HI,欢迎来到好期刊网!

监控管理论文

时间:2022-07-22 05:43:10

导语:在监控管理论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

监控管理论文

第1篇

在“多面体与旋转体的体积”这一章中,主要内容是柱、锥、台、球四种体积公式的推导,关键是对立体图形分析与理解。为了帮助学生在观察图形的基础上从感性认识向理性认识过渡,我们运用我校的计算机设备,与专职电脑编程人员密切合作,设计编制了图形软件来辅助教学。我们先根据讲解的需要设计出基本图形,再配合编程人员利用计算机先进的绘图系统进行绘制。在绘制过程中,我们利用画面的连续移动构成动画来体现切割、旋转、移动等动态动作。在讲解祖原理时,其主要内容为:两个等高的几何体,若被平行于底的平面截得的两个截面面积相等,则这两个几何体的体积相等。为了体现其中的关键点:两个几何体任意位置的平行截面相等,我们绘制了多幅不同位置截面的图形,并将截面涂上鲜明的色彩,按顺序编排好,连续播放时即形成了截面上下移动的动画效果,使学生形象地认识到不同位置的平行截面处处相等。又如在讲解锥体的体积公式推导时,由于要将三棱柱分割成三个三棱锥,图形变化较大,学生不易理解,因此我们将切割过程从头至尾展现给学生,在讲解时又将所要比较的两个三棱锥逐步恢复到切割前的状态,再分开。随着分开一复原一再分开的移动过程,学生们清楚自然地得出了所要推证的结论,同时也使得教师的讲解轻松而且顺理成章。有了锥的体积公式,我们又进一步依据大锥被平行于底的平面截去一小锥得到台体的思路,利用已推导出的锥体体积公式去推导台体的体积公式。我们利用动画效果使一平面进行移动呈现出动割大锥的过程,即让平面从大锥锥体某处以平行于底的方式插入,从另一侧抽出,留下切割的痕迹,进而将截得的小锥移到其它位置,将剩下的台体展现给学生。这一过程的加入,在学生的头脑中非常深刻地留下了台体与锥体的联系,可以说是过目不忘,收到了很好的效果。

二、充分利用计算机绘图多功能的优越性,从多方位、多角度、多侧面描绘立体图形,解决平面立体图形与真实立体图形在视觉上的差异

我们在平面上绘制立体图形就要考虑到视觉差异的问题。比如,在纸上画一个立方体,它的某些面就必须呈平行四边形,才给人一种“体”的感觉,而实际上立方体的各个面均为正方形。为了不使学生把直观感觉当作概念,我们设计了一些旋转变形动作。在讲球的体积公式时,应用祖原理,找到了一个与半球体积相等的几何体,即与半球等高的圆柱中间挖去一个圆锥,证明的关键是推导出二者在等高处的平行截面面积相等。从图上看,这两个截面分别为椭圆和椭圆环,而实际形状应为圆和圆环。为了更形象地说明问题,我们将这两个截面设计为从原位置水平移动出来,再水平旋转90度使其成为竖直放置,这样两个截面就恢复了实际形状。同时我们又让环形截面中的小圆逐渐缩小至一点,使圆环变成与另一截面大小一样的圆,通过二者色彩的互换闪烁,使学生形象直观地感觉到是两个面积相等的截面,然后通过理论证明它们的面积相等。这样,从直观到理论两方面的配合,加深了学生的理解,使得这个难点顺利解决。

第2篇

关键词:建筑节能;建筑噪声;传热系数;隔声量;围护结构

1前言

众所周知,能源问题是当前世界各国普遍重视的问题。在全世界总的能源消耗中,建筑能耗约占25%~40%。近年来,我国的建筑节能工作已进入全面实施阶段,随着一系列关于建筑节能的国家法规及地方标准的颁布和实施,整个建筑行业从业人员不仅从观念上对建筑节能有了一定的重视,而且在具体工作中取得了一定成果。使建筑节能在理论研究和实践操作上均获得了一定效果。但是,与世界发达国家相比,还有相当大的差距。关于建筑节能,我们尚有许多工作要做。

同时,随着我国的社会和城市建设到了一个飞速发展的时期,人们开始对影响我们工作、生活的一个重要问题——噪声问题投入更大的关注,噪声问题已经成为可持续发展战略中的一个重要环节。从我国目前的整体状况来看,我国的建筑声环境长期以来未能得到应有的重视。而建筑噪声控制工作在整个建筑行业中也处于起步阶段,往往是建筑噪声出现后,进行噪声治理,而对于建筑噪声的防护和控制,虽有一定的理论研究成果和方法。但在实践操作上并不普及。

本文试浅谈在夏热冬冷地区(以湖南地区为例)建筑设计中综合考虑建筑节能与建筑噪声的一些技术手段,借此对建筑节能与建筑噪声控制的实践操作产生积极的现实意义和实用价值。

2从理论上谈谈建筑节能与建筑噪声控制的原理和措施

节能方面,湖南省属于夏热冬冷地区,不论从冬季保温还是夏季隔热方面,建筑能耗构成主要是通过围

护结构(墙、屋顶、楼板、门和窗)的传热及空气渗透。关于围护结构的传热,与围护结构的传热系数(K[W/m2·K])紧密相关,而解决空气渗透在于增强建筑的密闭性,密闭主要是在门窗这一块,门窗要有很好的气密性。噪声控制方面,主要考虑建筑围护结构的隔声,为使所设计建筑达到允许的噪声标准,必须使围护结构具有足够的隔声性能,以防止来自外界的噪声干扰。同时,建筑的密闭性对建筑隔声也有明显的影响,墙体等围护结构上的孔洞(例如门窗缝隙等)会使其隔声性能明显下降。

因此,在建筑围护结构中采用传热系数较低而又可提高围护结构隔声量的材料(例如离心玻璃棉等)或构造,可取得节能和隔声两方面的效果。另一方面,虽然增强窗的气密性与减少围护结构的孔洞、缝隙面积是不同的概念,但是,对建筑密闭性的要求使其在构造上具有某些相近的措施。

其他某些建筑设计相关方面,例如建筑绿化也同样在节能和隔声两方面有着积极的含义和作用。建筑绿化可起改善局部热气候;调节空气湿度;降低城市噪声污染;防止灰尘侵袭等作用。

由此可见,在建筑设计中采取某些综合考虑建筑节能与建筑噪声控制的技术手段从理论上说具有可行性及现实意义。本文综合考虑的途径主要从围护结构的材料和构造方式上着手,并思考建筑绿化的作用。下面从具体细节上讨论。

3可综合考虑节能和隔声的围护结构

可综合考虑节能和隔声的围护结构主要有外墙,外门、窗等,下面谈谈在这些围护结构的构造和材料的选取上具体如何兼顾节能和隔声。

3.1外墙。现阶段湖南地区建筑外墙以240厚粘土空心砖为主,分层增加约20~60厚膨胀聚苯板或聚苯颗粒保温砂浆等材料形成外墙保温构造以满足整个建筑节能设计要求。而砖墙本身面密度大,隔声较好,240厚砖墙双面抹灰的计权隔声量达到54.5dB,完全能满足建筑隔声要求。但建筑外墙有提倡使用加气混凝土砌块的趋势,这种材料虽导热系数较低,约0.2~0.3,可很大程度上降低墙体传热系数。但其隔声性能不如砖墙,200厚加气混凝土墙双面抹灰的计权隔声量为44.5dB,这与其面密度有关(质量定律)。此时,若只采用200或240厚加气混凝土砌块外墙自保温则可能在某些情况下难以达到隔声要求,须采取增加其他材料或设空气层等构造措施来提高隔声量。在设计中应注意此类情况。

3.2门窗

3.2.1外窗

a.窗墙比:不同朝向的窗墙比的大小对能耗有很大影响(由于外窗的传热系数一般来说比外墙小很多,影响护结构的综合传热)。随着窗墙面积比的增大,外窗的传热系数要求更小,以达到相近的节能效果。不同朝向、不同平均窗墙面积比的外窗传热系数见表1。

同样,窗墙比对护结构的综合隔声能力也是有很大影响的。窗户的隔声性能不好,如果窗户的面积不大,隔声性能与窗面积大、隔声性能非常好的窗几乎差不多(见表2)。

由此可见,在适当范围内减小窗墙比可使节能和隔声均更易满足要求。

b.窗体材料:节能方面,湖南地区窗框材料木、塑料、断热铝合金优于钢、铝合金(见表3)。但木、塑料非现代建筑所青睐,断热铝合金由于造价较高,使得铝合金成为应用最为广泛的窗框材料,同时采用复合层玻璃(如中空玻璃窗)等方法提高窗的节能效果。

隔声方面,同济大学声学研究所对于不同的窗框材料的隔声性能做了测试,可从其实测结果得出结论:铝合金窗框与塑钢窗框在1KHz以下,两者隔声量基本接近,但铝合金窗框在中高频隔声性能优于塑钢窗。而关于玻璃,我们知道可以单纯增加玻璃厚度来提高隔声量。但在实际应用中,往往使用复合层玻璃来替代,可以取得窗扇重量大为减轻的优点。在随复合层玻璃的变化,隔声性能的数据对比中,可以得出一个很有实用意义的结果,即在玻璃+空气层+玻璃的复合层中,单层玻璃的厚度宜控制在4~6mm,空气层厚度约在10mm左右。经过对比,若节能设计时的采取相近的中空玻璃参数,可以取得节能和隔声两方面的效果。

c.双层窗:双层窗对节能和隔声都有利,双窗的间距受到建筑物外墙厚度的限制,可供采用的间距一般为10cm左右。实验测量表明,双窗间隔10cm的计权隔声量为33dB。在双窗间隔作吸声处理后,其隔声量达36dB。隔声效果较好,而双层普通玻璃窗的节能效果可见表3,而从造价来说,双层窗的工程造价约为复合玻璃窗的50%。

3.2.2住宅外门及阳台门

湖南地区住宅外门及阳台门在节能设计中可采用多功能户门(具有保温、隔声、防盗等功能)及夹板门等。夹板门一般中间填充玻璃棉或矿棉等作为保温材料,而玻璃棉或矿棉等同时也是吸声材料,节能设计中应用较多的如:双层金属门板,中间填充15mm厚玻璃棉板,可考虑适当增加填充厚度来提高隔声量。而门的密缝处理对于门的隔声也有很大影响,在防止空气渗透上也能起一定作用。

4建筑绿化

建筑绿化在节能上的含义及作用已是众所周知的,而利用绿化减弱噪声,也是常用的噪声控制方法。

4.1节能方面,绿化可以调节温度,尤其是降低夏季温度,树木枝叶形成浓荫可以遮挡太阳辐射和地面、墙面和相邻物的反射热。经过测试,夏季林地及草坪的气温与普通场地气温比较,平均降温值约为2.5~3℃。而西墙外有绿化的房间的室温低于无绿化的房间约3℃,同时在11~16时段内的升温速率有绿化房间也明显优于无绿化房间。不同的建筑绿化布置方法对节能均能起到一定效果。如:临街绿化,楼间绿化,楼旁绿化,建筑本体绿化等。

4.2减噪方面,在噪声源与建筑之间的大片草坪或是种植由高大常绿乔木与灌木组成的足够宽度且浓密的绿化带,是减弱噪声干扰的措施之一。值得注意的是,运用绿化来防止和减少噪声对建筑的干扰时,应考虑到噪声的衰减量随植物配置方式、树种及噪声的频率范围的变化而变化。一般来说,绿化对于低频噪声的隔声能力优于高频;混植林带的隔声能力优于纯植林带;而植物本身的吸声能力,一般以叶面粗糙、面积大、树冠浓密的为强。在建筑绿化布置方法上,临街绿化对减噪的作用较大。在道路边设置1.8~2.4m宽的灌木绿带+6m宽的大乔木绿带,其隔声量可达8~10dB。

湖南地区的植物基本属于常绿植物,以香樟最为常见,香樟属于常绿乔木,一般来说,可形成浓密的树冠及浓荫,在建筑绿化中以香樟与灌木绿带的结合布置较为普遍,设计得当,在节能与减噪方面均能产生效果和作用。

参考文献:

[1]柳孝图.建筑物理.中国建筑工业出版社,2000.

[2]项端祈.实用建筑声学.中国建筑工业出版社,1992.

[3]房志勇.建筑节能技术.中国建材工业出版社,1998.

第3篇

铁路工地拌和站作为铁路工程建设的基础和关键环节,对整个工程建设最终的质量控制和安全保证起到非常重要的作用,如果无法保证混凝土拌和的质量,铁路隧道、桥梁等基础工程的建设质量安全也就无从谈起⑴。随着铁路工程建设的发展,铁路工程建设质量保证和安全性能越来越得到重视,无线传输技术、数据挖掘、数据分析和处理等信息化技术与铁路工程建设有机融合是势在必行。铁路工地混凝土拌和站质量监控及生产管理系统依据铁路工程建设信息化的总体规划和标准化管理办法的规定,铁科院电子所针对工地拌和站现场实际遇到的生产控制和质量监督等相关问题进行系统研发,并组织搭建铁路工地拌和站信息化管理平台,全国铁路工地拌和站生产数据实时上传至该平台,实现数据信息统一管理、生产情况实时把控、质量监督全面推广,对数据进行整合、挖掘、分析处理,实现安全预警、统计查询和图表输出等功能,在确保原始生产数据的严肃性和安全性的同时,为铁路总公司和各级参建单位提供可视化的数据统计分析结果,为铁路工程质量控制和安全保证提供数据支持和技术基础。

2系统架构与功能

2.1系统架构

铁路工地混凝土拌和站质量监控及生产管理系统包括拌和站生产数据采集模块与数据分析处理平台两个部分。前端数据采集完成拌和机生产数据的采集,可在有线或无线网络环境下完成采集数据的实时上传,保证数据的实时性和准确性。数据分析处理平台采用先进的软件架构、工作流开发和数据库技术,完成对拌和站生产数据整合、挖掘、分析和处理,有良好的系统兼容性,可与铁路工程建设应用平台无缝对接,完成上传数据的分类、查询、管理、统计、报警提醒和图表展示,实现生产管理和质量监督功能,系统软件界面友好、操作简便、有效实用、安全可靠。

2.2系统组成

2.2.1前端数据采集模块

铁路工地混凝土拌和站质量监控及生产管理系统的前端数据釆集模块实现拌和机生产数据的实时采集,并根据拌和站现场情况利用有线或无线网络完成数据上传,将采集到的数据进行数据整合和挖掘,提取关键数据,将实时拌和的盘信息等原材料用量等信息关联起来,形成拌和站生产图表完成数据输出,同时在数据分析处理平台上进行图形化展示。前端数据采集终端软件现可支持多种拌和站设备厂家的数据库,具有很强的兼容性,可运行在Windows操作系统的拌和站生产控制主机上,无需启动,自动完成数据匹配、釆集和上传功能,并与既有的拌和站生产系统不产生软件冲突。

2.2.2数据上传模块

根据现场实际应用情况,大多数拌和站地处偏远,连接有线网络成本过高,因此多釆用无线GPRS网络完成数据的实时上传,为此,我们采用无线透传技术来保证数据的安全性和不可篡改性,利用无线透传设备DTU�研发出拌和站生产数据采集终端软件,通过无线透传技术完成数据传输。由生产数据釆集模块釆集到的数据通过GPRS无线网络上传至后端数据分析处理平台。在数据传输过程中采用数据加密方法,保证原始数据的安全性和严肃性。同时,现场检测数据也将上传至铁路总公司的铁路工程建设信息化平台

2.2.3数据分析与处理平台

铁路工地混凝土拌和站质量监控及生产管理系统通过后端的数据分析处理模块实现对拌和站生产数据的整合、挖掘,从而完成拌和时间和原材料用量的动态监测、生产情况和超标情况的查询统计、拌和站产能分析[3]、原材料误差分析、数据图表展示和安全预警等基本功能。该模块为整个系统的关键组成部分,起到将拌和站生产数据充分利用转换为可视化、信息化的输出结果的重要任务。通过将数据与拌和站生产管理业务需求相结合,还可实现原材料进场管理、成本核算、人员管理、拌和车辆管理等扩展功能,全方位的铁路工地拌和站的业务流程信息化、标准化,发挥信息化技术优势,保证混凝土拌和质量。

2.3系统功能

铁路工程对混凝土质量要求严格,其质量关系到工程建设的各个方面,是工程建设质量保证的基础。因此,对拌和站生产过程的监测尤为重要,是保证施工质量和安全重要手段。铁路工地混凝土拌和站质量监控及生产管理系统的应用满足业务需求,系统利用无线传输和数据釆集、分析处理等信息化手段,为混凝土拌和生产过程的监测提供数据依据和支持。该系统具有如下功能:

2.3.1数据采集

系统前端数据采集模块利用安装在拌和机管理主机上的釆集终端软件,对不同厂家拌和机数据库进行读取,实现对拌和机生产数据的采集。采集终端软件可实现拌和机厂家、数据源、釆集时间间隔、目标主机和拌和站所在线路(包括:线路、标段、工区、站名和拌和机编号)的选择。该终端软件支持开机自动启动、自动保存和断点续传等功能,可兼容30多家拌和机生产厂家的拌和机数据库,软件运行与拌和机生产环节无冲突,应用效果良好。

2.3.2数据上传

前端数据釆集终端软件获得的数据通过无线透传模块DTU上传至后端数据分析处理平台。DTU模块内置无线上网卡,通过无线网络对釆集到的数据进行实时传输,并实现数据的断网续传,整个传输过程通过密钥进行加密,确保数据的严肃性、安全性和实时性。

2.3.3动态监测

实现对拌和时间、拌和材料用量的监测,通过柱状图和折线图更直观、更形象的展示拌和时间和材料用量的走势,当监测麵纖规定阈值时启动短信报警功能,独碰雜差信息,便于统计分析和比较。

2.3.4统计查询分析

统计分析包括产能分析、拌和时间查询、拌和材料查询、材料误差分析功能,分别通过产能分析图、拌和时间走势图、材料用量走势图、材料误差走势图与相关记录结合展示。

2.3.5权限管理

支持对铁路总公司、建设单位、监理单位、施工单位等参建单位的不同职责进行权限的分配;支持功能权限和数据权限的赋权管理,实现不同资源控制的组和式访问控制与授权管理。

2.3.6数据图表展示

依照国家、行业等标准规范,对动态监测的拌和时间、拌和材料用量、产能分析和材料误差分析等进行图表的输出展示,包括柱状图、饼状图和数据曲线图等形式。

2.3.7原材料进场管理

系统可实现原材料进场管理扩展功能,对混凝土拌和所需原材料如水泥、粗骨料、细骨料、粉煤灰、外加剂的产地、生产厂家、重量、规格、级别、进场时间、质量情况、抽检复试情况等进行管理,从混凝土生产源头严抓质量,保证安全。

2.3.8成本核算

系统通过对铁路工地拌和站生产环节的过程控制,结合原材料的进场和使用情况,实现拌和站成本核算功能,作为拌和站信息化管理的扩展功能,具有非常现实的意义[4]。成本核算包括拌和站生产过程基本信息的管理;各种原材料和辅助材料(如动力能源材料)的统计和明细;生产设备、生产用车、设备配件、低值易耗品和设备外修的统计和明细,结合拌和站生产业务相关标准,实现对拌和站生产成本的核算功能。

2.3.9安全预譬

铁路工地混凝土拌和站质量监控及生产管理系统的后端数据处理平台还具有安全预警功能,釆用分级报警模式,针对原材料用量的超标,将线路名称、标段名称、拌和站名称、盘信息和预警日期等内容以手机短信的形式通知相关人员[5]。采集到的拌和站生产数据经过系统的分析统计,对于拌和时间、原材料用量、产能分析和原材料用料误差等内容,会同相关技术人员进行专业技术分析,对于超标值特别大的异常数据,还将进行远程专家会审,通过专家鉴定得出结论,釆取进一步的现场控制和施工安全问题的处理。

2.4系统创新点

(1)釆用先进的软件架构和工作流开发技术

铁路工地混凝土拌和站质量监控及生产管理系统基于SOA服务模式,采用插件组件开发、云计算、大数据分析等先进技术,符合铁路工程建设信息化整体框架要求,能与铁路工程建设数据和应用平台无缝对接和上传数据;采用监控组态开发技术,面向对象的动态图形开发技术,实时和历史数据的记录和趋势图形化展现技术,高性能的I/O设备驱动接口开发技术。各功能模块子系统可灵活组合,满足不同铁路工程建设的各种应用需求。

(2)实现质量监控和生产管理集成一体化

铁路工地混凝土拌和站质量监控及生产管理系统实现针对铁路总公司、建设单位、监理单位等质量监控功能以外,还开发针对施工单位拌和站混凝土生产的管理功能,包括原材料进场管理、生产调度管理、成本核算、施工日志管理、人员管理以及搅拌车的车辆管理等功能,实现拌和站质量监控和生产管理集成一体化。

(3)实现拌和站数据管理手段多样化

铁路工地混凝土拌和站质量监控及生产管理系统的质量监控数据采集釆用拌和机数据库读取和原材料仪表传感器釆集等信息釆集方式’方式灵活、真实可靠[6]。

(4)建立拌和站数据信息处理和交互统一平台

建立拌和站统一信息处理与交互平台,实现数据信息统一管理、生产情况实时把控、质量监督全面推广,并可完成拌和站及试验室的信息共享和数据交互,平台兼容性和可靠性强,可与铁路工程建设数据和应用平台无缝对接和上传数据。

3质量监控系统应用

铁路工地混凝土拌和站质量监控及生产管理系统由铁科院电子所于2010年研发,分为前端监测数据釆集终端模块和后端拌和站生产数据分析处理与预警模块。系统釆用无线透传、数据加密、数据挖掘等信息化技术手段,实现拌和站生产数据的自动釆集和实时上传;釆集数据的整合、挖掘、分析与处理;海量数据的统计查询、报表展示、安全预警等功能,同时可接入铁路工程建设信息平台,通过试点应用得到用户大量反馈信息,经过多次改版升级。本系统已在东北、华北、华东片区大量投入使用。其中,前端用于釆集拌和站生产数据的终端软件采用无线透传技术和数据库技术,可兼容主流品牌的30多种拌和机,并不与拌和机生产过程冲突。

4结束语

第4篇

1.1煤矿安全监控系统组成结构和工作原理分析

(1)利用传感器信息装置将检测到的物理量转化为电信号,电信号可以依据运行情况对其进行诊断,当出现问题时会及时的对其进行预报且显示问题所在原因。

(2)电信号必须通过显示设备将其作业状况完整的显示出来,然后转化为可控的传输信号,对其实时掌握。

(3)通过预先设置好的接收方式对信号进行接收,通常情况下,采取分站接收然后复用信息将其传输在主站上加以显示。对于分站来讲,它必须将接收到的信息加以整合、分类,对简单数据进行校验,防止不准确信息被利用,这样不仅仅会造成一定损失,且会增加发生事故的概率,所以在进行传输主站前,必须对信息进行准确的掌握。

(4)电源箱是确保煤矿安全监控系统正常运行的主要交流电源,它能确保在临时停电的基础上让煤矿安全监控系统可以有效的运行,维持正常的基本用电量且供电量大于二小时的蓄电量。

(5)主站在接收信号的同时,要对其信号进行及时的处理。传输接口在确保接收信号后,要再次将主站整理好的信息传输至相应分站。从某种角度上而言,传输接收器具备了分站与总站相互传输信号及自动检验、调节等功能,所以使用过程中不容忽视。

(6)主体正常运行的前提下,要利用计算机对其进行掌控,主机的主要作用是联网、控制输出打印、控制输出、人机的对话、声光的报警、显示、磁盘的存储、统计数据、判别报警、校正、接收检测的信号等。

1.2煤矿安全监控系统的作用

第一,通风及瓦斯监控,也就是监测局部的通风机停开(特别重要)、风筒的状态、风门的状态、馈电的状态、风压、风速以及甲烷的浓度等。一旦局部的通风机掘进巷道出现停风状况或出现停止运行现象时或瓦斯出现超限时,相应的煤矿其安全监控的系统就会自动切断各自区域电源,同时闭锁与报警,这一措施可以达到以下目的:

(1)规避与降低了因电气设备违章作业或失爆、或电气设备出现故障的危险温度或电火花导致瓦斯爆炸的发生率;

(2)规避与降低了运、掘、采等设备在运行状态下因危险温度或摩擦碰撞出火花而导致的瓦斯爆炸的发生率;

(3)可以起到提醒作用,督促生产的调度员、领导及时把工作人员安置到安全位置;

(4)督促生产的调度员、领导及时处理好事故的安全隐患,提前预防瓦斯爆炸事故的发生。

第二,瓦斯抽放系统的监控。

(1)监测抽放管路里阀门开度、温度、压力、流量、甲烷的浓度以及一氧化碳浓度等各管道的参数;

(2)对瓦斯抽放泵站室里甲烷的浓度以及井下临时的抽放瓦斯泵站其下风侧的栅栏外的甲烷浓度环境参数进行监测;

(3)对抽放泵轴温、抽放泵的真空度以及电机温度等进行监测;

(4)监测冷却水池的水位、水温以及水压与水量等供水的参数;

(5)监测功率因素、电压、电流等供电的参数;

(6)对供气管道其供气阀的开度、流量、甲烷的浓度、温度、正压等供气的参数进行监测;

(7)监测密封的水温、密封的水位、罐内其甲烷的浓度、罐压和罐高等储气罐的参数;

(8)对瓦斯抽放供水、阀门、泵等状态进行监测;

(9)对瓦斯抽放纯瓦斯量和混合量进行监测;

(10)对瓦斯抽放阀门与泵进行控制。第三,煤矿安全监控系统可以有效的对火灾进行实时监控,了解火灾发生的原因及火灾过程中烟雾、二氧化碳的浓度及温差变化,这样就能有效的控制火情,降低风险的蔓延、扩大。第四,监控系统可以有效的对瓦斯做出预警报警信息,从而将瓦斯所处的地质信息进行分析,进一步提高防治风险发生的预警能力。第五,针对往期事故的发生要对其进行调研,依据事故发生原因进行经验总结,这样不仅仅能够为其提供参考依据,更能为日后同类事故的发生提供预防预警的作用,所以针对每次煤矿事故的发生都要进行系统检测。

第5篇

兰斯登打开办公室的一扇窗户,轻柔的风拂过面颊,他努力让自己的心情趋于平静。作为人力资源部主管,在经济不景气的情况下由自己亲自来辞退员工,这的确是一件糟糕的事情。但是,经营状况又迫使公司的管理层极为艰难地做出这个决定。“迈克,感谢你这些年来为公司所做的一切,但是,你知道,目前的情况……我不得不告诉你,你被辞退了。你下午会收拾好你的东西吗?”兰斯登在心里默默重复了一遍这样的话。之后,他松了松领带,打电话给秘书:“鲍尔森,请按照名单上的名字,逐一叫他们到我的办公室来吧。”

随着经济的衰退,在很难预测经济复苏的低迷状态中,有更多的企业偏离了以往正常的发展状态。客户的减少、利润的降低,迫使许多企业不得不进行裁员。即使是企业中那些没有被裁掉的员工,他们也感到身心疲惫,因此也不免渐生抱怨。裁员已经成为了经济危机下企业所采取的再正常不过的措施,但即便如此,对很多公司来说,由于业务量大大降低,员工们还是拥有了太多的剩余时间。虽然对企业来说,保持信心非常重要,但信心也来源于企业自身的行动和努力。企业应该充分利用经济衰退时期给企业留下的空余时间,做好企业管理,以便在经济复苏时,企业能够处于有利的地位。

1未雨绸缪

以公司降低成本而言——我们现在看看众多的公司,它们很多都是在通过削减成本的方式试图走出低迷。当然,是经济不景气使得公司不得不消除任何不必要的开支。WholeFoodsMarket公司CEO约翰·麦基就深有体会地说:“我们必须以不同的方式管理企业。过去,公司一直把经济增长当作一种助力,融入自己的商业计划。如今,‘新的时代’要求转换思维,我们必须更加节俭,认真考虑各种开销和各种资本投资,因为经济增长已经无法再为我们提供援助。”重要的是,经济的不景气让企业的盈利更为艰难,详细了解企业目前的运营状况,分析客户和市场,对竞争对手的策略、产品、市场占有情况进行系统研究,做好一切详细而有针对性的计划,以待在合适的时机变为现实,从这个角度上说,经济衰退,未尝不给企业提供了这样的机会。

企业可能在所处的行业中经历了痛苦的衰退,为了使企业能够生存,企业需要做出痛苦的选择并采取一系列的行动。对企业的经营者来说,也许已经看到衰退触底,甚至已经看到了经济复苏的迹象。不过,切不要等到经济明显复苏之后再采取行动,因为这样会被竞争对手赶超。当经济再次恢复到正常状态的时候,企业会遇到各种问题。而现在则是把这些潜在问题集中起来进行解决的最佳时机。在经济复苏之前,企业应该做好一个详尽的计划,以便在经济复苏之后,远远走在竞争对手的前面。

2发现新价值

日本的丰田公司在这次经济危机中也有着同样的遭遇。以天津一汽丰田的西青工厂来说,由于天津一汽丰田采用的是订单生产,在经济危机的影响下,随着订单的减少,工人们有了更多自由的时间。天津一汽丰田的管理者就利用这个时间对员工进行培训,开展5s活动,进行成果评比。

到任何时候,员工都是企业宝贵的财富。所以在经济衰退中,对于裁员,企业应该慎之又慎。在经济衰退中,对于企业员工的管理,企业应该有足够的灵活性。在这段低迷的经济时期,企业应该对员工进行智力投资。这样做,会增强员工对企业的价值认同感以及提高自身的能力。

现在,当所有的员工不再如以往一样繁忙的时候,可以利用这个时间教给他们如何把自己的工作做得更好。这也让更多的员工有了培训的机会,他们因此会有能力来适应工作繁忙时候的工作。这也缓解了那些感觉工作压力太大的员工的压力。

在经济衰退时期,企业的账户上可能并没有足够的现金用于新产品的研发,但现在企业有了更多的时间来获得好的创意。员工们由于平时过于忙碌,几乎不会去思考如何有新的创意。那么现在就找到办法,鼓励员工的创造性思维并捕捉到那些好的创意。认真倾听客户的反馈,看看客户的需求发生了怎样的变化,注重客户的反馈并找出使这些新的需求成为可能的方法。企业甚至可以举行竞赛,奖励那些有良好想法和创意的员工。

3集中精神的方法

对于企业的经营者来说,重要的工作是领导。在这个特殊的困难时期,更要管理好企业,恰当地好处理一系列事情,尤其是要让自己的管理团队集中精神。经济前景的不明朗会让很多雇员分心,他们会在这个时期产生担心甚至恐惧的心理。在经济繁荣时期,大部分员工都被认为是优秀的,但是经济出现衰退之后,迫于经济增长乏力,企业不得不忍痛裁掉部分员工,这未免会增加员工的悲观情绪。所以,在谨慎之余,企业的管理者要在这个时期帮助员工把注意力放在重要的事情上面,提升他们的士气,给他们以积极的鼓励。

第6篇

关键词室内空气品质新风预处理判据适用性

1前言

为改善室内空气品质,美国国家标准研究院(ANSI)标准委员会和ASHRAE颁布了《ASHRE标准62-1989》,提出了一系列改进措施。其中对空调系统设计影响最大的两点是:1.将设计新风量增大到原来的2倍~4倍;2.建筑物相对湿度保持在30%~60%[1]。随后的《ASHRE标准62-1989R》进一步提出了同时考虑人员和建筑物污染的最小新风量计算方法[2]。我国有关部门也正在对国家标准GBJ19-87"采暖、通风空气调节设计规范"进行修改(简称国标修改稿),其中明确包括增大最小新风量一项,其结果将增大空调系统的设计冷负荷和湿负荷。为使原有空调系统满足国标的新要求,大量建筑必须进行改造,笔者曾针对如何以经济有效的方式对原有建筑中的传统空调设备进行最少的改建,从而改善室内空气品质,满足新标准的要求问题,提出了热回收式、蒸发冷却和除湿式新风预处理系统[5]。商业建筑的特点是室内人员较多,热湿比较少,机器露点低,为满足室内温湿度要求(尤其是湿度),国外及国内高档商业建筑多采用一次回风再热式空调系统。本文主要介绍为满足增大最小新风量的要求,对高档商业建筑中的一次回风再热式空调系统。本文主要介绍为满足增大最小新风量的要求,对高档商业建筑中的一次回风再热式空调系统。本文主要介绍为满足增大最小新风量的要求,对高档商业建筑中的一次回风再热式空调系统,采用新风预处理系统对其进行改建的技术措施在全国主要城市的不同室外气象条件下的适用情况。

2新风预处理系统的适用性判据

由于国标修改稿没有明确对相对湿度作出修改,所以室内设计相对湿度、设计温度仍取原标准值,新风量增大为原来的两倍,来确定各种新风预处理系统适用性的判据。

2.1热回收式新风预处理系统的适用性判据

对于夏季工况,若设定室内空调设计状态N,通过N点的等温线和等焓线可以把工程所在地的室外气象包络线范围分隔为Ⅰ、Ⅱ、Ⅲ和Ⅳ四个气象区,如图1。第Ⅰ区室外空气温度和焓值都低于室内设计值,显然不适合用热回收;第Ⅱ区室外空气温度高于室内设计值,焓值低于室内设计值,显然只适合用显热回收;第Ⅲ区室外空气温度和焓值都高于室内设计值,适合用全热回收;第Ⅳ室外空气温度低于室内设计值,焓值高于室内设计值,适合用热回收。

一次回风再热式空调系统在焓湿图上的处理过程如图2所示。实线表示的为原系统的空气处理过程,W、N、C、L、O分别为室外空气状态点,室内空气状态点,在原新风量的新、回风混合点,机器露点和送风状态点;如附设热回收式新风预处理系统,则虚线表示为按国标修改稿规定的新风量设计的一次回风再热式系统空气处理过程,W1,C1分别为室外空气经热回收后的状态点,在国标修改稿规定的新风量下的新、回风混合点。为使原空调系统仍能满足要求,即新系统所需的冷量小于等于原系统能提供的冷量,则应使新风热回收后与回风的混合点C1的焓值小于等于原系统C的焓值,即:ic1≤ic。

由上述条件可得热加收式新风预处理系统的适用性判据为:

显热回收式:

全热回收式:

2.2蒸发冷却新风预处理系统适用性判据

对于夏季工况,若设定室内空调设计状态N,通过N点的等含湿量线等湿球温度线可以把工程所在地的室外气象包络线范围分隔为Ⅰ、Ⅱ、Ⅲ和Ⅳ四个气象区,如图3。第Ⅰ区室温外空气湿球温度和含湿量都低于室内设计值,这表明直接蒸发冷却和间接蒸发冷却都可以使用,甚至可以不用机械制冷,而直接处理到送风状态点;第Ⅱ区室温外空气湿球温度高于室内设计值,含湿量低于室内设计值,显然只适合用间接蒸发冷却;第Ⅲ区室温外空气湿球温度和含湿量都高于室内设计值,适合用间接蒸发冷却对新风进行预处理;第Ⅳ区室温外空气湿球温度低于室内设计值,含湿量高于室内设计值,不适合用蒸发冷却技术。对于区Ⅰ、Ⅱ可用直接蒸发或间接蒸发直接供冷的技术国内外已有大量研究,这里仅讨论在Ⅲ区应用间接蒸发冷却对新风进行预处理的技术适用性。

图3蒸发冷却式新风预处理系统的气象范围

图4附设间接蒸发冷却新风预处理的一次回风再热式系统

附设蒸发冷却式新风预处理的空调系统工程焓湿图上的表示如图4。与热回收式新风预处理系统相同,为保证原空调系统仍能满足要求的条件为:ic1≤ic

则在Ⅲ区间接蒸发冷却式新风预处理系统的适用性判据为:

2.3除湿式新风预处理系统的适用性判据

对于夏季工况,若设定室内空调设计状态N,通过N点的等含湿量线可以把工程所在地的室外气象包络线范围分隔为Ⅰ、Ⅱ两个气象区,如图5。第Ⅰ区室外空气含湿量低于室内设计值,这表明该区域不仅不需要除湿反而要加湿;第Ⅱ区空气含湿量高于室内设计值,显然可以采用除湿技术。

图5除湿式新风预处理系统的气象范围

图6附设新风与回风混合预冷除湿热回收(蒸发冷却)式预处理的一次回风再热式系统

为使除湿机在高效率下运行,通常先将新风预冷,再除湿;为充分利用排风冷量,常将除湿以后的高温干空气通过热回收或蒸发冷却设备,进行降温;根据除湿量的大小,可采用仅对新风除湿和对新风与部分中全部回风的混合风除湿的方式。这里新风与回风混合预冷除湿热回收(蒸发冷却)式为例,介绍其适用性判据的确定方法。室外空气状态点W与N按国标修改稿规定的新风量混合至C4,预冷至C3,然后全部除湿至C2(或部分除湿)再与未除湿的混合风混合至C1,通过热加收或蒸发冷却至C11,最后由原空调系统冷却至送风状态点O。为使原空调系统仍能满足要求,即新系统所需的冷量不于等于原系统能提供的冷量,则应使混合风的预冷量与由C11冷却至O点所需冷量之和小于等于原系统的冷量,即:

全部除湿:

部分除湿:

则除湿式新风预处理系统的适用性判据为:

全部除湿:

部分除湿:

其他几种附设除湿式新风预处理的空调系统在焓湿图上的表示及适用性分析的判据见表1。由于除湿热回收式与除湿蒸发冷却式的示意图相似,判据相同,故放在一起讨论,但由于热回收与蒸发冷却设备的效率不同,所以得到的C11点参数实际是不同的。

除湿式新风预处理系统的适用性判据表1

原空调系统(实线)及附设新风预处理的空调系统(虚线)在i-d图上的表示

适用性分析的判据

附设新风预冷除湿热回收(蒸发冷却)式新风预处理系统

附设新风与回风混合除湿热回收(蒸发冷却)式预处理系统

全部除湿:

部分除湿:

附设新风与回风混合预冷除湿热回收(蒸发冷却)式预处理系统

全部除湿:

部分除湿:

3新风预处理系统适用范围

根据上述分析及具体判断条件,应用C语言进行编程计算,将全国主要城市的空调室外设计气象参数,原有空调建筑物的室内设计温湿度,新风比,热湿比,采用的热回收装置的热回收效率,国标修改稿规定的新风比,室内设计温湿度作为输入文件,通过空气状态参数计算公式,编写计算程序OAPS(OutdoorAirPreconditioningSystem),可以用于判断全国主要城市不同条件下原一次回风再热式空调系统中,各种机关预处理系统的适用范围。

下面以对上海市某一次回风再热式空调系统(按旧标准设计)的改造为例,说明新风预处理系统的应用。室内设计条件为:原系统(旧标准):tN=26℃,φN=65%,新风比:15%;新系统(GBJ19-87国标修改稿):tN=26℃,φN=65%,新风比:30%;室外设计条件为:tW=34℃,tWS=28.2℃;送风量为2000m3/h;室内热湿比ε=6100,要求的送风状态:原系统:tO=34℃,dO=12.3g/kg;新系统与原系统一样,转轮式全热交换器的效率为:ηZ=70%;间接蒸发冷却器的热交换效率为:E1=70%,以排风为二次风。对不更换原有空调系统的冷源、末端装置,仅附设上述新风预处理系统进行改建的方法在全国范围的技术适用性作一分析计算。

计算结果见表2。其中"·"表示适用;"-"表示不适用。表中只列出适用城市的新风预处理系统形式。

新风预处理系统的技术适用范围表2

城市名称热回收式蒸发冷却式除湿式

新风预冷除湿热回收混合预冷除湿热回收

(蒸发冷却)混合预冷除湿热回收新风预冷除湿热蒸发冷却混合预冷除湿蒸发冷却

北京·-··-··

天津·-··-··

石家庄····-··

太原····-··

呼和浩特·------

沈阳····-··

长春····-··

哈尔滨·······

上海··-·-·-

南京··-·-·-

杭州··-·-·-

合肥··-·-·-

福州·--·-·-

南昌·--·-·-

济南·-··-··

郑州·-··-·-

武汉··-·-·-

长沙·--·-·-

广州·--·-·-

南宁····-·-

成都····-·-

重庆·-··-·-

贵阳····-·-

昆明-·-----

拉萨-·-----

西安····-··

兰州··-----

西宁-·-----

银川··-----

乌鲁木齐··-----

台北····-··

香港····-·-

4结论

(1)针对GBJ19-87国标修改稿的要求,对原有高档商业建筑中常用的一次回风再热式空调系统的改建问题,确定了各种新风预处理系统的技术适用性判据。

(2)几种新风预处理系统的适用范围基本可以覆盖全国各直辖市和省会城市,即任何一个城市中的原一次回风再热式空调系统都至少可以采用一种新风预处理系统进行改造。

(3)热回收式、蒸发冷却式和除湿式中的新负预冷除湿蒸发冷却式、混合除湿热回收式(蒸发冷却)新风预处理系统的适宜和范围最广;新风预冷除湿热回收式和混合预冷除湿蒸发冷却式新风预处理系统的适用范围较小;混合预冷除湿热回收式新风预处理系统只适用于一个城市。

(4)如GBJ19-87国标修改稿正式颁布,全国各地将有大量建筑的空调系统要改建,新风预处理系统是一种很的解决方法,本文提出的适用性判据将有助于业主和设计方的选择与决策。

参考文献

1ANSI/ASHRAEStandard62~1989.Ventilationforacceptableindoorairquality.Atlanta,GA:ASHRAEInc.

2ASHRAEPublicReviewDraft62~1989R.Ventilationforacceptableindoorairquality.

3ANSI/ASHRAEStandard62~1989.Ventilationforacceptableindoorairquality.Atlanta,GA:ASHRAEInc.

第7篇

隧道施工与传统建筑有着较大区别,具有一定的特殊性,隧道施工中安全事故具有危险性大、突发性强、容易发生伤亡事故等特点,是事故多发的行业。造隧道施工安全事故的原因有很多如:施工条件恶劣,施工过程中有较多手工劳动和繁重体力劳动。高强度的体力劳动下,身体易疲劳,精神也无法长时间集中,施工人员在这种情况下进行作业,很有可能引起安全事故的发生。并且隧道施工中涉及到大型机械设备的使用,如不按照相关操作流程进行操作,极易导致安全事故的发生,并且人工隧道易对周边地质造成破坏,因此施工中也可能出现塌方、落石、蹦塌等现象,十分危险。另一方面,隧道施工现场如设备管理不当也会引发安全事故。因为隧道施工中需要的用电设备较多,布置又比较分散凌乱,并移动频繁,很多机械设备均为导体,如管理不当易发生触电事故,危及施工人员人身安全。隧道施工中处处存在隐患和危险,避免安全事故的发生,安全管理至关重要,只有保障安全管理的有效性,才能将安全管理工作落到实处,为隧道施工创造有利条件。隧道施工安全管理是规避安全事故发生的重要手段,但传统隧道施工安全管理监控手段过于落后,监控效果并不理想,安全事故发生时不能及时发现,无法有效发挥隧道施工安全管理职能。信息化监控技术利用传感器采集数据信息,利用视频监控系统实时掌握施工现场情况,并进行全天候监控,监控过程更加直观,实现了施工安全管理的智能化、科学化、信息化。从整体上提高了施工安全管理效率和有效性,加强信息化监控技术应用意义重大。

二、信息化监控技术在隧道施工安全管理中的运用

(一)隧道施工人员定位系统

隧道施工人员安全定位系统是利用物联网技术,监测和监控施工人员具置,确保施工人员人身安全,隧道施工人员定位系统能够实时、精准的掌握各区域施工人员的情况,并将其反馈到监控中心。安全管理工作中人员就可以随时了解到施工人员的分布及走动情况,以便于利用远程技术对施工人员进行有效的管理和指示,另外,定位系统还能起到考勤的作用,能够直观反映到岗情况。在发生安全问题时,监控中心就可以根据定位系统所提供的员工分布,对施工人员采取救援,并指挥员工采取相应措施,提供救援效率。隧道施工人员定位系统需要应用到无线传输网络、定位软件、感应芯片、读卡器等等。隧道施工安全管理对施工人员定位必不可少。

(二)有害气体监控系统

由于隧道施工不同于建筑施工,多在封闭狭小昏暗的空间中,空间内的空气质量直接影响着施工人员安全,由于隧道施工过程周边地质结构将受到破坏,所以在施工中,难免会产生有害气体,这些有害气体一旦积聚到一定浓度,很有可能会导致施工人员中毒、窒息,甚至引起爆炸。另一方面,除了自然生产的有害气体外,施工中所使用的机械设备在运作时,同样会排放多种有害气体,威胁施工人员身体健康。由于隧道施工空间的封闭特点,这些气体十分容易积聚,为了保障施工现场安全,监测施工现场有害气体至关重要。信息化监控技术下的有害气体探测器,实现了实时空气信息采集,根据施工现场实际情况对现场有害气体浓度和含量做出分析,并反馈到监控中心,如有害气体达到危险标准,便立即发出警报,监控中心便可根据监测到的数据,采取相应措施,指导施工人员的撤离和疏散。

(三)语音双对讲系统

语音双对讲系统是信息化监控技术下安全管理的常用工具,能够保障安全管理人员能够实时与现场保持联系。双语音对讲系统通过无线或有线通信手段连接监控中心,保障通话的畅通。安全监控管理人员可通过语音对讲系统远程或通知施工流程安全,如发生紧急情况,可辅助指导施工人员的快速疏散,保障施工人员疏散的秩序,是隧道监控施工安全管理的主要手段之一。

三、结束语

第8篇

教育管理所面的是复杂多变的世界,随时随地会有很多毕业论文不确定的因素干扰管理工作的正常开展,使管理工作出现偏差,从而影响计划的执行、组织的运转及目标的实现,所以,必须对教育管理活动进行积极的防御、实施有效的控制,以保证管理决策、目标计划的实现,保证组织持续稳定的发展,捍卫组织成员的共同利益。

一、制定控制标准中的伦理性要求

控制职能的目的是保证教育管理活动符合计划的要求,以有效地实现预定的目标。制定控制标准时应围绕计划所制定的目标进行,牢牢把握住目标这根绳索;对于控制对象的选择要有所权衡、分清轻重缓急,讲求控制效益;给控制过程中的人以尊重关心,突出伦理精神。

(一)控制对象的选定:要重点突出、实属所需

组织及其成员的工作复杂多样,决定了在控制的对象选择时,要重点突出,而不是面面俱到。

1.以目标为导向:关乎组织目标的实现

目标是控制的前提和基础,目标决定着控制的内容,控制工作是为实现目标服务的。教育管理者,只有事先明确自己管理的对象目标是什么?达到什么要求?时刻记住,目标是进行控制的准绳,这样才能有的放矢地进行控制。心中无目标,胸中无数,就无法进行教育管理的控制工作。控制要紧紧围绕着目标进行,任何偏离目标的控制都是无意义的、盲目的。

2.控制对象的伦理内涵:选择时有所侧重

在教育管理中为了保证计划的落实、目标的实现,对教育管理活动进行控制是必须的。确保目标的实现,必须在目标最终实现以前进行控制,纠正与预期成果要求不相符的活动。因此要在实行控制之前分析影响目标实现的各种因素,并把它们列为控制的对象。但是,管理者同时又应该知晓,教育管理活动是一个复杂的系统,能够对教育管理活动开展造成影响的因素是千头万绪:有来自内部人、财、物的;还有来自组织外部的。所有这些因素交织在一起,如果教育管理去对它们进行一一梳理,恐怕会越来越乱。而“在计划实施过程中并不是所有的步骤都要进行控制,而是选择一些关键点作为控制点,以控制点来控制全局,一般来说,控制关键点是计划实施过程中起决定性作用的点,或者容易出现偏差的点,起转折作用的点,变化大而又不容易掌握的点,有示范作用的点。所以选择控制关键点的过程是快捷、准确实施控制的有效过程。”教育管理者,应该有战略家的眼光,哲学家的头脑,善于分析哪些是影响目标实现的关键因素,从而抓住主要矛盾,其他的问题则会迎刃而解。这样组织的发展才能有所保证,而不会乱成一锅粥,失去方寸,组织的利益与成员的需要才能得到满足,组织与社会之间的关系也才会走上良性发展的轨道,组织应该履行的社会责任才得以真正地落实。

(二)控制标准设定时应突出伦理倾向

制定控制的标准是为了保障控制的实施、教育管理目标的实现,所以它不能唯控制是从,在此过程中应时时注意其伦理倾向,关注组织的发展和关心组织成员的利益、情感、需要等,避免给组织和组织成员带来不必要的伤害。

1.控制的目的是为了实现合道德性目标

教育管理活动的目的是为了实现计划所设定的目标,目标是教育管理努力的方向和归宿。所以教育管理活动中的每一个职能活动的展开,都要以目标的实现为方向,制定一切具体的职能措施都要以目标为准绳,始终不离“目标”这个中心。控制是教育管理活动的职能之一,它同样要以目标的实现为目的,这是控制活动应坚持的方向。发展是教育管理活动的硬道理。教育管理活动是一个动态发展的过程,从计划到组织再到控制这一系列职能活动的开展,使它始终处于一个动态的发展过程中、螺旋式上升、循环往复,组织吐故纳新,向高层次发展;同时管理者还应该清楚,教育管理活动的目标是有层次性和阶段性的,一个目标实现,不代表着教育管理活动的终结,它还有新的目标和更高的目标。这样组织才得到了生生不息的发展、更新,经历着新陈代谢的过程,具有了生命力。所以说,发展是教育管理前进的机制,发展应该是教育管理利益实现的必要途径。而这种发展又是合道德性的。

第9篇

MotorolaMPXY8020A是一个8引脚的监控传感器。它集成有一个可变电容的压力感应元件、一个温度感应元件和一个有唤醒功能的内部电路,并采用SSOP超小型封装,同时还内置一个媒体保护过滤器和用于低功耗的耐压监控系统。它可以和Mo-torola的远程无键登陆系统结合成一个低成本高度综合的系统。图1是MPXY8020A的结构图,其中压力感应元件是一个经过表面微机械加工的电容传感器,而温度感应元件则是一个热敏电阻。接口电路使用标准的硅CMOS工艺集成到同一个硅片上作为传感器。

图1

压力监控主要通过一个电压比较器来比较测试电压,同时用一个连接外部输入的8位门限调整器来实现,通过调整门限和监控外部器件输出引脚的状态可以检查系统是达到低压门限,还是进行8位A/D转换。

通过一个电流源可驱动带有正温度系数的热敏电阻,从而使其产生电压降以测量温度,这个电压的室温值是由工厂通过EEPROM修正寄存器来调整的。通过双通道的复用器可以确定是压力信号还是温度信号并将其送到一个取样电容中,这个取样电容可由一个带门限调节的电压比较器监控,以使其产生数字温度输出信号。

2管脚配置说明

图2是MPXY8020A的引脚排列图。各引脚的具体功能如下:

VDD和VSS:电源引脚,其中VDD是正向电压端,VSS是数字和逻辑地。

OUT:使用OUT引脚可给相关的电压比较器和外部器件的8位寄存器提供一个数字信号。当器件处于待机状态时,OUT引脚为高;而当检测到LFO驱动的时钟分频器(分频率为16384)有溢出时,OUT引脚将输出一个时钟周期的低电平,以唤醒MCU之类的外部器件。图3所示是待机状态时OUT信号的时序图。

RST:该引脚通常为高;当检测到LFO驱动的时钟分频器(分频率为16777216)有溢出时,RST引脚输出一个时钟周期的低电平以复位MCU之类的外部器件。无论器件处于什么状态,这个脉冲大约52分钟都将出现一次。如图4所示,此脉冲将持续两个LFO晶振周期。因为RST和OUT共用一个时钟,所以这个脉冲每52分钟也会在OUT引脚出现一次。

S0,S1:工作模式选择端,由于S0、S1引脚包含内部施密特触发器,因而可改善输入噪音。此外,S1引脚还可用于工厂调试和器件检测,而内部EEPROM修正寄存器的可编程电压VPP就是通过S1引脚来提供的。

DATA:该脚用于设置电压比较器的一组串行极限数据。

CLK:时钟引脚,用于存取数据到DATA引脚。DATA引脚上的数据在时钟的上升沿采样并将其送入一个移位寄存器。数据在时钟的第8个下降沿被转换到D/A寄存器。