时间:2023-02-27 11:07:40
导语:在电力电子技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
1.1通过课程改革,提高教师教学水平与科研能力新型元器件、电路拓扑和控制技术的不断涌现,使电力电子技术课程的内容更新较快。通过课程教学改革,激励教师及时更新知识储备,做好新知识、新技术的学习与传授,使课堂教学更能体现时代性,并使教师自觉提高自己的教学水平。同时,依托我校已建成的电力电子实验室,鼓励教师开发适用于各层次、满足不同专业侧重点的实验和实践环节,使教师通过指导学生课程设计、毕业设计,并结合企业项目需求,开发出多项科研教研项目,使教师科研能力得到提高。
1.2为课程群建设、产学研相结合的进一步探索研究奠定基础电力电子技术已逐步发展成为一门由现代控制理论、材料科学、电机工程、微电子技术多学科相互渗透的综合性技术学科。通过课程改革,为电力电子技术精品课程建设、课程群建设奠定良好基础。此外,通过课程改革,探索适用于我校的电类专业卓越工程师特色培养模式,并促进教科研和企业项目合作与承接等工作的深入开展。
2教学改革方案的实施与主要特色
为努力改变该课程原有的难教难学的状况,教学改革方案从以下几个方面实施:
2.1重新编排教学内容,突出课程实用性和趣味性改变传统教学中对四大变流电路孤立、单一的学习模式,引入生活中常见电路以及电子小制作的实例,通过一系列具体电路系统设计过程的演示,将《模拟电路》、《电机与电气》等前期专业课程的知识与《电力电子技术》所学理论知识相联系,展现课程强弱电结合、多学科融合的特点。并且,在保证理论基础扎实前提下,增加日常电路分析和设计实践环节在整个教学过程中所占比重,以实例激发学生自主学习兴趣,以兴趣带动能力培养,在这一过程中培养学生的读图、分析、画图、简单电源电路设计等能力,实现理论与应用相辅相成、有机结合,最终提升学生工程应用方面的综合素质。
2.2采用引导型教学方式,注重教学过程中的互动性和学生分析解决问题能力的培养授课过程中注意开展互动,通过采用提出启发性问题—共同讨论—获得结论—实验验证的方法,在教师“教”与学生“学”的过程中不断发现问题和新的突破点,将学生被动接受知识的过程转化为其不断解决问题的过程,使学生主动学习、开放思维,并在此过程中加深相关理论的理解,训练其分析和解决问题的能力。
2.3充分发挥多媒体教学优势,改变理论教学抽象、刻板的现状电力电子技术重视对电路波形的分析。课程原有的单一的板书或简单PPT课件加板书的传统授课形式课堂信息量较少,不够直观,不能解决学生缺乏学习兴趣,接收效果较差等问题。利用PowerPoint、Flash、视频等多媒体手段,不仅能使波形分析更为直观,还能方便地展示电路在不同条件下的工作状态,以及课程内容在实际生产中的应用。既可使教学内容更加丰富,还使分析过程不再枯燥抽象,分析结果生动醒目,便于学生理解。
2.4以实际系统分析为手段,提高学生知识融会贯通的能力改变对变流技术中各典型电路孤立的讲解,通过带领学生进行典型的电力电子系统分析,结合系统供电、控制等模块电路结构、原理的介绍,体现该门课程电力、电子和控制学科间的交叉性,使学生学会将与课程相关的专业课内容灵活运用于电路分析和设计应用中,提高他们对所学知识的融会贯通能力。
2.5引入专业常用仿真软件,激发学生学习兴趣,培养基本专业技能专业仿真软件在现代工业设计及应用中的作用越来越显著,掌握一至两种仿真软件工具将成为工科学生应具备的基本素质之一。同时,在教学过程中,利用仿真软件对电路工作情况进行仿真,可以使分析过程更为直观,有利于激发学生学习兴趣。目前,电力电子仿真软件主要有Matlab、Pspice、SIMetrix/SIMPLIS和Saber等,其中Pspice和Matlab在开关电源开发应用中具有重要作用,被相关企业广泛运用[4]。在教学改革中,通过在课堂教学和实验环节中引入建模的基本原理与过程,既能使课堂教学和实验更加生动直观与安全,还能引导学生学习软件的应用,使他们具备基础建模能力,有助于满足企业对于学生基本专业技能的要求。
2.6开发一批设计性、综合性研究实验,培养学生的应用、创新能力利用学校电力电子实验室和软件仿真的资源,结合当前热门课题和企业需求,开发一些设计性、综合性较强的实验,或通过课程设计、毕业设计的方式指导带领学生进行研究设计。实验的开发以培养学生应用创新能力为主要目的,既有助于学生巩固所学知识,提高知识综合运用能力,又可为电子设计大赛等专业比赛人才选拔奠定基础。
2.7以课程改革为契机,积极拓展校企合作途径,开发产学研项目,提升教师科研水平在课程改革中,积极寻求校企合作的新途径,深化校企合作的内容,将企业实际项目作为教学的实践、提升环节,依托学校的实验实训中心,以教师为主导,学生进行设计、验证配合,不仅可以极大地激发学生学习和实践的兴趣,同时也有利于教师自身科研水平的提高。
3结语
1.1电力电子器件
电力电子器件主要是由一些半导体半控器件和全控器件组,主要有IGBT、BJT、MOSMOSFET、GTR等组成。成为了满足广大需求、适应复杂多变的恶劣自然天气、自然灾害,生产出质量高、性能好的电压和电流,要求电力电子器件具有可靠性高,抗干扰能力强,温度稳定性高并且有一定的电气隔离能力,能承受短暂的高电压强电流。电子器件所控制得智能电网应该有自愈性、安全性、交互性、经济性、优质高效、清洁环保市场化程度高。
1.2在风力发电与太阳能发电中的应用
太阳能发电系统由太阳能电池阵列、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端,在太阳能的利用上同样面临这类似的问题,光伏发电系统主要以电源方式并入电网,其输出系统的电力跟踪电网电压电流相位变化,同时调整输出电流幅值的大小,使光伏系统注入电网中的功率最大,为了弥补光伏发电系统在功率上的波动,还需要通过控制器对蓄电池的双向充放电,以保证向电网输送平稳的电压电流,和规定的相位,使电网得到纯净的高质量电力。
1.3超高压直流输电技术在智能电网的应用
超高压直流输电技术在远距离大容量输电、异步联网、海底电缆送电等方面具有优势,因而得到了广泛应用。而特高压直流输电更可以有效节省输电走廊,降低系统损耗,提高送电经济性,它为我国解决能源分布不均、优化资源配置提供了有效途径。截至2009年,我国已建成7个超高压直流输电工程和2个直流背靠背工程,直流输电线路总长度达7085km,输送容量近20GW,线路总长度和输送容量均居世界第一。预计到2020年,我国将建成“强交强直”的特高压混合电网和坚强的送、受端电网,预计直流工程达50项,其中规划建设30多个特高压工程,包括5个±1000kV的直流工程。
1.4SVC在智能电网的应用
SVC是一种比较典型的电力电子控制技术,在电网应用中发挥着重要作用,它具有许多作用,可以调节电力系统的电压从而保证其稳定,并通过控制无功潮流来增加系统输送点的能力,提供无功功率给直流换流器,提高电力系统的暂态稳定性和静态稳定性,还可以加强对电力系统低频振荡的阻尼。SVC技术是提高我国电力系统稳定性,解决电网输配电存在的不足之处的一个非常重要的技术,它具有优化潮流和无功补偿的功能,可以有效改善电网的电能质量,提高电网的稳定性、安全性和输电的能力、效率。
1.5在电力分配上的作用
电网应该能满足所有用户的要求,特别是国家电网应该不允许出现这样的缺陷,电网所面临的用户多种多样,包括了普通家庭,医院,工厂,城市照明等,当电力通过电网输送到用户的面前时,还需要电网根据不同客户的要求输出合适的频率、幅值、相位,在面临雷击、短路、及自然灾害的情况下应该任然能维持电网的平衡稳定,积极满足用户的需求。如今。城市用电迅速增长,原来的架空电网的供应已经不能满足用户的需求,在交流的长距离出送中,需要添加电力电子设备,对电网缺失进行补充,增加电力电子设备环节对供电系统起着越来越重要的的作用。
2.小结
《电力电子技术》是机电类专业的专业基础课。课程涉及到大量的电路分析,是一门与实践联系比较紧密的课程。逆向思维教学法是从果导因的逆向分析法。在逆向思维教学的基础上,为加强学生实际能力的培养,探索工学结合的教学模式,课程组结合课程教学特点,创建了“理论——实践——工程设计”一体化的教学模式。我们将教学过程分解为三个互相联系的模块,整个过程将理论教学、实训与实践、工程设计三大部分进行了一体化的组织设计,各个模块的有机衔接,教学组织过程依次展开。同时,根据教学内容,选择了灵活的教学方法,如现场教学、案例教学、项目驱动、真题实做等,构成一个学校——企业——社会贯通的现代教学链,加强了学生实际动手能力和创新能力的培养。从真正意义上实现了理论与实践互交互融和开放性教学,体现了工学结合特色。
二、加强课程建设,精心、合理选择教学内容
1.了解相关课程之间的分工。知识是相互联系、相互渗透的。在开课前,熟悉本课程与相关学科的联系,了解先修课“电路”和“电子技术基础”两门课程的教学情况和后续课“变频调速技术”的安排,处理好他们之间的关系,保持整个专业课程体系前后衔接,避免内容的重复和疏漏。例如“自关断器件”一章节,电子技术基础中已讲过小功率晶体管、场效应管的结构、原理、特性及应用。在本门课程中,对功率晶体管、功率场效应管应重点讲述其与小功率管的不同之处。对于晶闸管直流电动系统部分,重点应在整流、有源逆变两种状态下,电流连续、断续时的电动机特性,而直流可逆调速系统的内容则需放到后续课程“变频调速技术”中。
2.以器件、电路、应用为主线,加强基础知识的学习。以开关方式工作的电力半导体器件是现代电力电子技术的基础核心。电力电子器件的基础之一是能以小信号输入控制很大的输出,这就使电力电子设备成为强弱电之间的接口的基础。讲解器件原理及特性,目的是为了应用器件组成电路,故应掌握器件外部特性、极限参数和使用注意事项。三方面的内容应以电路为主,学习各类电力半导体器件所构造各种功率变换电路时,学生应掌握功率变换主电路的构成、工作原理和工作波形,不同负载对电路工作特性的影响以及主电路的元件参数计算和选择。
3.介绍学科前沿发展的动向,反映本学科和相邻学科的新成果、新进展。无电网污染、无电磁干扰、节能省电等绿色指标是全球范围内的热门话题。由于很多电力电子装置结构相当复杂,为简化设计而出现的集功率开关、变换控制电路、传感控制电路为一体的智能功率集成模块受到欢迎,厚膜集成模块、积木式的功能模块,灵活机动既能单独使用,也能相互组合成较大的系统,成为电力电子技术的发展方向。教学内容应主动吸收最新信息,同时引导学生了解电力电子技术的发展动态,扩大知识面,这可通过指导学生阅读与电力电子技术有关的学术期刊,登陆相关的专业网站,使学生了解自己目前所学知识在本领域所处的位置,从而站在较高的起点上,去适应学科未来发展的需要。
三、改革教学方法,形成以能力培养为主线的课程特色
《电力电子技术》是一门理论包含实践的课程,根据其自身的特点,课程的内容设计应注重“讲”“练”。多年来,电力电子技术课程的教学方法是以教师为中心的,逐章逐节不厌烦地讲授,讲得过多、过细,以求“当堂弄懂”“课上解决”。这样只是传授,学生总是处于被动接受的地位,极大地妨碍了学生学习的主动性和积极性的发挥,不利于学生的素质和能力的培养。而实现教学现代化是加大授课信息量,节约课时,增强教学效果的重要措施。为改变这种情况,首先,教师在课前注意调查学生的学习基础,合理安排教学内容。而在教学中力求突出内容的重点和难点,但又要保证内容的系统性、完整性,并精选一部分内容留给学生去自学,写报告,然后开展课堂讨论,同时,结合学生看到的一些与电力电子技术有关的现象,让学生设计主电路,画出波形图。四、加强实践环节,注重综合能力培养
电力电子技术有很强的实践性,而实验是培养理论联系实际、动手能力、严谨的科学态度和科学研究方法的重要手段,因此应精选最基本的也有较高实用价值的实验项目。例如选择在计算机、通讯设备及家用电器等广泛应用的开关电源作为实验项目,介绍典型的开关电源的线路,比较开关电源和线性电源的性能,使学生对开关电源有了深刻的印象,并增强了学习电力电子技术课程的兴趣。由于电力电子电路具有强、弱电结合的特点,要特别强调实验操作的认真、规范,保证实验顺利进行,避免事故发生。实验前,要求学生根据实验名称及预习要求进行预习,从而在观察现象和发现问题等方面充分发挥主观能动性。实验过程中,注意考察每个学生的实际动手能力,针对性提出线路连接和实验现象方面的问题。让学生边做边答,防止学生机械接线,使实验走过场。注意介绍新仪表、新仪器的使用,例如数字式示波器的使用,这样学生会直接感受到科技发展带来的巨大方便。
计算机仿真是使用计算机对已经存在或正在设计的对象的模型进行研究,具有精度高、重复性好等特点,是进行科学研究的重要手段之一。现在出现了大量的仿真软件,将电子仿真设计软件PSPICE和科学计算软件MATLAB等引入到电力电子技术教学中,让学生按研究的侧重面或实际需要对实际对象进行简化提炼,而不是原型的复现,这样有利于抓住其本质或主要矛盾,对所学理论有深刻的理解,也为学生今后从事工程设计和科学研究打下良好的基础。
在课程结束前安排一周的课程设计,可将电力电子技术及其他先修课程(电工基础、电子技术、电机学等)中所学到的理论和实践知识全面地结合起来,同时培养和提高学生自我获取知识的能力。课程设计的内容应具有一定的系统性、新颖性。教师要发挥指导作用,指导学生阅读参考文献,审阅设计方案,检查设计进度,及时指导和帮助其解决存在的问题,逐步培养学生的独立工作能力、设计技能和建立正确的设计思想,重视学生的具有创新精神的见解。
五、结束语
电力电子技术课程的教学改革是一项系统工程,其学术性和技术性较强,涉及面很广。而教学改革是一项长期而艰巨的任务,我们只有不断积极探索教学内容、教学方法,充实自己,以适应当今社会的需要。
【摘要】本文介绍了“电力电子技术”课程的教学方法改革。研究、探索和实践与教学体系相适应的实践教学模式、教学方法和教学手段。提出了全方位教学的改革与实践的新思路,为社会培养具有创新精神的高素质技术应用型人才。
【关键词】电力电子技术教学方法教学改革
参考文献:
[1]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,2000.
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2.现代电力电子的应用领域
2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3.高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。
3.3数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。
现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
参考文献
(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992
(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998
随着社会用电的需求,电力电子技术逐渐得到了相应的研究与发展。20世纪60年代以后,电力电子技术开始被应用到相关的领域,如电力电子领域和控制技术领域。其中,电力电子技术在控制技术方面的研究和应用使相应的电能能够得到科学有效的转换和控制,从而推动了电能的合理应用和可持续发展。电力电子技术是用计算机系统将电子技术、电路技术和电力控制技术等方面进行相应的整合应用的现代化的电力技术,晶闸管的出现标志着这项技术发展到相应的成熟阶段。电力电子技术主要包括两个方面的技术,一是电子电子器件制造技术和电力电子变流技术。电力电子器件制造技术在发展过程中得到了不断的提高和发展。相应的电力电子器件已经由第一代的低耗能和小体积发展到具有自动关断功能和结合相应的功率器件、驱动器件、控制器件等更完善的第三代电力电子器件。其发展前景更加可观。电力电子变流技术也在不断的发展中得到了广泛的应用。20世纪70年代,整流电路得到了广泛的应用,逆变电路也在此过程中得到了一定程度的发展。随着自动断电器件的应用,逆变电路开始有了更为迅速的发展。与此同时,随着控制技术的不断发展,使电力电子系统的现代化控制技术得到了不断的发展,出现了模糊控制、自适应控制等控制方式。控制技术在很多领域都得到了相应的应用,也为电力电子技术的发展提供了更多的技术支持。
二、电力电子变流技术的应用形式
作为电力电子技术中的一部分,电力电子变流技术从上个世纪七、八十年代开始被广泛应用到电力系统中。一经应用便受到社会各界的极大关注。随着不断的发展,电力电子变流技术以整流电路、交流调压电路、逆变电路、斩波电路等形式在电力系统中都得到了广泛的应用,并取得了相应的良好效果。
(一)整流电路
整流电路是用可以调节大小的直流电代替了交流电供给直流用电设备的一种电力电子变流电路。整流电路通过整流二极管将输出的电压较低的交流电转化成直流电,实现对交流电的整流。交流电压在通过整流电路之后,就会变成混合电压,既有交流电压也有直流电压。整流电路被应用到一些相应的用电控制和相关输电环节,实现了快速高效控制并推动了电网的稳定运行。与此同时,整流电路还用多相整流的方式减少和控制了输出电压的脉动情况,并减少了电能的损失。整流电路一般是由变压器、滤波器和整流主电路组成的,在调节直流电动机的速度和调节发电机的励磁、电镀、电解等方面得到了相应的普遍运用。整流电路的变压器的设置是为了使输入的相应的交流电压与输出的直流电压之间保持相匹配协调,并实现对交流电网与整流电路之间的隔离。变压器在整流电路中的设置情况需要依据相应的具体情况来确定。整流电路中的滤波器是为了能够将直流电压中的交流电压过滤掉而在主电路与负载之间进行的相应连接。2。世纪70年代,整流电路的主电路主要是由晶闸管和整流二极管。随着不断发展,发光二极管等新形材料逐渐被应用到主电路中。电力系统中的整流电路主要包括半波整流电路、全波整流电路和桥式整流电路。其中,半波整流电路是整流电路系统中最为简单的一种,它能够通过电源变压器将220伏电压转变成所需要的电压大小,整流二极管能将相应的交流电转换成直流电。经过反复的转换过程,一半的交流电被演变成了直流电,这也是半波整流的由来。半坡整流电路的电流利用率比较低,多用于电压高、电流小的领域。全波整流电路可以认为是由两个半波整流电路组成的,其通过对整流电路的相应调整,达到了对电能的高效运用,但其二级管所承受的电压相对较大。桥式整流电路是使用最为广泛的整流电路,它通过接入两个二极管使电路形成了桥的形状。桥式整流电路既能够高效利用电能,还能够使承受的反向电压相应减少,对其稳定运行有一定的作用。
(二)交流调压电路
交流调压电路是运用改变电压、相数等方式实现新形式的交流电代替原来的交流电的一种变流电路,其主要被应用在控制电热、控制灯光和控制交流电动机速度等方面。交流调压电路在被广泛应用到电力系统中的同时,也实现了在高压电器中的应用。交流调压电路虽然会产生谐波,但其对电路系统的影响并不是很大,而且该电路还具有设置简单、方便控制和调节,对有色金属的消耗较小等特点。此外,交流调压电路还能在电动机的整个运行过程进行调压,以保持电压的稳定和电动机的正常运转。交流电压器通过依照相应的规律控制交流开关从而达到控制输出电压的目的。交流调压器控制电压的方式主要有周波控制调压、相位控制调压和斩波控制调压。其中,周波控制调压是通过交流开关关闭和开通相应的周波,从而改变输出电压的波形达到改变输出电压大的目的。相位控制调压是通过改变晶闸管电压到触发点之间的电角度,从而改变输出电压的方式。斩波控制调压是通过利用开关将电源周期内进行切断,将输出电压也相应切成小段,再通过改变其宽度或开关通断的周期来调节输出电压的方式。
(三)逆变电路
逆变电路是用不同的交流电代替直流电的一种变流电路,可用于构成各种交流电源,在工业领域有比较广泛的运用。生活中的一些直流电源向交流负载供电时就需要逆变电路来实现。逆变电路通过相应的开关和晶闸管来改变直流电路的电压或电流,从而把直流电转变成交流电的过程。逆变电路有单相和多相之分。逆变电路常常被拿来与变频做相关联系。逆变电路能够通过转变电流频率实现与水力、风力发电机的输出频率相一致的目标,从而能够使水力、风力发电取得高效运转。为了实现发电厂节能运行,可将逆变电路应用到对风机水泵的调节中去,以通过转变频率的方式调节风机水泵的运行速度,实现其节能高效运转。此外,通过运用带有逆变电路的逆变器,可实现对太阳能发电的转换运用。
(四)斩波电路
斩波电路是用斩波器使改变原有电路的电压,使一种新的固定电压或可调电压的直流电来代替原来电压的直流电的一种变流电路。它在一些电动机的驱动中得到了广泛应用,如开关电源等。斩波电路是为了电力运用的相应需要,将相应的一部分正弦波斩掉,从而改变电路电压的变流技术。斩波电路的斩波器往往会采用脉宽调制和频率调制两种方式。斩波电路主要包括升压斩波电路、降压斩波电路和升降压斩波电路等。斩波电路能够在节约电能的基础上使相应的电动机能够平稳加速。与此同时,斩波电路还能够起到调节电压和对电网侧谐波进行有效控制的作用。
三、电力电子变流技术的作用
(一)促进电力电子技术的发展
随着电力电子控制设备和变流技术的不断发展和广泛应用,电力电子变流技术在促进电力电子的智能化发展方面发挥出了重要的作用,也对实现微电子技术与变流技术的有机整合提供了相应的支持和帮助。这不仅有利于电力电子变流技术的进一步发展,也能够在一定程度上推动电子技术的重大发展,为新的电子革命的到来起到了相应的推动作用。
(二)对电能的使用更加高效合理
传统的电力技术在电能运用上存在着相应的浪费和管控不足等情况,不利于电能的高效配置和合理利用。而通过在电力系统中运用电力电子变流技术则能够实现转变电流和电压,从而达到相应的用电需求,也能够实现节约电能,高效用电的目标,促使社会对电能的应用更加科学合理。在实际应用中,如果将电力电子变流技术针对一些电力设备进行相关的节能操作,则可以实现相当可观的节电效果。这对减少不必要的用电浪费和提高用电效率有着良好的推动作用。
(三)推动电力系统的全面发展
传统的机电设备往往有着庞大的体积和反应较慢的低频运行效果,对电力系统的发展造成相应的不良影响。而将电力电子变流技术应用到电力系统当中来,不仅可以使电力系统的工作效率大大提高,还可以减小机电设备的体积,并能提高机电设备的运行速度,使其实现高效率、高频化的运作。这些变化既能够实现电力设备的高效运作,也能够推动电力系统的全面发展。(四)促进在相关产业中的普及和信息化发展在电力电子变流技术的发展过程中,其逐渐满足了人们生产和生活的各种需要,也逐步被应用到人们的生产和生活当中的各个领域中,不仅促进了人们生产生活领域相关内容的开展,也在一些传统产业中实现了对这种技术的普及应用。与此同时,由于电力电子变流技术能够沟通机电设备与计算机之间的联系,其能够有效地将微电子技术运用到相关产业中,从而推动了相关产业和电力系统的信息化发展。
四、电力电子变流技术在电力系统中的应用
(一)在发电环节的应用
在电力系统的发展中,电力发电的方式也是多种多样的,既有传统的火力、水力发电,也有新兴的太阳能发电、风能发电和核能发电。由于能源总量十分有限,传统的发电方式不能够在可持续发展的基础上更好地满足人们的用电需求,人们对新兴发电方式的关注度也就越来越高。但新兴发电方式有其优越性的同时,也存在着一定不稳定。电力电子变流技术则能弥补新兴发电方式或受环境影响或受电力储存的影响而导致的发电和用电效果不佳的情况,使其得到高效运用。同时,变流技术还能够改善各种发电系统中的相关设备,以促进它们在发电过程中的有效运用,保证发电环节的正常运转。
(二)在输电环节的应用
电力系统的输电环节往往存在着电网运行不稳定等方面的问题,将能够执行相应的变流技术的电力电子器件应用到输电系统中,能够克制相应的电压不稳的问题,并实现电流形式的转换,使电网的运行状况更加稳定和完善。不管是在直流输电过程中还是在交流输电过程中,电力电子变流技术都充分发挥了其转换频率或者抗击谐波等一系列的重要作用,保证了电力输送的正常与稳定,完善了供电质量。
(三)在配电环节的应用
电力系统在进行配电操作的时候也要依靠对电力电子技术的应用。电力电子变流技术不仅能够用在配电系统的操作电源上,还能够应用到蓄电充电方面,既能保障了配电环节的电流转换,也能协助相应的电力储备,保证了配电工作有条不紊。与此同时,人们的日常生活用电也离不开对电力电子变流技术的应用,它既可以维护日常用电的稳定性,还能通过相应设备使家用电器节省用电量。
五、结语
1.变电站技术的自动化变电站是电力系统中的重要部分,变电站中电气自动化技术的应用,主要是将计算机和通讯技术结合在一起,对数据信息进行集中处理和分析,并重组优化变电站设备和电力系统。这种技术对各个系统的互连配置进行了简化,操作起来更加方面快捷,满足了电网自动化建设的要求,另外数据监控的利用时微机保护功能进一步完善,并且还能有效识别处理系统内单元模块的故障,实现电力系统的安全、稳定运行。
2.配电网技术的自动化配电网技术的自动化技术主要运用在改造城乡的配电网上,目的是进一步实现电网的自动化,解决城乡自动化系统中的问题,促进电网的发展,这样才有利于确保电网运行的平稳安全,提高企业的经济效益。通过运用电气自动化技术能对用户计量表进行数据分析,及时排查出故障,减少切点情况的发生,降低用电量损失。另外,利用系统检测能计算出线路线损,保证线路运行更加通畅。
二、电力工程中电力自动化技术的应用
1.现场总线技术几年来,现场总线技术逐渐兴起,并在电力工程中起着不可或缺的作用。现场总线技术,不仅有利于实现智能自动化装置和控制器之间的连接,还有利于解决电气设备与高级控制系统间的信息传递问题。具体来说,这项技术就是将传感器和监测系统所获得的信息参数传递到计算机上,计算机通过分析数据模型,显示出电网的运行状态以及故障,然后利用布线技术将最终指令传送到控制设备上,进而实现电力系统的控制功能。现场总线技术优势是,利用信息技术就能对电力系统的现场设备进行远程操作,这样就大大降低了管理难度,而且有利于技术人员分析不同渠道的供电数据,以此全面掌握用户的用电需求,制定出行之有效的电力营销策略。
2.主动对象数据库技术作为电力自动化关键技术之一,主动对象数据库技术给软件工程造成了非常大的变革,也影响着软件的开发与利用。在电力工程中,主动对象数据库技术是一种监控技术手段,可以主动对电力系统的运行进行监督控制,以提高供电的可靠性,还有利于降低对信息数据的处理和计算速度,这样处理电力数据的成本也就大大减少了。采用对象技术和触发机制,可以实现对数据库的自动监控,而且信息数据在处理之后能够提高准确率和利用价值,这样相关技术人员就能对数据进行恰当处理,操作使也有了更加准确的数据资料可以参考。目前随着计算机信息技术的更新与发展,数据库技术也得到了更加复杂和全面的功能,更多先进的设备进入电力自动化建设,有利于提升电力系统的自动监视与控制功能,进而满足工业生产和生活的需要。
3.光互连技术在继电和自动控制系统中,光互连技术运用得比较广泛,这种技术主要是利用探测器功率限制电力扇出数,提升电力系统的集成度,并且不存在信道对带宽的限制,有利于实现重构互连,另外光互联技术的干扰性比较强,能使数据传输更加便捷。而电子传输和电子交换技术的运用,不仅有利于拓展互联网络,还能促进编程结构的不断改善,让电力系统的灵活性得到增强。除此之外,光互连技术还具备强大的数据处理能力,可以通过搜集和分析电力系统的数据资料,及时找到出现故障的位置,以提高电力故障的处理效率,尽可能避免因故障带来的不必要损失,这样才能提高电力服务的质量。光互连技术还有非常强的数据处理功能,在技术使用方面更具灵活性,产生的画面也更为清晰,为电力调度人员开展电力调度工作提供了参考标准和依据,因此在电力系统中被广泛运用。
三、结束语
【论文摘要】本文首先探讨了近似计算在静态分析中的应用问题,其次分析了纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册,最后电子技术在时间与频率标准中的应用进行了相关的研究。因此,本文具有深刻的理论意义和广泛的实际应用价值。
一、近似计算在静态分析中的应用
在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。
在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。
二、纳米电子技术急需解决的若干关键问题
由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。
(1)纳米Si基量子异质结加工
要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。
(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,Purdue University等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。
(3)超高密度量子效应存储器
超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。
(4)纳米计算机的“互连问题”
一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。
(5)纳米 / 分子电子器件制备、操纵、设计、性能分析模拟环境
当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。
三、交互式电子技术手册
交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。
简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。
四、电子技术在时间与频率标准中的应用
时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。
1952 年国际天文协会定义的时间标准是基于地球自转周期和公转周期而建立的,分别称为世界时(UT)和历书时(ET)。这种基于天文方面的宏观计时标准,设备庞大,操作麻烦,精度仅达10- 9 。随着电子技术与微波光谱学的发展,产生了量子电子学、激光等新技术,由此出现了一种新颖的频率标准——量子频率标准。这种频率标准是利用原子能级跃迁时所辐射的电磁波频率作为频率标准。目前世界各国相继作成各种量子频率标准,如(133 Cs)频标、铷原子频标、氢原子作成的氢脉泽频标、甲烷饱和以及吸收氦氖激光频标等等。这样做后,将过去基于宏观的天体运动的计时标准,改变成微观的原子本身结构运动的时间基准。这一方面使设备大为简化,体积、重量大减小;另一方面使频率标准的稳定度大为提高(可达10- 12 —10- 14量级,即30 万年——300 万年差1 秒)。1967 年第13 届国际计量大会正式通过决议,规定:“一秒等于133 Cs 原子基态两超精细能级跃迁的9192631770 个周期所持续的时间”。该时间基准,发展了高精度的测频技术,大大有助于宇宙航行和空间探索,加速了现代微波技术和雷达、激光技术等的发展。而激光技术和电子技术的发展又为长度计量提供了新的测试手段。
总之,在探讨了近似计算在静态分析中的应用问题、纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册后,广大科技工作者对电子技术在时间与频率标准中的应用知识的初步了解和认识。在当代高科技产业日渐繁荣,尖端信息普遍进入我们生活之中的同时,国家经济建设和和谐社会的构建离不开我们科技工作者对新理论的学习和新技术的应用,因此说,本文具有深刻的理论意义和广泛的实际应用价值是不足为虚的。
【参考文献】
[1]张凡,殷承良《现代汽车电子技术及其在仪表中的应用[J]客车技术与研究》,2006(01)。
[2]李建《汽车电子技术的应用状况与发展趋势》[J],《汽车运用》,2006(09)。
[3]陶琦《国际汽车电子技术纵览》[J],《电子设计应用》,2005(05)。
[4]刘艳梅《电子技术在现代汽车上的发展与应用》[J],《中国科技信息》,2006(01)。
[5]魏万云《浅谈当代电子技术的发展》[J],《中国科技信息》,2005(19)。
1.1一般资料
本院是隶属于武威市的三级乙等肿瘤专科医院,目前开放床位500余张,临床护理单元12个,特殊护理单元11个,护理人员370人,其中本科学历56人,大专202人,中专112人;副主任护师3人,主管护师29人,护师89人,护士249人。
1.2方法
1.2.1传统纸质档案管理
2010—2011年护理部将所有护士的毕业证、身份证、执业证、资格证复印件按科室装订成册并定期更新,将荣誉证、进修结业证等复印件按类别分别装订成册,并定期更新。
1.2.2电子技术档案管理
2012—2014年护理部按来院时间为护理人员编写档案号,以护理人员的姓名及档案号为名称建立文件夹,将毕业证、身份证、执业证、资格证、荣誉证、进修结业证等各类证件的扫描件以子文件夹形式保存于其中;将护理人员基本情况登记表(包括护理人员的基本信息,学历,职称,家庭情况,奖惩记录,科研及论文情况,每月护理部理论、操作抽考成绩,进修情况等)存入文件夹内,形成电子技术档案。护理部定期或不定期更新技术档案并保留备份。
1.3评价指标
对比分析两组管理方法更新、整理一次花费的时间,资料保存的完整性以及护理管理人员对两种管理方法的满意度。
1.4评价方法
工作人员分别记录更新一次档案所需时间,每月一次;每月统计科室、个人审核资料保存是否完整;采用自行设计的满意度调查表,每季度对护理管理人员进行满意度调查,并汇总结果。
1.5统计学方法
采用SPSS17.0统计软件进行数据处理,计量资料采用t检验,以x±s表示,计数资料采用χ2检验,P<0.01为差异有显著性。
2讨论
2.1节省时间,提高工作效率
在电子技术档案中,可以通过计算机搜索功能,快速查找相关人员的资料,方便护理部对全院护理人员进行培训、考核,同时还可以客观了解护士继续教育以及科研论文等情况。观察组在更新、整理技术档案时消耗的时间较对照组明显减少(P<0.01)。通过电子技术档案,护理管理人员可随时了解护士个人的工作表现及晋升情况,动态掌握护理人员资料,改变了以往因人员资料繁多查询困难的局面,节省了时间、人力、物力,提高了管理人员的工作效率。
2.2资料保存完整
纸质版档案在办公室搬迁、借阅、保存不当等情况下可能会遗失,而电子技术档案管理充分利用了计算机的优点,弥补了纸质版档案管理的诸多不足,使得资料保存更完整。观察组资料保存较对照组明显完整(P<0.01)。护理部对全院护理人员的电子技术档案存有备份,要求科室管理人员对科室护理人员的技术档案也存有备份,保证了资料的完整性,减少了资料遗漏、丢失等现象。
2.3提高管理人员工作满意度
护理部存有全院护理人员的电子技术档案信息,并由专职人员管理,负责完善基本情况登记表,各类证件扫描件的存储,理论、操作考核成绩的录入,并负责定期更新;各护理站及特殊护理单元均有科室护理人员电子技术档案,由护士长或护理组长负责。电子技术档案的实施减少了管理人员整理、更新技术档案的时间,且方便查阅,增加了管理人员与护士、患者沟通交流的时间,提高了护理管理人员工作满意度。表3显示,观察组管理人员满意度明显高于对照组(P<0.01)。
2.4体现人文关怀
护理人员家庭关系的建立便于紧急情况下护理管理人员查找其相关信息,了解护理人员的家庭背景,方便护理部主任、护士长与护士间的沟通,帮助护士解决生活中的困难。对护理人员的人文关怀,可激发护理人员工作积极性,提高护理质量。
2.5节约人力及资源
改变了以往各类证件复印件由各科室护理人员复印、上交护理部、护理部工作人员按类别顺序排列的工作方式,电子技术档案管理由护理人员将各类证件的扫描件通过QQ等方式传至护理部,护理部按技术档案号入册,节省了护理人员复印、上交档案所花费的时间,节约了护理部工作人员整理、更新技术档案的时间,同时也降低了纸张的消耗,节约了人力及资源。
3小结
数字电压表的设计和开发,已经有多种类型和款式。传统的数字电压表各有特点,它们适合在现场做手工测量,要完成远程测量并要对测量数据做进一步分析处理,传统数字电压表是无法完成的。然而基于PC通信的数字电压表,既可以完成测量数据的传递,又可借助PC,做测量数据的处理。所以这种类型的数字电压表无论在功能和实际应用上,都具有传统数字电压表无法比拟的特点,这使得它的开发和应用具有良好的前景。
新型数字电压表的整机设计
该新型数字电压表测量电压类型是直流,测量范围是-5~+5V。整机电路包括:数据采集电路的单片机最小化设计、单片机与PC接口电路、单片机时钟电路、复位电路等。下位机采用AT89S51芯片,A/D转换采用AD678芯片。通过RS232串行口与PC进行通信,传送所测量的直流电压数据。整机系统电路如图1所示。
数据采集电路的原理
在单片机数据采集电路的设计中,做到了电路设计的最小化,即没用任何附加逻辑器件做接口电路,实现了单片机对AD678转换芯片的操作。
AD678是一种高档的、多功能的12位ADC,由于其内部自带有采样保持器、高精度参考电源、内部时钟和三态缓冲数据输出等部件,所以只需要很少的外部元件就可以构成完整的数据采集系统,而且一次A/D转换仅需要5ms。
在电路应用中,AD678采用同步工作方式,12位数字量输出采用8位操作模式,即12位转换数字量采用两次读取的方式,先读取其高8位,再读取其低4位。根据时序关系,在芯片选择/CS=0时,转换端/SC由高到低变化一次,即可启动A/D转换一次。再查询转换结束端/EOC,看转换是否已经结束,若结束则使输出使能/OE变低,输出有效。12位数字量的读取则要控制高字节有效端/HBE,先读取高字节,再读取低字节。整个A/D操作大致如此,在实际开发应用中调整。
由于电路中采用AD678的双极性输入方式,输入电压范围是-5~+5V,根据公式Vx10(V)/4096*Dx,即可计算出所测电压Vx值的大小。式中Dx为被测直流电压转换后的12位数字量值。
RS232接口电路的设计
AT89S51与PC的接口电路采用芯片Max232。Max232是德州仪器公司(TI)推出的一款兼容RS232标准的芯片。该器件包含2个驱动器、2个接收器和1个电压发生器电路提供TIA/EIA-232-F电平。Max232芯片起电平转换的功能,使单片机的TTL电平与PC的RS232电平达到匹配。
串口通信的RS232接口采用9针串口DB9,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连。在实验中,用定时器T1作波特率发生器,其计数初值X按以下公式计算:
串行通信波特率设置为1200b/s,而SMOD=1,fosc=6MHz,计算得到计数初值X=0f3H。在编程中将其装入TL1和THl中即可。
为了便于观察,当每次测量电压采集数据时,单片机有端口输出时,用发光二极管LED指示。
软件编程
软件程序主要包括:下位机数据采集程序、上位机可视化界面程序、单片机与PC串口通信程序。单片机采用C51语言编程,上位机的操作显示界面采用VC++6.0进行可视化编程。在串口通信调试过程中,借助“串口调试助手”工具,有效利用这个工具为整个系统提高效率。单片机编程
下位机单片机的数据采集通信主程序流程如图2所示、中断子程序如图3所示、采集子程序如图4所示。单片机的编程仿真调试借助WAVE2000仿真器,本系统有集成的ISP仿真调试环境。
在采集程序中,单片机的编程操作要完全符合AD678的时序规范要求,在实际开发中,要不断加以调试。最后将下位机调试成功而生成的.bin文件固化到AT89S51的Flash单元中。
人机界面编程
打开VC++6.0,建立一个基于对话框的MFC应用程序,串口通信采用MSComm控件来实现。其他操作此处不赘述,编程实现一个良好的人机界面。数字直流电压表的操作界面如图5所示。运行VC++6.0编程实现的Windows程序,整个样机功能得以实现。
功能结果