HI,欢迎来到好期刊网!

大学经济数学论文

时间:2022-08-07 19:32:30

导语:在大学经济数学论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

大学经济数学论文

第1篇

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面小编给大家带来2021最新数学方向毕业论文题目有哪些,希望能帮助到大家!

中学数学论文题目1、用面积思想方法解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学创新思维及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的文化价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的经验似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

第2篇

关键词:高职数学;模块式教学;职业能力

高职数学教学现状分析

高职数学对学生后续专业课的学习和综合数学能力的培养至关重要。然而,由于高职教育在我国起步较晚,而同时又发展迅猛,在教学方面还未形成完整的教学体系,大多沿用传统的教学模式,即:教师讲学生听做题复习考试,教学内容都是一些老面孔,与专业结合不密切。这与当前高职数学教育的培养目标严重不符,主要表现在以下几方面。

教育观念落后,难以适应时展传统数学教育观以“知识本位”为中心,重理论轻实践,忽视专业需要。高职教育的人才培养模式不同于普通高等教育,要求教学内容体现“以应用为目的,以必需、够用为度”的原则,体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求。因此,教育观念应由“知识本位”转变为“能力本位”。

教学内容陈旧,难以满足专业需要随着高职教育改革的推进,各院校都加强了专业教学建设,增加了大量专业实训,压缩了基础课教学时数,这就造成了数学课教学内容多、课时少的矛盾。同时,在课程体系上过多考虑数学学科的完整性,在教学内容上满足于逻辑上的严谨、计算上的精确,面面俱到,脱离高职各专业人才培养目标,服务性功能不足。因此研究各专业对数学的需求,更好地与专业相衔接,进行工科、经管类、信息类等专业模块教学势在必行,创新高职数学教学模式刻不容缓,为此应进行必要的探索研究,以更好地适应高职教学,更全面提升学生的专业能力、社会能力及综合职业能力。

学生学习积极性不高,学习效率不容乐观随着高校扩招,学生质量急剧下降,特别是高职院校学生的数学基础更是薄弱,很大一部分学。觉得学数学就是为了考试,是没得选择的无奈之举,以后根本用不上。基础本身就不好再加上这种消极的态度,导致学生学习积极性不高,另外,大学的学习毕竟不同于高中,使得很多学生不会学习,学习效率可想而知。

建立合理的教学内容体系

优化教学内容,进行专业模块教学高等职业教育的目的是提高国民科学文化素质,为经济建设和社会发展培养第一线技术应用型的高等职业技术人才。所以,高职数学教学内容要体现“服务专业、注重应用、更新计算技术、全面育人”的特点和要求,为学生打下较为扎实的数学基础,为未来发展提供有力的知识支撑。为此,应将高职数学分为公共基础模块、专业基础模块以及应用拓展模块,其中公共基础模块由一元微积分和数学实验组成;专业基础模块包括多元微积分、常微分方程、向量和空间几何、级数、布尔代数以及线性代数和概率;应用拓展模块主要是用数学建模案例来反映数学来源于生活,又回归于生活,强调应用性。工科、经管类、信息类三大类结合调研进行合理选块。工科教学的专业模块为多元微积分、常微分方程、级数以及线性代数等;经济管理类专业模块为二元微积分、线性代数、概率等;信息类的专业模块为布尔代数、矩阵行列式、概率、图论基础等。

加强高职数学与专业课的联系 实施模块式教学对教师的能力和素质提出了更高的要求。由于数学教师对高职各专业知识了解有限,与专业教师缺乏沟通,且不同专业又有着不同的问题,为此数学教师必须去面对专业知识问题,认真听取专业教师对数学课程、内容、范围的要求和建议,针对不同专业搜集相关典型案例,为提高数学教学质量提供有力依据。例如,经济类专业的学生,在今后的工作中很少接触到曲线的凹凸性及函数图形的描绘、变力作功、液体静压力等问题,完全没有必要花很多时间来学习这些内容,而要把重点放在今后工作中经常接触的单利、复利、税收、最小投入、最大收益、最佳方案等知识点上,这样更实用、更有价值。而线性代数与计算机原理有直接的联系,计算机专业的学生应把这方面的知识作为重点。同时,直接选取专业课程的相关内容作为例题、习题讲解和练习,对内容拓宽和深化,强调知识应用可起到积极的作用。通过反复学习,学生得以反复记忆,进而熟练掌握,这更有利于所培养的人才能够胜任其岗位职责,为用人单位创造良好效益。让学生看到学习数学能够应用于实际,更有利于激发学生的学习兴趣。当然,在具体操作时,要做到:

1.由传统的“面向定义”转变为“面向问题”的新型教学模式,进行问题驱动教学。删去那些繁琐的计算与复杂的推理过程,遵循实践——认识——再实践—再认识的过程,加强对数学本质的理解,自觉应用数学解决实际问题,提高学生的数学能力和职业能力。例如,函数作为过渡性衔接内容可少讲,只需重点介绍分段函数、复合函数等,空间解析几何是多元函数微分学的预备知识,加之学生在中学已接触过,可略讲;导数与微分中重点介绍导数,微分则利用导数即微商这一关键点略讲。

2.教师应有意识地收集与各专业教学内容相关的案例,尽可能多地将数学与工程学、经济学、生态学、社会学、军事学等领域联系起来,展现高等数学的巨大魅力。例如,在生活实际中建立微分方程模型是比较难的,在介绍微分方程时可以举抵押贷款买车买房问题、人口增长等多个例子。这些不但让学生了解了数学的巨大作用,而且能大大提高学生的学习兴趣。此外,教师还应介绍与教学内容相关的数学知识和最新前沿动态,帮助学生更好地学习。

3.重视思想方法的教学。在高等数学教学过程中,教师应当对课程中蕴含的一些数学方法加以阐述,例如类比、演绎、递推、构造、换元、化归、建模等方法,这对深化学生知识,提高学生分析问题、解决问题的能力,增强学生的整体素质有着重要作用。就拿建模来说,一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模思想进行教学是理论与应用相结合的重要手段。传统的高等数学教学也强调从实际问题出发,建立模型,再引入概念和方法。笔者认为,数学教学中贯彻建模思想,应强调量的差异,应举更多有实际意义的例子,贯彻数学建模思想,是将解决问题思想贯彻到每个环节,而不只是用做某些部分的引入手段。

教学方法和手段的改进

充分利用网络资源利用网络教学平台,可以实现信息资源和设备资源的共享,为学生提供多层次、多方位的学习资源。例如使用讲义课件、网上答疑、题库、数学软件、数学文化、数学论坛等,对教师和学生之间的交流会有很大的促进。而且网络教学可随时进行,每个学生都可以根据自己的实际情况来确定学习时间、内容和进度,避免选修课与必修课在上课时间上可能出现的冲突,还可以根据学生个人的实际情况提优补弱。网络技术促进了教学的自主化、互动化,使数学教学更现代化,更适应信息时代的要求。

合理运用网络教学多媒体教学是一种先进的教学手段,一种崭新的教学元素,这种教学信息量大,形象直观,特别是涉及图形教学,它富有动感。像定积分的概念教学时,用多媒体可以清晰地观察出分割、取近似等每一步过程,使学生一目了然,易于接受。但有了多媒体,我们不能不加选择地应用,像求导、积分等计算用传统的“黑板+粉笔”,学生更能明白解题的思路、过程。总而言之,要合理选择,两者结合,以更好地提高教学效率。

充分利用数学软件 高职现有的教学模式大多是以教师讲授为主,学生被动学习。在教师讲解后学生反复练习、训练,对学生而言其实是一种浪费。一是学生就业后用到纯数学的知识很少,用到的只是数学的精神、思维方法等;二是在信息时代,大量的数学计算、画图等用手工操作太费时费力,而用数学软件可以达到事半功倍的效果。为此,要详细介绍教学所使用的软件mathematica和matlab,把运用数学软件包求解数学问题能力的培养融入教学中,使学生学会利用数学软件求导数、积分、解微分方程等复杂的运算。通过数学实验教学,可以达到使学生由“学数学”向“用数学”的转变,更新计算技术,减少大量的繁琐计算,有利于激发学生的学习兴趣,提升应用能力。

全面改革考试评价方式

高职数学除了提高学生综合数学能力外,主要是为专业服务,传统考核方式已不适应现代职业教育的发展。通常的限时考试使学生机械地套用定义、定理和公式,不利于培养学生的创新意识和实际应用能力,也不能真正地检查和训练学生对知识的理解程度,会使较多的学生越来越对数学产生恐惧、厌烦心理,为考试而考试,与我们的教学出发点相违背。目前我校学生的数学成绩由平时25%、期中闭卷考25%、期末50%三部分组成。平时成绩,包括平时作业、提出问题、上课发言、上课出勤率等,另外两块都打出具体分数。笔者认为,考试评价制度应进行改革,高职教育的考核方式应灵活多样。由平时成绩、数学实验(数学软件应用)和闭卷考试三块组成比较合理。平时除了作业情况、学习态度等之外,还可结合小论文的形式,数学论文由教师事先设计好题目。例如对经济管理类专业可设置与单利、复利、税收、边际成本、边际收益、最小投入与最大收益、最佳方案、概率、统计等有关的问题,要求写出调查报告或论文,学生可根据需要查找相关资料,并对计算结果进行数据分析,结合实际给出可行性建议,最后以论文的形式上交评分。数学实验主要就是上机情况,看学生对数学软件掌握得如何,便于今后进一步的应用。期末闭卷考试这部分以考核学生基本概念、基本计算能力为主。这种考核方式有利于帮助学生端正数学学习态度;有利于培养学生运用所学知识解决现实问题的主动性和创造性;有利于培养学生的自学能力、创新能力,能比较全面地反映学生的综合数学能力,同时又能为后续的专业学习打下基础。

数学既是一种思维方式,也是一种重要工具;数学不仅是一门科学,也是一种文化;数学不仅是一些知识,也是一种素质。在高职数学教学中引入模块式教学是职业教育教学的一种创新,体现以能力为核心,具有较强的实用性、针对性和灵活性。与专业结合的模块式教学改革是大势所趋,当然,如何更好地进行高等数学的模块式教学改革仍然任重而道远。

参考文献:

[1]许景彦,吴素敏,王风莉.试谈高职数学教学模式的创新[j].教育探索,2007,(6).

第3篇

其实,数学的教育不仅要让学生掌握数学知识与技能,更重要的是给予学生一种宽广的视野、一种严谨的思维、一种吃苦耐劳的人生态度、以及敢为天下先的探险精神。那么,如何构建数学文化课堂,渗透数学人文思想呢?笔者认为应该主要从以下三个方面着手:

一、塑造浓厚的数学文化气氛

(一)听数学家故事,学数学家精神

数学家们废寝忘食、孜孜不倦的态度,屡遭失败、永不放弃的意志,身处逆境、矢志不渝的精神……都极大地鼓舞着学生。如中国数学巨星华罗庚,初中毕业后在杂货铺当伙计,19岁时染上伤寒,留下脚部残疾,然而凭着自身坚强的毅力,刻苦学习,终于在数学上作出重要的贡献,并成为多个国家的外籍院士。像这样的数学家中外有之,不胜枚举,这些故事都能激荡起学生心灵的涟漪。

(二)接触数学名题,感受数学的魔力

在数学活动课上,老师根据学生掌握数学的程度,适当地安排介绍古今中外数学史上的一些名题。如,向学生介绍中外数学家解决“幻方”的不同策略、斐波那契的“兔子繁殖问题”、“牛吃草问题”、“歌德巴赫猜想”、“费马定理”、“七桥问题”等等。这些数学名题,因其精妙的思想与深不可测的神秘感,向人们展现了数学的无穷魔力,深深地吸引了学生,启迪着他们的心智,诱发着他们的冲动。

(三)了解数学在生活中的应用,认识数学的威力

数学来源于生活,数学服务于生活。在学习了相关的知识后,教师可以通过一些与实际紧密关联的问题与同学交流。这样可以大大激发学生用数学眼光看世界的热情,也可以培养学生用数学知识解决纷繁冗杂的生活问题。如在学习了“因式分解”这章之后,教师可以给出以下问题:在日常生活中如取款、上网等都需要密码。人们常用“因式分解”法产生密码,方法是:设x表示父亲出生的月份,y表示母亲出生的月份,用多项式x4-y4因式分解的结果是(x+y)(x-y)(x2+y2)进行排列,可以产生一组方便记忆又不易破译的密码。如x=9,y= 9时,各个因式的值是:(x+y)=18,(x-y)=0,x2+y2=162 ,于是就可以把“180162”作为一个六位数的密码。经济生活中的数学问题很多,有些与学生的家庭生活联系紧密,如存款、贷款利率问题,人民币汇制改革后利率波动对居民外币存款的影响问题,水电费涨价对居民生活方式的影响问题等等都是学生所熟悉的生活问题。随着数学学习的不断深入,用数学知识将生活实际问题从繁到简、从难到易地予以解决,在培养学生数学建模能力的同时,又能使学生体会到数学的工具性、科学性和人文性。

这种源于生活的数学问题多不胜数,可以信手拈来。把数学知识与日常生活紧密联系起来,引导学生关注生活中的数学,使学生感受和经历从社会生活背景中抽象出数学问题的过程,在感悟、体验的过程中,发展学生的数学应用意识。

二、凸显知识发生与进化过程

数学是人类在一定文化环境中所从事的创造性活动。教师的任务,应该为学生提供自由广阔的天地,有意识地启发学生通过自身活动,根据自己的体验,用自己的思维方式,重新创造有关的数学知识。

(一)揭示知识发生的背景

数学知识的发生与自然客观的需求是分不开的,向学生阐述其发生的背景,能帮助学生更为深刻的认识与理解知识。如,学习无理数时,让学生意识到人们在测量与计算时,往往不能正好得到有理数的结果,这时就需要产生一种新的数――无理数。学生清楚地看到知识发生的原因,就能揭开数学神秘的面纱,消除学生对数学的畏惧感,使他们在内心深处亲近数学。

(二)展示知识生成的过程

弗赖登塔尔认为:每一个学生都可能在一定的指导下,通过自己的实践来获得数学知识。教学中,教师要防止重结论轻过程的现象发生,鼓励学生通过自己的探索活动,对知识的生成过程建立清晰的表象,主动地完成知识的建构。

如在学习“直棱柱的表面展开图”之前,我出了这样一道开放性问题:已知正方体ABCD-A1B1C1D1的棱长为1。现有一条小虫从点A 出发经其表面爬行至点C1。问小虫有几种爬行方法,最短行程是多少?

我要求每个学生首先独立思考此问题,这是一道学生认为较富生活情趣的题目,于是学生都马上拿出纸笔画起来,自主探索之后我要求学生分小组讨论,合作交流。每组再推选一名代表到黑板前面结合我带来的正方体纸盒现场演示可能出现的方法并说明如何才能求出最短的行程来。通过这样的一个互动的环节,学生明白了这和正方体的表面展开图是有关的,明白了直棱柱表面展开图的相关知识。在这个环节中,使学生感受教学内容在现实背景中发生、发展的过程,通过观察、实验、探索、思考以及同学之间的合作交流获取新的知识,保证了课堂教学效果达到最优化。

(三)预示知识进化的前景

数学中前后知识间的联系十分紧密,先学的内容往往为后继学习作知识与方法上的准备。在教学中,教师要善于瞻前顾后,融会贯通。如在学习完“四边形的内角和”后,要抓住它的本质是把四边形内角和转化为三角形的内角和来计算。在学习下一节多边形的内角和时学生就会情不自禁地采用相同的转化方法,把多边形的内角和转化为三角形的内角和来解决,从而得到多边形的内角和公式。例如在学习相似变换后,为了更加系统化,动态化。让学生进一步体会相似变换的应用价值,明白这一知识的可持续发展的前景,我在课堂内当场通过互联网查阅几何分形的有关资料。

数学既是创造的,也是发现的,数学教学应当努力还原、再现这一发现过程,让学生经历知识生成与进化的过程,对于夯实他们的数学文化底蕴,继承数学人文思想有着非常现实的意义。

三、丰富课外作业的形式

(一)撰写数学小论文

学生因其所处的文化环境、家庭背景和自身思维方式的不同,他们考虑问题、解决问题的方式与方法有着强烈的个性色彩。在老师的指导下,学生可以通过撰写数学小论文,如《我与数形结合的一次约会》、《公交车站的分布》、《镶嵌与美》等等给学生数学学习增添了文化的韵味,我们温州市和苍南县每年都有初中学生的数学小论文评比,这一赛事的举办可以鼓舞学生对数学论文写作的热情。

(二)自办数学手抄报

办报需要考验学生各方面的能力,如版面设计、信息搜集、美工誊写等。通过自办手抄报,拓宽了学生的知识视野,培养了他们的综合素质,提高了他们的人文素养。

(三)制作手工模型

苏霍姆林斯基说过:在手和脑之间有着千丝万缕的联系。教师常结合教材进度,布置一些动手操作类的作业,如制作测量工具、设计建筑模型、绘制学校平面图等等。这些作业,需要学生综合地应用所学知识,创造性的加以完成。

实践证明,这些课外作业,留给学生更大的探索余地和思考空间,对学生培养创新精神和实践能力起到积极的推进作用。

作为基础教育的工作者,我们要构建数学文化的课堂,充分利用数学人文思想的教育功能,努力让数学教育在每个学生的身上有更多的沉淀和积累,并作为个人文化底蕴中一块不可缺少的基石,伴随他的一生。数学人文思想的渗透是一个长期的内化过程,需要我们做出不懈的努力。

参考文献:

1.伊红等.《初中数学教学案例专题研究》.浙江大学出版社,2005.3

2.胡炯涛.《中学数学纵横谈》.山东教育出版社,1997

3.2006年杭州市数学学会年会评比论文《初中数学文化教育的实践与研究》.2006.12

4.杨梅.《渗透数学文化,构建新型课堂》中学数学教育,2006(3)

5.李伟.《理解数学文化特征搞好数学文化教育》.中学数学教育,2005(1)

6.note.省略/showfangjun123 《浅谈数学史在数学教学中的作用》

第4篇

关键词:高职数学;教学改革;能力培养;高职特色

作者简介:谷志元(1957-),男,广州铁路职业技术学院副教授,研究方向为数学教育、应用数学。

基金项目:本文系2008年度广州市教育科学“十一五”规划立项课题“高职应用数学课程教学改革研究”(编号:08A009,主持人:谷志元)阶段性成果之一。

中图分类号:G712 文献标识码:A 文章编号:1001-7518(2012)05-0022-03

一、高职数学课程在高职教育中的地位与作用

高职教育是以社会需求为目标,以服务为宗旨,以就业为导向,培养实践技能强、具有良好职业道德的高技能、应用型人才。当今世界科学技术的发展突飞猛进、日新月异,有两个显著的特点:一是以计算机为代表的学科的发展推动了其他学科的发展;二是数学知识已经渗透到包括计算机、运筹学、机械制造和铁路运营等课程的各个学科领域。

在高等职业技术院校,数学教育是起着基础性作用的,高职数学课程有如下五个方面的功能与作用:

(一)是为学生学习专业基础课和专业课服务的。高职数学课程主要讲授“函数、极限与连续,一元函数微积分,常微分方程,线性代数初步,概率论初步”等知识。高职数学既是一门重要的工具课又是一门重要的基础课,是学习专业基础课(如电工、电子、运筹学、机械制图等)、专业课(如计算机、物流、铁路运营等)必备的基础课。所以,高职数学课程学习的好坏直接影响到后续课程的学习。

(二)是培养学生逻辑思维能力、创新思维能力的重要途径。思维能力是各种能力的核心。思维包括分析、综合、概括、抽象、推理、想象等过程。在数学教学中,应通过数学概念的形成、数学规律的得出、数学模型的建立、数学知识的应用等过程来培养学生的思维能力。因此,在教学过程中,不但要使学生学到知识,还要使学生学到科学的思维方法,发展逻辑思维能力和创新思维能力。

通过高职数学课程的教学来培养学生思维能力,这是最基本的要求和目的,关键是教师在教学中要善于通过例题的讲解、习题的解答来培养学生的思维能力,并培养学生具有“勤于思考、善于归纳的良好习惯,严谨认真、实事求是的科学态度,踏实肯干、一丝不苟的工作作风,刻苦钻研、吃苦耐劳的探索精神,相互沟通、协同作战的团队精神”。例如,教师向学生设问、提问时难度要适中并富有启发性,这样才有助于学生发展逻辑思维能力。

(三)是为学生的就业与再就业服务的。高职数学课程有助于高职学生适应社会与职业的发展变化。近几十年来,世界科技快速发展,知识日新月异。数学知识迅速向自然科学和社会科学的各个领域渗透,在工程技术、经济管理及社会服务等各个方面发挥着越来越重要的作用。如今市场对人才的要求越来越高,人才流动、职业变化更加频繁,一个人在一生中可能有多次选择与被选择的经历,各种职业和岗位都在不断地发展变化,如果思维模式和行为方式不能与信息技术的要求相适应,就会失掉与社会同步前进的机会。相当多的高职学生不可能终生固定在一个工作岗位上,这就要求学生具备较强的适应能力、转岗能力与发展能力。

高等职业教育的培养目标是高素质、高技能的应用型人才,增强高职学生的竞争力是高职院校面临的严峻挑战。但有的人片面地把高技能理解为只能动手干活,而不必动脑思考。实际上,在知识经济时代,智能化、信息化的水平不断提高,高技能越来越多地体现在人的思维能力而不是动手能力。以数控技术为例,传统的操作以手动为主,对工人的操作技能要求较高。而现代的数控技术是采用计算机程序控制,这种技术按事先存贮的控制程序来执行对设备的控制功能。因此,制造业的高级技师必须具备一些计算机的知识,掌握数控机床的编程方法。

通过高职数学课程的学习,学生不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题能够进行分析、推理、概括,并利用数学方法与计算机技术以及其它各方面的知识综合起来加以解决。这种思维能力的强弱决定了高职学生能否快速适应职业的发展及岗位的变化。

(四)是为学生的继续学习与深造服务的。科学技术的飞速发展对企业的职业技术、技能将带来的快速的更新与变革,科学技术的进步对数学知识的要求高低也会影响到职业技术、技能的更新与变革,高职院校不但要为学生眼前的就业考虑与服务,更应该着眼于学生的发展后劲,为学生的继续学习与深造提供服务。

(五)是培养与提高人的文化素质不可缺少的重要内容。其一,高职数学课程在高等职业教育中有着其它课程都无法替代的专业服务功能和素质培育功能,它既是学生学习专业基础课和专业课、毕业后继续学习深造的重要基础与必备工具,又是培养学生思维品质和数学能力、激发探索精神和创新能力的重要途径,这些都是培养与提高人的文化素质不可缺少的重要内容;其二,通过高职数学课程的学习,学生除了学习数学知识和技能外,还可以积累一些数学文化知识,比如数学的发展史、数学与数学家的故事、数学名题、数学趣闻轶事、数学的发展动向及前沿成果等知识。在数学教学过程中,教师结合所教知识内容,不失时机地对学生进行数学文化教育,提高学生的数学涵养,让他们了解数学文化的博大精深,领略数学大花园的绮丽多姿,并从中受到启迪,培养自己高尚的人格和严谨的治学精神,使学生将学习数学的兴趣转化为志趣,志趣再转化为志向。高职数学课程能为学生成才搭建一个好的平台。

总之,通过对高职数学课程教学改革理论的研究和探索,非常有助于纠正人们在制定和实施高技能、应用型人才培养计划时出现的一些偏见,对高职应用数学在高技能、实用型人才培养中的地位、功能与作用有比较准确的把握,从而制定和实施较为科学合理的人才培养方案,培养出名符其实的高技能、应用型人才。

二、高职数学课程教学改革的内容与任务

(一)关于课程内容的改革

1.高职数学课程的体系和教学内容的取舍,既要科学又要有所创新。

(1)要体现先进的教育思想、教学方法与科学的教学手段。要将“启发性”贯穿于教学全过程,使学生在学习数学知识的同时,分析问题解决问题的能力和创新思维的能力都得到培养和开发。例如,数学概念的引入,要突出与实际问题的联系;部分数学公式、定理的严格理论证明可用简单直观的归纳或几何解释来代替。

(2)要树立课程意识,体现高职特色。要深入研究高职各专业的培养目标、专业能力,根据各专业的培养目标、专业能力对高职数学知识的需求来制定相应的高职数学课程标准、授课计划与知识点,在教学实践中不断修正完善,使其更科学、合理,充分展现高职教育的特色,做好高职数学为专业基础课和专业课服务的工作。

(3)要形成以培养学生应用能力和创新能力为目标的教学新体系。高职数学课程要形成以培养学生应用能力和创新能力为目标的教学新体系,改变课程结构单一的局面,应在教材结构上打破传统教材的束缚,根据不同专业对数学知识的需求,可采取“基础模块+活动模块”的课程内容设置方案,扩大选修内容,以满足不同专业、不同层次学生的需求。

(4)要把数学建模的思想、方法融入到高职数学的日常教学中去。传统的高职数学教学内容与体系,都重理论推导,轻实际应用。受学时少、学生基础差的影响,数学教学工作难有作为。所以,高职数学授课内容可以适当增加数学建模的知识,对学生加强数学的应用意识、应用能力和创新能力的培养。因数学建模本身是一个创造性的思维过程,它是对数学知识、数学建模方法、计算机知识和其他学科知识的综合运用,并具有较强的应用性、创新性。高等职业院校数学教学改革的目的之一就是要培养学生的创新意识、应用能力和创新能力,而数学建模课程的创新性符合数学教学改革的方向与要求。所以,要把数学建模的思想、方法融入到高职数学的日常教学中去,使数学知识、数学的思维方法与数学建模的思想、方法有机结合和相互渗透,提高学生的数学应用意识与应用能力。

(5)适当介绍计算机应用软件的使用。在高职数学教学中,要结合数学模型的求解,适当介绍计算机应用软件(如Excel、Matlab、lingo 等)的使用,增加数学实验的内容,使学生掌握利用计算机知识进行数值计算和数据处理的方法,提高学生的编程能力,减少一些复杂、繁琐的推导与计算。

(二)关于教学方法、教学手段的改革

1.将“启发性”贯穿于教学全过程。课堂教学要采用适合学生学习和适合学生认知规律的先进教学方法,将“启发性”贯穿于教学全过程。学生是主体,教师是主导,教师必须运用各种方法启发引导学生,充分调动学生的学习积极性、自觉性,使学生经过独立的思考融会贯通的掌握知识,提高分析问题和解决问题的能力。

2.提倡探究型教学模式。高职数学的教学内容非常丰富,运用高职数学的知识来解决一些实际问题很有研究意义和价值。如果,教师把所教的知识点当作一个研究课题,或提供一个问题情境,学生在教师引导下,主动探索、发现、创造性地解决问题,既获得了知识又发展了能力,从而能调动学生思维的积极性,促使学习由外在动机向内在动机转移,帮助学生理解记忆,形成迁移能力,较好地培养学生的发现问题和解决问题的能力,提高创新意识能力。

3.强化信息技术在课堂上的应用。计算机技术和数学软件的高速发展,为高职数学及数学建模课程创造了有利条件,数学建模培训,学生既动脑又动手,运用数学软件可以进行比较复杂的计算、画图,通过运用计算机语言编程等辅助手段,可以对建立的数学模型的计算结果进行分析、判断,从而使学生学习数学的兴趣得到极大的提高,学习积极性得到充分的调动,学生学到了很多知识,而且这些知识的实用性很强,涉及面广,学生的能力(数学知识的应用能力、分析问题和解决问题的能力、数学论文的撰写能力、计算机软件使用能力、数据处理能力和编程能力、可持续发展能力、创新能力与等)提升很大。

三、高职数学课堂教学实施的策略与方法

(一)利用学生的心理因素实施课堂教学

心理学认为,“任何人的实践活动都是在心理活动调节之下完成的”。因此,如何遵循人的心理活动规律以提高人的实践活动的效率,就成了人类各个领域共同面临的问题。作为教师,如能掌握教育心理学,有效地利用学生的心理因素实施课堂教学,定能使课堂教学呈现出生动活泼的场面,从而激发学生的求知欲,极大地提高教学质量。我的体会如下:

1.引导学生树立正确的人生观,激发学生的学习兴趣。高职院校的工科基本都开设高等数学。笔者从多年来的教学实践体会到,虽然我们的讲授内容并不深,要求也不高,可是有相当一部分学生的考试难以过关。这些刚从中学跨入大学校门的新生,由于受“应试教育”的影响,习惯了传统的传授知识为主的“填鸭式满堂灌”的教学方法,适应了机械的分类式的题海战术训练。这些学生学习上依赖性强,缺乏自学能力,不能较快的适应大学的学习方法,导致学习兴趣下降,学习积极性不高,主动性不强,因而学习效果差。究其原因,主要有:缺乏一个努力目标;高中期间的文化基础尤其是数学基础较差;学习方法不当;刚经历紧张的“高中三年”,想好好休息一下了;未考上自己理想的院校,有各种复杂的心理因素;上网成瘾,无心上学。

教育心理学指出:“需要”是产生动力的源泉。我在给新生上第一堂高等数学课时,就要介绍我们的授课计划、进度安排以及与中学数学的异同点在哪。特别要介绍高等数学与其它各学科的联系和作用,以及高等数学在市场经济中的广泛应用。让学生明白,高等数学是智力开发的重要途径,是学习运用科学技术的先决条件,尤其在这个数字技术的时代,在各行各业的激烈竞争当中,数学已成为强者的翅膀。如今,我国的经济发展日新月异,没有扎实的数学基础和过硬的本领就没有今后的立足之地,要学好专业课,就必须学好数学课。通过引导,使学生一进校,就要明确自己的使命感和责任感。在教学中,老师要讲清楚所学内容对后续课程的作用,帮助学生了解高等数学的重要性。特别是,教师的课堂教学应做到“概念讲准,知识讲清,道理讲明,思路讲活,深入浅出”。这样,教师不但传授知识、技能,而且在人生观、学习方法、思维能力诸方面能给学生以启迪,点燃他们心中奋发向上的火花。那么,学生就会对这门课程产生浓厚的兴趣和强烈的求知欲,学习就会由被动转为主动。

2.帮助学生克服心理障碍、增强心理优势,促进学生思维的主动性。

(1)要鼓励学生大胆提问。在学习过程中,学生会遇到较多的疑难问题。敢于提出问题,从而解决问题,学习才会进步。而有些学生即使有问题也不敢提,怕别人笑话,特别是不敢轻易对老师提问。这样,日积月累,问题成堆。这种现象比较常见,是学生的心理障碍。作为教师,首先要平易近人,要鼓励学生大胆提问。我的做法是:让数学科代表把每个同学举手提问发言的次数记录下来,作为考核平时成绩的重要依据,并在期评时对发言积极的同学给予适当加分。有了这个规定,在我的数学课堂上学生的发言都比较踊跃,教学的双边活动都能正常开展,这对搞好教学工作,提高教学质量起到了一定的作用。

(2)要帮助后进生克服心理障碍、增强自信。俗话说得好:冰冻三尺,非一日之寒。后进生的文化基础,尤其是很多中学数学基础知识一般都较差。来到大学后,由于受各种因素的影响,后进生的学习自觉性不强,特别是他们的心理障碍难在短时间内消除。面对这种情况,作为教师应该向他们伸出温暖的手,使他们树立起信心,消除一些紧张情绪和顾虑,创造一种亲切、温馨的教学情境,把“教”与“学”变成师生之间感情的交流。有了轻松、愉快的氛围,学生的学习积极性才能调动起来。

要帮助学生进步,提高学习成绩,教师必须了解学生。他们的学习成绩提不高,问题到底在哪?有的学生虽然努力,但成绩就是上不去,显然学习方法不当。有的学生不善于总结和归纳所学知识;有的学生不善于分析问题,思维方法不当;有的学生由于基础差,听不懂老师讲课,越学越没有兴趣。这些,都需要教师进行引导,要动之以情,晓之以理,施之以爱,导之以行。

3.运用表扬和鼓励的手段来鞭策、激励学生。学生的学习活动是智力因素和非智力因素共同参与的过程。非智力因素主要是指学生个体学习积极性方面的因素,如动机、兴趣、态度、个性、爱好、意志、品质等,它是学生在学习活动中坚定目标,克服困难,排除障碍,坚持不懈地去取得学习成功的原动力。如果能够激发学生的学习动机,把潜在的学习需要充分调动起来,发展学生的非智力因素,以获取教学成功的原动力,教学工作就会富有成效。

在教学中要善于运用表扬和鼓励的手段来鞭策、激励学生。例如,当学生做完课堂练习后,要及时进行讲评。对概念准确、解题思路清晰、方法正确的都要不失时机地给以肯定、赞赏或表扬。学生得到老师的表扬,自然很高兴,学习的积极性就更高了。对学生做得不够好的,也不要责怪,但要把存在的问题向学生讲清楚,是概念理解不准,还是解题方法不会,或是粗心大意造成演算出错了。实践表明,精神激励是课堂教学行之有效的好办法。

(二)构建和谐师生关系,创设宽松学习环境

1.树立“一切为了学生,为了学生的一切,为了一切的学生”的新观念。高职学生的数学基础较差,学生的学习方法比较单一,被动地接受知识,加之高职数学部分内容难度较大,导致部分学生无心学习。另外,学生之间的差异性较大,独生子女较多,给教师的教学带来许多困难,数学教师在教学中很吃力,教学效果不理想。要搞好教学工作,必须要树立“一切为了学生,为了学生的一切,为了一切的学生”的新观念,增强责任心,呕心沥血,勤奋工作,方能取得好的教学效果。

2.以学生为主体、教师为主导,师生平等,营造良好的教学氛围。和谐的师生关系,是构建宽松的学习环境的前提;宽松的教学环境是培养学生数学兴趣的土壤。师生心理相容相通,互相尊重信任是学生产生数学兴趣的心理基础,建立和谐的师生关系的基础在于师生相互尊重,相互理解,特别是教师对学生无私而崇高的爱能让学生在轻松、愉快的过程中完成学习任务。美国心理学家罗杰斯认为,“成功的教学依赖于一种真诚的理解和信任的师生关系,依赖于一种和谐安全的课堂氛围。”

如何营造良好的学习氛围,通过生动、活泼、有趣的数学教学与丰富多彩的数学活动,帮助学生克服自卑心理,增强自信,是高职院校教师亟待研究和解决的问题。教师如果能够善于应用微笑教学、语言沟通、实践活动等方式来形成相对稳定的教学心理氛围,使学生树立远大目标与抱负,端正学习态度,掌握正确的学习方法,提高学习数学的积极性与自觉性,教学工作就一定能事半功倍。

参考文献:

[1]教育部.关于全面提高高等职业教育教学质量的若干意见[Z].200616号文.

相关期刊