时间:2022-02-04 07:32:27
导语:在大学生数学建模论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
(成都师范学院数学系,四川 成都 611130)
【摘要】本文总结了笔者组织开展数学建模培训以及组队参加全国大学生数学建模竞赛的实施方案和培训经验总结,并结合大学阶段的高等数学教学,探讨了如何更加有效的开展大学数学建模竞赛并将竞赛培训的有关经验应用于大学数学教育之中。
关键词 数学建模;数学模型;竞赛培训
全国大学生数学建模竞赛是由教育部主办的全国高校规模最大的课外科技活动之一。本项比赛目的在于激发学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我校每年11月组织学生报名,随着比赛的逐年举办,学生的热情也是日渐高涨。通过近几年的培训参赛,我们再历年的比赛中取得了一些成绩,同时也有更多经验值得总结探讨。
1 领导高度重视建模竞赛活动
此次建模竞赛中取得的成绩和学校、教务处、学生处以及数学系等领导的重视是密不可分的。数学系成立了数学建模竞赛工作小组组织安排此次竞赛活动,学校以及教务处给予此次活动更方面的支持,亲自动员并多次亲临现场看望学生,学生处领导积极解决暑期学生生活方面的各项苦难,数学系领导亲自参加竞赛的培训工作,细心了解学生及培训教师的情况并积极解决,使得此次活动能顺利圆满的进行。
2 选拔优秀学生组队培训和竞赛
数学建模竞赛的主角是参赛学生,选择参赛学生的成功与否将直接影响到参赛成绩。我们于每年11月启动了全校规模的报名活动,为使学生更好的了解数学建模以及数学建模竞赛,数学系指导教师在报名之前进行了“走进数学建模”主题讲座。学生报名热情高涨,积极半报名参加。
选拔分为预赛和复赛两个阶段。主要围绕以下三个方面选拔参赛队员:首先要对数学建模有浓厚的兴趣;其次,要有创造力,勤于思考,用于创新并且有扎实的数学功底,能熟悉操作计算机;最重要的还要有团队合作意识。经过预赛以及复赛共选拔出30-40名同学进入竞赛培训名单。
3 科学系统的培训方法
此次竞赛培训共分两个阶段进行。第一阶段从每年3月至月,培训教师利用周末时间向学生讲解数学建模的一些基础知识,包括:Matlab的使用;学生欠缺的知识(如运筹学,概率统计等);常用数学模型(如规划模型,微分方程模型,回归模型,层次分析法等)。经过第一阶段的培训,学生已经具备的初步的数学建模能力,具备了参加数学建模竞赛的基础。
第二阶段从8月至9月,数学系对参赛学生进行了暑期培训。经过第一阶段的培训,有33名同学进入了暑假培训班。按照比赛要求,每三人一组,分本科专科组,共十余队,其中本科组四队,专科组七队。由于比赛在9月初进行,暑期培训就显得尤为重要了。由于我校暑假的特殊情况,学生的食宿等各项问题都需解决。数学系领导及时与学生处以及各部分协调,解决了学生的生活困难,保证了培训的顺利进行。在本阶段培训以模型的案例分析为重点,主要从近年竞赛真题出发,通过对试题的分析,讨论,加深对数学建模的认识,同时学习了竞赛论文的写作规范。为了让学生更好的准备比赛,数学系还邀请了四川省数学建模竞赛阅卷专家来校对培训教师以及学生进行指导。通过本阶段的学习,学生已经具备了参加数学建模竞赛的能力。
由于数学建模竞赛需要大量用到计算机,数学系在培训期间对学生全天开放数学系实验室,并有培训老师现场指导,以便学生更好的学习和练习数学建模的相关知识。
4 组建一支专业的培训教师队伍
在数学建模培训中,培训教师是核心。指导教师保证培训效果和竞赛成功的关键因素。为此,数学系从本系老师中抽调了专业教师组成指导教师组,制定培训方案,组织学生培训。从3月份集训开始,到9月份比赛结束,指导教师放弃了周末以及暑假的休息时间进行培训。尤其是暑假近一个月的培训,在高温的情况下给学生上课,所有的老师都是任劳任怨,从未有过一个老师争报酬,讲价钱。为了最后的比赛,和学生一起在暑期奋战。
5 重视参赛工程的指导
在学生参赛过程中,指导教师的及时指导是学生完成竞赛的保证。主要体现在以下方面:一是做好参赛学生的心理指导,比赛是在连续72小时内完成的,并且要和同组的队员合作,对学生的心理和生理都是极大的挑战。有很多学生中间会有放弃的心理,此时需要指导教师的鼓励和关心。指导教师细致的思想工作,在整个培训过程中不断强调团队合作的重要性,这些都是学生顺利完成比赛的保证。二是做好论文细节方面的指导。论文格式的规范与否与能否获奖息息相关。在竞赛的最后阶段,指导教师会提醒学生注意论文格式,并亲自帮学生检查论文格式是否符合要求,论文题目、摘要、
关键词 是否合适,
参考文献格式是否正确,论文是否完整等各方面问题。这些细节是论文是否取得好成绩的关键。为了更好的指导学生参加比赛,数学系在比赛期间抽调了十余名教师在比赛三天中对学生全天进行指导。
6 竞赛培训与大学数学教育相结合
数学建模竞赛想取得优异的成绩不仅要依靠竞赛培训,更重要的是学生要对数学产生浓厚的学习兴趣。现在,很多学生对数学兴趣不高,主要是由于学生对所学到的知识无法学以致用。数学建模恰好是一个数学知识的实际应用,在这个平台上,大学生们不仅仅是运用数学方法和计算机技术解决实际问题,更重要是锻炼了他们分析问题、解决问题的能力。因此,经过近几年的竞赛培训,我们总结了建模中一些和高等数学密切相关的实例,在高等数学的教学中融入相关知识,使学生体会到数学的真正乐趣。同时,在线性代数以及概率论与数理统计等课程中融入相关数学软件的应用,增强知识的应用性,同时为数学建模打下良好基础。
[关键词]数学建模教学 应用能力 综合能力
[中图分类号] G640 [文献标识码] A [文章编号] 2095-3437(2015)06-0063-02
数学建模是目前大学各个专业开设的一门公共选修课程,是数学专业学生的一门必修课程。数学建模是将理论知识与实际问题联系紧密的一门课程,它所涉及的知识面宽广程度是其他数学课程所不及的。而每年一次全国大学生数学建模竞赛和美国大学生数学建模竞赛的开展,对大学生的知识应用能力、计算编程能力、文献检索能力、相互沟通和表达能力、中英文科技文的写作能力等提出了较高的要求,同时也为这门课程的教学提供了一个很好的实践平台,特别是三人为一组的合作方式让学生体会到了团队合作的重要性。数学建模课程的以上特点使学生学习该课程以及参与竞赛的积极性很高,也因此为培养和激发学生的创新思维和综合能力提供了一个良好的途径。笔者多年从事数学建模的教学与建模竞赛的指导工作,针对数学建模课程的特点,就激发和培养学生创新思维、应用知识解决问题的能力、科学计算能力、合作学习能力、文献检索能力以及科技文写作能力等谈谈有关的一些做法和体会。
一、巩固基础理论知识,拓宽知识面,培养学生应用知识的能力
应用能力,就是运用所学知识分析和解决实际问题的能力,这是教学的重要目标,是创新能力的重要基础和组成部分。[1]大学教育的最终目的是培养高素质的创新型人才,而应用知识的能力是培养创新能力的基础。[2]
(一)巩固和拓宽基础理论与方法,是创新能力的立足之本
数学建模的教学对象是大学二年级学生,数学建模的教学内容选择最优化理论与方法、微分方程、图与网络算法、数据的统计处理方法等应用性较强的内容,教学目标以巩固基础理论为主,并拓宽知识面和加强知识的应用,以达到对数学理论和方法的融会贯通。在这个阶段以课堂讲授为主,以课后练习为辅。在课堂教学环节,以问题分析开场,引入理论知识,再以解决问题结束,同时把解决问题需要用到的相关工具软件介绍给学生。课后练习以应用型题目为主,学生以自由讨论、分组协作的方式完成。由于大学数学教材中配套的例题和习题中应用型和综合性的题目很少,虽然这些习题的练习对学生进一步理解知识、掌握方法是必要的,但是如果学生只停留在会做一些题目和考试拿高分上则是远远不够的。因此需要加强应用型题目的练习,题目类型与讲授的理论知识相匹配,目的是让学生通过做这些应用型的题目来加强理论知识与实际问题的联系,更好地理解数学方法在实际中的应用,从而加深对数学理论知识的理解,增强理论联系实际的意识。
(二)解决大型应用型问题,是全面提高应用能力的有效手段
课堂教学阶段,学生接触到更多的数学理论与方法,了解了常用的工具软件,大部分学生也学习过Mat?鄄lab和C++等编程语言,此时可借助计算机等现代化工具解决一些科研或者生产生活实践中的问题,教学的主要目标是全面提高学生应用知识的能力。学生以分组的形式完成各种类型的问题,借助计算机、工具软件等,解决大型的应用型问题,将自己解决问题的出发点、所用的方法和得到的结论用语言、图表等表达出来,同时以科技文的形式给出问题的解答,然后进行答辩。在答辩环节,各个小组要充分展示对问题的理解和思考,展示解决问题的方法和技巧。各个小组之间通过对比,特别是针对一些难点问题的处理和讨论,使学生学习到不同方法处理问题的优缺点,对不确定问题的处理让学生了解了随机数学的思维与方法、模糊数学处理问题的方法等,这是在其他课程中所不能涉及的一项内容。这个过程增强了学生运用数学知识处理问题的意识和能力,是全面提高学生应用能力的有效手段。
(三)借助计算机工具,是培养学生科学计算能力的必要措施
科学计算是平行于理论研究和科学实验的第三大科研手段,计算能力是学生综合能力的一个重要指标,而目前我国学生科学计算能力普遍偏低已经成为我国高等教育教学的一个突出问题。现行大学数学的很多教学内容,包括例题和习题,严重忽视学生计算能力的训练和培养。科学计算包括数值计算、计算机模拟和符号演算等内容。数学建模课程中,对实际问题建立数学模型后,面临的就是算法设计、编程或是结合软件包在计算机上进行求解了。综合问题的求解对学生的计算能力提出了比较大的挑战。由于大学课程中没有设置科学计算方面的专门课程,而理论结果和方法在实际问题中的应用,还存在着一些需要进一步处理的问题,例如数据的预处理,各种工具软件包的使用等,甚至求分位点这些小计算都要有相应的算法,这是理论课程中所没有接触到的。数学建模的教学实践过程中,对学生的科学计算能力的培训也是一个重要的目标,尽管有的问题的求解可以直接借助于工具软件,但是很多问题需要针对问题进行算法设计,如计算机模拟方法。
二、以数学建模活动为平台,培养学生综合创新能力
综合能力不仅包括应用知识的能力,沟通表达能力、协作能力、文献检索和综合信息的能力、中英文写作能力等都是大学生综合素质的重要内涵。数学建模的教学实践活动为在校大学生提供了一个很好的平台,学生不仅扩展了知识面,还在合作学习、沟通表达、文献检索与运用、中英文写作等多个方面得到了提升。
(一)利用文献检索手段,培养大学生快速获取信息的能力
现代社会到处充满信息,如何在海量的信息中快速找到自己所需要的信息,如何合理有效地利用这些信息,并在此基础上进行创新活动,是未来大学生应必备的素质。数学建模的综合题目内容广泛,如电力管理、医学影像再造等。由于涉及自然科学和社会科学、工程实践管理等各个领域,所以在课堂教学中没有足够的时间讲授各方面的背景知识。我们要求学生通过查阅相关文献资料去自学这些知识,有些题目的数据必须让学生自己去查找,如美国竞赛的很多题目都需要在开放的环境下寻找合适的数据进行分析。为此可以选择一些这样的题目,如地球能源问题、全球大气变暖问题等,学生利用网络图书馆和internet查阅和收集各种文献资料,熟悉了查阅文献资料的途径和渠道。教学活动中对文献检索能力的培养不仅使学生知道了如何快速获取信息,而且还为竞赛节省了时间。有效地收集、评价和利用信息是大学生创新能力培养的前提。
(二)倡导合作学习,培养学生团队协作意识和能力
团队合作精神是衡量当今大学生综合素质的重要因素,是团队在竞争中取得成绩的必要条件之一。数学建模竞赛以集体为单位参赛,在培训学生的过程中,尽量实行优势互补,将来自不同学科和专业的学生进行组合,学生在共同讨论的基础上分工协作,其中还要选出一个队员担任组织协调工作。在培训过程中我们发现,如果组内成员能积极表达自己的看法,对问题的分析比较全面和细致,在对问题的求解思路达成一致的情况下再开始工作,那么就可以取得较好的成绩。所以要避免互不沟通、各做各的情况,这会导致重复工作,总体效果还不好。合作学习与协作精神的培养使学生体会到了“1+1>2”的力量。
(三)中英文表达和写作,是培养学生科技文写作能力的重要前提
在数学建立模型竞赛中参赛论文以科技文的形式上报,所以每个队的成员要将合作完成的解题结果写成科技文,美国竞赛还要以英文进行写作。在数学建模的教学活动中,我们发现学生对论文的写作很不重视,他们把大部分的时间放在资料的收集整理、对题目的分析、建模以及设计算法等方面,最后草草地交论文,并没有完整而清晰地解答自己所做的题目。特别是在竞赛期间,时间有限,如果没有训练有素的写作水平,就很难将全队的努力完美呈现出来。针对这些问题,在数学建模的综合训练阶段,我们特别加强了对科技文的中英文写作练习,同时强调学生用图、表、数据等直观感性的形式来表示所做的结果。在这样的训练之后,学生高度重视了论文的写作,为将来从事科研活动奠定了协作的基础。
三、结束语
以结合数学建模教学实践的特点,着力提高学生应用知识的能力和综合创新能力,在教学中取得了良好效果。笔者教过和指导过的不少学生在全国和美国大学生数学建模竞赛中获得了不俗的成绩,他(她)们亲身体会到运用数学思维和方法处理实际问题的优势,进入研究生阶段的一些工科学生也深感参加数学建模实践活动在提高自己综合能力与科研能力方面的巨大作用。数学建模教学活动已成为当代大学生数学教育改革的主要方向之一,数学建模活动的展开为培养学生的综合创新能力开创了一条有效的途径。
[ 注 释 ]
[1] 李尚志.培养学生创新素质的探索[J].大学数学,2003(1):46-50.
[2] 钱国英.本科应用型人才的特点及其培养体系的构建[J].中国大学教学,2005(9):54-56.
[收稿时间]2014-12-15
关键词:数学建模;高校数学;课程建设
中图分类号:O242.1 文献标识码:A 文章编号:1674-120X(2016)26-0037-02 收稿日期:2016-06-30
课题项目:江西省教育科学“十二五”规划课题“基于建模思想的高等数学教育质量提升研究”(15YB200)。
作者简介:葛 毓(1983―),女,江西南昌人,讲师,硕士,研究方向:教育教学研究。
随着社会的发展和技术的进步,数学的重要性愈发凸显。数学为其他学科提供了科学的语言、观念和方法,被广泛地应用于社会生产、生活的一切领域,来解决科技和生产领域中遇到的实际问题。数学建模是数学的重要组成部分,所谓数学建模是指运用数学知识和思维方法,将现实中的实际问题加以提炼,利用数学符号、程序、图形等工具对数学问题进行抽象而简洁的刻画,来预测事物发展的规律或解释客观现象。数学建模是定量分析的重要方法,当人们需要从定量角度分析实际问题时,需要通过数学建模对研究的问题进行调查研究、提出假设,进而用数学形式和符号将其表述为数学形式,因而数学建模应用十分广泛。
一、数学建模在高校课程建设中的价值
1.提高大学生的语言和文字能力
近年来,大学生语言和文字表达能力差饱受社会诟病,尤其是理工科的大学生,由于缺乏人文学科的教育和熏陶,其语言能力相对薄弱,综合素质还有待提高,距离创新型和复合型人才的要求相差甚远。数学是一门严谨性较强的学科,通过数学建模的学习,可以帮助大学生认识自己知识的缺陷,提高语言表达的精确性和简洁性。另外,很多高校都组织学生参加数学建模大赛,大赛要求参赛队伍撰写论文,阐述自己解决问题的方法、思路和结果,这就需要大学生查阅大量的文献资料,合理安排论文思路,组织好论文内容,讲究语言的严谨性,这个过程潜移默化地提高了学生的语言和文字表达能力。
2.提高大学生计算机应用能力
数学建模是利用数学知识和工具,通过建立模型,来解决现实中遇到的各种问题。对于高校数学教学而言,数学建模研究的主题通常具有针对性、复杂性和挑战性。例如“某地水质的评价和预测”“公交车的调度”“最佳捕鱼策略”,等等,这些题目包罗万象,很多都是大学生知之甚少甚至从未听说的,这就需要学生积极查阅互联网、电子期刊等,来搜集、整理和分析大量的信息资料,锻炼了学生互联网搜集和获取信息的能力。同时,数学建模通常用计算机编程来完成,常用的软件包括Matlab、Lingo、Mathematicia和SAS等,大学生必须熟练地掌握这些软件,能利用这些软件来绘制函数图形、对数据进行计算等,提高了其计算机应用能力。
3.培养大学生团结协作精神
数学建模是一个复杂的工作,涉及数据的搜集、模型建立、过程推理和结果的验证等工作,工作量很大。而且要求学生具备数学知识、计算机编程、软件应用以及论文撰写等能力,单靠一个学生是很难完成的,因此数学建模的教学通常采用小组合作的学习模式,一般3个同学组成一个建模小组,大家分工明确、相互配合、互相学习,发挥他们各自的优点和特长。在这个过程中,大家有问题互相讨论,倾听别人的想法和建议,既学习了别人的思路和想法,也锻炼了团结意识和协作精神。
4.培养大学生的创新能力
创新是社会进步和发展的驱动力。目前,世界之间的竞争主要是创新型人才的竞争。与传统的数学课程不同,数学建模是利用数学工具来研究现实中的实际和热点问题,需要大学生从数学角度出发将实际问题转化为抽象的、简化的数学模型,这个过程并没有标准答案,给大学生提供了广阔的想象空间,需要他们开动脑筋,充分发挥自己的想象力和创造力,从不同的视角来分析问题,大大提高了大学生的创新能力。
二、提高数学建模教学有效性的措施
1.在教学中渗透数学建模思想
数学建模是培养数学应用能力的绝佳平台,数学建模意识的建立和能力的培养是个长期过程,需要数学教师在授课过程中潜移默化地对学生进行熏陶。事实上,现实生活中有很多问题都有数学建模的影子,数学教师要善于发现、提炼和总结,立足大学生所学专业和关心的热点话题,将数学建模的知识渗透到日常教学中,学会选择与所学专业相关的数学建模模型,调动学生学习的积极性,让学生感受到数学建模无处不在。
2.建立数学建模竞赛基地,提供实践环境
数学建模竞赛带有明显的实践性,参加数学建模竞赛是激发学生学习兴趣、检验数学建模教学水平的重要措施。目前很多高校都组织队伍参加全国数学建模大赛,但由于条件的限制,参加全国建模竞赛的同学数量是极少的,绝大部分同学并没有得到系统的数学建模训练,这样并不利于学生整体建模能力的提高。鉴于此,高校应该建立校内竞赛和全国大赛协同发展的制度,一方面激发广大学生的兴趣;另一方面也可以通过校内竞赛,为参加全国大赛选拔优秀的队员,还可以促进教师建模教学水平的提高。这就需要高校不断优化校内建模竞赛基地的建设,保证基础设施的齐备,包括数学建模实验室、数据分析实验室、电子设计实验室等,只有在优越的物质环境下才能为大学生模拟真实的竞赛环境,保证校内竞赛训练的高效性。另外,为了加大对数学建模竞赛的宣传力度,让更多的学生了解和参与进来,高校要成立一些数学建模竞赛协会和兴趣小组等,鼓励不同专业、不同年级的学生加入。协会或兴趣小组要积极开展一些关于数学建模的课外活动,邀请专家进行数学建模的专题讲座,定期举办一些关于数学建模的小型比赛,激发起大家对数学建模的好奇心,从而积极参加进来。
3.优化数学建模的师资队伍
数学建模虽然是以数学知识作为基础内容,但题目所涉及的范围十分广泛,而且需要多个学科知识来支撑,这就对数学教师的素质和能力有了较高的要求。教师水平的高低直接决定着数学建模教学能否达到预期的目的。讲授数学建模教学的教师不仅要求具备较高的专业水平,还必须具备丰富的实践经验和很强的解决实际问题的能力。为了提高教师的水平,首先可以多派教师“走出去”进行专业培训学习和学术交流,比如多参加各种学术会议、到名校去做访问学者,等等。其次可以多请著名的专家、教授“走进来”做建模学术报告,为师生增长知识、拓宽视野,了解学科发展的新趋势、新动态。最后,数学教师还必须更新教育理念,不断积累和更新专业知识,其中包括较宽广的人文和科学素养。数学教师只有不断创新,努力提高自身素质,才能适应新的形势,符合时展的要求。
总之,数学建模是高校培养创新型和应用型人才的主要途径,通过数学建模的学习可以激发其学习积极性和主动性,提高大学生的计算机能力、创新能力和团队协作能力。这就要求高校数学教师在日常教学中积极渗透数学建模思想,采取各种教学方法和手段提高建模教学的有效性,促进学生的全面发展。
参考文献:
随着高职教育改革的不断深化,高职院校毕业生的就业能力和竞争力有所提高,就业状况不断改善,但毕业生就业形势仍然十分严峻。这固然有节节攀升的毕业生数、毕业生自身就业观念、供需结构失衡等方面的问题,但毕业生综合素质不够高、就业能力不够强等方面的问题依然突出。就业能力是指学生在校期间通过知识学习和综合素质开发而获得的能够实现就业理想,满足社会需要,保持工作及晋升和继续发展的内在素质和才能,是一种与职业相关的综合能力。“职业素养”、“专业知识与技能”、“学习能力”、“实践能力”、“社会适应能力”、“创新能力”、“与人交往能力”、“规划与应聘能力”等,是高职院校学生应具备的基本就业能力。对于高职院校毕业生,用人单位更看重其“专业技能”、“实际操作能力”、“学习能力”、“敬业精神”“、沟通协调能力”、“创新能力”等方面的能力素质。而“学习能力”、“运用知识解决问题能力”、“沟通协调能力”、“创新能力”这些基本就业能力是高职院校学生比较欠缺的素质。
二数学建模对培养学生就业能力的作用
笔者在指导学生参加全国大学生数学建模竞赛的过程中,体会到数学建模活动对高职院校的学生的综合素质和就业能力的提升起着十分重要的作用,有利于高职教育人才培养目标的实现。
1提升学生自主学习的能力
数学建模竞赛赛题所涉及的知识面较广,甚至有许多是学生未曾涉及过的领域(如,2012年赛题中的C题:“脑卒中发病环境因素分析及干预”与医学领域有关),学生仅凭已有的知识是难以甚至不能完成竞赛,这就要求学生不仅需要复习好已经学过的知识,还必须积极、主动去学习新知识,扩大知识面,如,数学软件的使用、论文写作方法、不包括在高职人才培养方案中的一些数学内容(如数值计算等)、查找相关文献资料并从大量文献中吸取所需知识的技巧等知识,学生都须通过自主学习的途径来掌握。这个过程有助于学生自主学习能力的提升。
2提升学生运用知识解决问题的能力
数学建模是一个将错综复杂的实际问题简化、抽象为合理的数学结构的过程。在建模过程中,就是要针对生产或生活中的实际问题,通过观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,结合数学及其他专业知识的理论和方法去分析、建立起反映实际问题的数量关系。这个过程就是运用所学的数学知识和其他专业知识的过程。数学建模竞赛题涉及的数据量往往大且复杂,求解、运算过程十分繁琐,手工计算很难甚至无法得到结果,需要使用计算机来辅助解决问题,例如,常使用MATLAB等数学软件进行模型初建、模型合理性分析、模型改进等;使用SPSS等数理统计类软件,完成数据处理、图形变换和问题求解等工作,这是个运用计算机知识的过程。可见,数学建模能培养学生运用数学及其他专业知识、计算机知识等解决实际问题的能力,有利于拓宽学生的就业技能。
3提升学生分析问题和创造性解决问题的能力
培养创新能力数学建模赛题来自于实际问题之中,有极强的实际应用背景,而对竞赛选手完成的答卷(论文)的评价一般没有标准答案,评价时主要是看对问题所做假设的合理性、建模的创造性、结论的正确性和文字表述的清晰程度,评审者更青睐有独特创意的论文。这就要求参赛学生充分发挥想像力、创造力,在通过分析、讨论,迅速洞察问题的实质和特征之后,做出合理的假设,并综合运用数学知识和其他相关知识,创造性地确定或建立数学模型。可见,数学建模过程是个提升学生的分析问题能力,创造性解决问题的能力的过程,具有培养学生创新能力的作用。
4提升学生的团结协作能力
数学建模竞赛不同于一般竞赛,单独一个队员是无法完成竞赛的,必须通过团队三队员共同的努力,才能在72个小时内完成论文,交上答卷。这要求在竞赛的过程中,需要根据队员的特点,进行分工合作,发挥各自的长处,发挥团队的整体综合实力。在团队中,由有较强组织协调能力的队员来负责协调三人的关系,安排工作流程和工作任务;由有较强写作能力的队员来保证写出较流畅的论文;由有较强计算机应用能力的队员来使用数学软件,负责建立、检验数学模型;竞赛过程中,队员间必须精诚团结、相互配合、集体攻关,才能在竞赛中取胜。因此,数学建模竞赛过程是个提升学生团结协作能力、培养学生的团队精神的过程,这对培养学生适应社会的能力起到积极的作用。
三高职数学建模课程教学改革的思考毋庸置疑
题目公布后要上网查阅资料及大量文献,对问题进行分析,然后选定1道题目.题目选定后,再对问题进行深入分析并建立模型.有些问题还要处理大量数据,如2006年“全国大学生数学建模竞赛”的本科组B题是“艾滋病疗法的评价及疗效预测”,给出了5000多组数据,如果靠手动处理如此之多的数据,工作量是难以想象的.有些问题则需要做数学实验进行模拟,如2007年“全国大学生数学建模竞赛”的本科组B题是“乘公交,看奥运”,共给出了800多条公交线路[4],模型建立后要进行模拟实验,否则无法验证模型的准确性和合理性.我校每年从5月份开始做数学建模竞赛的报名、组织工作.学生的参赛热情很高,每年都有200多人报名.而我校每年参加正式比赛的规模仅为12队计36人,故需要进行选拔以择优录取.选拔的模式也是按照正式比赛的模式进行:给定题目,3d后提交论文.面对如此众多的学生及选拨的需要,必须有场地使学生在规定时间内完成论文,并且不受干扰.同时,在实验室内也便于教师进行指导和学生之间的交流、讨论,而这些在普通教室内是不可能实现.凡此种种,建立数学建模实验室是完全有必要的.
2数学建模实验室的硬件建设
在数学建模实验室中收集一些数学模型、概率、统计、优化、运筹和计算方法等方面的书籍和历年竞赛的一些获奖论文.数学建模竞赛是一种开放式的竞赛,竞赛过程中除了上网查阅文献资料外,还要参考一些专业方面的书籍,在实验室中陈列这些资料便于学生取阅.历年的获奖论文无论在创新性还是在规范性方面都做的比较好,培训和竞赛过程中这些资料对学生有很大的帮助和较好的启发性.计算机是实验室建设的一个基本要求.由于在选拔前学生人数众多,不可能做到每人一台机器,但我们要确保正式竞赛期间每个参赛队员都有计算机使用.应该经常检查机器的损毁情况,保证计算机的正常使用和运行,特别是保证正式竞赛期间计算机的完好.定期对计算机的硬件进行更新,并有专人管理数学建模实验室,正式竞赛期间禁止非参赛人员进出.建设通畅的网络.竞赛开始后需从数学建模官网下载竞赛试题,竞赛期间也需要大量查阅资料,竞赛结束后要通过网络上传论文,故此数学建模实验室的网络更显得尤为重要.要保证数学建模实验室机房供电的稳定性.突然停电会造成数据的丢失,既浪费了参赛队员的精力和时间,也会严重影响他们的情绪,不利于竞赛的顺利进行.所以要保障好特别是正式竞赛期间实验室的供电稳定.另外,数学建模实验室中还应配备多媒体,这样便于培训过程中指导教师进行教学和演示,收到事半功倍的效果.
3数学建模实验室的软件建设
纵观历年的全国大学生数学建模竞赛的试题,题型以优化、概率统计、运筹、图论、数据分析居多,解决这些问题往往要进行大量的数据处理或实验模拟.这些工作都需要靠软件来完成.所以在软件建设方面应配置常用的一些数学软件和文字处理软件,做到及时更新,并在培训过程中培养学生熟练使用软件解决问题的能力.(1)竞赛指导教师的培训.选派指导教师积极参加建模竞赛的各种全国性的培训,与建模竞赛活动开展较好、取得优异成绩的高校做好指导教师的经验交流工作,加强指导教师的自主学习,扩大知识面.(2)Matlab:用于数值计算、数据模拟、绘制图像.进行数据拟合、函数逼近、数值积分与微分、矩阵计算、方程及方程组的求解、求常微分方程和偏微分方程数值解、作图等.(3)SPSS:用于处理、分析数据.对数据进行预处理、假设检验(参数检验、非参数检验及其它检验)、方差分析、相关分析、回归分析、聚类分析、时间序列分析、因子分析、可靠性分析等.(4)Lingo/Lindo:用于求解线性及非线性规划问题.Lingo/Lindo可以用于求解线性规划、非线性规划、线性和非线性方程组的求解以及代数方程求根,还可以提供与其它数据文件(如文本文件、EXCEL电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题.(5)Word:用于文字、公式、图像的编辑、表格的制作及论文的写作和排版.(6)Excel:用于处理数据及数据的排序、选取.可以进行批处理数据、数据筛选、数据排序、数据统计、创建图表等.
4结语
[关键词] 大众化 数学建模 教学模式
一、数学建模大众化教学的必要性
进入21世纪,我国高校大量扩招,办学规模不断扩大,学生数量增多,水平也参差不齐,高等教育已逐步从昔日的精英教育转向大众化教育,高校数学教育观念也由“英才数学”转向了“大众数学”,其目的不在于培养数学家,而是以培养实用型、创新型人才为目标,侧重于培养学生的数学思想、数学方法和数学素质,使学生逐步具备应用数学的意识和能力,数学建模大众化教学正是实现这一目标的有效途径。
数学模型是关于部分现实世界和为一种特殊目的而作的抽象、简化的数学结构。数学建模就是构造数学模型的过程,即用为了认识客观对象在数量方面的特征、定量地分析对象的内在规律,用数学的语言、符号、图表等近似的刻画和描述实际问题,然后经过数学的处理,通过计算、编程等手段得到定量的结果,以供人们分析、预报、决策和控制等参考。数学建模已渗透到社会、经济、环境、生态、医学、地质和工程等各种广泛的领域,成为对研究对象的特性进行系统研究所不可缺少的基础。数学建模是数学知识和应用能力共同提高的最佳结合点,是启迪创新意识和创新思维、锻炼创新能力、培养高层次人才的一条重要途径;也是激发学生欲望,培养学生主动探索、努力进取的学风和团结协作精神的有力措施。
目前,全国大学生数学建模竞赛已成为真正的“一次参与,终生受益”、面向全国高等院校每年一届的规模最大的传统竞赛。参加竞赛有利于培养学生的想象力和自学能力,有利于培养学生的团队精神和协作意识,有利于培养学生的自主创新能力和应用能力,有利于大学生顺利地踏上工作岗位并很快适应工作。但竞赛毕竟是竞赛,参加竞赛的同学较在校生而言仍是很少的一部分,实现数学建模大众化教学是全面培养学生数学素质,提高学生自主创新能力和应用能力的重要方式,是实现大众数学的有效途径。
二、数学建模大众化教学模式的研究和实践
数学作为一门科学,一个基础,一个工具,在人们的日常生活及生产建设中发挥着非常重要的作用。大学数学教育的任务是通过教学活动让学生学习、掌握数学的思想、方法和技巧,并能学以致用。作为工科院校的一个分校区,针对当前学生的层次和校区现有条件,我们对数学建模课的教学模式进行了调研、分析对比和探讨,进行了以下探索工作。
1.数学建模思想在数学类主干课程中的渗透。面向一、二年级的学生,将数学建模思想在高等数学、线性代数和概率论与数理统计课等主干课程中渗透,尝试改变传统的数学课的教学方法和教学内容,利用现代多媒体技术和各种计算软件,遴选典型案例库,穿插到正常的授课过程中,宣传数学建模,将数学学习与丰富多彩、生动活泼的现实生活联系起来,使他们了解数学有什么用,怎样用,并让他们体会到,真正的应用还需要继续学习,数学不是学多了,而是还远远不够,激发他们学习数学的兴趣、积极性和主动性。
2.开设选修课。数学建模是一个非常复杂的过程,学生不但需要掌握建模的主要类型和方法等数学知识,更需要掌握常用软件(如Matlab、Lingo等)的使用方法、计算机操作能力和组织写作能力。我们在校区范围内,利用课外活动时间,开设了《数学建模》、《数学实验》和《数学模型优秀案例》三门选修课,涉及到的主要建模方法有:线性规划、整数规划、非线性规划、动态规划、排队论、图论方法、微分方程和差分方程方法、层次分析法、综合评价法、概率统计方法、回归分析法、对策论方法和灰色系统分析方法等。采用多媒体上课和上机相结合的授课方式,授课内容以案例教学为主,这样的教学过程,学生能亲身体会到,身边的实际问题是如何用数学方法解决的,感觉很有趣、有意义,学生学习的积极性大大提高。而且,学生在解决实际问题时,常常要借助数学软件求解,也激发了他们学习相关软件的自觉性。
3.数学建模兴趣小组活动。通过数学建模思想的启蒙和数学建模选修课的学习以及数学建模竞赛的影响,很多同学对数学建模产生了浓厚的兴趣。我们积极加以引导和鼓励,在校区范围内成立数学建模兴趣小组。小组活动比较自由,以自学、互相交流为主,主要目的是在校区范围内形成浓厚的数学建模氛围,让更多的学生参与进来。教师主要是针对实际问题的某一方面,提出小的问题,指导学生如何建立模型,并撰写小论文,学生也可以针对自己感兴趣的问题完成论文或报告。
4.竞赛集训。为了积极备战全国大学生数学建模竞赛,每年在校区范围内选拔一批比较优秀的学生(多数是选修课和数学建模兴趣小组的学生)组成数学建模研讨班,利用暑假为期两周左右的时间进行强化集训,内容一般是建模方法、软件使用和模拟练习。通过训练,大部分同学熟悉了竞赛的流程,掌握了竞赛论文的基本写法。根据集中学习结果,再选拔参加竞赛的队伍,并配备指导教师。
三、数学建模活动的启示
1.数学建模重在普及、重在过程、重在学生受益面。一年一度的全国大学生数学建模竞赛如期举行,很多学校都很重视,尤其重视竞赛获奖和名次,这也是提高和刺激数学建模上水平的强有力指挥棒。但数学建模是为了培养大学生的数学素质,培养学生用数学方法解决实际问题的创新能力,不仅仅是为竞赛服务,参加竞赛的同学毕竟是少数,所以数学建模活动的开展,重在普及、大众化,加大学生的受益面,不论水平如何,竞赛结果如何,重在学习的过程。
2.数学建模促进教学改革。几十年来,大学数学教学内容几乎没有明显的改变,重经典轻现代,重解析轻计算,重连续轻离散,重理论分析轻综合应用,重闭卷考试轻综合考查。数学建模的实践教学,充分利用计算机手段,将数学理论和实际问题相联系,让学生自己建立数学模型,自己在计算机上实现,学生真正成为教学的主体,提高了教学效果。数学建模思想在大学数学主干课程中的渗透,小模型、小案例的引入,将进一步推动数学教学改革的步伐。
3.数学建模促进科学研究。数学建模是“问题驱动的数学”。做好数学建模不仅要有扎实的数学知识,还要有经济、生物、环境、工程等专业知识,要熟悉常用的数学软件和仿真等计算机手段,这些都需要进行深入的理论研究。
数学建模大众化教学模式已从学生受益面、提高竞赛水平、推动教学改革、促进科学研究等方面取得了初步成效,我们将更加深入具体地研究,以期形成更加成熟的教学模式。
参考文献:
[1]赵静等.数学建模和数学实验[M].北京:高等教育出版社,2009.
[2]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2009.
[3]乐励华等.数学建模教学模式的研究与实践[J].工科数学,2002.
关键词:应用型本科院校;数学建模;教学改革;应用能力;创新意识
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)19-0226-02
应用型本科院校的目标是培养培养应用性人才,应用性人才的知识能力结构是应用型,而不是学术型,这种人才不仅具有扎实而宽广的基础知识、专业知识、综合知识,较强的表达、动手、创新与组织能力,而且还应具有不断学习新知识,掌握新技术,跟踪最新科技发展与社会变化的能力。这就要求我们的专业改革要按照应用型能力结构,重新架构理论和实践教学的体系,培养学生的应用和创新能力,以满足学生发展需求。从这样的教育改革理念出发,数学建模活动的开展就成为必然。
一、开展数学建模活动的意义
数学建模一般分三个步骤:建立模型、数学解答、模型检验。建立数学模型是一种积极的思维活动,从认识论角度看,是一种极为复杂且应变能力很强的心理现象,没有统一模式,没有固定方法,其中既有分析、推理、判断等逻辑思维,又有非逻辑思维。建模过程大体都要经过分析与综合、抽象与概括、系统化与具体化等阶段,其中分析与综合是基础,抽象与概括是关键。而建模过程中的数学解答与模型检验步骤就要求学生将所学的数学知识、计算机知识和其他方面的知识进行综合,应用到实际问题中,再根据计算结果给出符合实际的合理解释。通过这样的实践,学生会明白学以致用的道理,从而提高学生分析、综合与解决实际问题的应用能力。
在数学建模学习过程中,有大量的数学模型不是单靠数学知识就能解决的,需要跨学科、跨专业的知识综合在一起,当今科学的发展也使得一个人再也没有足够精力去通晓每门学科,这就需要具有不同知识结构的人经常在一起相互讨论,从中受到启发。数学建模集训、竞赛提供了这一场所,三位同学在学习、集训、竞赛的过程要彼此磋商、团结合作、互相交流思想、共同解决问题,使得知识结构互为补充,取长补短。这种能力、素质的培养为他们的科学研究打下了良好的基础。而由于实际问题的广泛性,大学生在建模实践中要用到的很多知识是以前没有学过的,而且也没有时间再由老师作详细讲解,只能由教师讲一讲主要的思想方法,同学们通过自学及相互讨论来进一步掌握,这就培养了学生的自学能力和分析综合能力。他们走上工作岗位之后正是靠这种能力来不断扩充和更新自己的知识。可以说数学建模活动是培养学生创新精神与应用能力的主要载体。
二、我校开展数学建模活动的一些做法
皖西学院(时为六安师专)于1998年组队参加全国大学生数学建模竞赛,2009年组队参加国际大学生数学建模竞赛,在安徽省同类院校中是比较早的。从2001年开始,将数学建模类课程设为数学与应用数学专业、信息与计算科学专业的必修课,制定符合应用性人才培养目标的教学大纲和实践教学规划。在校、院各级领导的支持下,于2001年组建了大学生数学建模竞赛教练组和皖西学院数学建模协会,建立了适合我校实际的组织、培训、比赛和奖惩的有效机制,制定了《皖西学院数学建模竞赛章程》和《皖西学院大学生参加数学建模竞赛培训实施方案》等文件,据此形成具有皖西学院特色的大学生数学建模系列活动:
(1)每年开学初,为一年级学生举办数学建模讲座,对他们进行数学建模启蒙教育,使刚进大学校门的新生懂得打好数学基础的重要性,增强他们学习数学知识的兴趣,这是我校组织学生开展数学建模活动的宣传、发动工作的环节之一,起到了良好效果;
(2)通过开设数学建模课程使学生对数学建模有进一步深入的了解;
(3)组织学生参加数学建模协会组织的数学建模研讨班、培训班;
(4)在全校范围广泛发动,组织学生参加皖西学院数学建模竞赛,选拔参加全国、国际数学建模竞赛队员;
(5)认真组织、培训队员参加全国、国际数学建模竞赛活动,使学生真正体会到建模的实用性和成功后的喜悦,提高学生数学的应用能力和解决实际问题的科研能力。在每年5月底,在学校数学建模竞赛的基础上,组建大学生数学建模竞赛的预备队进行暑期的培训,每年依据队员的专业背景、年级等具体情况制定详细的培训计划,大体上整个培训分三个阶段进行。①由建模教练组选派优秀的指导教师结合实际的建模问题串讲各个知识点,使学生掌握建模过程和其一般规律;②组织模拟比赛使队员感受实战气氛,比赛结束进行结果的评讲和研讨,每组谈本队的建模思路和感受,相互促进、相互提高。③进行全国赛的选拔,选拔优秀队员参加9月份的全国比赛。
(6)让学生结合学校毕业设计等教学环节,参与一定的实际科研活动。在每年的毕业论文(设计)的出题、选题过程中加入许多涉及建模的实际问题,通过实际问题的研究、毕业论文的撰写、答辩,使学生再一次受到真实的科研实践锻炼,解决实际问题的应用能力得到了很大的提高。
现在,数学建模教学、实践和竞赛活动已在皖西学院蓬勃开展,成为我校本科教学中的亮点,在加强素质教育、培养开拓型和应用型人才方面发挥了独特作用。
三、取得的成果与改进设想
(一)取得的成果
皖西学院一直积极开展大学生数学建模教学实践,紧紧围绕应用型示范本科院校的培养目标,以国家级特色专业点和省级教改示范专业建设为抓手,以培养学生创新思维和应用能力为宗旨,以“因材施教,分类培养”为教育理念,以学生社团为依托,遵循学以致用原则,把数学建模教育与培养学生“用数学”的意识、应用能力和创新能力结合起来,构造了“面向应用,依托学科,以应用能力培养为核心”的课程体系,融教育与实践相结合。在数学建模课程教学、数学、信息等专业培养计划制定以及竞赛的组织、培训和参赛指导等方面得到了广泛的应用;数学建模的教育教学取得了可喜的成绩,进入数学建模社团组织的人数越来越多,比赛成绩逐年提高。2008年“新建本科院校中数学建模与大学生创新能力培养”获得安徽省教学成果一等奖,获批和数学建模相关的教研项目5项、成果奖3项;近5年来,我校学生共获得国际数学建模竞赛二等奖2项,全国大学生数学建模国家一等奖1项、二等奖6项和省级奖励50多项。
(二)改进设想
(1)和培养方案的修订结合,进一步完善大学数学课程的实践教学体系建设。
(2)进一步完善数学建模竞赛的组织、培训、比赛和奖惩机制,使得数学建模活动进一步规范化。
(3)规范《数学建模》全校通识选修课教学,使更多的理工科学生甚至文科学生参与数学建模活动。
(4)和大学数学教学改革结合,使数学建模思想融入大学数学的教学中,改变教师对数学的认识,提高大学数学教师的工程观,从而提高学生数学的应用能力和利用数学和计算机解决实际问题的能力。
四、结束语
1.高职数学建模课程现状。
数学模型(Mathematical Model)是用数学符号、数学式子、程序、图形等对实际问题的本质进行抽象解释进而预测未来的发展规律或者为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型的建立常常需要对现实问题深入细微的观察和分析又需要灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。数学建模在20世纪六七十年代进入一些西方国家大学的。80年代初将数学建模正式进入我国高校课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。
随着90年代末我国高等教育大发展,高职学生数学基础在不断下降。很多专科学校开始取消数学建模课程。以湖北为例,全省51所高职院校开设数学建模课程的不到三分之一,其中还有很多是以选修课讲座的形式开设。数学建模课程在高职高专中发展并不理想。原因有两点:一是学生数学基础较差。数学能力与数学素养都使得学生在学习数学建模课程时有很多的困难,老师教的也很吃力。二是数学建模课程设置缺乏创新,不适合高职教学现状。高职教育近年来在教学模式上都进行了很多的改革,而数学建模任然采用的是理论讲授的原始教学模式,学生对课程的兴趣也在不断降低。
把数学建模课程作为必修课开设的学校在湖北高职高专院校中很少,只有极少数院校。大多数院校是以选修课或者讲座的形式在开设。很多学生选择选修数学建模的原因只是为了拿到选修学分,真正喜欢数学建模的学生寥寥无几。而开设数学建模讲座的主要是针对参加数学建模竞赛的同学,类似于赛前培训,时间有限,学生率学到的东西也很有限。
2.高职数学建模课程教学改革。
数学建模属于应用数学的范畴,近年来数学建模风靡全世界。这也与高职院校培养高技能应用型人才的理念不谋而合。在高职开设数学建模课程对学生各方面能力的提升有很大的促进作用。为了改变数学建模课程在高职教学中的尴尬地位,化被动为主动,就需要我们对数学建模课程的教学做出改革。
(1)案例教学。传统的数学建模课程的教学主要采用的是大学数学教学的一贯做法。重视建模理论,建模方法的讲解。老师讲授为主、学生练习为辅。在高职高专中渐渐形成了学生听不懂老师讲得累的现象。很明显,数学建模课已不是传统意义上的数学基础课,如果仍采用传统的数学课教学方法,显然达不到开设数学建模课的目的。为了让学生自觉地把已学过的数学知识与我们周围的现实世界联系起来,使学生知道数学有用,怎样运用,应该在教学中,以典型实际问题的建模例子(即具体案例)作为教学内容,通过典型问题的建模示例,介绍数学建模的基本过程,掌握数学建模的思想方法。将上述指导思想贯彻到教学过程中,即案例教学法.案例教学法是最能体现数学建模课特点和目的的教学方法。
在进行案例教学过程中要注意一下几个方面。一是注重案例的选择。要体现教学的目的性、趣味性及学科代表性。二是在具体讲授是教师要作为引导者,学生成为课堂主体。老师少讲,学生多讨论,注重调动学生积极性。三是要注重利用现代技术手段,现代技术特别是计算机技术的发展使数学建模长上了腾的翅膀。
(2)分层教学。学生数学基础不牢,在学习数学建模课程中会出现很多的困难。在教学过程中应该循序渐进的安排教学内容,即教学内容的分层。在第一阶段,应以初等模型为主。这部分案例不需要太多太高深的数学知识。例如:商人如何安全渡河、双层玻璃功效等问题。第二阶段可以加入一些优化模型和微分模型。如:森林防火,人口的预测和控制。第三阶段介绍一些博弈模型和概率模型。如:人口模型。
分层教学还应该在学生上进行分层,对于不同的专业采用与专业相结合的案例教学。对不同数学基础的理工科专业和财经类专业选择不同的教学内容。
(3)考核方式转变。传统的数学课都是以分数的方式进行考核。即一张卷子、一支笔,在规定时间做出规定的答案。这样的考核方式本身与数学建模鼓励创新的精神相违背。也不利于数学建模课程的发展。可以变考试为考核。可以采用给出具体的研究问题在规定时间个人单独提交论文或者以小组的形式提交论文的方式考核。让学生自由发挥,以掌握建模思想方法为考核重点。把创新点作为加分项,鼓励不同看法。
【关键词】数学建模比赛;大学数学课程;分数系统;效用;SPSS相关性分析
一、学生调查
1.调查对象:①全国数学建模比赛:40支队伍参赛,队员来自于数学与统计学院、机电与信息工程学院、物理学院、商学院,共120名同学。其中获得全国奖的有6支队伍,省级奖的有20支队伍;②美国大学生数学建模比赛(MCM/ICM):共有32支队伍参赛,队员分别来自数学与统计学院、机电与信息工程学院、物理学院、商学院,共96名同学。其中获得一等奖1支队伍,二等奖的有11支队伍。
二、效用分数系统设计
首先调查对象所评价的单科课程分数平均值直接可用于表示单科课程的效用值,利用该值就能够表现和比较各单科数学课程与数学建模比赛之间的效用。由于每门课程的学分可以代表该门课程的学习难易程度与重要性,不妨就用学分大小数值作为课程的重要系数。而科目重要系数与总学分数的比值可以表示此科目在数学教育中所占的比重,利用此比值乘以各科的效用分数后求和,该值可以表示出所有科目与数学建模比赛之间的总效用程度。根据这些数据结果我们就可以分析他们之间的效用大小及相关性。
三、数据展示与分析
通过比较两个图,我们同样发现提高学习效用分数较高的科目同样是在数学建模比赛中运用较多的科目,这说明数学建模比赛题目对特定科目的直接要求要大于其它科目,运用的最直接最多的科目必然在提高该科目能力上比其它科目强,因此在提高学生学习能力的效用上有着表上所表现出的高低情况。并且从调查问卷的主观问题回答中,我们发现很多学生在数学建模比赛中并不能大量运用到书上所学到的知识,虽然是与这些科目完全相关,但是学生大多数情况下是在网络上获取相关知识,利用已经学会的课本知识去学习其它资源(网络与其它书本)上可能对该建模比赛题目有用的知识,进而把它运用到题目中去。并且从大量同学对调查问卷中一个问题(参加数学建模大赛你最大的收获是什么)的回答中,大多数同学认为数学建模大赛让他们深刻的了解到数学在实际中运用的意义和广泛的应用基础,激发其学习数学的兴趣,并大大提高了自身的综合能力,比如从大量资源里面查找到相关资料、团队合作的能力、独立思考能力、论文写作能力等。
在对调查问卷统计后,学生在导师对数学建模比赛中效用一问所打分数的平均值为6分,众数为6分,也有一部分同学打分较高。大多数学生表示老师在比赛中的效用并不是很大,一般也不能在题目解答上提供较直接的帮助,但学生同时也表示老师能扩宽同学思考题目的思路且在最后修改论文所提供的帮助非常大。
数学科目与数学建模比赛相互总效用表
主要原因:数学建模比赛对一些高学分的基础课程如数学分析、高等代数等科目的要求并不如其它科目直接,然而基础课程在大学数学教学环节中所占比重又较大,其中数学分析学分高达18分,高等代数学分高达10分,所以导致总效用不高。
次要原因:数学建模比赛题目对课本知识要求也不直接,通常是根据已学会的知识去掌握学习其它资源的知识,导致学生对各科目的效用分数打分不高;两大数学建模比赛的题目选择性较少,导致对不同科目相关性的覆盖面较小。
四、SPSS相关性分析
首先选取各个课程的效用平均值作为分析对象,再利用SPSS从得到两组数值之间找到一种关系来刻画这种相关性的程度大小,之前的分析属于一种主观性的分析,以下作为效用相关性的客观分析。在利用SPSS软件分析中,我们采用两种检测方法即用Kendall秩相关系数与Spearman秩相关系数值来描述两者之间的相关性,数值越接近1表示他们之间的相关性越接近于完全正相关,如上图所示,Kendall秩相关系数的值为0.812,Spearman秩相关系数的值为0.865,这两组的数值都非常接近1,说明两者彼此之间的联系十分紧密,数学建模比赛确实能有效提高学生学习数学科目的能力,同时也说明各数学科目也能在数学建模比赛中得到充分的效用,这项活动对大学生数学教育是十分有效的且有意义的。
参考文献:
[1]姜启源,谢金星,叶俊.数学模型(第三版)[M].高等教育出版社.
[2]孙成功.数学建模课程和数学建模竞赛的教育功能研究[J].天津科技大学理学院.