时间:2022-09-05 09:45:12
导语:在高分子化学论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词: 高分子化学 教学改革 教学实践
高分子化学是材料化学、应用化学及其相关专业的专业基础课,与四大化学并列,已成为第五大化学。能否学好该课程直接关系到高分子物理、材料合成与加工学等后续课程的学习,学好并熟练运用课程的专业思想和思维方法,在学生将来的科研和工作中将发挥直接或间接的作用。鉴于高分子化学这门课程的重要性,如何深入进行教学改革,如何利用有限的教学时间和教学资源有效地将高分子化学专业知识传授给学生,并能够指导实践应用,就成为众多教学工作者的共同目标。
一、高分子化学教学的主要难点
(一)高分子化学的发展历史较短,许多理论尚不成熟,随着新的聚合方法和新的合成技术不断涌现,对传统的高分子化学概念提出了挑战,并极大地丰富了高分子化学的内容。
由于课时及其他客观原因的限制,教师往往把所有内容全部灌输给学生,“填鸭式”的教学模式会使学生产生乏味厌学的情绪,学生易出现“被动学”、“死记硬背式学”等问题[1]。
(二)高分子化学理论性强,学生理解困难,适时恰当地采用多媒体教学能使抽象的教学内容具体化、清晰化。
从学生反馈的信息来看,普遍认为教师在使用多媒体授课时只是展示根据书本内容制作的幻灯片,有些幻灯片重点不突出,且没有深系到实际生活和生产的经验,不能完全激发学生对高分子化学学习的专业自豪感;又加之教师授课时缺乏与学生互动交流,课堂气氛不活跃,出现来不及记笔记、不利于学生复习等情况,久而久之,就会影响学习的主动性和兴趣性,达不到理想的教学效果。
二、高分子化学的教学实践与探索
(一)讲解重点突出,创新教学内容。
教师在选好教材、消化、吸收和融合教材内容的基础上,要处理好“干”与“枝”的关系,在课程内容方面做到重点突出、主次分明。在授课时要避免将教材内容“填鸭式”灌输给学生,应有针对性、侧重点讲解,少讲精讲[2]。如限于课时紧等原因,在讲解聚合方法时,由于此部分内容多数比较简单易懂,可以略讲。但对于自由基聚合反应要重点讲解,让学生对自由基聚合的机理、聚合速率、动力学链长、聚合度和聚合度分布等重要知识点要深入地理解并能加以灵活运用,这样可以有重点地完善学生的知识结构,满足实践应用的需求。同时,要不断更新、创新教学内容。在教学中,教师可以及时地在传统教材内容的基础上补充近年发展起来的前沿科学技术和研究方法,也要关注国内外重要期刊上的最新报道,在课堂上结合国内外的最新研究进行讲解与介绍,并推荐一些期刊、数据库和书籍给学生,引导学生根据自己兴趣自由地学习,扩大学生的知识面,建立知识结构,引导学生探索高分子化学领域。
(二)加强师生互动教学,发挥主观能动性。[3]
在教学中,互动式教学能有效地改变“老师主动讲,学生被动听”的“一言堂”式的教学模式。教师要多与学生眼神交流,用情绪感染学生,引导学生“多想善思”,讲课时语言要清晰流畅,抑扬顿挫,引导学生“勤学好问”。重要的是,在讲课时可穿插有关高分子的小知识、小故事,尽量将生活中常见实例与理论知识相联系,努力为学生营造生动活泼的课堂文化氛围,使学生自觉、主动地接受知识。如:在讲到聚酰胺、聚酯时联系到我们日常穿衣用合成纤维的尼龙、涤纶,学生戴的隐形眼镜、普通眼镜的树脂镜片都是特殊的高分子材料。联系生活中的常见实例有利于学生更深刻地掌握课程内容。在课堂上,多采用启发性的多种教学方法,合理安排课堂反复提问、反复练习、反复分组讨论等互动式教学,加深学生对所学知识的理解,提高教学质量。
(三)多渠道联系实践,培养自主学习能力。
随着如今高分子材料发展的迅猛,教材的教学内容已远远不能满足现代教学的需要,在课堂教学中应把高分子化学领域最新的科技动态、学术前沿有机地渗透到课堂内容当中,给学生多介绍一些近年来高分子化学的最新成果、最新理论,开阔学生的视野。如医用上介入诊疗的各种高分子管材、可降解的手术伤口缝合线、有机高分子发光二级管用于手机、数码相机显示和照明等。针对学生在高分子课堂教学中讨论比较感兴趣的话题,或者是高分子化学前沿领域的新方法、新技术等,可鼓励学生到图书馆和互联网上查找资料,撰写小论文,制作幻灯片,并在课堂上为大家作知识讲座,营造合作探究、自主学习的氛围。同时,也可关注网络上以高分子为主题的论坛,通过与网上的专家、学者的交流,调动学生探知高分子知识和应用领域的兴趣,培养主动学习的能力,激发研究兴趣。
(四)选择合适的教学内容,不断完善多媒体教学。
1.适时使用拿来主义,做到因材施教。
教学是一个个性化的过程,不同的教师有着不同的授课思路、方式与方法。一般来说,可以借助别人的课件作为启发自己的思路,但是,这种“拿来主义”绝不应成为主要依赖的对象。由于学生的层次不同、专业不同、对知识的接受能力不同,教学过程中好的方法可以借鉴,但重要的是要根据学生的需求、教材体系、自己的教学经验、教学思想使用自主开发的课件。尤其是在课件中更应该增加一些理论联系实际的例子,比如聚合物合成工艺和聚合物应用等实践应用方面的内容。
2.将多媒体教学与传统教学手段相结合。
多媒体教学具有传统教学手段不可比拟的优势,能更直观、更形象和生动地传导高分子化学的魅力,并能有效地扩充知识的广度和提高课堂的利用率。特别是需要向学生演示情景的内容,采用多媒体教学就更有优越性。如在讲解乳液聚合机理这一节,采用了动画方式形象演示了胶束成核的机理和乳液聚合过程的三个阶段,帮助学生理解,印象深刻。但是先进的教学手段并不一定能达到良好的教学效果,关键在于多媒体技术如何与传统的教学手段相结合,从而实现它应有的价值。如在高分子化学的课堂授课中,讲述自由基共聚理论推导公式时,就应该采用黑板板书的方式一步步进行推导,同时采用启发式方法调动学生积极性,促进学生主动学习和思考。
3.采用多种手段完善多媒体教学。
采用多媒体教学,教学信息量大,进度快,学生在课堂上有效掌握大量的理论难度较大,因此要做好课后辅助工作。不断完善网络教学平台,将多媒体课件、课后复习材料、教学重点、习题题库及小知识、小贴士等内容在学校的教学网络中充实完善,这样既有利于学生课后复习,又能加深学生对所学知识的掌握和应用。另外,还可利用各种化学软件、网络资源和视频等多种手段展示各种反应模型,特别是一些三维立体模型,启发学生思考,激发学习兴趣。在教学中逐步渗透双语教学,可以有意识地把新出现的专业词汇和标题用英文书写,能有效提高和丰富学生的专业词汇量,对收集到的专业文章,采用多媒体的形式讲解,又可以提高学生的专业阅读水平,这样,能帮助学生提高对专业英语的学习兴趣,为今后的毕业论文撰写及工作实践打下坚实的基础。
三、结语
高分子化学课程教学改革是一项系统的工程,总结近几年来的教学实践,笔者认为,以人文本,转变观念,因材施教是探索高分子化学课程的有效途径,合理有效地利用多媒体,不断完善网络教学平台,逐步渗透英语教学是实践高分子化学课程教学的有效手段,而创新教学内容、加强互动教学,培养学生学习的主观能动性是搞好高分子化学教学的前提条件。我们将不断地继续深入研究与探索,使高分子化学的教学不断适应新形势发展的要求,为培养高分子领域优秀人才作出不懈努力。
参考文献:
[1]唐忠锋.高分子化学多媒体教学中的问题及对策研究[J].广西工学院学报,2007,18(6):115-116.
[2]魏宏.浅谈高分子化学教学与改革[J].广东化工,2010,37(10):186-187.
1. 编写具有特色的实验教材
实验教材是学生实践课程的主要学习工具。为使学生通过实验更好的验证课堂教学理论,我们根据本校的实验条件编写了供高分子化学实验课程使用的参考资料。其特点在于所含聚合反应类型全面,实验贴近生活、有趣味性,制备了一些生活中常用的高分子产品,安排了一些探索性、设计性以及综合性实验,以调动学生的学习兴趣,培养学生在实验过程中发现问题,解决问题的能力。
2. 建设实验课程网站
建设实验课程网站,把可开设的实验都列入其中,并将实验大纲、讲义和课件等内容都放在网络上,让学生充分了解课程安排、课程要求等课程信息,可通过网上的资料提前预习实验项目,了解实验过程中的注意事项等。同时,网站的建设加入了对实验步骤、仪器构造、操作规程等的介绍,避免了实验开设过程中不必要的讲解时间,增加学生自主学习的时间和空间。
在高分子实验课中开展网上选课,将所有实验的信息放在网上,让学生在可开设的实验课范围内选择自己感兴趣的实验,提高学生求知的主动性和积极性。
3. 改进实验教学项目
高分子化学是一门以实验为基础的自然科学。传统的实验课程内容主要是验证性实验或指导性实验,是促进学生形成化学概念、理解和巩固化学知识的一种手段, 是一种依附于概念和理论的添加剂,处于一种从属地位,学生仅仅是按照教材已经规定好的实验操作步骤做一些重复性的工作,缺乏系统性、探索性和实用性,学生的学习主动性不高[2]。为适应高分子科学的飞速发展, 培养学生对高分子化学学科学习的主动性,激发学生去了解、学习、探索高分子化学的学科领域及高分子材料的来源,提高学生的动手能力、思维能力、求异能力、创新能力和科研能力,有必要对高分子化学实验教学项目进行改革和探索。
为使学生毕业后尽快适应突飞猛进的高分子领域, 我们认真做好现有教材的知识传授,结合重庆理工大学高分子材料科学与工程专业的特点及实际情况,精选出具有代表性的基础性实验,旨在让学生掌握高分子化学的基础理论和基本操作技能与实验方法。
由于基础性实验大多都属于验证性实验,创新性不强,教学内容僵化,不利于学生创造思维能力的发挥,不利于培养学生分析问题和解决问题的能力,学生的动手能力受到一定的限制,甚至可能使部分学生产生惰性的问题[4]。因此,我们对基础性实验进行了一系列调整,例如在制备聚甲基丙烯酸甲酯的实验过程中,我们让学生在制备的过程中,将自己的大头贴等嵌入制件,自制钥匙扣,手机链等小工艺品,这样大大调动了学生的积极性,在制备的过程中,学生更加积极的思考,并与老师交流互动,明显提高了教学效果。在增加趣味性实验的同时,我们还开发了一些联系生活实际的应用型实验,在实验中突出材料的有用性,使学生亲自体验高分子化学实验的实用价值, 激发创造动机。
此外,我们改一些基础性、验证性的实验为探索性、设计性的实验。让学生自主选择实验所用药品并设计实验过程,最终制得产物。由于不同的学生的实验过程不同,使得学生在实验过程中认真观察,对实验过程中的问题积极思考并与指导老师交流。通过这样的过程不但对实验的基本理论、基本概念理解更加透彻,同时提高了学生的思维逻辑性、严密性,对学生的全面发展具有积极的促进作用。
在学生都具备一定的实验基础,掌握了一定的实验技能后开设具有工程特色的综合性实验项目,这些项目可以是老师的科研项目,也可以是学生自主设计开发。要求每位学生进行一个综合实验,通过教学与科研相结合,学生可以系统地掌握原料的合成、高分子材料的制备及高分子材料性能与表征方法。用高水平的科研带动实验课教学,实验结束后,要求学生以论文形式完成实验报告,并认真分析讨论实验结果,分析实验成败的关键。综合实验项目有利于提高学生的科研能力、创新意识和综合分析能力。
4. 完善实验考核方式
为了客观、全面地反映学生的实验综合能力,我们完善了实验的考核方式,将实验成绩分为四个部分:(1)平时成绩,占总成绩的10 %,主要包括:出勤、预习报告、回答问题等;(2)操作成绩,占总成绩的30 %,主要包括:仪器的安装、操作的规范性以及实验安全,实验卫生等;(3)实验报告成绩,占总成绩的30 % ,主要包括:实验目的与原理及实验步骤及现象、结果与讨论等;(4)实验考试成绩,占总成绩的30%,教师根据本学期所开实验内容,提出考试题目,重点考核实验机理、仪器的安装与拆卸、实验过程与现象,学生随机抽题,现场完成。以上实验考核方式的完善,有利于改善学风,提高学生的主观能动性与实验综合素质。
英文名称:Polymer Materials Science & Engineering
主管单位:国家教育部
主办单位:四川大学
出版周期:月刊
出版地址:四川省成都市
语
种:中文
开
本:大16开
国际刊号:1000-7555
国内刊号:51-1293/O6
邮发代号:62-67
发行范围:国内外统一发行
创刊时间:1985
期刊收录:
CA 化学文摘(美)(2009)
CBST 科学技术文献速报(日)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
中科双效期刊
Caj-cd规范获奖期刊
联系方式
英文名称:武汉大学自然科学学报
主管单位:中华人民共和国教育部
主办单位:武汉大学
出版周期:双月刊
出版地址:
语
种:英语
开
本:大16开
国际刊号:1007-1202
国内刊号:42-1405/N
邮发代号:
发行范围:国内外统一发行
创刊时间:1996
期刊收录:
CA 化学文摘(美)(2009)
SA 科学文摘(英)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
核心期刊:
期刊荣誉:
联系方式
关键词:创新;研究生;课程教学;改革与实践
作者简介:刘锁兰(1980-),女,江苏泰州人,常州大学信息科学与工程学院,副教授。(江苏 常州 213164)
基金项目:本文系常州大学教学研究课题“计算机科学与技术一级学科研究生课程体系建设的探讨”(课题编号:GJY11020020)、“计算机科学与技术专业实验教学体系的优化设计与实践”(课题编号:GJY12020056)、“合作式教学模式的研究与实践”(课题编号:GJY11020046)、常州科教城院校科研基金“常州科教城协同创新公共平台运行机制研究”(项目编号:K2012303)的研究成果。
中图分类号:G643.2 文献标识码:A 文章编号:1007-0079(2013)28-0132-02
研究生教育是国家创新体系中的重要组成部分,肩负着为国家培养高素质、高层次创新型人才的重任。研究生教育主要包括两个方面:一是课程教育,二是科研教育。研究生创新能力的培养应该贯穿研究生教育的整个过程,而课程学习作为研究生培养的重要环节,对研究生创新能力的培养起着至关重要的作用。
然而,当前研究生课程教学普遍不受重视,主要强调论文,学生只是为了满足学分要求而选课,教学和考核要求偏低;部分导师也轻视课程教学,要求学生尽早进实验室。学生在本科阶段主要是基础知识的学习和基本技能的培养,科研能力一般还比较薄弱,直接从事研究活动在知识面和科学思维能力方面尚显不足。而研究生课程教学正是其中的过渡阶段,实际上,通过课堂系统教学,可以使学生对一个研究领域有完整系统的认识,熟悉相关的研究方法和研究思路。通过不同课程的学习,可以了解不同领域的研究现状,便于学科领域的交叉和研究方向的拓展。一般课题组往往局限在较窄的研究方向,这些内容很难在研究工作中学习到,或者需要自己花费更多的时间和精力摸索。缺失了这部分的学习,学生的知识面往往较窄,科研思路局限性较大,对学生的后续发展不利。然而,在美国研究生教育中课程设置安排灵活性较大,都设置有一定数量的必修课和大量的选修课,非常重视学科渗透和文理交叉,以便使学生能够更好地进行专业转换和知识更新。除必修课程外,导师对其它课程的干预不多,研究生可独立地计划自己要学的课程,给研究生选课以更大的自主性。另外,跨学科培养已成为美国研究生教育的发展趋势。因此,加强课程学习不仅是我国研究生培养模式的要求,是对我国教育现状和研究生创新能力培养现实不足的弥补,还是国外研究生教育发展的共同趋势。
教学模式与方法的发展和实践经验表明,教学有法,法无定法,法贵在活。研究生课堂教学尤其要注重从学生实际出发,从课程特点出发,提高课堂教学有效性。具体而言可从改进教学计划、凝练教学内容、完善教学体系、优化教学方法、活用考核方式等方面入手,增强课堂教学自身活力,提高教学质量。
一、改进教学计划
教学计划是规定研究生教育培养目标和培养方式的提纲性文件。科学的教育计划应该把理论知识、实践能力有机地协调组织起来。目前的研究生课程设置中,总学分要求约30学分,公共课程(英语和政治)8学分左右,专业必修课10学分左右,专业选修课10学分左右,讲座2学分。专业必修课一般讲述专业领域基础理论的最新发展,专业选修课为各分支领域的发展情况,一般根据学校教师的研究方向选定,不同学校各有侧重。这样,研究生学习专业课程一般为8门左右,必修、选修各半。如何在这样的课程体系下既顾及学生的专业宽度和学科交叉,不至于每个领域都是浅尝辄止,浮于表面,又兼顾博与专,这是计划制定时必须考虑的问题。一种比较有效的方法是把课程按领域的临近程度划分模块,每个模块有基础类(先修)和应用类(选修)课程。由于学科领域交叉,不同模块可能有课程重叠。规定学生选择两至三个模块,每个模块包含学习基础课程和1~2门应用类课程。这样可以保证学生涉足不同领域,同时对所学领域的理论基础和研究方法都有所了解,便于以后在该领域的发展。例如,常州大学高分子化学与物理专业主要有聚合物分子设计、功能高分子、高分子加工三个研究方向,即可设置三个课程模块,聚合物分子设计以高等高分子化学为基础,包含聚合物结构设计、超分子化学、光谱波谱等一系列课程;功能高分子以现代有机合成为基础,包含材料表界面、纳米材料、生物高分子材料等一系列课程;高分子加工以聚合物结构与性能为基础,包含聚合物共混原理、聚合物反应性加工进展、聚合物流变学等一系列课程。除此之外,聘请企业和研究机构的专家学者举办各种讲座,可以拓宽研究生的眼界,作为课程教学的重要补充。
二、凝练教学内容
研究生课程相比本科课程更为深入,涉及面更宽,内容更为繁杂。例如,高分子化学中自由基聚合仅需掌握普通自由基聚合的原理即可,而高等高分子化学中涉及可控自由基聚合,就需要掌握iniferter、氮氧稳定自由基聚合、原子转移自由基、基团转移聚合、可逆加成断裂链转移聚合等一系列聚合反应原理。功能高分子课程如果作为本科课程,一般仅要求对各类功能高分子的结构和功能性有一般性的了解即可,而作为研究生课程,则会要求掌握其制备方法及作用原理等更深层次的内容。因此,如何在有限的授课时间达到更好的教学效果,是每个教师需要认真考虑的问题。满堂灌的方法肯定收效甚微,研究生应具有更强的自学能力,而课堂讲授内容应对学生自学起到引导作用和示范作用。所以,教师对教学内容应加以凝练,相同或相似内容选择重点,进行启发式教学,引导学生通过比较和模仿进行自主学习。
三、完善教学体系
完整的课程教学体系应包括教学和反馈机制,并且应是过程化和常态化的,而非一次性反馈。研究生课程多为小班教学,教师接触学生机会较多,更便于经常倾听学生想法,了解学生对课程内容掌握的情况,以及对课程领域的兴趣和看法。多收集这方面的信息,便于教师因材施教,随时调整授课内容的侧重点和授课方法(由于专业课程,尤其是前沿科学发展变化很快,研究生课程对课程大纲限制较松,教师自主性可以得到较充分发挥)。
四、优化教学方法
研究生教学应凸现科学研究思路和方法的培养,而目前很多研究生课程(尤其是专业基础课)仍沿用本科教学模式,重视理论体系的传授,而忽视创新方法的培养。这也是很多导师认为研究生课程效果不大,可有可无的重要原因。在这方面,从国外的教学模式可以得到一些启发。例如,英国曼彻斯特大学研究生课程都不设统一或规定教材,包含讲授课(lecture)+讨论课(tutorial)两种形式,比例差不多各占一半,讲授课就某个专题作简单全面的指引,并列出主要参考文献,由学生自己课下学习,再分组讨论交流。目前国内热衷于出版教材,而教材的使用对于研究生教学有利有弊,虽然可以使课程内容更加严谨完善,但却增加教师和学生对教材的依赖性,丧失了自行对原始文献归纳总结和分析的机会,导致很多研究生在进入课题研究阶段之后很长时间内,文献阅读和分析的能力还很薄弱。教材或讲授内容过细,学生的思维能力发展也会受到制约。因此,研究生课程教学应重视原始文献。这样,一方面可以使学生接触到最新的研究成果,另一方面可以锻炼学生的文献阅读和分析能力,进而掌握科学研究的思路和方法。
五、活用考核方式
进行教学评价,是实现全面管理和指导基层改革与发展的重要手段,同时也是大力推进研究生教育、教学改革与管理改革的有力举措。研究生课程有其特殊性,课程比本科深,而学生基础差异很大,尤其一些交叉学科领域课程更是如此。因此,对研究生评价要因人而异,因课程而异,不以卷面考试成绩为唯一依据,要考虑实践环节和实际能力。例如,可以通过专题讨论的方式,根据个人在专题讨论中的表现来考核。这样,每个学生可以选择和自己专业方向更接近或更感兴趣的内容,这样相对更为公平,也更加能够体现学生的科研能力。
六、结语
我国的研究生培养已具规模,必须根据研究生的特点,强调研究能力的培养目标,注重研究生学习自主性、能动性以及分析问题和解决问题能力的培养,加快研究生教育模式的改革和创新,切实提高研究生的培养质量,实现研究生的培养目标。
参考文献:
[1]宣兆龙,李慧.提高研究生课程教学有效性的三个关键环节[J].长春理工大学学报,2011,(24):121-122.
[2]余峰.基本创新能力的研究生培养模式改革研究[D].武汉:华中师范大学,2009
[3]唐忠顺.基于可持续发展理念的研究生课程教学改革[J].中国电力教育,2012,(34):148-149.
[4]董永平.学位课程教学过程中研究生创新能力的培养[J].安徽工业大学学报,2011,(28):108-109.
关键词:高分子材料与工程;应用型转变;人才培养
中图分类号:G642
文献标识码:A 文章编号:16749944(2017)09024202
1 引言
2015年10月21日,教育部、国家发展改革委、财政部联合了《关于引导部分地方普通本科高校向应用型转变的指导意见》(教发[2015] 7号),至此地方高校转型发展成为国家深化高等教育领域综合改革的一项重要部署[1]。鉴于高校转型发展的新形势,辽宁省于2015年确定首批10所高校116个专业开展应用型转型试点工作,辽宁石油化工大学高分子材料与工程专业为其中试点之一,作为以“工科为主、石油化工为特色”的辽宁省属综合性重点大学以及卓越工程师教育培养计划试点高校,辽宁石油化工大学率先迈出了应用型本科转型改革的步伐,积极响应我国高等教育改革方针,明确了该校应用型人才的培养目标。高分子材料与工程专业针对应用型转变下,如何加快应用技术人才培养,以提升高校服务经济社会发展能力,开展了一系列的改革与探索。
2 辽宁石油化工大学应用型人才培养定位
应用型本科教育本着立足地方、面向全国、依托行业、服务区域经济发展的原则,以行业需求为人才培养目标[2]。与研究型大学以及高职高专的定位不同,该校立足于打造高水平应用型大学,高分子材料与工程专业的人才定位为 “创新应用”型人才,即培养的学生不仅能胜任操作生产设备等一线生产工作,而且还具备较高的创新知识能力。为达到此目标,在大学四年的培养教育过程中,学习理论知识、培养实践动手能力以及实践科技创新方面要三管齐下,使学生具备完整的理论知识体系,运用学科专业知识应用于实际的能力以及创新的逻辑思维。其就业领域主要面向国内外大中型科技生产企业的一线生产、检测及产品研发岗位,经过一定时间的锤炼并最终走上各企业的中高层核心岗位,并成为企业骨干力量。
3 “创新应用”型人才培养模式改革
针对以上定位,在课程体系,实践环节以及本科生科技创新方面开展了一系列的探索与改革。
3.1 课程体系和教学方法改革
由于高分子材料种类繁多、来源丰富,而且各高校开设此专业的背景以及所依托的优势学科也不尽相同,所以其培养模式和教学内容侧重点均有所不同[3~6]。专业核心课程是人才培养的核心要素,我校依据自身优势,设置的专业核心课程有《有机化学》、《物理化学》、《材料科学与工程基础》、《高分子化学》、《高分子物理》、《聚合物流变学》、《高分子材料研究方法》、《高分子材料成型加工原理》、《聚合物共混改性》、《高聚物合成工艺学》。通过对这些课程的学习,学生具有拓展自己知识和创业的能力,具有较扎实的自然科学基础、材料科学与工程的基础理论和高分子材料与工程的专业知识。同时,在教学过程中高校教师要避免填鸭式教学,大力推广启发式、案例式和研讨式教学,让学生更多地参与到课堂教学中去,在分析、讨论和解决问题的过程中理解、应用所学到的专业知识,并且能够识别、表达高分子材料成型加工与改性相关的工程问题,最终利用科学基本原理进行合理分析。对于一些专业核心课程,我们还进行了慕课的建设以及推广校际课程学习,全面利用课上和课下时间,结合网络,调动学生全过程学习的积极性。
3.2 实践环节改革
实践教学环节是培养学生动手能力的关键环节,我们主要开展的实践性教学环节包括工程训练、生产实习、计算机在材料科学中的应用、课程设计、高分子材料创新实验、毕业设计(论文)等,共计36学分。①计算机在材料科学中的应用和课程设计模块,运用理论知识进行综合性训练;②通过工程训练与生产实习进入高分子材料相关企业检测、生产岗位,熟练生产设备与职业技能、感受企业文化生活;③在高分子材料创新实验,毕业论文环节进入学术课题组,以中高级职称教师作为指导教师,参与国家级,省级以及企业工艺改进、产品研发等项目,培养学生的应用能力;④积极开展校企联合,邀请相关高分子材料优秀企业的工程师来校分享企业生活,开展技术专题报告。经过多层次、多维度的能力培养及实践教学环节,学生能逐步将专业理论知识与实际应用相结合,最终转变成牢固的职业技能,并可以进一步提升。
3.3 科技创新教育开展
“创新应用”型人才培养的最终目标是使学生具备创新能力,具有开拓精神,因此,我们开放实验平台,以大学生挑战杯、大学生创新创业大赛、大学生工业设计大赛、以及各个教师的国家省级科研项目等为依托,鼓励学生参与,在导师的指引下,完成项目应用专业知识,并获得各种荣誉或专利等,经过此过程的培训,学生的创新能力会得到大幅度的提高。
4 结语
高分子材料与工程专业“创新应用”型人才具有应用和创新能力的双重保障,在职业发展上有更大的空间,既符合用人市场对人才的需求,又符合学生成长的长远规划。以学生为本,是高校的发展之基,也是满足社会经济发展对专业人才培养的需求,应用型转变应以促进学生能力的培养和行业对人才需求之间形成良性循环为主旨,而我国地方普通本科高校向应用型转变仍需在探索中不断前行。
参考文献:
[1]张 威.地方高校转型发展政策的制定与实施路径[J].教育与职业,2016(8):26~27.
[2]李宏胜,陈 桂.应用型本科人才培养方案制定过程的思考[J].中国现代教育装备,2011(21):108~110.
[3]张宝莲,魏冬青,杨学稳,等.材料化学专业定位及课程体系的思考[J].高等建筑教育,2007,16(4):93~95.
[4]文 胜,龚春丽,郑根稳,等.材料化学专业课程体系的改革与建设[J].孝感学院学报,2010,30(3):109~112.
[5]董秋静,罗春华,韩 燕,等.教学型高校材料化学专业定位及课程体系思考[J].广东化工,2009,37(9):228~230.
关键词 高分子物理 实验教学 综合设计性实验
中图分类号:G642 文献标识码:A
高分子物理实验是高分子物理的重要组成部分,它既可以帮助学生建立和巩固高分子物理方面的基本概念和理论,又可以培养学生的动手能力和创新能力,其教学质量的高低直接影响到人才培养质量。合肥工业大学开设的高分子物理实验项目有:偏光显微镜观察聚合物结晶形态、粘度法测定高聚物的分子量、膨胀计法测定聚合物的玻璃化温度、电子拉机测定聚合物应力-应变曲线、聚合物熔融指数的测定。这些实验均为验证性实验,学生只需在实验过程中按规定的操作步骤即可完成实验,不利于发挥学生的主观能动性,特别是不利于培养学生的创新意识。因而,高分子物理实验教学改革势在必行。笔者给合多年的实验教学经验,在以下方面做了教改尝试。
1 调整实验项目,增加综合设计性实验
此次改革的重点是在原开设的验证性实验的基础上增开两个综合设计性实验。综合设计型实验要求学生根据实验目的与要求,调研文献资料,选择原料与配方,设计实验方案。
首先以“支化对聚乙烯性能的影响”综合设计性实验为例加以说明:
下面是一个比较突出的设计方案:(1)使用示差扫描量热计(DSC)测定样品的结晶温度、熔融温度、结晶度。通过比较使学生明白支化破坏了链结构的规整性,使具有支化结构的低密度聚乙烯(LDPE)的结晶温度、熔融温度及结晶度低于具有相对规整结构的高密度聚乙烯(HDPE);(2)采用偏光显微镜观察HDPE、LDPE的球晶形貌。通过比较使学生明白LDPE的晶体完善程度低于HDPE;(3)采用电子拉力机测定样品的应力-应变曲线,通过比较使学生理解支化对聚合物力学性能的影响规律;(4)采用邵氏硬度计测定样品的硬度,通过比较使学生理解为什么HDPE适合制作管材,而LDPE适合用于制作薄膜;(5)采用热变形温度仪测定样品的温度-形变曲线,通过比较使学生理解结晶度对PE温度-形变曲线及热变形温度的影响。
通过上述实验,能使学生对高分子学科中的聚集态结构、聚合物分子运动及聚合物物理性能之间的内在联系有更清楚的认识。
第二个综合设计性实验为“增塑剂对聚氯乙烯性能的影响”,下面给出一个比较突出的设计方案:(1)使用邵氏硬度计研究增塑剂对聚氯乙烯(PVC)硬度的影响,使学生理解增塑剂使PVC硬度下降的机理; (2) 采用电子拉力机测定样品的应力-应变曲线,通过比较使学生理解增塑剂对聚合物力学性能的影响原理;(3)采用DSC研究增塑剂对PVC玻璃化温度的影响,使学生理解增塑剂的“屏蔽氯原子”及降低分子间作用力效应,从而导致PVC玻璃化温度下降的原理;(4)采用热变形温度仪测定样品的温度-形变曲线,通过比较使学生了解增塑剂对PVC热变形温度及粘流温度的影响。
该实验能使学生对聚合物分子运动、玻璃化转变、粘弹转变、聚合物物理性能等抽象概念有更清楚的认识,并理解它们之间内在的联系。
实施结果表明:综合设计性实验的开设激发了学生的学习兴趣与创新意识,促使学生对所学理论知识的理解与融会贯通,提高了学生运用知识分析与解决问题的能力。
2 综合研究性实验的实施方法
(1)查阅文献资料。要求学生根据所选择的综合研究性实验项目查阅文献资料,锻炼其检索科技情报的能力。
(2)确定实验方案。在充分阅读文献资料的基础上,小组成员之间展开讨论,设计初步的实验方案,确定原材料、配方、成型加工方法、测试设备及测试条件等。并在教师的指导下修改与完善实验方案。
(3)实验研究。学生按照所制定的实验方案进行实验研究,并将实验结果及时向指导老师汇报,以确定实验数据的有效性,若实验数据无效,学生们要重新实验并获取新的数据。
(4)撰写实验报告。实验报告要求按照研究论文的格式书写,内容包括:论文标题、作者姓名、作者单位、中英文摘要、关键词、前言、实验部分、结果与讨论、参考文献。
(5)小组报告。以小组为单位采用PPT进行报告,学生主要就研究思路、实验结果与讨论进行陈述,陈述完毕后,评委教师提出相关问题,学生予以回答。
(6)成绩评定。指导教师可综合查阅文献、实验报告、小组报告、交流和提问、考勤等评定成绩。
3 结语
通过以上两个综合设计性实验的初步实施,教学效果反映优良。在以后的高分物理实验教学中,将继续尝试一些新的综合设计性实验。
基金项目:合肥工业大学2010 年度教学研究项目(XJ 2009207)
参考文献
[1] 李谷,冯开才,卢江,等.高分子物理实验教学新尝试[J].大学化学,2007.22(4):42-44.
[2] 王冬梅,周俐军,张士强.工科高分子专业的高分子化学与物理实验教学的几点体会[J].高分子通报,2009.4:71-74.
关键词:培养计划;培养目标;材料科学与工程;麻省理工学院
欧美国家在20世纪60―70年代开始设立材料科学与工程系。名称变更反映了对材料领域研究认识的变迁,即“材料研究需要依据其行为和特征,而不是依据材料类型来进行”。1998年教育部对材料类本科专业目录进行了调整,将原来划分过细的十多个材料类小专业合并成了现在的冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、材料物理、材料化学等六个专业。同时,在引导性专业目录中还设置了材料科学与工程一级专业。虽然以材料科学与工程一级大学科来设置专业是必然趋势,但材料科学与工程人才培养模式仍在探索之中[1]。同济大学当年就设置了材料科学与工程本科专业,期望以欧美的模式来培养材料学科人才。实际上,早在20世纪80年代,当时的同济大学建筑材料工程系就为建筑材料专业的本科生开设了材料科学导论、断裂力学、表面物理化学和传热、传质与动量传递(简称三传)4门基础课程。近几年因为参与学院材料科学与工程专业培养计划的修订工作,查阅了国内外许多大学这个专业的培养计划,国内高校在材料科学与工程专业培养计划上的认识一直存在争议。美国麻省理工(MIT)材料科学与工程专业本科培养计划的公开信息最多,不仅有课程列表和学分要求,还有课程的详细简介。尤其是麻省理工的开放课程服务(OpenCourseWare),使得我们还能够进一步了解课程大纲和部分内容。此外,MIT材料学科是USNews全美排名第一的,他们的培养
计划应该具有更好的借鉴意义。本文在反复仔细研究其有关本科培养的各种公开资料的基础上,对其培养计划进行了分析,结合自己的教学工作实践,总结了一些心得体会,希望与国内同行共享。
一、麻省理工材料科学与工程专业的培养计划
MIT材料科学与工程系设3个专业(Course)。其一为一般意义上的材料科学与工程专业(Course 3),学生所得学位是材料科学与工程理学学士(Bachelor of Science in Materials Science and Engineering),其所授学位是被ABET(Accreditation Board for Engineering and Technology,美国工程与技术鉴定委员会)授权的,绝大部分学生都选读这个专业。其二为课程选择度更大的一般专业(Course 3-A),这个专业的毕业生将获得没有特别指定专业领域的理学学士(Bachelor of Science without specification)学位,系里并不寻求ABET对这个学位的授权,只有很少学生选择这个专业,常常是医学、法学、MBA预科生选择这个专业。第三是考古与材料专业(Course 3-C),学生所得学位是考古与材料理学学士(Bachelor of Science in Archaeology and Materials),系里也不寻求ABET对这个学位的授权。从系里是否寻求对所授学位授权就可以看到,MIT材料科学与工程系本科生的主要专业是一般意义上的材料科学与工程专业(Course 3)。后面的讨论主要针对Course 3的培养计划进行。
1. 课程和学分要求
该培养计划的要求包括:(1)MIT的一般要求,共17门课程,其中自然科学6门,人文社科8门,限选科技课程2门,实验课程1门。(2)交流能力课程(Communication Requirement)4门。(3)系内课程,包括一套核心课程(Core subjects,共10门课),一个论文或2个实习以及4门限选课程,合计184~195学分。其2011―2012版本的课程和学分要求见表1,表中课程名称前面的数字表示课程号,后面跟表示学分的数字、课程性质、前修或同修课程号。MIT每门课程的学分由三部分组成,表示学习课程所需要的时间分布,中间用短线隔开,第一个数字表示讲课时间,第二数字表示实验、设计或者野外工作时间,第三个数字表示预习的时间,是以中等学生所需要时间估计的。1个学分大约相当于一学期需要14小时的学习时间。从表 1可见,一般专业课程,预习所需时间是讲课时间的2~3倍。
备注
*可以代替本先修课程的其他先修课程列在课程描述页面。
(1)这些课程可以算作必修课程或者限选课程的一部分,但不能同时计算。
(2)可以选9-12学分。
(3)通过申请,可以被类似课程替代。
2. 限选课程的选择
中列出了21门限选课程,每个学生只需要选择4门课(48学分)。理论上,学生可以在21门课程中任选48学分,甚至经过批准,还可以选择其他系的课程或者研究生课程来代替。实际上,由于材料的范围很广,这些选修课程是根据主要的研究领域来设置的,它们是: 生物与聚合物材料(Bio-and Polymeric Materials),电子材料(Electronic Materials),结构与环境材料(Structural and Environmental Materials),基础与计算材料科学(Fundamental and Computational Materials Science)。
因此,在MIT材料学院的网页上,曾经列出了各领域推荐的限选课程。网页上还列出了每一个方向的咨询教授,以方便对上述领域某一方面更感兴趣的学生选课。
3. 部分课程大纲和教学情况分析
(1)材料科学与工程基础课程
这个课程为15学分(5-0-10),总是与“材料实验”一起选修。课程安排也是交叉进行,实验周不上课,一共有4个实验周。这样,材料科学与工程课程讲课时间就缩短为9周(一个学期14周,最后一周为考试)。其课程安排为周一、三、五各2小时的讲课(lecture),周二和四各1小时的复习课(recitation)。所以一共27次讲课,18次复习课。实际讲课为24次,另外3次课为测验和考试。最后一次考试并不是考全部课程内容,即每次测验和考试都是分段内容。
这个课程由两个教授分别讲授,每个教授都是24次课,因此可以推论,每次每个教授将讲1小时。一个讲授结构和化学键(Structure and Bonding),一个讲授热力学和统计力学学(Thermodynamics and Statistical Mechanics)。
两部分课程分别布置6次作业,每部分每次都是2~3个题目,都有交作业的期限,没有按期交作业的,该次作业成绩为0。作业答案在交作业期限过后就会立即公布。课程总成绩由作业成绩占20%、三次测验占80%构成。得分标准为:总评80分以上A,70~79分为B,55~69分为C,低于55分为不及格。
(2)实验课程
MIT材料系内有2门必修的实验课程,即材料实验和材料综合实验。这两门课程同时还是加强专业交流能力培养的课程,所以,教学过程特别注意专业交流方面(包括论文写作、口头技术报告等)的形式要求。材料实验与材料科学与工程课程同时选修,在2年级第一学期进行。材料综合实验课(Materials Project Laboratory)基本上就是几个同学合作的科研项目,在3年级下学期进行。下面以二年级的材料实验为例,介绍其教学和考评办法。
如前所述,材料实验共4个实验周,实验周没有其他专业课。实验内容包括量子力学原理演示、热力学和结构,同时囊括了几乎全部现代材料分析研究方法(XRD、SEM/AFM、DSC、光散射等),并通过口头和书面方式加强交流能力培养。从教学内容看,这门实验课承担了教授材料研究方法的任务。
一般将50个左右学生(2011年的2年级学生只有43人)分成6个组。每个实验周有3个实验主题,每个主题下面2个实验,2个组共选一个主题,每组选做其中一个实验。6个实验同时进行。一周3次实验,每次4小时。因此,每个组每周只做3个实验(每个主题做1个实验),共12个实验。由于每个组只做了一半的实验,对另一半实验的了解,通过每周2次的1小时交流课程(recitation sections,一般隔天举行)来实现。交流课上,大家各自在黑板上即兴介绍实验的发现,回答教师和同学的提问。
该实验课由3个教授上,其中一个总负责。课程成绩评分标准
二、分析和讨论
1. 关于必修课和选修课
系内必修课程除毕业论文或企业实习外,共有10门。大学一般要求的17门课,理论上可以自由选择,但从表1系内课程的先修课程可以看出,微积分I和II,物理I和II是需要先修的,大学一般要求的6门自然科学课程就去掉了4门,能够自由选择的大学自然科学课程剩下2门。从系里建议的选课表(roadmap)可以看到,另外2门自然科学是化学和生物。所以,自然科学的必修课程实际上相当于14门。
限选课程要求包括GIR类型2门和48学分的系内选修课。有3门系内课程(共39个学分)可以作为GIR课程来选,但不能同时作为系内课程要求的学分。大多数系内选修课程的学分为12分,这样的话,系内限选课48学分需要选读4门。所以,每个学生可以有6门专业选修课程。有意思的是,在表1中只有21门限选课程,而该系主要的研究领域(或者说相当于我们的专业方向)有4个,平均每个方向只有5.25门课。如果去掉2011―2012年新增的2门课程,过去几年只有19门课,平均每个方向只有4.75门课程。看来,MIT材料科学与工程专业的课程设置,并不鼓励学生选单一专业方向的课程。实际上,在以前分专业方向限制选修课时,每个专业方向仅仅提供2~3门课程,进一步的分析见下文。
反观我们的培养计划,我们的专业方向必修课程有5门(14学分),选修课程应选4门(8学分),合计9门课程22学分。因为我们的学分是按照每周上课学时数计算的。如果按照MIT的学分计算方法,学分约为每周上课学时数的3~4倍,考虑到我们的上课周数为17~18周,而MIT才14周,因此,我们的专业方向应选学分至少相当于MIT的88学分,比其4门课程(48学分)的要求多了5门课程(40学分)。可见,我们的培养计划更加注重学生专业方向知识和技能的培养。
另外,MIT材料科学与工程系的研究领域非常广泛,关于其主要研究领域的介绍出现在3个网页上。其一是在该系的学位要求中关于限选课程的介绍网页,4个主要的研究领域分别是生物与聚合物材料、电子材料、结构与环境材料、基础与计算材料科学。其二是在MIT的招生网页,4个主要的研究领域分别是:半导体材料和低维系统(Semiconductor materials and low-dimensional systems)、能源材料(Materials for Energy)、纳米结构材料(Nanostructures)、材料的生物工程(Bioengineering of Materials)。在介绍全体教师(Faculty)的网页,列出了30个研究方向(discipline),共122人次(有重复计算,因为实际教师只有35人),平均每个研究方向4.07人次(或1.17人)。少的方向仅1人如微技术、半导体,最多的是纳米技术,23人次。上面列出的生物工程(包括生物物理和生物技术)9人次,能源材料(包括能源与环境、储能)9人次。人数比较多的研究方向还有结构与环境材料9人次,高分子材料7人次,电、光和磁材料7人次。
可见,尽管MIT研究的材料类型很多,但其本科生培养计划中,涉及具体材料类别方向的课程特别少。
2. 关于考核与成绩
MIT很多课程的成绩评定都包括平时作业和出勤与课堂参与情况。有的课程,考试以外的项目在成绩评定中所占份额可达到50%,有的实验课程则更是高达85%这在一定程度上反映了MIT对大学生平时学习的管理是非常严格的,与我们头脑中关于国外大学生“自由”学习的图像截然不同。
3. 关于选课进度安排
MIT材料系没有规定统一的选课进度表。但从其推荐的选课安排(roadmap)看,具有如下特点:
(1)8门大学一般要求的社科课程(GIR)分布在8个学期选修,即每学期选修1门社科课程;
(2)一年级把大学要求的6门自然科学课程(GIR)学完,包括数学、物理和化学。
(3)二年级起全面进入专业学习。第一学期学习材料科学与工程基础、材料实验2门课程,两门课交叉进行,实验周不上课。上课周每天都有材料科学与工程基础课,实验周每天都有实验或交流,学习安排非常集中。
(4)每学期的课程一般为4门,其中1门为社科课程。
MIT二年级第1学期就学习专业基础课程,这比我们的教学计划提前很多。国内的教学计划进度安排曾经强调,前两年不安排专业课,以至于我们的材料科学与工程课程被安排在第5学期,材料研究方法更是被安排在第6学期,使得高年级学习特别紧张,深入接触专业知识和方法的时间被推迟。
4. 关于培养计划的修订
从网页上能够追溯到MIT材料系1998年的培养计划,其培养计划在2003年做了很大的调整。两者的比较
这两个培养计划的最大差别在必修课,课程名称几乎完全变了。但对比课程名称和教学内容可以发现,新培养计划中的“材料科学与工程基础”包含结构与化学键、热力学与统计力学两大部分内容,分别由两位教授讲授,似乎代替了原来的“材料热力学”、“材料物理化学”和“材料化学物理”3门课程,因为其教材之一仍然是物理化学(Engel, T., and P. Reid. Physical Chemistry. San Francisco, CA: Benjamin Cummings, 2005. ISBN: 9780805338423)。“材料实验”应该与原先的“材料结构实验”对应,“材料综合实验”应该与原来的“材料加工实验”对应。“材料的微结构演变”与原来的“材料结构”相似。取消了“材料力学”、“材料工程中的输运现象”2门课程。增加了“材料的电光磁性能”、“材料的力学性质”、“有机和生物材料化学”、“材料加工”4门课程。取消2门,合并2门,增加4门,课程总数不变。
选修课变化较小,只是增加了若干课程,特别是生物材料和纳米材料的课程。其实,两门生物材料课程是2000年增加的,当时选修课由4方向增加为5个方向。选修课的最大变化是理论上不再分专业方向,学生可以任意选课。但实际操作时,仍然向学生推荐各专业方向的课程组合。无论如何,每个专业方向的课程不足4门,学生必然需要选修其他方向的课程。
从2003年至今,必修课没有变化,选修课则有一些小的调整(表5)。其中2005年减少了高分子化学、化学冶金学(Chemical Metallurgy)2门课程。增加了2门数学,材料热力学(原来的必修课),先进材料加工,衍射和结构,材料的对称性、结构和张量性质,材料选择,共7门课程。可见,增加的这些课程仍然是与具体材料种类无关的。2007年和2011年分别增加了1门生物材料方面的课程。可见,即使是选修课的调整,仍然在继续加强有关材料行为特征方面的课程,减少有关具体材料种类的课程。
5. 关于培养目标与课程设置
过去,MIT材料科学与工程系培养目标分四类,研究型学位(Course 3)、预科型学位(Course 3A)、实践型学位(Course 3B,2003年取消)和考古型学位(Course 3C)。其中,研究型学位与实践型学位培养要求的唯一差别是不变的,即前者在四年级做毕业论文,后者在二年级暑假和三年级暑假做2个20周的企业实习,其他课程要求完全相同。现在把实践型学位取消了,但仍然保留了学生向这个方向发展的渠道,即学生仍然可以选择做毕业论文或者企业实习,学位合并在研究型学位(Course 3)中。
从2003年培养计划大调整来看,MIT材料科学与工程专业(Course 3)的主要培养目标是让本科毕业生继续深造。也可能是社会需求的变化促使MIT对培养计划进行调整。这从MIT选读实践型学位人数变迁或许可以看出一些端倪(表6)。从1998年到2002年,实践型学位人数多于研究型学位的人数,2002年突然降低,与研究型学位相当。查看大学2年级实践型学位学生注册数,从2002年起突然减少,由原来每年约20人突然减少为6人。2003年培养计划调整当年,还有5人注册为实践型学位,这应该是此前培养计划延续所致。
那么,没有了实践型(Course 3B)学位,是否还有学生仍然会选择实习代替论文呢。下面从2002~2008年MIT材料系本科毕业生去向分析。除了一些研究生院,网页一共列出了38家企业和17家政府部门或咨询机构。统计2002年以后(至2005年结束,当年仅剩下1人)各年4年级实践型学位人数(也约等于当年毕业人数)总和恰为38人,与毕业生去向统计的企业单位数刚好相同。这难道是巧合?是否可以推论,2003培养计划修改之后几乎就没有学生选择去企业实习了?
MIT材料专业取消实践型学位,以及此后可能几乎没有人选择实习代替毕业论文事实,一方面可能与美国产业向国外转移,本国企业对工程师的需求减少有关;另一方面,MIT培养计划中的课程设置调整也起了一定作用。因为选择实践型学位人数锐减在前(2002年),培养计划调整在后(2003年)。培养计划中去掉的必修课“材料力学”和“材料工程中的输运现象”,显然属于工程类课程。因此,其培养计划课程中增加材料研究型基础知识、减少工程知识的倾向十分明显,也说明其培养计划随社会需求进行了及时调整。
另外,尽管2003年培养计划中的必修课有较大调整,但选修课调整比较有限。而且调整前后,没有改变其材料类本科生宽专业培养的模式。
但在选修课中,把专业方向的基础课程去掉,仍然让人有点匪夷所思。例如,高分子化学在高分子材料领域历来就被认为是专业基础课。MIT在2005年却把这门课从本科生培养计划中去掉了。查看其高分子方向研究生培养计划核心课程,可以看到高分子物理化学、高分子合成、高分子合成化学等基础课程。可见,MIT把专业方向的一些基础知识培养放在了研究生阶段。
以上似乎给人这样的印象,如果不继续读研究生,则专业方向的基础知识是不太够的,无形中将人才培养的周期拉长到研究生阶段了。但从我自己教学的经验来看,学习高分子物理就可以了解高分子材料的行为和特征,未必需要清楚地知道高分子材料的合成与制备方法。我的一些研究生以前从未学习高分子方面的课程,为了让他们在研究中能够理解和使用高分子材料,我就是先给他们讲授高分子物理的基本知识。
另外,注意到MIT材料专业研究生数量是本科生数量的2.2倍,有很多研究生来自校外,特别是来自国外。所以,MIT材料专业培养计划中对专业方向选修课程的调整,结合研究生阶段的课程安排,既考虑到了本科宽专业基础的培养模式,又打通了本科生培养与研究生培养之间的关联,在研究生阶段加强专业方向基础知识的培养,也便于接受其他教育背景的学生来读研究生,还是十分合理的。
MIT材料专业的本科培养计划,不断强化了按照材料大类进行培养的模式,必修课和选修课都加强了材料基本行为知识的课程,减弱了材料类别基础知识的课程,把后者移到研究生教育阶段。这说明国外关于“材料研究依据其行为和特征,而不是依据材料类型来进行”的认识形成30多年以来,不仅没有改变,还在进一步加强。MIT在2003年对培养计划大调整时,加强了材料研究基础知识课程,减少了工程类课程,其本科生的主要去向是进一步深造,直接到企业就业的比例急剧减少。本科生阶段加强研究基础知识课程,把专业方向基础知识培养放在研究生阶段,加强了研究生的知识培养,可能是其材料研究能够长期在美国名列前茅的原因之一。
[关键词]高分子材料与工程; 综合实验; 教学探索
[DOI]10.13939/ki.zgsc.2016.36.183
高分子材料与工程专业综合实验不同于基础实验,专业综合实验重视学生自主设计、自主操作和自主探究能力的培养。本课程一般开设在大三下学期和大四上学期,学生已经完成“高分子化学”“高分子物理”和“聚合物近代仪器测试”等专业基础理论课程和基础实验课程,对本专业的理论知识、实验操作和性能表征已有掌握。[1]该课程的开设可以锻炼学生对专业知识的综合运用、分析和解决问题的能力,培养学生勇于探索、不断创新的精神和团队协作能力。本文主要从教师辅“教”和学生主导性“学”的角度出发,提出笔者对专业综合实验教学的探索,与大家进行交流。
1 教师的“教”
顾名思义,专业综合实验具有较强的综合性和自主设计性,因此教师在本课程的教学过程中要摒弃“教为主导”的传统教学模式,不能以教师控制为中心,简单机械地把学生当成知识的被动接收者,因此教师主要担任引导者的角色。
1.1 课程设置
本课程一般没有固定的出版教材,多是任课教师设计多个可供选择的实验项目[2],3~5名学生为小组开展实验。我校是应用型人才培养单位,目前实验项目来源主要是以下两类。
(1)与本专业实际生产紧密结合的应用型课题。例如,聚丙烯是目前第二大通用塑料,随着汽车、建筑、家电和包装等行业的发展,废弃聚丙烯产量逐年增加。对废弃聚丙烯进行回收再利用虽能节约资源,减少污染,但其力学性能已不能满足工业制品的性能要求。因此,可让学生采用成核剂、无机填料和界面增容剂等对废弃聚丙烯改性,提高废弃聚丙烯的力学性能和热稳定性,具有一定的工业生产前景。此类课题适合于本科毕业就择业的学生,有助于他们熟悉本专业的就业领域以及工作内容。
(2)任课教师个人的科研课题。湖南工学院目前不具备培养研究生的资格,因此教师的科研项目主要依靠教师所在课题组成员之间协作完成。专业综合实验的开设有利于教师将课题的一部分转化为实验素材,既能使学生接触本专业的先进研究领域,也能较好地调动学生参与课题的积极性。此类课题适合于有意读研深造的学生,有助于他们参与课题、钻研课题,也可尝试参加创新型实验竞赛。
为了达到较好的教学效果,教师应当结合本校学生的实际情况,认真设计整个课程的进度,例如湖南工学院专业综合实验为32课时,具体的课程进度设计见下表。通过下表的试验进度设计,可以让学生清晰地了解到本课程内容设置与各个环节的时间安排,防止实验过程的盲目性。
1.2 课程引导
专业综合实验虽以学生的自主性、探索性学习为基础,但教师的引导作用至关重要。[3]一是因为学生已习惯了以往有“步骤”可依的实验教学模式,缺少独立思考的主动性;二是学生对综合性实验课题研究背景了解较少,还不具备独立设计实验方案的能力,普遍感觉综合实验无从下手。因此,任课教师可在课程的不同阶段,发挥不同的引导作用。
(1)开题阶段:教师先进行开题引导,将本实验课题的研究背景和实验目的等相关内容介绍清楚,并当场与学生互动解惑。课下让学生以小组为单位查阅相关文献资料,设计实验方案,准备开题报告。在学生开题过程中,老师应及时与学生交流,遵从自然科学规律,设计合理可行的实验方案,并预期实验结果。
(2)实验过程:在此阶段教师应该引导学生多思考,多尝试。以“聚丙烯/纳米碳酸钙复合材料的制备与性能测试”课题为例,学生知道聚丙烯复合材料的制备方法为熔融共混法,但对样品的配方设计感到困惑,不了解实际生产过程碳酸钙用量的具体范围,用量太少不能降低生产成本,用量太大又会导致聚丙烯性能下降。另外,学生能够独立操作双螺杆挤出机、注塑机等成型加工设备以及微机控制电子万能试验机和摆锤式冲击试验机等测试仪器,但学生很少思考设备的参数和测试条件的设置依据,也未考虑参数和条件调整对实验结果的影响。因此,教师应提醒学生思考样品物化性质和设备参数、测试条件之间的关系,并从中获得规律,进而指导今后的实验。
(3)结果与讨论阶段:笔者在教学过程中发现大多数学生对于实验数据的分类较为笼统,甚至把所有样品的数据混在一起,并未进行分类,导致其测试数据规律性不明显,无法获得结论。另外,学生对于测试结果的分析仅局限于对实验现象和数据的简单描述,并未探究其中的规律,寻找导致该结果的原因。例如,β-成核剂虽能提高聚丙烯的冲击韧性,但并非β-成核剂用量越多,聚丙烯的冲击强度就越大。对此现象,学生仅提出在某一用量下的增韧效果最佳,并未对其原因进行思考。
2 学生的“学”
专业综合实验的开设目的在于培养学生的文献检索能力、初步设计实验的能力、分析实验结果、撰写实验报告和科研论文的能力。该课程以指定实验题目,学生自主设计实验方案、自主操作实验和自主分析实验结果的方式进行。因此,课程开展以学生为中心,学生的“学”起到至关重要的作用。[4]
2.1 开题阶段
在以往的实验课程教学中,老师会结合所使用的教材,详细讲解实验目的、实验原料与配方、实验设备、实验步骤和数据分析等,学生只需按部就班进行样品制备和性能测试。因而,从某种层面讲学生只是单纯的执行者,几乎没有或很少有独立的思维参与其中。
而本课程要求学生独立完成老师给定的实验题目,教师仅进行开题引导。学生需要主动查阅相关科研文献,熟悉该课题的研究背景与意义,从相关文献中寻找实验方案的设计思路和预期的实验结果,并通过PPT进行开题报告。
2.2 实验过程
由于此阶段教师并未直接参与,学生在实验过程中会需要许多问题。比如,在使用双螺杆挤出机之前,需要依据加工材料的熔点设置成型温度,那么不同部位的温度设置相同吗?在纳米碳酸钙的填充量过高时,如何使其与聚丙烯粒料混合均匀?还有使用微机控制电子万能试验机的过程中,同种高分子材料在不同的拉伸速率下会导致不同的断裂方式:高速拉伸形成脆性断裂,低速拉伸多为韧性断裂,那么测试过程如何设置拉伸速率?这就需要学生积极查阅资料,并重复实验步骤,尝试不同测试条件,从而获得材料与设备之间的关联性,进而指导进一步实验。
2.3 结果与讨论阶段
学生虽会简单的数据处理和图表制作,但对样品的分类模糊,图表格式大多不规范。这都需要学生根据查阅的文献资料进行修改。此阶段的难点在于学生面对大量数据,不知从何分析。例如,当实验原料包括滑石粉、硅烷偶联剂和聚丙烯的时候,学生就应该使用控制变量法对样品进行分类:① 固定滑石粉和聚丙烯用量,仅改变硅烷偶联剂用量;②固定硅烷偶联剂用量,调整滑石粉和聚丙烯的质量比。结果与讨论部分包括硅烷偶联剂用量对聚丙烯/滑石粉复合材料性能的影响和滑石粉填充量对聚丙烯复合材料性能的影响,这样进行结果分析时变量把握就很明确,讨论重点也清晰。
3 结 论
本课程的开设可使学生熟悉高分子材料的物理和化学性质,掌握不同类型高分子材料的制备方法和成型加工技术,并了解高分子材料的性能表征方法。在课程结束后,笔者同一些学生进行交流,发现学生普遍对综合实验较为感兴趣,并且认为自己从头到尾参与了实验。在此过程,他们学到了很多,尤其是学会了思考和独立解决问题的能力。以前在实验过程中出现任何问题,学生第一反应就是找老师,而在综合实验中他们必须依靠自己解决问题。同时,学生不再拘泥于课本的理论知识,而是深入其中探索规律、发掘现象本质。专业综合实验虽是由小组共同完成,但其性质和内容类似于学生的毕业设计(论文),涵盖了文献查阅、配方设计、样品加工成型、性能表征和结果讨论部分。这既能提前消除学生对于毕业设计(论文)的陌生和恐惧心理,也帮助他们了解毕业设计(论文)的要求和内容,有利于学生顺利开展毕业设计(论文)。
参考文献:
[1]何明,雷文.高分子材料与工程专业综合实验的几点思考[J].化工时刊,2008,22(8):73-75.
[2]巴志新,王章忠,蔡璐.材料科学与工程专业综合实验周的改革探索[J].中国冶金教育,2009(3):34-36.