时间:2023-02-28 15:31:30
导语:在通信电缆论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词地铁,电缆放电,数据采集系统
牵引变电站直流1500V馈出电缆是地铁供电的重要部件。上海轨道交通1号线自投入运营以来,已发生多起因直流电缆故障造成地铁牵引供电系统的停电。当前国内外对交流电缆的在线监测方法都做了很多研究,如直流分量法、直流叠加法、局部放电检测法以及接地电流法和低频分量法等[1],但在直流电缆方面的研究还相对较少。传统的采用摇表离线检测的方法存在很大不足,属于“安慰性”试验。虽然由于绝缘材料在交流和直流情况下表现出的特征不一致,但将交流电缆的在线监测方法用在直流电缆的在线监测上,理论上仍然是可行的,故被本设计采用。
电缆局部放电是造成绝缘老化的主要原因,也是绝缘劣化的重要征兆和表现形式[2],与绝缘材料的劣化击穿过程密切相关,能够有效地反映直流电缆绝缘的故障。由于地铁牵引变电站所使用的电缆无铠装、直埋,故将检测地铁电缆放电信号作为一个主要的研究方法。
牵引变电站直流1500V馈出电缆一般是5根电缆为一组并联运行,给地铁机车供电。理论上讲,并联在一起的5根电缆中有1根发生放电,其它电缆上也会有相应的放电信号出现。对5根电缆的同步信号采集除可以确认信号的真实性外,另外还可以通过差分等方法来消除环境噪声,提高信噪比。一般—个牵引变电站有4组电缆,因此,采集系统设计成能对最多20个通道放电信号实现同步采集。
1地铁电缆放电信号采集系统的设计
1.1地铁直流电缆放电信号的特征
图1所示为实验室观测得到的直流电缆放电信号波形。该信号在输入到示波器之前进行了25倍的放大。由图可知,放电信号的频谱在4MHz左右,电压幅值大概为±20mV。
1.2放电检测传感器的特性
为缩小传感器尺寸,放电检测传感器以高磁导率的超微晶磁性材料作为磁芯,在圆形磁心上均匀绕制高强度漆包线,构成典型的罗戈夫斯基线圈型电流传感器。传感器的内径大小设计成与地铁电缆外护套尺寸相当,保证很好的磁耦合;传感器线圈是套在电缆外护套上的,因此测量装置与1500V直流电在电气上是绝缘的,为非接触式测量。超微晶磁性材料具有高磁导率、低损耗、矫顽力小、高饱和磁感应、高稳定性等特点;由此设计的传感器具有高带宽、带内幅值增益平坦等特性,能有效地检测出电缆火花放电产生的微弱高频信号。
传感器线圈的输出信号幅值在20mV以内,必须进行前置放大再传输。放电检测传感器对频率为1~9MHz之间的信号具有良好的传输特性。但从现场运行数据分析,现场存在较强的、频率在0.6~1.5MHz之间的周期性窄带干扰,必须在传感器信号放大之前将其滤除,否则会导致信号饱和。放电信号频率在4MHz左右(见图2),因此,前置放大滤波器的设计目标为中心频率4MHz,频带宽度4MHz,即通频带为2~6MHz,放大倍数设计为64倍。
综合考虑前置放大器放大倍数和滤波的要求将放大器设计为三级,即放大———滤波———放大其中第一、第二级放大器的放大倍数都为8倍,这样两级放大器可以使用相同的运算放大器AD8042AD8042为带宽160MHz的满电源输入、输出运算放大器。滤波器为四阶巴特沃斯型高通滤波器。
为进一步减小环境噪声和其它干扰对传感器信号的影响,将传感器线圈和前置放大滤波器封装在同一个金属屏蔽盒内(为表述方便,称其为放电检测传感器),通过屏蔽电缆实现传感器、放大器的供电和信号传输。图2为实测的放电检测传感器的频幅特性。
1.3地铁电缆放电信号采集系统总体设计
图3所示为地铁电缆放电信号采集系统的总体结构原理,多达20路放电检测传感器信号通过屏蔽电缆引入到多通道同步数据采集模块,实现同步高速数字量化。通信接口模块用于将数据采集模块与监测中心计算机连接起来,上传采样数据和获取采样参数设定。
1.4多通道同步数据采集模块的设计
最多20通道的放电信号经过等长的5m电缆并行送人多通道同步高速数据采集板,在采集板内实现同步模/数转换。采集板由并行的20个通道构成,每个通道包括输入程控放大器、抗混叠滤波器、模/数转换器(A/D)和存储器(SRAM)。程控放大器的放大倍数可由软件设置为1、2、4和8倍;抗混叠滤波器为四阶巴特沃斯型低通滤波器,其截止频率设定在7.5MHz;模/数转换芯片采用AD公司的12bit、最高转换速率为25MS/s的AD9225;存储芯片为高速SRAM,存储容量为4M×16,即在采样率为20MHz时最多可以实现20ms的连续采样。
如图4所示,用一片CPLD(复杂可编程逻辑控制器件)来同时控制20个通道的A/D)和存储器,即实现A/D到SRAM之间的直接数据存储(DMA模式)。AD9225的控制极为简单,只需用CPLD向其输入采样时钟,并使能数据输出;CPLD同时产生SRAM的地址和写信号,采样数据即从AD9225存人SRAM。
实际应用中除使用定时方式采集电缆放电信号外,为减小数据量,可能会采用信号触发的方式,即20个通道中有一路模拟信号的幅值超过设定阀值便自动开始采样,直到设定的采样长度信号触发的基本原理是将20路信号分别与阀值比较的结果相“或”,然后用作采样的触发。
数据采集板的另一个功能是预采样,即将信号触发前一段时间的波形也记录下来,这样可得到放电信号的完整波形,便于对数据进行分析研究。在预采样模式下,A/D一直以设定的采样率运行,在CPLD控制下,数据循环存入SRAM,即SRAM被A/D采样数据循环写入,直到有一个触发条件出现。当触发条件出现后,CPLD控制A/D继续采样“采样长度—预采样长度”个样点,CPLD记忆触发时刻输出给SRAM的地址值,通过读出此地址值,向前预采样长度个样点即为本次采样数据的起始位置。
要保证20个通道数据采集的完全同步,除了使用同一个CPLD逻辑来控制所有20路A/D同时工作外,还需要使用同样材料的输人信号线且线长相同,要求精确调整放大器和滤波器的参数以达到几乎相同的信号延迟,重要的是所有传感器要有很好的一致性。为防止通道之间的信号串扰,设计中主要采取印制电路板物理隔离、大面积接地屏蔽和使用屏蔽电缆作为输入信号线等。
2采集系统测试
通过对系统输入确知信号(如正弦波信号),以及对采集信号的时域和频域分析,可以评估数据采集系统的性能,如系统增益、通频带和信噪比等。对本系统的测试包含了前端的放电检测传感器,测试时将信号源接1kΩ电阻,从放电检测传感器的线圈中穿过。图5和图6分别为信号源频率为4MHz时其中一个信号采集通道所测得的时域波形及其频域变换波形。
3结语
根据上海地铁牵引变电站直流1500V馈出电缆的特点和安装方式等,设计了用于检测火花放电信号的高频传感器、放大器、滤波器和多通道同步数据采集板,实现了对多达20根运行电缆的在线监测,已于2005年在上海轨道交通1号线付之实施。本文所实现的同步信号检测系统具有较高的灵敏度和多通道同步性能,可以应用于其它需要进行多通道甚至多通道同步信号提取的场合。
参考文献
[论文关键词]铁路电力远动终端干扰
[论文摘要]研究分析电磁干扰产生的原因、特点及干扰对电力远动系统的影响,从设计的角度对铁路电力远动监控系统进行抗干扰分析研究。
抗干扰设计是电力远动监控系统安全运行的一个重要组成部分,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,在强电场干扰下,很容易出现差错,使整个电力远动监控系统无法正常运行或出错误(误跳闸事故等),无法向站场和区间供电,影响铁路行车安全。
一、电磁干扰产生的原因及特点
(一)传导瞬变和高频干扰
1.由于雷击、断路器操作和短路故障等引起的浪涌和高频瞬变电压或电流通过变(配)电所二次侧进入远动终端设备,对设备正常运行产生干扰,严重还可损坏电路。2.由电磁继电器的通断引起的瞬变干扰,电压幅值高,时间短、重复率高,相当于一连串脉冲群。3.铁路电力供电中,特别是现代高速铁路对电力要求都比较高,一般都是几路电源供电,母线投切转换比较频繁,振荡波出现的次数较多。
(二)场的干扰
1.正常情况下的稳态磁场和短路事故时的暂态磁场两种,特别是短路事故时的磁场对显示器等影响比较大。2.由于断路器的操作或短路事故、雷击等引起的脉冲磁场。3.变电所中的隔离开关和高压柜手车在操作时产生的阻尼振荡瞬变过程,也产生一定的磁场。4.无线通信、对讲机等辐射电磁场对远动终端会产生一定的干扰,铁路中继站通常会和通信站在一处,通信发射塔对中继站电力远动终端设备的干扰比较大。
(三)对通信线路的干扰
1.铁路变电所远动终端的数据由串口通信经双绞线进入车站通信站,再经过转换成光信号沿铁通专用通信光缆送至电力远动调度中心,遥信和遥控数据在变电所到通信站的过程走的是电信号,由于变电所高低压进出线缆很多,远动终端受的干扰比较大。2.中继站一般距铁路都比较近,列车通过时的振动对远动终端设备有一定的干扰。
(四)继电器本身原因
继电器本身可能由于某种原因一次性未合到位而产生干扰的振动信号,或负荷开关、断路器、隔离开关等二次侧产生振动信号。
二、干扰对电力远动系统的影响
无论交流电源供电还是直流供电,电源与干扰源之间耦合通道都相对较多,很容易影响到远动终端设备,包括要害的CPU;模拟量输入受干扰,可能会造成采样数据的错误,影响精度和计量的准确性,还可能会引起微机保护误动、损坏远动终端设备和微机保护部分元器件;开关量输入、输出通道受干扰,可能会导致微机和远动终端判断错误,远动调试终端数据错误远动终端CPU受干扰会导致CPU工作不正常,无法正常工作,还可能会导致远动终端程序受到破坏。
三、抗干扰设计分析
(一)屏蔽措施
1.高压设备与远动终端输入、输出采用有铠装(屏蔽层)的电缆,电缆钢铠两端接地,这样可以在很大程度上减小耦合感应电压。2.在选择变电所和中继站电力设备时尽量选设有专门屏蔽层的互感器,也有利于防止高频干扰进入远动终端设备内部。3.在远动终端设备的输入端子上对地接一耐高压的小电容,可以有效抑制外部高频干扰。
(二)系统接地设计
1.一次系统接地主要是为了防雷、中性点接地、保护设备,合适的接地系统可以有效的保障设备安全运行,对于断路器柜接地处要增加接地扁铁和接地极的数量,设备接地处增加增加接地网络互接线,降低接地网中瞬变电位差,提高对二次设备的电磁兼容,减少对远动终端的干扰。2.二次系统接地分为安全接地和工作接地,安全接地主要是为了避免工作人员因设备绝缘损坏或绝缘降低时,遭受触电危险和保证设备安全,将设备外壳接地,接地线采用多股铜软线,导电性好、接地牢固可靠,安全接地网可以和一次设备的接地网相连;工作接地是为了给电子设备、微机控制系统和保护装置一个电位基准,保证其可靠运行,防止地环流干扰。
3.由于高低压柜本身都是多都是采用镀锌薄钢板材料,本身也有屏蔽作用,将高低高柜都可靠接地。4.远动终端微机电源地和数字地不与机壳外壳相连,这样可以减小电源线同机壳之间的分布电容,提高抗共模干扰的能力,可明显提高电力远动监控系统的安全性、可靠性。
(三)采取良好的隔离措施
1.为避免远动终端自身电源干扰采取隔离变压器,电源高频噪声主要是通过变压器初、次级寄生电容耦合,隔离变压器初级和次级之间由屏蔽层隔离,分布电容小,可提高抗共模干扰的能力。2.电力远动监控系统开关量的输入主要断路器、隔离开关、负荷开关的辅助触点和电力调压器分接头位置等,开关量的输出主要是对断路器、负荷开关和电力调压器分接头的控制。3.信号电缆尽量避开电力电缆,在印刷远动终端的电路板布线时注意避免互感。4.采用光电耦合隔离,光电耦合器的输入阻抗很小,而干扰源内阻大,且输入/输出回路之间分布电容极小,绝缘电阻很大,因此回路一侧的干扰很难通过光耦送到另一侧去,能有效地防止干扰从过程通道进入主CPU。
(四)滤波器的设计
1.采用低通滤波去高次谐波。2.采用双端对称输入来抑制共模干扰,软件采用离散的采集方式,并选用相应的数字滤波技术。
(五)分散独立功能块供电,每个功能块均设单独的电压过载保护,不会因某块稳压电源故障而使整个系统破坏,也减少了公共阻抗的相互耦合及公共电源的耦合,大大提高供电的可靠性。
(六)数据采集抗干扰设计
1.在信息量采集时,取消专门的变送器屏柜,将变送器部分封装在RTU内,减少中间环节,这样可以减少变送器部分输出的弱电流电路的长度。2.遥信由于合闸一次不到位或由于二次侧振动而产生的误遥信干扰信号,并且还会产生尖脉冲信号,也可能对遥信回路产生干扰误遥信号。
(七)过程通道抗干扰设计
(八)印刷电路板设计。在印刷电路板设计中尽量将数字电路地和模拟地电路地分开;电源输入端跨接10~100μF的电解电容。
(九)控制状态位的干扰设计
(十)程序运行失常的抗干扰设计
(十一)单片机软件的抗干扰设计
(十二)对于终端至通信站的数字通信电缆加穿钢管,特别是穿越其他电力电缆时,避免和其他电力电缆等同沟敷设并保持一定的交叉距离。
关键词:海洋石油;电气安全;现状与未来;
中图分类号:F407 文献标识码:A 文章编号:1674-3520(2015)-06-00-02
一、海洋石油电气技术的发展概况
(一)石油电气技术的形成与发展。海洋石油工程电气技术的发展是与船舶电气技术密不可分。上个世界初,商船就已经开始应用直流电驱动技术照明了,近半个世纪,商船大都采用十六系统供电。随着电网负载不断增长,为了满足驱动力的需求,电压必须相高压方向发展。到了上个世纪五十年代,随着发电机技术的迅猛发展,各国船舶陆续转向交流系统的使用,并且取得了良好的效果。随着海洋运输业向大型化、高速化和自动化方向发展,其电气化水平不断提高,从六十年代起,自动化技术显著提高,这样严重影响着海洋石油电气工程的发展,使得海洋石油电气工程逐渐向智能化、数字化和网络化方向发展。
(二)海洋石油电气国内外概况。海洋石油的开发分为以下几个步骤:海洋地球物理勘探,海洋地址取芯勘探,油田开发方案设计,打生产油井,石油采集与运输。能够利用到海上钻井平台的步骤是海洋地质取芯和打生产井,平台上装通讯、导航、钻井和安全救援等海上油气勘探开所必须的设备。世界第一座海洋石油钻井平台是1949年建造的。1968年德国与意大利共同建造的半潜式钻井平台就安装有交流-直流电动钻机,在海洋石油技术中处于领先地位,借助船舶自动化技术,石油工程电气技术得到了迅猛发展。我国的石油电气技术发展也很快,所有平台都采用交流-直流电动钻机,海洋开发平台已经采用遥控、遥测、遥讯等集成技术。申述半潜式平台的投入大大提高了我国海洋石油电气化技术水平,是我国逐渐跻身于世界深水领域的先进水平。
二、海洋平台电气施工
海洋平台电气工程操作的第一步是电气施工部分,也是最基础最重要的一部。海洋石油电气的安全可靠性和运行维修方面的问题主要有施工质量的好坏来决定。在电气施工中,电缆通道的选择、电气设备的预设位置和电缆的敷设这三方面必须予以高度重视,才可以避免失误的产生,以便更好的完成海洋电气平台的施工。
(一)电缆通道的选取。要想确定电缆通道,首先要明确主干电缆的走向,必须远离油管线及热源,比如水蒸气管线、发电机排烟管、电阻器及燃油管线等。电缆也要避免与热管线交叉,或者采取一定的防护措施,保持一定的安全距离。要考虑电缆桥架的分层布置:电力、通信电缆要分层开来敷设,高压电力电缆与低压电力电缆分层开来敷设等等。还有机电需要注意:高压电缆远离起居室;不相关的电力电缆避开通信室;主电源电缆与应急电源电缆的走向不同,要分开敷设;根据不同情况,电缆束外壁-电缆筒或者电缆框的选择也不同,有防水防爆要求时选用电缆筒,其他情况选用电缆框保护即可。
(二)电气设备预设位置的布置。电气设备由室内与室外两部分组成,室内部分由配电室和主控室设备组成,也是电气设备布置时设计的重点部分。为了满足施工标准,又方便操作和维修,一定要合理布置配电盘柜及配电箱。不能有油管、水管及蒸汽管等可能泄露的管线或者容器存在配电室和主控室周围。此外,也要重点考虑室外危险区内电气设备的布置,不允许布置电气设备也不允许敷设电缆,如果必须要安装,那么所选用的电气设备的防爆等级必须在所在危险区的防爆要求范围之内。
(三)电缆敷设注意事项。敷设电缆时,安装电缆桥架,割焊电缆筒和电缆框,必须要符合电缆的走向。安装电缆桥架时,要求规格、型号要符合施工图纸规范。在割焊电缆筒和电缆框时,不能损伤构造,位置和型号也要合适,为了防水、防爆,不可用电缆框替代电缆筒。在操作舱室顶壁的作业时,特别是电焊、气割舱室顶壁的工作时,如焊接桥架、导线板、电缆筒和电缆框等,必须保护好配电盘、集控台、变压器等已完成安装的设备。要想进行电缆的敷设、电力电缆、主电源电缆、高压电缆与低压电缆的分层敷设,必须保证主电缆通道上所有需要动用电焊、气割的工作都基本完成,且小设备也基本安装完毕。还要区分电力电缆和仪表通信电缆两者接地要求的不同。
三、海洋石油电气系统发展现状
海洋石油电气配电自动化系统是指应用自动化技术,使电网企业能够控制远方,及时观察、协调和控制配电设备系统。配电自动化在我国的发展经过了三个阶段:一、通过开关设备与断路器保护相配合,依靠开关来去除故障。二、通信和和控制系统,是电网自动化发展飞跃的基础,不仅实现了对配电网的远程遥控,还可以通过通讯网络实时呈现配电网的状态参数。三、实现了全网的多功能监控,是真正意义上的配电自动化,集设备管理、地理信息系统、馈线自动化、用户管理、配电运行管理、故障分析等功能于一身。与陆地配电自动化相比,海洋石油电气系统面临更多的技术难题,而且配电自动化技术起步较晚。首先,要想解决跨海供电的问题,为了实现电气联系需要敷设海底电缆,海底电缆分支多,线路较短,配电网在继电保护的上下级配合和故障诊断等方面都有相当的难度。其次,海上空间狭小,海洋石油生产系统的电气设备众多,类型庞杂,各个电气设备之间距离较短,给配电网的管理和参数采集带来了极大的工作量。此外,大部分海洋石油钻井平台都长期工作于海上,依靠系统主电源来支持石油生产,如何有效解决配电自动化的通讯问题,建立安全、稳定的参数采集和通讯网络,也具有一定的难度。所以很多问题给海洋石油电气工程的相关工作带来很大阻碍,急需进行深刻的技术革命,来使海洋石油电气工程相对简单化和高效化。
四、海洋石油电气系统前景展望
伴随着我国智能电网建设的进程的不断深入,电力系统发生了一场深刻的技术革命,智能变电站不断兴建,计算机信息技术、光技术、智能技术融进了电网,对电网各个环节都带来了翻天覆地的变化,电网正在朝着智能、绿色的方向不断发展。对海洋石油电气系统来说,随着光纤通信技术、智能控制技术、遥感和遥测技术、电力系统进行着自动化的变革,更多的新材料和新技术将应用于海洋石油电气系统,用来解决目前面临的跨海供电问题,针对电气设备众多和通讯设备不稳定性等问题也起到很好的改善和提高作用,海洋石油电气系统将更加安全、绿色,配电网的自动化和智能化程度将不断提高。由于海洋石油开采平台电气设备工作的环境恶劣,配电安全就显得十分重要。在越来越倡导数字动画设计有更高要求的当今社会而言,计算机信息技术、光技术、智能技术得到更广泛的关注和投入,结合本文海上石油平台的电气安全问题进行了探讨,研究了海洋石油电气的发展现状以及未来发展的分析,对我国海洋石油电气平台的建设有着高瞻远瞩的意义。
参考文献:
[1]陈亮,冷鸿震,王树达,安晓龙 . 浅谈海洋石油平台防爆电气设计 [J]. 科技信息, 2011(09)
[2]张龙 海洋石油平台电气安全问题探讨[期刊论文]-中国石油和化工标准与质量 2013(24)
【关键词】电厂,分散控制系统,抗干扰措施,探讨
中图分类号:TM6文献标识码:A 文章编号:
一、前言
分散控制系统综合运用计算机技术,通信技术,和自动化控制系统等多种先进技术系统,让这个系统的通信网络遍布各生产基地的监控站,监测站,并以通信网络将操作管理站和相关需要集中操作的地区连接起来,实施集中管理,统一操作。分散控制系统很早便在我国的火力发电厂得到了推广运用,并取得了辉煌的发展成果。到目前为止,我国的大部分火力发电厂都已经采取这种控制系统,分散控制系统日渐成为整个控制中心的中枢,对保证整个电网的正常运行,保持电力的稳定安全,有着十分重要的地位和作用。虽然,分散控制系统具有很强的环境适应性,但是,在整个系统中,来自各处的线缆都会和系统相连,各种外部干扰很容易以电源或者是各种线缆为媒介侵入,加剧干扰的负面作用。在现阶段的分散控制系统生产使用中,电厂分散控制系统内部使用了很多电子产品或者电子元器件,电磁干扰显得更为严重。因此,要综合考虑到多种因素,加强电厂分散控制系统抗干扰措施的研究。
二.电厂分散控制系统干扰来源分析
探究各种干扰的来源对于分散控制系统抗干扰措施研究有着十分重要的意义。从总体而言,电厂分散控制系统的干扰源主要来自内部和外部,内部干扰和外部干扰组成了影响整个系统正常工作的干扰来源。
1. 系统内部干扰
系统内部干扰主要是因为分散控制系统内部装置的各种电子设施或者是电子元器件的应用而产生,主要包括过渡干扰和固定干扰,当电路在动态工作时候,引发的干扰便是过渡干扰,当接触面上的电导率具有很大差异或者不一致时候,会产生接触干扰,此种干扰类型称为固定干扰。
2.系统外部干扰
系统外部的干扰主要是设备在使用过程中受到外部环境和使用条件的影响而产生的干扰因素,这种干扰和分散控制系统的各种元件没有直接联系。系统外部干扰主要有以下几种。
(一)从电源线传导来的电磁干扰
在电厂中,分散控制系统在 用电母线处安装有各种动力设备,风机,凝结水泵等。由于这些设备的功率很大,运转时候会产生交变磁场,产生电磁干扰,开关设备时候,会让电压波动,产生低频干扰。
(二)从信号线、控制线传导来的干扰
电厂的分散控制系统有着各种接线,这些接线也是各种外部干扰进入的路线来源。一是通过现场变送器供电电源或共用仪表的供电电源串入的干扰;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰。当发生信号干扰时候,会大大降低测量的精度,甚至损坏各种元器件,或造成逻辑数据的变化和系统设备的误动或是死机。
(三)接地系统混乱时引起的干扰
接地系统在产生电磁干扰,抑制电磁干扰方面都有着十分重要的作用。一方面,不合理的接地,会产生严重的干扰信号,让电厂的分散控制系统难以正常运转。正确的接地可以防止电磁干扰,同时也可以减少设备向外发出干扰信号的频率。因此,分散控制系统的接地是一把双刃剑。在干扰来源中,如果接地系统混乱,比如每个接地点的电位分布不平衡,各个接地点电位分布不均,机械设备间接地电位差距很大,地环路电流情况严重,系统干扰严重,使得整个电厂的分散控制系统难以正常运转。
三.电厂分散控制系统抗干扰措施探究
电厂分散控制系统在整个电厂运作中处于核心地位,要保障其正常工作,必须做好内部外部的抗干扰措施。从多年实践经验总结得出,要坚持从抗干扰措施开始,本着控制干扰源,切断或弱化电磁干扰的路径,优化系统装置,提高系统自身抗干扰能力等三方面的原则,科学是设计,使用高质量的设备和元器件,规范安装,并做好各种维护措施,保证整个电厂分散控制系统的稳定性和兼容性,保证整个系统的正常运行。将从以下几个方面做出探究。
1.科学合理选择系统设备
(一)电厂分散控制系统的设备选择在抗干扰中有着十分重要的作用。选择抗干扰性能较好的设备产品,保证含电磁兼容性。比如采用浮地技术加强抗外部干扰的能力,使用隔离性能较好的电厂分散控制系统,要选择耐压能力较强的系统设备,使得电厂分散控制系统可以再电场强度高,频场较高的环境中正常工作。
(二)做好电缆的选择
电厂的电缆选择是电厂分散控制系统抗干扰措施的重要环节。要保证强、弱信号不应使用同一根电缆,信号电缆应尽可能避开电力电缆,避免与电力电缆平行布设。在传输距离较小时,可以选用单根导线或一般控制电缆传输,在传输距离较大时,宜选用总屏控制电缆或对绞|总屏计算机电缆;模拟量信号在现场传输中应选用屏蔽电缆,对于信号精度要求较高的场合,可选用对绞分屏计算机电缆或对绞总屏计算机电缆。
2.做好隔离措施
(一)电厂分散控制系统设备的隔离
在电厂分散控制系统抗干扰措施中,要本着电气设备电缆用量最短原则,要将电厂分散控制系统的硬件设备安装在主厂房之间,设备间内部要采用防静电活动地板,要使用钢筋作为接地引线,做好接地工作,要把强电设备或者电路设计安装在远离硬件设备安装间,以便隔离电磁干扰。
(二)电厂分散控制系统电源的隔离
为保证分散控制系统的可靠运行,要使用交流电稳压器对分散控制系统的电源进行稳压。由于未屏蔽的电源变压器之间耦合电容大,共模干扰很强,因此,要在电源变压器的初次级之间设置屏蔽层,来减少变压器初次级之间的干扰,隔离变压器可以切断变压器两端的低频共模电流。但有时隔离变压器初次级之间的寄生电容仍能够为频率较高的共模电流提供通路,因此隔离变压器的屏蔽层必须良好接地。
3.科学合理的接地
在电厂的分散控制系统中,合理科学的接地是整个系统网络畅通的保证,是整个系统稳定运转的基础。混乱的接地会产生强大的干扰,严重影响到设备的工作。因此,在进行分散控制系统抗干扰措施时候,必须综合多种因素,科学合理的做好接地措施。
(一)采用统一的接地网
系统中的交流工作地、直流工作地、屏蔽地、安全保护地之间应保持严格的绝缘,在总汇集板汇合后再用一根接地电缆接到接地网上。所有接地点应与接地网牢固连接,且应尽量减少接地点与接地网的距离,但要满足接地电阻的要求。
(二)信号线采用屏蔽电缆,并且合理接地
信号线的屏蔽层接地必须保证单点接地,避免多点接地。信号源接地时,屏蔽层应在信号源侧接地;信号源不接地时,屏蔽层应在系统侧接地,这时就应将屏蔽层接地点改在信号源侧接地。如果信号源端系统侧都要求接地,则对信号必须采用变压器隔离或光电隔离等措施,并且屏蔽层应在信号源侧接地。信号电缆中间有接头时,在接头处的屏蔽层要妥善连接,并将屏蔽层的部分用绝缘带包好。
四.结束语
电厂的分散控制系统的抗干扰是一项比较复杂的工程,在设计施工过程中,要针对具体的干扰来源,采取合理有效的措施,对整个系统抗干扰要采用内外干扰相结合的考虑方法,从设备抗干扰性能,线路的敷设,接地等各个方面做出抗干扰措施,保证整个电厂分散控制系统的稳定和安全。
参考文献:
[1] 向立清 对电厂分散控制系统抗干扰措施的探讨 [期刊论文] 《中国科技财富》 -2009年6期
[2] 郭护林 白艳丽 火电厂分散控制系统的抗干扰措施 [期刊论文] 《西北电力技术》 -2005年3期
[3] 张新闻 分散控制系统的噪声抑制技术 [期刊论文] 《电力建设》 -2001年9期
[4] 周倩 鲁学农 张文景 火电厂DCS系统信号抗干扰研究及实例 [期刊论文] 《中国电力》 ISTIC PKU -2012年4期
[5] 郝志国 王江权 申明亮 火电厂分散控制系统抗干扰技术探讨 [期刊论文] 《河北电力技术》 -2006年2期
【关键词】光纤光缆技术发展
一、光纤技术发展的特点
1.网络的发展对光纤提出新的要求
(1)扩大单一波长的传输容量。目前,单一波长的传输容量已达到40Gbit/s,并进行160Gbit/s的研究。40Gbit/s以上传输对光纤的PMD提出一定要求。(2)实现超长距离传输。论文百事通无中继传输是骨干传输网的理想,目前一些公司已采用色散齐理技术,实现2000-5000km的无电中继传输;有的采用拉曼光放大技术,更大地延长光传输距离。(3)适应DWDM技术的运用。目前运用32×2.5Gbit/sDWDM系统,该系统对光纤的非线性指标提出了更高要求;ITU-T对光纤的非线性属性及测试方法的标准(G.650.2)已完成,对光纤的有效面积提出相应指标,对G.655光纤的非线性特性会有改善。
2.新型光纤产品的不断出现
(1)用于长途通信的新型大容量长距离光纤。康宁公司推出的PureModePM系列新型光纤,利用了偏振传输和复合包层,用于10Gbit/s以上的DWDM系统中,很适合于拉曼放大器的开发与应用。Alcatelcable推出的TeralightUltra光纤,已有传输100km长度以上单信道40Gbit/s、总容量10.2Tbit/s的记录。一些公司开发负色散大有效面积的光纤,提高了非线性指标的要求,简化了色散补偿方案,在长距离无再生传输和海底光缆长距离通信中效果很好。
(2)用于城域网通信的新型低水峰光纤。在城域网设计中,要考虑简化设备、降低成本和非波分复用技术应用的可能性。低水峰光纤在1360-1460nm的延伸波段使带宽被大大扩展,使CWDM系统被优化,增大了传输信道、增长了传输距离。一些城域网设计,要求光纤的水峰低和具有负色散值,可抵消光源光器件的正色散,可组合运用这种负色散光纤与G.652光纤或G.655标准光纤,利用它来做色散补偿,避免色散补偿设计,节约成本。
(3)用于局域网的新型多模光纤。随着局域网、用户住地网的高速发展,大量综合布线系统采用多模光纤代替数字电缆,多模光纤市场份额逐渐加大。选用多模光纤,是因为局域网传输距离较短,虽然多模光纤比单模光纤价格贵50%-100%,但它所配套的光器件可选用发光二极管,价格比激光管便宜,且多模光纤有较大的芯径与数值孔径,易连接与耦合,相应的连接器、耦合器等元器件价格也低。ITU-T至今未接受62.5/125μm型多模光纤标准,因局域网发展的需要,它仍然得到了广泛使用。而ITU-T推荐的G.651光纤,即50/125μm的标准型多模光纤,其芯径较小、耦合与连接困难一些。针对此问题,有的公司进行了改进,研制出新型的5O/125μm光纤渐变型(G1)光纤,区别于传统的50/125μm光纤纤芯的梯度折射率分布,将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用。
3.光缆技术发展的特点
(1)光缆结构使用网络环境有明确的光纤类型选择,如干线网光纤、城域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件,还有可依据的细分的标准及指标。(2)光缆结构除考虑光缆使用环境条件外,与其施工和维护方法有关,必须统一考虑,配套设计。(3)光缆新材料的出现,促进了光缆结构改进,如干式阻水料、纳米材料、“干缆芯”式、生态光缆、海底和浅水光缆、微型光缆、全介质自承式光缆、架空地线光缆等的采用,使光缆性能有明显改进。
二、光纤光缆技术发展值得思考的问题
1.积极创新开发具有自主知识产权的新技术。1997年以来,国内光通信核心技术专利是90件,自主申请的有9件。作为世界第二光缆大国,应该把开发具有自主知识产权的技术,作为工作的重中之重,争取创造更多的光纤光缆专利。
2.开发具有先进技术水平、与使用环境、施工技术相配套的新产品。光缆的结构依赖于使用的环境条件和施工的具体要求,今后,光缆建设的重点将会随着接入网、用户住地网的建设不断展开,新一代的光缆结构和施工技术会基于,如微型光缆、吹入或漂浮安装,及迷你型微管或小管系统的全套技术,有一系列新的变化,充分利用有限的敷设空间。目前我国创新的成份太少,在接入网、用户住地网中,多采用一些国产的光电缆产品。
3.利用已有设备和技术,改善HYA市话电缆的相应特性,为数字业务提供更好的服务。对于已经敷设的铜电缆,只能在现有条件下,利用其特性开通数字新业务。现有的HYA电缆,虽然可开通ADSL等一些新业务,但容量有限,当ADSL数量增大到一定限度后会出现干扰问题,影响以前开通的业务。因此,对新敷设的铜电缆,希望能提出一些新的宽带指标要求,为将来开通更多的新业务作好准备。
关键词:福厦铁路;GSM-R系统;光纤直放站;弱场补强;无线覆盖
中图分类号:U285文献标识码:A文章编号:1009-2374 (2010)18-0124-03
铁路无线列车调度通信系统是铁路行车指挥系统的重要组成部分,在保障行车安全、提高运输效率方面发挥着重要作用,其通信质量的好坏直接关系到铁路的行车安全。无线列调通信中,由于地形影响,导致机车与车站问的无线信号衰减太大,使机车与车站间无法有效通信,这种区域称为盲区,或弱场区。在无线列调系统工程设计中,应根据实际情况科学合理地选用弱场区覆盖方案,保证良好的场强覆盖,以满足列车调度的高可靠性要求。
一、福厦铁路介绍
福厦铁路作为《中长期铁路网规划》的重点建设项目,是我国铁路“十五”规划“八纵八横”路网主骨架之一,也是我省第一条高速铁路。福厦铁路北起福州,经福清、莆田、泉州、晋江,到达厦门,全长273km。
福厦铁路是福建省第一条城际间快速客货运通道,具有速度快、高密度、大能力、安全、舒适、节省运费等优势,将有效改善沿线地区交通和投资环境,更加充分发挥区域优势、港口优势和开放优势,加快海峡西岸经济区建设。
二、铁路GSM-R系统
铁路GSM-R(GSM for Railway)系统是一种基于目前世界最成熟、最通用的公共无线通信系统GSM平台上的、专门为满足铁路应用而开发的数字式的无线通信系统,针对铁路通信列车调度、列车控制、支持高速列车等特点,为铁路运营提供定制的附加功能的一种经济高效的综合无线通信系统。从集群通信的角度来看,GSM-R是一种数字式的集群系统,能提供无线列调、编组调车通信、应急通信、养护维修组通信等语音通信功能。GSM-R能满足列车运行速度为0~500km/h的无线通信要求,安全性好。GSM-R可作为信号及列控系统的良好传输平台,正在试验中的ETCS欧洲列车控制系统 (也称FZB)和另一种用于160km以下的低成本的列车控制系统 (FFB),都是将GSM-R作为传输平台。
GSM-R中文全称为铁路移动通信系统标准,是一种专门为铁路设计的专业无线数字通信系统,是中国首次从欧洲引进的移动通信铁路专用系统,它除了能提供无线列调、编组调车通信、应急通信、养护维修通信等语音通信功能外,还能够满足列车运行速度每小时500km的无线通信要求。
GSM网络优化解决的主要问题有:信道拥塞率高、呼叫成功率低;越区切换失败率高,掉话严重;通话质量低、有串音;移动台占用话音信道后呼叫释放、出现振铃后无通话、移动台接通后单边通话;设备完好率较低;中继电路的配置与实际话务不相符、电路群的每线话务量差别较大等。
三、场强覆盖方式
一般地说,GSM-R网络的场强覆盖是在沿铁路轨道方向安装定向天线,形成沿路轨大椭圆形小区,但在话务量较大而速度要求较低的编组站内采用扇形小区覆盖,而在人口密度不高的低速路段和轨道交织处一般是无CTCS (ChineseTrain Control System)系统的农村地区采用全向小区覆盖。铁路带状的特点.决定了铁路场强覆盖采用线状覆盖方式。
场强覆盖往往和具体的地理位置分布相关,根据具体的地理环境和基站的实际情况可以进行许多方面调整。改善下行链路的信号覆盖,可以采用提高基站的发射功率、增加天线的挂高、调整天线的水平角或垂直角和安装直放站等措施。一般来说,上述各种方法需综合使用,才能达到满意的覆盖。当某些基站或小区信号强度提高时,还应综合考虑其他问题,尤其是相邻小区的同邻频干扰问题。若上行链路的接收信号不是很好,可以考虑在基站的天线塔上安放塔顶放大器或降低馈线和跳线的损耗,以增强天线的接收信号强度。
四、弱场补强方案
根据GSM-R应用环境的特点,一般地,对于山体阻挡及路堑等弱场强区,可采用增加光纤直放站的解决方案:对于隧道弱场强区,可采用增加光纤直放站、漏缆+天线的解决方案;对于特大桥隧,可采用光纤直放站及漏缆+天线的组合解决方案:对开阔地域,既可采用基站,也可采用无线直放站或光纤直放站的解决方案。目前,对弱场处理的方案较多,既可采用单独方案解决,也可采用组合方案解决。目前解决区间弱场区主要有以下方式:(1)布放中继器及架设漏泄电缆;(2)布放无线中继台设备;(3)布放光直放站设备;(4)感应通信方式“400M+400k”。
(一)布放中继器及架设漏泄电缆方式
场强覆盖系统采用异频双工、半双工方式解决铁路隧道内弱场覆盖的技术是目前最常用的解决方案之一。系统由洞口中继器、洞内中继器、漏泄电缆及其相应配件组成。当隧道长度超过漏泄电缆的最大限制长度时,必须在隧道内设置洞内中继器,以放大漏缆传输信号。因此,组网时根据隧道长度和所用漏泄电缆性能的不同,有中小型隧道和长大隧道两种方案:前者,在隧道口设置洞口中继器,隧道内壁挂漏泄电缆;后者,在隧道口设置洞口中继器,隧道内设置一个或多个洞内中继器,隧道内壁挂漏泄电缆。洞口中继器通过天线接收到来自车站台的信号后,传送到漏泄电缆,完成隧道内的场强覆盖。隧道内的移动台发射的信号波由漏缆和中继器通过天线发送给车站台。本方案场强覆盖效果好,易于控制,技术成熟。但漏泄电缆造价较高,维修困难,只能应用于收发异频的系统。
系统由I型中继器(洞口中继器)、Ⅱ型中继器(洞内中继器)、漏泄电缆及其配件组成。系统采用漏泄电缆外泄信号的方式实现弱场区的覆盖。I型中继器一般设置在离车站较近的地方,以保证车站电台的射频信号电平能够启动I型中继器进入工作状态;射频信号经I型中继器放大之后由漏泄电缆外泄,达到覆盖弱场区的目的;当弱场区长度超过漏泄电缆的最大长度时,必须设置Ⅱ型中继器,以放大漏泄电缆的传输信号。I型中继器通过天线与车站电台传递无线射频信号。当I型中继器接收到来自车站电台的下行信号时,将信号传送到漏泄电缆,经过信号外泄完成弱场区的场强覆盖;弱场区的移动电台发射的电波由漏泄电缆和中继器通过天线发送给车站电台。
由于弱场区地形的不同,中继器、漏缆可以有多种组合方式。(1)I型中继器(1台)+漏缆;(2)I型中继器(1台)+Ⅱ型中继器+漏缆;(3)I型中继器(多台)+Ⅱ型中继器+漏缆。
当弱场区地形比较多变时,比如经过一段山丘或隧道之后,有1km左右的开阔可视地段,接着又是隧道或者山丘,Ⅱ型中继器通过天线发出的射频信号覆盖开阔地段,同时,此射频信号开启下一个I型中继器。这种组合节省漏缆,降低了投资成本。工程中同一个半区间中继器的数量不易过多,最多不超过8个。
漏泄电缆过长,末端就会出现弱场;漏泄电缆过短,则会增加投资成本。所以,工程设计中应该权衡上下行信号的链路平衡,合理取定漏泄电缆的长度。
漏缆长度理论值计算公式为:
d=(Pt-L1-L2-Δ-ΔL-Vmin-M-S1)/S2(单位:km)
其中:
Pt――发射功率;
Ll――中继器馈线损耗;
L2――机车天线馈线损耗;
Δ――各种接头损耗,A=3dB;
ΔL――避雷器插入损耗,AL=0.3dB;
Vmin――机车最小可用电平(或中继器输入电平);
M――设计储备量,M=6.5dB;
S1――漏缆耦合损耗;
S2――漏缆传输损耗(单位:dB/km)。
(二)布放无线中继台设备方式
系统由一个或多个区间互控中继台配合适当的天线,通过4芯(或2芯)电缆通道与相应车站台构成链状网。区间互控中继台供电可通过4芯电缆中的2芯(或同一2芯电缆通道)由相应的车站台远供,也可由本地供电。每个车站台单方向最多可控制15个互控中继台,最长距离不超过20km。
互控中继台无线信道采用异频单/双工方式。当车站台发起呼叫机车台的下行呼叫时,通过4芯(或2芯)电缆通道将信号传输到其连接的所有区间互控中继台(从距车站台最近的互控中继台起编号为1~n)上,并一起发射呼叫信息;位于互控中继台覆盖范围内的机车台在所接收到的无线信号中选择最强的信号作为接收呼叫,并为应答车站台发起上行呼叫,设其中第1TI(1
(三)布放光直放站设备方式
系统由光直放站近端机(光近端机)、光直放站远端机(光远端机)、光纤和网管设备等组成。光近端机应设置在车站内距离车站电台较近的位置,通过射频耦合器与车站电台进行射频信号传递;通过光纤和光远端机连接;通过RS232、RS422或音频四线接口与网管设备连接。下行方向,车站电台发射的信号经耦合器进入光近端机进行电光转换,通过光纤传送至光远端机,光远端机把接收到的光信号转换为射频信号后通过天线发往移动台;上行方向,光远端机把移动台发射的无线射频信号转换为光信号,通过光纤传送至光近端机,光近端机对信号进行光电转换后,通过耦合器将射频信号馈入车站电台。直放站网管是为监测光纤直放站设备而开发的网管系统,能够提供光近端机、光远端机和模块等的故障报警,以及对直放站的相关参数进行设置。网管终端一般设置在无线检修所或者无线检修工区。
光直放站设备组网比较简单,其方式为:(1)一拖一方式,即一个光近端机连接一个光远端机;(2)一拖多方式,即一个光近端机连接多个光远端机。此时光近端机与光远端机之间可以星型连接,也可以共线连接。
(四)布放感应通信方式“400M+400k”
系统由“400M+400k”感应电台及过相装置构成。组网时设置车站台、机车台和手持台,并在接触网分相处设置过相装置。“400M+400k”感应电台是400MHz频段和400kHz频段合为一体的电台,两频段同时发射、同时接收,按二路话音输出方式工作。如果其中一路话音输出不能满足话音质量指标要求,将自动关闭。400kHz号的传输方式是利用波导感应原理,将400kHz信号感应到电力接触网导线上,利用接触网做波导线传输信号,它在区间内通信覆盖率达100%。在平原地区以及车站的多股道无电区,以400MH频段为主,利用两频段传输之间的互补,形成“400M+400k”的合体电台。
其优点是工程造价比漏缆方式低,适用于多路堑、多隧道的山区电气化铁路,但必须依靠电气化铁路的接触网设备才能进行传输,有一定的局限性。天线不易小型化,产品选择余地小。该方式一直没有大范围使用。
随着无线通信技术的不断发展,将会有更先进的技术用于解决无线列调的弱场区场强覆盖。但是,任何相关技术应用于实际工程时都有优劣之分,不管选择哪种方案解决弱场区问题,都应综合考虑线路地形、技术、经济等具体因素并进行比较,以选用适合工程的最佳解决方案。
参考文献
[1]胡东源.GSM-R/CTCS在中国铁路的应用与发展战略[J].中国铁路,2003,(2).
[2]钱立新.我国铁路机车车辆现代化的关键技术[C].推进铁路新跨越加快经济大发展――中国科协2004年学术年会铁道分会场论文集,2004.
[3]胡晓辉,周兴社,党建武.基于GSM-R/CTCS的列车控制系统形式化描述和建模[J].计算机工程与设计,2006,(1).
[4]吴浠桥,段永奇,熊杰.GSM-R系统的无线覆盖理论分析[J].铁道工程学报,2007,(12).
论文摘要:就泰国铁路双线通信信号工程做了初步的介绍,并对该工程采用的英国BOMBARDIER公司设计的Ebilock950型计算机联锁系统做重点阐述。
泰国铁路双线通信信号工程ST2和ST3标段,采用由英国BOMBARDIER公司设计的Ebilock950型计算机联锁系统,由中国铁路工程总公司负责安装测试。现对其系统设计的构成进行归纳,并着重对Ebilock950型联锁系统工作原理做简单介绍。
1系统特点
Ebilock95。系统属于新型高容量计算机联锁系统,是吸取英国20多年的计算机联锁成功经验设计而成。该系统硬件模块化程度高,具有高集成与便携式特点,完全采用英国质量安全标准。
为了更好地节约成本,区间与车站间的通信采用光缆传输通道。区间纳人站内统一联锁方式,形成完整的计算机联锁体系。鉴于光缆传输的可靠性问题,采用双机有效运行热机待备冗余系统,转换对比更新,完全独立通道,利用上下行交叉环线降低断码与误码率,保证数据安全,从而实现高可靠性。
2系统构成
通信信号工程按系统功能划分,分为调度集中(CTC)中心系统、Ebilock950型计算机联锁系统( CBI >、本地操纵终端和外部动作设备等。它们相对独立但又相互作用。其相互联结关系如图1所示。工程分东、北、南和东北4条线,设置1个CTC中心。
本地操纵终端包括由PABX分配管理的电话通信外部系统、列车控制者电话、上下行联锁电话和本地控制工作站(LC计算机)。
室外设备由对象控制系统控制,主要有道岔设备、信号机、检测列车的轨道电路和继电器电路分界面(主要包括线路联锁和平交道口系统2部分)等。
Ebilock95。系统是主体系统,主要包括传输、室外局部处理(对象控制系统OCS、逻辑处理联锁机((IPU>、实地管理单元(FEU>、同步数字交换机(SD H >、多路存取设备(AM)和通信集线器等。
2. 1传输系统
继电器室与室外各联锁设备控制箱(LC)C )之间,除供电电源使用电力电缆外,其他采集与驱动信息全部由光缆传输。继电器设备大多分散设置于室外各咽喉设备密集区,从而达到高效地使用光缆,减少使用信号电缆的目的。
CBI与CTC, CBI内部、CBI之间以及CBI与其他联锁间信息传输,全部采用封闭的环线保护。CBI到CTC系统的2条12芯光缆,主缆直埋敷设,保护缆采用架空方式。站内光缆上下行分开,各设备控制箱间用1根4芯光缆联通,从继电器室出来4根4芯光缆形成上下行2个信息环路,确保传输安全。各设备控制箱到各信号设备间的尾缆采用小芯组信号电缆。另一条lOP通信电缆贯通全线,每个LOC和高柱信号机都设1门维修电话。
2. 2其他系统
1.室外局部处理系统由光端机与局部控制继电器电路组成。
2.实地管理单元由1部高容量计算机构成,其内部固化了系统运行的所有软件,是系统测试、调试、运行、监测、诊断与维护的窗口。它们的相互作用关系如图2所示。
3.逻辑处理联锁机是由若干功能模块组成。
中心程序模块(CPM ):由3块独立的带有交互模块总线和2个双重信道接口的Motorola68030处理器组成,分别为故障一安全处理器FSPA,FSPB和服务处理器SPUo FSP执行所有与安全有关的必要的联锁任务,SPU负责一些不必要的输人输出功能及管理任务。
磁盘/网络模块(DEM):带有连接插头的磁盘与网络连接模块。
电源提供模块(PSM ):提供输出各种电源(+5V,士12V),温度控制及瞬间断电保护。
输人输出模块(IOM):不同的用途有不同的端口,每个IOM板上有4个模块端口。在数据配置上,同一个IOM可以连接2个实际控制对象和路边模拟器,内部连接到CPM读写数据,转换信号级别。
AUX接口:引导启动、硬件测试、注册和维护。
其他接口模块:OCT接口模块、CUM接口模块、CCM/CTK接口模块、LMP接口模块、MOT1接口模块和SRC接口模块等。
系统软件包括普通产品软件、改编软件和特殊应用程序软件。
3工作原理
1.安全规则。包括多样化的软件,闭合的环路原则,安全分析法,故障树、故障状态和影响分析法,时间追溯与时间验证,质量保证系统和完整的诊断等。
2.双重联锁机。由2个分开的自主系统构成,在系统开始工作时可以自动分配或倒换在线工作与备用状态,在系统成功初始化后,激活在线工作状态。二系统间快速数据传递信道,并双重链接,保持运行同步,遵从“故障一越过”原则。其工作原理见图3.
3.工作程序。路边设备为对象控制实体,其状态与运行情况作为采集信息,通过铜质信号尾缆传输至设备箱(LOC >。设备箱内有逻辑处理系统,对不同的转辙机、信号机、轨道电路和外部接口系统的信息进行处理、编码,形成有效的电信号进人光电处理设备转化成光信号。光信号通过光缆传输,并与其他设备箱内信息汇总形成信号束,由光缆传输回路到达全站本方向所有LOC(这有利于站内道口与发码电路等结合电路),并最终到达信号机械室,进人联锁机IOM模块。联锁机系统主要完成的功能如图4所示。
光信号束通过左右接口模块进行信息对比纠错识别,进人信号转化,到达CPM及其他硬件设备,进行与安全有关的必要的联锁处理程序。其联锁逻辑关系通过实地管理单元进行设置管理,并最终将信息送达本地控制计算机和远程控制系统。
同样,本地控制计算机发出的操作指令,通过以上反过程,将驱动信息送达室外各LOC,各对象控制系统通过对信息束的解码、译码与识别,驱使与本信息相关的OCS进行联锁逻辑处理,最终带动路边信号设备动作。对于本系统其他工作程序原理,这里不再赘述。
【关键词】用电信息采集系统用电采集电能监测信息采集电能检测
中图分类号:X830.1文献标识码: A 文章编号:
一.引言
用电信息采集系统是对用户的用电数据进行采集、分析,通过数据处理,实现用电实时管理控制的系统。一个全面的用户用电采集系统主要包括:系统主站、传输信道、采集设备、智能电表。作为一般用电用户来讲,是将用户的预付费电能表的数据通过载波或窄带载波等现场终端,采用光钎专网或GPRS/CDMA无线公网,将数据上传至通信接口机,通过前置采集服务器、应用服务器或数据库服务器等进入信息内网,达到数据自动统计、分析、监测的集成系统。
二.电力企业中用电信息采集系统的结构及系统建设价值。
1.用电信息采集系统结构。
电力用户用电信息采集系统是对电力用户的用电信息进行采集、处理和实时监控的系统,其采集的对象是电力用户的用电信息(电能量数据、交流模拟量、工况数据、电能质量越限统计数据、事件记录数据以及控费信息等),采集的目的是为了实时监控现场设备、支撑多种管理业务的需求。系统主要功能包括系统数据采集、数据管理、实时控制、综合应用和运行维护管理以及系统接口等。
用电信息采集系统的逻辑架构是采集设备与对象层通过通信层与应用层进行通信,应用层实现数据处理、系统管理、负荷管理、费控管理、运行管理和现场管理的系统。
用电信息采集系统的工作原理:计量设备主动上报数据,通过用电信息采集终端和通信层,将数据传输给系统主站;系统主站通过用电信息采集终端,实现对计量设备的信息数据采集。
用电信息采集系统的基本功能包括数据处理、数据管理和实时监测以及运行维护管理。其扩展功能包括电能的质量监测、用电分析和管理、相关信息的、分布式能源监控、智能用电设备的信息交互等动能。
用电信息采集系统数据采集的模式包括定时自动采集、随机召测和主动上报。通过对采集任务的执行情况进行检查,分析采集数据,发现采集任务失败或采集数据异常,记录详细采集信息。
2.用电信息采集系统的建设价值。
通过用电信息采集系统的建设,可以提高管理和控制成本的能力,通过改变使用电网电力的时间来降低电费,通过检测实时能源消耗来管理成本,采用允许电网自动条件家庭电器配置来降低费用。同时可通过改变用电行为而节约用电,使用清洁能源降低能源消耗,减少二氧化碳的排放。采用信息采集系统后,可更准确的进行计费,不用估算电力使用情况,对准确的费用可以预测。
三.用电信息采集系统的现状。
目前,智能电网是全球能源界普遍关注的焦点,用电领域开始倡导智能用电。在我国,电力电网中长期存在缺电严重的现象,在用电系统建设中相对比较薄弱,自动化、信息化程度不高。为了加快电力用户信息采集系统建设,国家电网公司提出在系统范围内实现电力用户“全采集,全覆盖,全预付费”的工作目标,推进营销计量、抄表、收费模式的标准化以及电网公司信息化的建设。自2009年开始,国家电网公司就计划投入巨额资金,用3至5年的时间对用电信息采集系统进行建设。通过前期的发展和建设,采集系统规模得到了扩大,采集功能应用也逐步扩大了。
由于用电信息采集系统是各系统分别建设,在建设中缺乏对系统资源的整合,导致主站软件对多种信道的综合运用能力不足。在通信层建设中,由于缺乏统一管理,出现信道资源利用低、重复建设等问题,由于这些问题的出现,导致数据没有实现完全共享,数据的应用价值没有被充分挖掘。
四.用电信息采集系统在电力企业中的应用。
1.载波转485采集方案。
这种方式适用于城镇集中居住区,采用集中表箱方式安装表计。载波通信是采用集中器、采集器和RS485电表的形式。在集中器和采集器之间通过低压窄带载波的方式进行通信,采用GPRS或光钎上传数据,其优点是在通信中不用布线,建设工程施工简单快速,缺点是载波通信的成功率不太高,其维护成本大,对用于预付费控制的时候存在一定的风险。
2.全载波方案。
这种方式一般采用独立安装表计,安装载波电表,通过集中器和载波电能表结合的形式进行载波通信,适用于农村用户。全载波方案同载波转485方案一样,具有通信不布线,施工速度快,通信成功率低,维护量大,难控风险等特征。
3.载波和484混合模式。
此方案中既有集中表箱方式安装的表计,又有独立安装的表计,采用集中器和采集器、RS485电表以及载波电能表的混合形式,适用于县城及城郊地区。采用此种方案也无法杜绝载波转RS485模式和全载波模式的缺点。
4.全485方案。
此种方案采用集中表箱安装表计,通过RS485电缆连接集中器和表箱,一般适合多层、高层居住区。由于在配变到楼栋间需要在局部地方进行电缆沟挖掘,造成施工量大。
5.楼栋集中通信方案。
在多层或小高层的居住区,采用RS485有线通信方式,将楼栋局部集中直接上传,通过此种方式可提高通信的成功率,同时可以减少电缆的施工量。
6.光纤到户通信方案。
采用光纤通讯方式将表箱和主站之间进行连接,实现用电信息的采集。光纤通信适合新建居住区的用电信息采集系统建设,通过在表箱内安装ONU(光网络单元),OUN输出信号到居民户内,同时在表箱内的集中器通过通信端口和主站连接,实现数据通讯。
在光纤到户通讯中,EPON技术的出现解决了点到多点的远程通信问题。EPON技术是基于以太网的无源光网络技术,是一种新兴的光纤接入技术。该技术具有互通性强、标准化程度高、成本低、技术成熟等优点,实现了用电信息采集系统真正的“全覆盖、全采集”。目前,EPON技术是光纤接入技术中应用最广泛的技术。在EPON中,典型的组网结构为用户同过ONU通过ODN(光分配网络)和OLT(光线路终端)局侧设备进行通信。其中的ONU为用户侧设备,给用户提供网口,OLT是EPON网络的局侧设备,主要起到汇聚ONU数据的作用。
EPON系统可以与目前的以太网兼容,传输距离为20公里,采用EPON组网具有通信量大,传输频带宽,组网灵活,拓扑结构多,安全性强,设备使用寿命长,安装方便,后期不需要维护等优点,因此在现代用户信息采集系统中被广泛推广。
五.结束语
用电信息采集系统承担着用电信息自动采集、数据高效共享和实时检测的重要任务,是用户用电信息的重要来源,是智能用电服务体系的重要基础。建设智能电网,必须要加强用电采集系统的建设,实现全部用户的信息采集、支持全面的电费控制目标。
参考文献:
[1] 罗洁梅LUO Jie-mei 浅析用电信息采集系统在电力企业的应用 [期刊论文] 《企业技术开发(学术版)》2010年12期
[2] 刁培忠 用电信息采集系统在电力企业的应用分析[期刊论文] 《中国电力教育》2010年9期
[3] 王海燕 李晓辉 汤佩林WANG Hai-yanLI Xiao-huiTANG Pei-Lin 用电信息采集系统的建设与应用 [期刊论文] 《电力信息化》2012年9期
[4] 袁建英YUAN Jian-ying 用电信息采集系统高级应用构想 [期刊论文] 《电力需求侧管理》2011年6期
[5] 张莉莉 用电信息采集系统建设及技术选型浅析 [期刊论文] 《城市建设理论研究(电子版)》2012年22期
论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。
1.光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。
2.光纤通信技术的特点
(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。
(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。
(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。
(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
3.光纤通信技术在有线电视网络中的应用
20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目
有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。
现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004,(2)