TMS320F2812 DSP处理器概述
随着经济的进一步发展和科学技术的日新月异,高速信息处理和自动控制在各个生产领域的应用越来越显示出其举足轻重的地位。而DSP处理器的诞生、发展以及优越的性能正是满足了市场的这种需求,同时它又进一步的促进了经济的发展和科技的进步。
DSP处理器是对数字信号进行高速实时处理的专用处理器,处理速度比普通的CPU快的多。其中32位TMS320F2812 DSP的工作频率150MHz,堪比Intel 586处理器运算能力。用户不仅可以应用汇编语言、高级语言编写系统程序,也能够采用C/C++语言开发高效的数学算法。因此该类芯片在数字信号处理领域得到了相当广泛应用。在工程应用中,其多下位机的串行数据交互愈显重要,备受关注。
2. F2812 SCI接口特点
F2812提供两个SCI接口,均采用双线制通信的异步通信串行接口。为了减小串口通信时的开销,F2812的串口支持16级接收和发送FIFO,单独的发送器、接收器中断以及各自的单独启动位,可以进行半双工或者全双工操作,支持两种唤醒多处理器方式:空闲线唤醒和地址位唤醒。
3. F2812 SCI与PC的连接
F2812内部有两路专用的串行通信模块SCIA、SCIB,应实际工程需要,仅使用一路SCIB与PC进行串行通信。F2812SCIB与PC通信连接如图1-1所示。PC的串行通信接口一般采用RS-232协议,该协议传输速率低,传输距离近,抗干扰能力弱,很难保障实际工程现场作业数据的精准性和较远距离传输的要求。因此工程中采用了平衡差分接收的RS-485协议,使得抗干扰能力和传输距离等性能得到了很大的提升,满足了实际需要。
图1-1 PC与F2812串行通信连接图
图中74LBC184是一RS485模块,其引脚/RE和DE与F2812的一个通用口相连,控制串口数据的输入和输出。
4.PC与多DSP串行传输协议的设计
4.1 数据帧的定义
数据帧是串行通信中数据链路层中所传输数据的最小单位。根据F2812 SCI的结构特点以及实际传输数据效率的需要,定义数据帧每帧为16字节,格式如表1-1所示,。
表1-1 数据帧格式
Abstract: In this paper, we use the Internet of things technology and vehicle LIN bus technology to collect the data from the car battery sensor to the remote server, remote server achieves the remote monitoring and fault diagnosis function of the battery through the data storage and display, to solve the shortcomings that existing car battery diagnosis must be diagnosed in a wired way.
关键词: 物联网;LIN总线;监测
Key words: Internet of things;LIN bus;monitoring
中图分类号:TP315 文献标识码:A 文章编号:1006-4311(2016)31-0092-02
0 引言
随着无线通信技术的逐步发展以及物联网概念的提出,基于GPRS的物联网智能家居,水电气的无线抄表系统,智能交通领域迅速发展起来。但是直接将数据采集系统和GPRS融合到一起,开发出一种智能的关于车辆电池诊断的产品还无定型产品,大部分产品只是和已有的GPRS模块进行对接,实现数据的无线传输。但这种“组装产品”无法控制GPRS模块,给其运行和调试人员带来诸多不便,尤其针对于应用于研发阶段汽车电池匹配的设备并没有,所以说开发出基于物联网的车载电池诊断系统这种混合网络的无线网关势在必行,为汽车电池匹配工作提供了更加便捷的方式。
1 系统的框架设计
本系统主要有汽车电池信号采集系统和远程信号显示诊断系统两部分组成的。本系统的工作原理是利用汽车上的电池传感器(汽车电池的电流、电压传感器和电池温度传感器)采集到的电流、电压和温度信号通过车载LIN收发器和物联网发送到远程服务端,远程服务器端对采集到的信号自动存储数据,并自动生成诊断报告,对汽车电池的性能和工作环境做出判断。系统的硬件框架结构图如图1所示。
2 系统的硬件设计
系统采用STM32开发板作为开发平台,选用LIN收发器TJA1020进行信号处理,同时选用具有GPRS功能和短信功能的SIM300模块来与服务器诊断中心的数据传输。系统的硬件设计包括了电源电路设计、晶振复位电路设计、LIN总线电路设计、通讯电路设计等。
2.1 电源电路和晶振复位电路的设计
电源电路的设计主要考虑的是STM32微控制器需要的电压是3.3V的,而汽车上的蓄电池是12V的,所以电源模块的设计只需要把蓄电池的12V电压转换成5V的电压就可以,为防止意外短路情况的发生,在电源电路的设计过程中加上保险丝保护电路即可。晶振复位电路的设计直接采用STM开发板的电路。电源电路和晶振复位电路组成了系统的最小系统。
2.2 LIN总线电路设计
系统采用的LIN总线TJA1020收发器是一个物理媒体连接, 它是 LIN主机/从机协议控制器和 LIN 传输媒体之间的接口。该收发器可以工作在低功耗模式几乎不消耗电流,减少功率损失。TJA1020收发器把电池传感器采集到的信号输送给MCU,实现了电路信号的收发功能,而且TJA1020收发器具有隔离功能,有效的隔绝干扰信号,系统设计的总线电路图如图2所示。
2.3 通讯电路设计
为把采集到的信号远程输送到服务器端,系统设计了远程通讯电路,该电路采用SIM300模块。SIM300模块有完善的三频/四频GSM/GPRS解决方案。使用工业标准界面,使得具备GSM/GPRS 900/1800/1900MHz三种频率下工作,SIM300以小尺寸和低功耗实现语音、SMS、数据和传真信息的高速传输。
SIM300模块具有正常操作模式、断电模式、最小系统模式和警报模式4种模式。SIM300提供了两个不平衡异步操作的串口。将SIM300模块设计成数据通讯设备,通过信号与微处理器相连连接,支持从1200波特到115200波特的波特率。根据SIM模块的特性和本系统的要求,设计出的通讯电路如图3所示。
2.4 系统硬件抗干扰设计
系统硬件抗干扰设计对于系统的安全稳定的运行有着重要的作用,本文的抗抗干扰设计主要考虑以下两点。
①元器件的布局过程中将数字电路和模拟电路分开,布线时注意线的走向一致,减少回路环的面积。
②电源模块单独布置,以减小电源波动对电路的影响。
3 系统的软件设计
在软件设计的过程采用了模块化、结构化的编程思想,系统的软件部分设计主要包括数据库采集系统的程序、车载LIN总线通讯协议的设计及远程显示诊断系统的设计。
系统把采集到的信号经过MCU的处理,把数据发送到远程服务端,远程服务端先把数据存储起来,并判断数据是否在正常的范围内,如果采集到的数据正常,则在上位机上显示出来,如果数据不在正常的范围内则报警示意,提醒驾驶员更换电池。系统主控单元的流程图如图4所示。
4 实验结果及结论
系统测试采用的是60Ah的蓄电池作为实验对象,利用设计的远程车载电池管理系统实现了对汽车电池电压、电流、温度等信息的监测。一旦某个参数出现问题,系统会报警显示。这对电动汽车电池的维护具有重要的意义,可以快速提醒驾驶员电池的使用状况,对驾驶员提供汽车电池的使用提供技术支持,防止对电池的损害,延长电池的使用寿命和使用效率,节省成本。
参考文献:
[1]董超,李立伟,等.新型电动汽车锂电池管理系统的设计[J].通讯电源技术,2012(29).
[2]曹宝健,谢先宇,等.电动汽车锂电池管理系统故障诊断研究[J].新能源汽车,2012(12).
论文摘要 煤矿胶带输送机控制运行系统种类繁多。采用可靠稳定的控制系统,提高皮带运转效率,在煤矿安全生产中具有重要意义。本文讨论应用plc控制系统来提高皮带运输系统的安全性和可靠性。
1 概述
现在的胶带输送机系统多数采用单片机控制,运行稳定性不高,智能化不强,尤其是综合保护装置稳定性差,各种保护传感器故障发生频繁,而且主机控制模块化,插件易损坏,更换频率高。由于采用模块化设计,小部分模块坏时,企业往往就要更换整个大模块,从而造成资源浪费,加大了煤矿生产成本投入。而采用plc可编程控制程序的综合保护装置,它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。它的主要优点包括:
1.1可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。plc控制系统由于采用现代大规模集成电路技术,内部电路具有先进的抗干扰技术,为使无故障工作时间更长,采用可编程二重容错处理技术。此外,plc控制系统带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除plc以外的电路及设备也获得故障自诊断保护。
1.2配套齐全,功能完善,适用性强
plc发展到今天,可以用于各种规模的工业控制场合。随着plc的不断发展, plc在位置控制、温度控制、cnc等各种工业控制中的技术应用已相当成熟。
1.3易学易用,维护方便
plc作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。plc用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。
1.4经济合算
尽管使用plc首次投资要大些,但它的体积小、所占空间小,辅助设施的投入少;工作可靠,停工损失少;维修简单,维修费少;还可再次使用以及能带来附加价值等等,从中可得更大的回报。
通过以上分析,采用plc控制系统,能大大改善胶带输送机运行稳定差,设备易损害,成本投入高等缺点。它在综合保护装置技术中的应用十分广泛,可行性强。
2 plc控制程序在胶带输送机综合保护装置的应用
胶带输送机综合保护装置主要包括主机、防滑保护、堆煤保护和防跑偏保护、温度保护、烟雾保护和自动洒水装置,以及沿线紧停开关和全巷道语音报警信号等,现就plc可编程控制系统在综合保护装置中的应用做如下介绍:
2.1主机
主机可采用plc多重处理器,并行处理技术,多重抗干扰技术,软件采用模块化设计。使配置应用灵活,便于扩展维护,易于编程,可实时显示工作状态及故障性质,同时选用可靠性高的连接器件,使其布局合理、体积小、重量轻,本安电路经防潮防水处理,避免出现受潮。同时设计启动预告、启动、停止、紧急停车、联锁等功能的开关量输出。包括烟雾保护、温度保护、超温洒水等。
针对胶带输送机的频繁启动,输送带容易出现断带、撕带事故的弊端,设计胶带点动启动系统。同时可设有实验、集控、工作3种操作方式。可根据生产,维修需要任意转换,并可实时监测各种传感器状况及沿线紧停开关信号。
1)在实验操作方式下,可以对任意一种传感器进行实验,并确认是否完好运转正常;
2)在集控操作方式下,可以对某种故障传感器进行解除和投入。因某种传感器突然故障或其他原因等,仍使系统继续运转;
3)在工作操作方式下,可以根据点动启动方式,先让输送带得到缓冲,然后第二次按启动按钮使输送机正常运转,既减轻了胶带撕带接头的缓冲压力,避免了胶带断带撕带现象,有效地遏止了事故的发生。
2.2烟雾传感器
采用专用烟雾集成电路,传感器输出与烟雾信号成正比的电压信号,经电压比较器及数字电路处理输出烟雾超限报警信号。特别适合于矿井防火洒水,起到高温报警的作用。
2.3速度传感器
速度传感器具有发光管和光电接收管,通过接收滚筒上的磁脉冲,通过在标准时间内计数脉冲次数得到轮的转速,从而得到轴转速。实现检测低速打滑、断带和超速保护。稳定性、抗干扰能力强。
2.4防跑偏装置
可由接线箱和传动杆两部分组成,导杆采用高速轴承接触与皮带同步运动,减少了皮带磨损,选用行程开关,传动导臂大于设定时停机。
2.5堆煤传感器
采用万向推杆方式,当皮带煤仓、煤流超限时,煤流推动导杆大于设定角度时,延时0s~4s主机动作,皮带停机。
2.6温度传感器
采用专用温度集成电路和高精度转换器、v/v转换、电压比较器、报警器及输出电路。具有精度高,免校准,工作稳定可靠,设定容易等优点。
2.7急停开关
作为沿线维修及系统异常事故的安全锁定,复位后方可开机。可采用行程开关设计。输送机巷道每个紧停开关用拉绳进行连接,信号接入带式输送机控制开关,实现在输送机巷道内任何一点都能紧急停车的功能。
2.8语音信号器
语音报警信号装置集信号传递、发光显示、通话为一体。通过电压放大器与输送机综合保护装置主机相连接。在全巷道内安设多个该装置,并通过电缆串联连接,从而在全巷道内实现了报警功能。当输送带要启动时,它与胶带综合保护装置主机启动信号同步响起,在全巷道内发出启动预警信号,提醒周围职工远离输送带,确保人员安全。
2.9自动洒水装置
洒水装置应安装在输送机驱动装置两侧,其洒水能够起到对驱动胶带和驱动滚筒同时洒水降温灭火的效果。它与温度保护、烟雾保护装置的作用是当输送带在驱动滚筒上打滑,使输送带与驱动滚筒摩擦,驱动滚筒与输送带的温度升高,热量积聚,产生烟雾时,监测温度信号、烟雾信号,实现自动停机,并自动洒水,把事故消灭在萌芽状态。
3 结论
胶带输送机保护装置中plc可编程程序控制技术的应用,方便实现了整条输送机的逻辑控制,主要技术参数的在线监测,大大提高了文明生产与科学管理的水平,实现其速度、堆煤、跑偏的自动检测与温度、烟雾动作时的自动洒水,可使胶带输送机司机心中有数,这对减员增效,降低工作的维修工作量,提高工人素质,改善其工作环境均有一定的现实意义。
关键词:AT89C51单片机,节水,智能控制
1 引言
目前,水资源的管理和节约成为世界性的难题。在控制人们意识上浪费的同时,各种节水设备也应运而生。目前大多都是着眼于用水节约和效率,却忽视了废水的循环使用。为此,本文基于“绿色设计”的原则,设计了一种基于单片机控制的家庭智能节水系统,最大限度的做到“水尽其用”。
2 智能节水系统设计思路
该设计用MCS-51单片机作为控制电路的核心控制部件来构成控制器,单片机输出不同程序信息,经过移位寄存器74LS164驱动,使得数码管显示相应内容,红外传感器以及混浊度传感器和水位传感器检测到的模拟信号经过8位模数转换器ADC0809转变成数字信号写入单片机,经过单片机处理再把数字信号经过8255A送给电磁阀电路和继电器电路,控制其工作与否。从结构来说该设计包括A/D转换和扩展I/O口。输入部分包括按键设置、水位传感器、浑浊度传感器和红外传感器。输出部分包括LED显示、继电器驱动电路、电磁阀驱动电路和发光二极管。系统设计框图如图1所示:
图1 系统设计框图
3 智能节水系统硬件选择
家庭节水系统通常包括4个主要构成部分,分别是收集器、处理器、储存器和供给器。系统中要用水位传感器和浑浊度传感器及多个电磁阀、继电器等,既有模拟量又有数字量。
3.1单片机的选取
ATMEL公司的89系列单片机也称Flash单片机是以8031为核心构成,它和 INTEL公司的MCS-S1系列单片机完全兼容,扩展了它的功能。89系列单片机存在下列很显著的优点:
(1)内部含Flash存储器;(2)和AT80C51插座兼容;(3)静态时钟方式;
(4)错误编程亦无废品产生;(5)可反复进行系统试验。
鉴于以上的优点,经过分析比较,根据本系统的特点,选用ATMEL公司89系列的标准型单片机AT89C51。其片内含有128字节的数据存储器(RAM)和4K字节的可电擦电写闪烁程序存储器E2PROM,这足以满足系统实现其功能。
3.2模数转换芯片
在众多的转换器中以逐次逼近式A/D转换器的性价比最高,应用最广泛,国内使用较多的芯片有ADC0808/0809,ADC0801-ADCO805及ADC0816/0817和AD574等,根据本系统的特点和要求选用中速、低廉的逐次逼近式ADC0809模数转换芯片。它包括一个高阻抗斩波比较器;一个带有256个电阻分压器的树状开关网络;一个逻辑控制环节和8 位逐次比较寄存器(SAR);一个8位三态输出缓冲器。
该系统中ADC0809与AT89C51单片机的连接如图2所示,采用等待延时方式。论文大全。ADC0809的时钟频率范围要求在10-1280kHz。ADC0809的CLOCK脚的频率是单片机时钟频率的1/6,因此当单片机的时钟频率采用6MHz。ADC0809输入时钟频率即为CLOCK=1MHz,发生启动脉冲后需延时100μs才可读取A/D转换数据。
图2 模数转换电路
3.3 按键的识别和输出显示
常用的键盘有阵列式键盘、独立式键盘。本设计中有4个按键,不必采用阵列式,而采用独立式键盘键接一个上拉电阻与P1口的一个管脚连接。对于按键的识别,有动态扫描和中断两种方式,在该设计中,按键的使用并不是很频繁,所以采用了中断的方式进行按键的识别.
对于输出,有动态并行输出、LCD液晶显示屏和静态译码输出三种方式。水箱中的液位要提供给用户,采用了最简单的八段数码管作为显示部分的硬件电路。该设计中只用到两个数码管显示,不会占用很多硬件资源,所以采用了静态显示。这样在发光二极管导通电流一定的情况下,显示器的亮度大,而且显示稳定。在输出方式上,由于对数码管响应速度不高,采用了串行移位的方式。这里采用74LS164进行显示驱动。
3.4电磁阀与继电器的控制
为使系统安全、稳定,采用了24V电磁阀和12V 继电器。由于电磁阀不能直接与单片机相连,采用了光电隔离,再通过IRF 530进行驱动。继电器的驱动采用的是最简单的方法,即三极管驱动,通过I/O脚电平的翻转来对电磁阀进行开/关控制。论文大全。电磁阀开关动作的控制脉冲宽度可选为30ms。其控制电路如图3所示。
图3 电磁阀控制电路
3.5浑浊度传感器、液位传感器和红外传感器
APMS-10G浑浊度传感器可以根据溶液含有的杂质、灰尘的颗粒大小、密度不同,产生光电经滤波后输出即得到浑浊度检测信号。采用AT89C51单片机与APMS-10G浑浊度传感器通信,读出浑浊度值,再将数据通过串行口传给主机,采用可控三态门74LS125将两路串行通道隔离,通过可控端分时使用,当P17输出高电平时,与APMS-10G的通道导通;当P17引脚低电平时,与主机的通信回路导通。从机串口平时与主机保持通信畅通,将串口设为中断状态,随时可以接收主机发来的指令。
众多的的传感器当中。谐振式水位传感器采用了先进的传感原理,高Q值的谐振电路,具有较强的抗干扰能力、结构灵巧、精密、简单易于制造。该设计中采用了谐振式水位传感器作为中位水箱和低位水箱中的水位检测装置。
红外传感器安装在水龙头内,当人手触发传感器时,信号传递给单片机。对于红外传感器,则利用热释电红外传感器直接接收运动人体的信号,使用574S红外探头。此电路只需要接收系统,不需要发射系统,通过技术处理,可以只接受运动的人体信号,比常规红外光接收器抗干扰性强。论文大全。
4 智能节水系统主程序流程图
系统主程序流程图如图4所示。设计的思路是首先初始化,让所有芯片都恢复最开始的设置,等所有芯片都准备好了之后,则读取E2PROM内的数据,接着进行A/D采样,读取水位传感器和浑浊度传感器采集到的数据,再对数据进行数据处理,若有数据输入,则转入相应的子程序并显示水位的高度;没有数据输入则继续下面的按键判断。有键按下时,判断是哪个按键按下,然后再转入相应的子程序;若无按键按下,则转回A/D采样子程序,重复上述的程序,如此往复进行下去。
5 结束语
提出了家庭智能节水系统控制器的设计方案、硬件电路和主程序流程图。
(1)从人性化、性价比方面综合考虑器件的优略,为该系统的优化提供了基础。
(2)红外感应水龙头、LED显示和延时可调开关不仅方面使用,便于监控,而且方便自如的调节水流时间,达到了节约用水的目的。
(3)结构简单,使用方便,经济节能环保。
参考文献
[1] 张建钢. 模糊控制洗衣机浑浊度检测系统[J]. 湖北工学院学报,2002(1)
[2] 肖景和、赵健 红外线热释电与超声波遥控电路[M],人民邮电出版社,2003
[3] 张 伟. 单片机原理及应用[M],机械工业出版社,2002.1
[4] 戈 民. 一种智能节水机控制系统的设计[J]. 微计算机信息,2007.1