时间:2023-03-06 15:57:16
导语:在解码技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:系统仿真,建模,浮标定位
1 引言系统仿真技术是近30年才发展起来的新兴技术,它是指在计算机上通过系统模型的仿真实验去研究或验证一个已经存在的或者正在设计的系统的过程。系统仿真并不是对原形的简单再现,而是按照研究的侧重点对系统进行提炼,以利于抓住问题的本质。
在“某型机浮标定位系统研究”科研课题中,经过多方论证与研究,最终设计出了在充分利用原机载设备功能的基础上,通过对原机载设备进行适当改进,实现对投放的无线电声纳浮标进行快速、远距离的极坐标定位方案。
本文试图通过对该方案建立合理的数学模型并进行系统仿真,以达到验证所设计方案的正确性的目的。科技论文。
2浮标定位系统的设计方案“某型机浮标定位系统”的组成包括机上某型搜瞄雷达、某型无线电声纳浮标、某型声纳浮标信息接收处理机、战术导航态势显示器及新设计加装的浮标测距接收与应答机和信号处理分机等,如图1所示。
某型搜瞄雷达的作用是:利用其连测通道产生测距询问脉冲信号发往浮标,同时将与发射脉冲同步的信号提供给战术导航态势显示器和信号处理分机。
测距接收与应答机为在浮标上的加装电路,它的作用是接收雷达连测通道发来的询问脉冲,经识别后产生相应的应答脉冲,再经振幅调制后发往机载某型声纳浮标信息接收处理机。
某型浮标信息接收处理机的作用是:接收浮标发回的信号,将该信号经幅度检波后,送往信号处理分机进行处理。
信号处理分机为机载部分的加装电路,它的作用是对某型浮标信息接收处理机送来的幅度检波信号进行滤波、识别后产生触发脉冲,并将其送往某型搜瞄雷达和战术导航态势显示器,以计算出浮标与反潜机的距离及显示。
战术导航态势显示器的作用是:将浮标相对机的方位和距离以一次信息的形式显示在荧光屏上。
由于“某型机浮标定位系统”研究项目是一个较大的系统工程,涉及的设备很多,而且多数为机上原有设备,因此这里只对新研制的浮标测距接收与应答机和信息处理分机进行仿真。科技论文。
3浮标定位系统的仿真对某型机浮标定位系统进行仿真,就是要根据预先设计好的浮标定位系统方案,将定位系统中各组成部分依照其作用原理建立数学模型,并按仿真平台的要求生成所需仿真模块,再利用计算机进行运算以观察其输出结果是否符合设计要求。对于仿真平台的选取,我们采用的是自行开发的专用于航空电子装备仿真的“航空电子装备仿真系统”软件。由于对浮标定位系统的仿真是一种验证性仿真,其目的在于验证所设计方案的正确与否,所以建模时在保证系统功能的条件下模型应尽量简化。
3.1仿真模型的建立3.1.1 浮标测距接收与应答机的仿真模型浮标部分电路组成框图如图2所示。为实现对浮标测距接收与应答机电路的计算机仿真,应首先建立该电路的数学模型。
(1)视频放大器
视频放大器主要实现的功能是对视频询问脉冲信号放大,在理想状态下应不产生波形失真,为简化模型,可用一个放大倍数为K的理想放大器代替。
(2)脉冲间隔解码器
脉冲间隔解码器是浮标测距接收与应答机电路的核心,其作用是对放大后的视频脉冲进行脉冲间隔的检测,并根据其脉冲间隔大小判断是否为雷达连测通道发来的询问脉冲,是则输出一个触发脉冲,否则不予理睬。脉冲间隔解码器采用比较法,即将双脉冲信号一路直接送到比较器的输入端,另一路则经延迟T(T等于测距询问双脉冲间的时间间隔)后送到比较器的另一输入端。比较器对输入的两路脉冲信号进行比较,若脉冲重合则产生一个触发脉冲。如图3所示。
(3)延迟电路
延迟电路的作用是对脉冲间隔解码器产生的触发脉冲给与适当的时间延迟,以保证应答信号不会落到雷达的探测盲区范围内。为了简化模型,这里采用了理想的延迟线。
(4)应答脉冲产生电路
为便于机载接收机对应答脉冲的识别,应答脉冲也采用双脉冲形式,但其双脉冲间的时间间隔必须与询问脉冲区别开。应答脉冲产生电路一般采用单稳态触发器实现,为了使产生的应答脉冲为双脉冲形式且双脉冲间的时间间隔满足要求,还应在单稳态触发器之后加一延迟线和或门,如图4所示。
3.1.2 信息处理分机的仿真模型信息处理分机负责接收处理浮标发回的测距应答脉冲,根据其电路功能,建立每个功能电路的数学模型如下:
(1)射频放大器
射频放大器主要实现的功能是对来自某型浮标信息接收处理机信号分配器的射频信号进行放大,它是一个宽带放大器,在理想状态下应不产生波形失真,为简化模型,可用一个放大倍数为K的理想放大器代替。
(2)包络检波器
包络检波器用于对放大后的射频信号进行幅度检波,以取出视频应答脉冲信号。一般此类检波器大多利用二极管或三极管的非线性实现,此处的包络检波器可直接采用二极管检波器。
(3)视频放大器
这里的视频放大器主要实现的功能是对检波后的视频应答脉冲信号放大,在理想状态下应不产生波形失真,为简化模型,可用一个放大倍数为K的理想放大器代替。
(4)脉冲间隔解码器
这里的脉冲间隔解码器同浮标测距接收与应答机电路的一样,其作用是对放大后的视频脉冲进行脉冲间隔的检测,并根据其脉冲间隔大小判断是否为浮标发来的测距应答脉冲,是则输出一个触发脉冲,否则不予理睬。数学模型同2.2.1的(2),只是延迟参数不同。
3.2仿真结果按以上建立的模型对浮标测距接收与应答机和信息处理分机的各功能电路建模后,还要用算法语言对各模块进行编程,并按“航空电子装备仿真系统”软件的要求生成所需的动态链接库文件。完成后,就可以在“航空电子装备仿真系统”软件平台上进行浮标定位系统的仿真测试了。
3.2.1 浮标测距接收与应答机的仿真为了验证设计的浮标测距接收与应答机电路的功能,需要模拟该电路的输入信号,即雷达连测通道测距询问脉冲,以观察仿真对象的输出情况。由于浮标测距接收与应答机电路的输入信号已经过检波,因此这里模拟的测距询问脉冲为视频脉冲。
通常雷达发射机的探测脉冲都采用钟形脉冲形式。根据某型搜瞄系统雷达的实际工作情况,在这里我们模拟该雷达在量程为М8、М16、М32档,“连测”开关接通状态下的发射机脉冲信号波形。此时,雷达主天线在一个雷达周期内发射三个脉冲,其中第一个脉冲作为雷达的探测脉冲,后两个作为连测通道的询问脉冲。为了逼真模拟输入信号的实际情况,在模拟的雷达连测通道测距询问脉冲中还要加入噪声。模拟雷达脉冲信号如图5所示。雷达脉冲信号经视频放大器放大后的波形如图6所示。
图5 模拟的雷达脉冲信号图6 视频放大后的雷达脉冲信号
脉冲间隔解码前、后的波形对比如图7所示。
解码前 解码后
图7 脉冲间隔解码前、后的波形对比
触发脉冲和应答脉冲波形如图8所示。
触发脉冲 应答脉冲
图8 触发脉冲和应答脉冲的波形
可见,通过计算机仿真,设计的浮标测距接收与应答机电路在某型搜瞄系统雷达发出的探测和询问脉冲照射下,能够正确地产生相应的应答信号。
3.2.2 信息处理分机的仿真信息处理分机的输入信号来自某型浮标信息接收处理机的信号分配器,这是一个包络含有应答双脉冲的射频信号,经射频放大器放大后送入包络检波器检波。包络检波器检波前、后的波形对比如图9所示。
图9 包络检波器检波前、后的波形
检波后的视频双脉冲信号经放大后送入脉冲间隔解码器进行解码,解码前、后的波形对比如图10所示。
解码前解码后
图10 解码前、后的波形对比
由此可见,通过计算机仿真,设计的信息处理分机在收到浮标发出的信号后,能够从中正确地检出测距应答脉冲加以识别并输出触发信号。科技论文。
4浮标定位系统仿真的结论通过以上的仿真结果可以看到,按照预先设计好的浮标定位系统方案,新设计的浮标测距接收与应答机和信息处理分机均能较好地实现其设计功能,配合浮标定位系统的其它设备,可实现某型机对投放的某型无线电声纳浮标进行远距离快速定位。
通过对设计的浮标定位系统电路进行计算机仿真,验证了系统设计的正确性和可行性。
参考文献:
[1] 吴明敏. 信号处理机与测距测速机的一体化设计[J]. 现代雷达, 2005.5,27(5)
[2] 刘爱霞,赵国庆. 一种新的雷达信号识别方法[J]. 航天电子对抗,2003(1)
[3] 张欣,杨日杰,赵梨丰. 基于斜距测量的浮标位置计算方法研究[J]. 航空电子技术, 2003.6 34(2)
JPEG2000是新一代的静态图像编码国际标准,与已有的JPEG标准相比,它可以提供更好的图像质量和更高的压缩率,但其计算的复杂度也远高于JPEG算法。一般在处理JPEG 2000图像时,若欲将其图像尺寸缩小,首先需由JPEG 2000解码器处理,将JPEG 2000图像解码到空间域图像后,在空间域里将图像缩小至所需尺寸后,再经JPEG 2000编码器将图像作编码,最后得到尺寸缩小后的压缩图像。但是由于在空间域里使用图像大小转换方法来缩小JPEG 2000图像,需要大量的计算量、繁杂的处理过程、以及占用大量的存储空间。为了加快图像尺寸转换处理速度、降低计算复杂度、以及有效降低存储空间占用,本论文提出一个快速的JPEG 2000图像尺寸缩小转换算法。流程如图1。
在我们的快速JPEG 2000图像尺寸缩小转换方法中,首先将原始JPEG 2000图像经EBCOT解码以及反量化步骤解出图像的频率域编码信息后,再透过频率域图像尺寸缩小转换方法,直接在频率域里缩小图像尺寸,最后再通过量化与EBCOT编码等步骤,将图像尺寸缩小后的图像频率域编码信息编成JPEG 2000图像。
本文所提的JPEG 2000图像尺寸缩小转换方法与空间域图像大小转换方法相比,所提的方法省掉反向小波转换、反向色彩转换、后置处理、前置处理、正向色彩转换、以及正向小波转换等六个步骤。由于所提的方法不需将频率域编码信息转成空间域图像,因此本论文所提的方法除了可更快速的转换图像大小外,也可省下存放空间域图像内容所需的存储空间以及减少所需的计算量。
1 简化JPEG 2000压缩与解压缩流程
在快速JPEG 2000图像尺寸缩小转换方法中,保留了EBCOT解码、反量化、量化与EBCOT编码等四个部分,主要原因说明如下:
1.1 EBCOT编/解码 JPEG 2000编码后的图像会储存成封包的格式,但封包并非以子频带为单位储存,所以要取得各子频带的内容,必须先经过EBCOT解码才行。再者本文的方法有可能需要对子频带再进行小波转换,因此EBCOT编/解码过程不可省略。
1.2 量化与反量化 保留量化与反量化步骤的主要原因在于图像经由正向小波转换后,会产生不同大小的子频带频率信息,不同子频带频率信息使用不同的量化步长值进行量化。
子频带与量化步长值这两者有相对应关系,换句话说以具有7个子频带的JPEG 2000图像而言,必须要有7个相对应的量化步长值。而子频带与量化步长值所产生的数目与小波转换的层数有关,对于一个经过m层小波转换的影像,所具有的子频带数目Nsubbands计算公式为:Nsubbands=3×m+1,图2所示为图像经由二次小波转换后所产生的七个不同的子频带。
每个子频带的量化步长值都是由一组独立的控制参数(ε,μ)决定,该组控制参数必须记录于JPEG 2000码流头部,供译码端还原量化步长值使用。图3所示为一张图像经过三次小波转换后所产生的频率域情况。
本文所提的频率域图像尺寸缩小方法会改变原本图像的小波转换层数,进而影响到量化步长值与子频带的对应关系。当使用不同小波转换层数时,每个子频带的量化步长值会不同。所以,当图像在进行尺寸缩小前,先使用原本JPEG 2000图像的量化步长值对图像进行反量化,还原频率域信息,当图像尺寸已调整缩小后,再用新的量化步长值来量化频率域信息,即可解决量化步长值与子频带不一致的问题。
在我们所提的方法中,分别会遇到小波层数足够与小波层数不足的情况。假设一张JPEG 2000图像小波层数为m层,欲要将图像尺寸缩小为原来的(1/2n×1/2n)大小时,假如n
若n=m发生,也就是小波层数不足。首先经EBCOT解码后,产生不同的子频带信息。针对不同的子频带信息使用反量化,接着进行图像缩小的工作,将不需要的外频信息去除,保留的频率信息因小波层数不足(小波层数需为1层以上),要对保留的频率信息再进行小波转换。产生出来的小波频率域尺寸大小超过欲转换尺寸,可将外频的小波频率信息去除,保留LL子频带。此时图像大小虽已符合转换所需大小,但JPEG 2000规定图像至少要有一层小波转换,所以必须再做一次小波转换,得到一张小波转换层数为1的JPEG 2000图像,最后再经量化与EBCOT编码,得到尺寸缩小后的JPEG 2000图像。
2 频率域图像尺寸缩小转换方法
图1中间的频率域图像尺寸缩小转换方法主要工作包括缩小频率域图像尺寸与修改JPEG 2000图像码流主标头相关参数等步骤,详细步骤如下:
2.1 括缩小频率域图像尺寸
①小波转换层数足够的作法。假设当图像的小波层数为m层,欲将图像尺寸缩小为(1/2n×1/2n)大小时,若n 首先使用EBCOT解出频率域信息,再对需保留的频率域信息作反量化动作,接着将整张图像的尺寸缩小,并且丢弃不需要的外频频率信息,最后将所保留的频率域信息再重新经过量化与EBCOT编码,即可得到图像尺寸缩小后的JPEG 2000图像。
②小波转换层数不足的作法。假设当图像的小波层数为m层时,欲将图像尺寸缩小为(1/2n×1/2n)大小时,若n=m,就是小波层数不足,则除了丢弃m个外层的中高频信息外,还需要将原来最内层的低频信息,进行(n-m)+1次小波转换,再将所产生的(n-m)层的中高频信息丢弃。由于以上的(n-m)次小波转换后的中高频信息最终将被丢弃,因此在进行以上小波转换时可直接省略许多计算工作,不必进行完整的小波转换。此法为本文提出的快速小波转换方法。
2.2 修改JPEG 2000图像码流主标头相关参数 JPEG 2000图像码流主标头记录原始图像大小、块状(tile)大小、小波层数、各子频带的量化步阶值参数(ε和μ)等数据信息。在我们所提方法中,并没有将图像解回空间域,而是在频率域信息缩小图像尺寸后,直接进行量化和EBCOT编码,产生新的JPEG 2000图像。新的JPEG 2000图像码流主标头数据无法像空间域转换方法由JPEG 2000压缩方式设定,而必须自行修改JPEG 2000图像码流主标头内的相关参数。
3 小结
JPEG 2000具有的多种特性使其有着广泛的应用前景。目前许多图形图像公司如Pegasus,Aware等在开发的图像软件中集成了JPEG 2000图像压缩技术;有的公司如ImagePower等已开发出JPEG 2000的DSP芯片。JPEG 2000将取代JPEG在图像压缩领域发挥重要作用。本论文提出一个新的快速图像压缩方法,可大幅降低使用空间域转换时的处理时间,以及所需存储空间,但是本文所提方法只针对静态图像实现固定大小的缩小转换,无法对图像作任意大小转换,对图像作任意大小转换是一个很好的发展方向,需作进一步研究。
参考文献:
[1]杜伟娜,孙军,倪强.基于JPEG2000的高效率控制算法[J].上海交通大学学报,2006,40(1):16-19.
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。
三、WAVELET影像压缩简介及基础理论介绍
一、WAVELET的压缩概念
WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。
WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥。如此才是WAVELET编码法主要的观念。
二、影像压缩过程
原始图形资料色彩模式转换DCT转换量化器编码器编码结束
三、编码的基本要素有三点
(一)一种压缩/还原的转换可表现在影像上的。
(二)其转换的系数是可以量化的。
(三)其量化的系数是可以用函数编码的。
四、现有WAVELET影像压缩工具主要的部份
(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。
(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。
(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。
(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。
(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。
(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。
肆、WAVELET影像压缩未来的发展趋势
一、在其结构上加强完备性。
二、修改程式,使其可以处理不同模式比率的影像。
三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。
四、加强运算的能力,使其可支援更多的影像格式。
五、使用WAVELET转换藉由消除高频率资料增加速率。
六、增加多种的WAVELET。如:离散、零元树等。
七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。
八、增加8X8格的DCT模式,使其能做JPEG的压缩。
九、增加8X8格的DCT模式,使其能重叠。
十、增加trelliscoding。
十一、增加零元树。
现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。
伍、影像压缩研究的方向
1.输入装置如何捕捉真实的影像而将其数位化。
2.如何将数位化的影像资料转换成利於编码的资料型态。
3.如何控制解码影像的品质。
4.如何选择适当的编码法。
5.人的视觉系统对影像的反应机制。
小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。
陆、在印刷输出的应用
WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。
有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。
在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。
图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。
柒、结论
WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。
参考文献:
1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。
2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。
3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。
4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。
5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。
6.江俊明,民八十六年,小波分析简介,私立淡江大学物理学系硕士论文。
7.曾泓瑜、陈曜州,民八十三年,最新数位讯号处理技术(语音、影像处理实务),全欣资讯图书。
附录:
嵌入式零元树小波转换、阶层式嵌入式零元树小波转换、阶层式影像传送及渐进式影像传送
目前网路最常用的静态影像压缩模式为JPEG格式或是GIF格式等。但是利用这些格式编码完成的影像,其资料量是不变的,其接受端必须完整地接受所有的资料量後才可以显示出编码端所传送的完整影像。这个现象最常发生在利用网路连结WWW网站时,我们常常都是先接收到文字後,其网页上的图形才,慢慢的一小部份一小部份显示出来,有时网路严重塞车,图形只显示一点点後就要再等非常久的时间才再有一点点显示出来,甚至可能断线了,使得使用者完全不知道在接收什麽图案的图形,无形中造成网路资源的浪费。此缺点之改善,可以使用嵌入式零元树小波转换(EZW)来完成。
阶层式影像传送系统的主要功能为允许不同规格之显示装置或解码器可以从同一编码器中获得符合其要求之讯号,如此不需要对於不同的解码器设计不同的编码器配合利用之,进而增加了其应用的范围,及减低了所架设系统的复杂度,也可以节省更多的设备费用。利用Shapiro所提出的嵌入式零元树小波转换(EZW)技术来设计阶层式影像传送系统时,其编码的效果不是很好。主要的原因是,利用(EZW)技术所设计的编码器是根据影像的全解析度来加以编码的,这使得拥有不同解析度与码率要求的解码器,无法同时分享由编码器所送出来的位元流。虽然可以利用同时播放(Simulcast)技术来加以克服之,但是该技术对於同一影像以不同解析度独立编码时,将使得共同的低通次频带(LowpassSubband)被重复的编码与传送,而产生了相当高的累赘(Redundancy)。
基於上述情况,有人将嵌入式零元树小波转换(EZW)技术加以修改之,完成了一个新式的阶层式影像传送系统。该技术为阶层式嵌入的零元树小波转换(LayeredEmbeddedZerotreeWavelet,简称LEZW技术。这个技术使我们所设计出来的阶层式影像传送系统,可以在编码传送前预先指定图层数目、每层影像的解析度与码率。
LEZW技术是将EZW技术中的连续近似量化(SAQ)加以延伸应用之,而EZW传统的做法是将SAQ应用於全部的小波转换系数上。然而在LEZW技术中,从基层(BaseLayer)开始SAQ一次仅用於一个图层(Layer)的编码,直到最高阶析度的图层为止。当编码的那一图层码率利用完时,即表示该图层编码完毕可以再往下一图层编码之。为了改善LEZW的效率,在较低图层的SAQ结果应用於较高图层的SAQ过程中,基於这种编码的程序,LEZW演算法则可以在每一图层平均码率的限制下,重建出不同解析度的影像。因此,LEZW非常适合用於设计阶层式影像传送系统。
LEZW技术也可以应用於渐进式传送,对於一个渐进式影像传送系统而言,控制其解析度将可以改善重建影像的视觉品质。而常用的渐进式传送方法有使用向量量化器或零元树资料结构编码演算法则。但是向量量化器需要较大的记忆体及对与传送中的错误敏威,而利用EZW技术所设计的渐进式影像传送系统,可以改善这些缺点,所以享有较好的效能。但是它也有缺点就是,应用於渐进式传送时是根据全解析度来做编码及传送,因此在低码率的限制之下时,若用全解析度来显示影像将使得影像模糊不清。所以在低码率传送时的影像以较低的解析度来显示时,则可以使影像的清晰度有所改善。
由於在现今资讯流通普遍的社会中,影像的需求量越来越大,影像的数位化是必然的趋势。然而在数位化过的影像所占的资料量又相当庞大,在传输与处理上皆有所不便。将资料压缩是最好的方法。如今有一新的模式,在压缩率及还原度皆有不错的表现,为其尚未有一标准的格式,故在应用上尚未普及。但在不久的未来,其潜力不可限量。而影像之於印刷有密不可分的关系。故以此篇文章介绍小波(WAVELET)转换的历史渊源。小波转换的基础原理。现今的发展对印刷业界的冲击。影像压缩的未来的发展。
壹、前言
由於科技日新月异,印刷已由传统印刷走向数位印刷。在数位化的过程中,影像的资料一直有档案过大的问题,占用记忆体过多,使资料在传输上、处理上都相当的费时,现今个人拥有TrueColor的视讯卡、24-bit的全彩印表机与扫描器已不再是天方夜谭了,而使用者对影像图形的要求,不仅要色彩繁多、真实自然,更要搭配多媒体或动画。但是相对的高画质视觉享受,所要付出的代价是大量的储存空间,使用者往往只能眼睁睁地看着体积庞大的图档占掉硬碟、磁带和光碟片的空间;美丽的图档在亲朋好友之间互通有无,是天经地义的事,但是用网路传个640X480TrueColor图形得花3分多钟,常使人哈欠连连,大家不禁心生疑虑,难道图档不能压缩得更小些吗?如此报业在传版时也可更快速。所以一种好的压缩格式是不可或缺的,可以使影像所占的记忆体更小、更容易处理。但是目前市场上所用的压缩模式,在压缩的比率上并不理想,失去压缩的意义。不然就是压缩比例过大而造成影像失真,即使数学家与资讯理论学者日以继夜,卯尽全力地为lossless编码法找出更快速、更精彩的演算法,都无可避免一个尴尬的事实:压缩率还是不够好。再说用来印刷的话就造成影像模糊不清,或是影像出现锯齿状的现象。皆会造成印刷输出的问题。影像压缩技术是否真的穷途末路?请相信人类解决难题的潜力是无限的。既然旧有编码法不够管用,山不转路转,科学家便将注意力移转到WAVELET转换法,结果不但发现了满意的解答,还开拓出一条光明的坦途。小波分析是近几年来才发展出来的数学理论。小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。可达到完全不失真,压缩的比率也令人可以接受。由於其数学理论早在1960年代中叶就有人提出了,而到现在才有人将其应用於实际上,其理论仍有相当大的发展空间,而其实际运用也属刚起步,其後续发展可说是不可限量。故研究的动机便由此而生。
贰、WAVELET的历史起源
WAVELET源起於JosephFourier的热力学公式。傅利叶方程式在十九世纪初期由JosephFourier(1768-1830)所提出,为现代信号分析奠定了基础。在十九到二十世纪的基础数学研究领域也占了极重要的地位。Fourier提出了任一方程式,甚至是画出不连续图形的方程式,都可以有一单纯的分析式来表示。小波分析是近几年来才发展出来的数学理论为傅利叶方程式的延伸。
小波分析方法的提出可追溯到1910年Haar提出的小波规范正交基。其後1984年,法国地球物理学J.Morlet在分析地震波的局部性质时,发现传统的傅利叶转换,难以达到其要求,因此引进小波概念於信号分析中,对信号进行分解。随後理论物理学家A.Grossman对Morlet的这种信号根据一个确定函数的伸缩,平移系{a-1/2Ψ[(x-b)/a];a,b?R,a≠0}展开的可行性进行了研究,为小波分析的形成开了先河。
1986年,Y.Meyer建构出具有一定衰减性的光滑函数Ψj,k(x),其二进制伸缩与平移系{Ψj,k(x)=√2jΨ(2jx-k);j,k?Z}构成L2(R)的规范正交基。1987年,Mallat巧妙的将多分辨分析的思想引入到小波分析中,建构了小波函数的构造及信号按小波转换的分解及重构。1988年Daubechies建构了具有正交性(Orthonormal)及紧支集(CompactlySupported);及只有在一有限区域中是非零的小波,如此,小波分析的系统理论得到了初步建立。
三、WAVELET影像压缩简介及基础理论介绍
一、WAVELET的压缩概念
WAVELET架在三个主要的基础理论之上,分别是阶层式边码(pyramidcoding)、滤波器组理论(filterbanktheory)、以及次旁带编码(subbandcoding),可以说wavelettransform统合了此三项技术。小波转换能将各种交织在一起的不同频率组成的信号,分解成不相同频率的信号,因此能有效的应用於编码、解码、检测边缘、压缩数据,及将非线性问题线性化。良好的分析局部的时间区域与频率区域的信号,弥补傅利叶转换中的缺失,也因此小波转换被誉为数学显微镜。
WAVELET并不会保留所有的原始资料,而是选择性的保留了必要的部份,以便经由数学公式推算出其原始资料,可能不是非常完整,但是可以非常接近原始资料。至於影像中什度要保留,什麽要舍弃,端看能量的大小储存(跟波长与频率有关)。以较少的资料代替原来的资料,达到压缩资料的目的,这种经由取舍资料而达到压缩目地的作法,是近代数位影像编码技术的一项突破。即是WAVELET的概念引入编码技术中。
WAVELET转换在数位影像转换技术上算是新秀,然而在太空科技早已行之有年,像探测卫星和哈柏望远镜传输影像回地球,和医学上的光纤影像,早就开始用WAVELET的原理压缩/还原影像资料,而且有压缩率极佳与原影重现的效果。
以往lossless的编码法只着重压缩演算法的表现,将数位化的影像资料一丝不漏的送去压缩,所以还原回来的资料和原始资料分毫无差,但是此种压缩法的压缩率不佳。将数位化的影像资料转换成利於编码的资料型态,控制解码後影像的品质,选择适当的编码法,而且还在撷取图形资料时,先帮资料「减肥。如此才是WAVELET编码法主要的观念。
二、影像压缩过程
原始图形资料色彩模式转换DCT转换量化器编码器编码结束
三、编码的基本要素有三点
(一)一种压缩/还原的转换可表现在影像上的。
(二)其转换的系数是可以量化的。
(三)其量化的系数是可以用函数编码的。
四、现有WAVELET影像压缩工具主要的部份
(一)WaveletTransform(WAVELET转换):将图形均衡的分割成任何大小,最少压缩二分之一。
(二)Filters(滤镜):这部份包含WaveletTransform,和一些着名的压缩方法。
(三)Quantizers(量化器):包含两种格式的量化,一种是平均量化,一种是内插量化,对编码的架构有一定的影响。
(四)EntropyCoding(熵编码器):有两种格式,一种是使其减少,一种为内插。
(五)ArithmeticCoder(数学公式):这是建立在AlistairMoffatslineartimecodinghistogram的基础上。
(六)BitAllocation(资料分布):这个过程是用整除法有效率的分配任何一种量化。
肆、WAVELET影像压缩未来的发展趋势
一、在其结构上加强完备性。
二、修改程式,使其可以处理不同模式比率的影像。
三、支援更多的色彩。可以处理RGB的色彩,像是YIQ、HUV的色彩定义都可以分别的处理。
四、加强运算的能力,使其可支援更多的影像格式。
五、使用WAVELET转换藉由消除高频率资料增加速率。
六、增加多种的WAVELET。如:离散、零元树等。
七、修改其数学编码器,使资料能在数学公式和电脑的位元之间转换。
八、增加8X8格的DCT模式,使其能做JPEG的压缩。
九、增加8X8格的DCT模式,使其能重叠。
十、增加trelliscoding。
十一、增加零元树。
现今已有由中研院委托国内学术单位研究,也有不少的研究所的硕士。国外更是如火如荼的展开研究。相信实际应用於实务上的日子指日可待。
伍、影像压缩研究的方向
1.输入装置如何捕捉真实的影像而将其数位化。
2.如何将数位化的影像资料转换成利於编码的资料型态。
3.如何控制解码影像的品质。
4.如何选择适当的编码法。
5.人的视觉系统对影像的反应机制。
小波分析,无论是作为数学理论的连续小波变换,还是作为分析工具和方法的离散小波变换,仍有许多可被研究的地方,它是近几年来在工具及方法上的重大突破。小波分析是傅利叶(Fourier)分析的重要发展,他保留了傅氏理论的优点,又能克服其不足之处。
陆、在印刷输出的应用
WAVELET影像压缩格式尚未成熟的情况下,作为印刷输出还嫌太早。但是後续发展潜力无穷,尤其在网路出版方面,其利用价值更高,WAVELET的出现就犹如当时的JPEG出现,在影像的领域中掀起一股旋风,但是WAVELET却有JPEG没有的优点,JPEG乃是失真压缩,且解码後复原程度有限,能在网路应用,乃是由於电脑的解析度并不需要太高,就可辨识其图形。而印刷所需的解析度却需一定的程度。WAVELET虽然也是失真压缩,但是解码後却可以还原资料到几乎完整还原,如此的压缩才有存在的价值。
有一点必须要提出的就是,并不是只要资料还原就可以用在印刷上,还需要有解读其档案的RIP,才能用於数位印刷上。等到WAVELET的应用成熟,再发展其适用的RIP,又是一段时间以後的事了。
在网路出版上已经有浏览器可以外挂读取WAVELET档案的软体了,不过还是测试版,可是以後会在网路上大量使用,应该是未来的趋势。对於网路出版应该是一阵不小的冲击。
图像压缩的好处是在於资料传输快速,减少网路的使用费用,增加企业的利润,由於传版的时间减少,也使印刷品在当地印刷的可能性增高,减少运费,减少开支,提高时效性,创造新的商机。
柒、结论
WAVELET的理论并不是相当完备,但是据现有的研究报告显现,到普及应用的阶段,还有一段距离。但小波分析在信号处理、影像处理、量子物理及非线性科学领域上,均有其应用价值。国内已有正式论文研究此一压缩模式。但有许多名词尚未有正式的翻译,各自有各自的翻译,故研究起来倍感辛苦。但相信不久即会有正式的定名出现。这也显示国内的研究速度,远落在外国的後面,国外已成立不少相关的网站,国内仅有少数的相关论文。如此一来国内要使这种压缩模式普及还有的等。正式使用於印刷业更是要相当时间。不过对於网路出版仍是有相当大的契机,国内仍是可以朝这一方面发展的。站在一个使用其成果的角度,印刷业界也许并不需要去了解其高深的数理理论。但是在运用上,为了要使用方便,和预估其发展趋势,影像压缩的基本概念却不能没有。本篇文章单纯的介绍其中的一种影像压缩模式,目的在为了使後进者有一参考的依据,也许在不久的将来此一模式会成为主流,到时才不会手足无措。
参考文献:
1.GeoffDavis,1997,WaveletImageCompressionConstructionKit,。
2.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(上),峰资讯股份有限公司。
3.张维谷.小宇宙工作室,初版1994,影像档宝典.WINDOWS实作(下),峰资讯股份有限公司。
4.施威铭研究室,1994,PC影像处理技术(二)图档压缩续篇,旗标出版有限公司。
5.卢永成,民八十七年,使用小波转换及其在影像与视讯编码之应用,私立中原大学电机工程学系硕士学位论文。
关键词:嵌入式;播放器;流媒体
中图分类号:TP37
随着Android在智能手机行业上的成功应用,以Android 作为嵌入式系统的开发,特别是在非手机系统上的应用方面的开发尤为引人关注。相比于PalmOS、PSOS、VxWorks等专用系统,Android系统更适合于机顶盒这类嵌入式信息家电的需要。由于在数字电视和机顶盒的软件架构中使用了不同的操作系统,不同的中间件平台,不用的应用程序框架使得软件架构层面出现了极大的差异化。在操作系统层面,Linux,uCos,VxWorks,WinCE,iTron,ThreadX等不同的操作系统在不同的产品上都有相应的部署;在中间件层面,有公开的标准化的中间件平台,比如MHP,Tru2way,ACAP,ARIB,MHEG5等,也存在私有的非标准的中间件平台;而不同的中间件软件提供商更会提供各自不同的中间件解决方案,这些解决方案之间大多是无法互相兼容的。
1 需求分析
为了解家用网络播放设备的实际需求,作者选取了不同层次的家庭用户为对象进行需求调研,首先了解了该公家庭网络播放设备的产品现状,然后在此基础上,分析总结了用户的实际需求。
家用网络播放设备主要由四大子功能系统组成:控制子系统、信号处理子系统、网络接口子系统和用户扩展接口子系统。
基本业务:模拟电视广播、FM广播,模拟付费(加扰)电视;数字视频;卫星数字视频广播(DVB-S);地面数字视频广播(DVB-T);有线数字视频广播(DVB-C);MMDS数字视频广播;数字付费(加扰)电视数字音频IP电话/传真;音乐(MOD);实时音频卡拉OK点播(KOD)数字数据信息点播(IOD);数据广播(BIS);股市证券信息广播(SIS);VBI图文电视;应用程序下载;远程数据库流向;
电子商务:交互式多媒体;互联网接入服务(IAS);远程教育;远程医疗;网上购物;网上收费;电子广告;股市证券服务(SES);网上(音、视频)广播业务;可视电话与电视会议;社区多功能服务。
2 嵌入式网络播放设备的设计
2.1 总体设计
图1 终端的系统结构
由图1可以看出,整个终端主要分为数据接收,媒体播放和显示输出三大部分。从功能上分别概括为流媒体数据接收模块,音视频解码播放模块和人机交互模块。其中,流媒体数据接收模块,主要是登陆服务器,接收并处理来自网络的流媒体数据,本论文研究系统中为MPEG-2 TS流,并将其放入环形缓冲区中,实现客户端与服务器的交互。
音视频解码播放模块,通过STB810开发板用硬件实现对MPEG-2 TS传输流的解复用,分解出视频基本流和音频基本流,并送往解码模块,调用DirectFB的解码器接口,完成对音视频流的解码,从而实现对媒体播放的处理和控制。
人机交互模块,涉及输入设备和图像的显示输出,且由于嵌入式平台下面没有集成类似MFC(Microsoft Foundation Classes,微软基础类)的基础类库和完善的消息响应机制,论文将借助于DirectFB实现了一套自己的事件响应、处理机制。同时使用封装好的DirectFB API接口直接将图形图像数据解码并显示。
2.2 TCC8900的硬件平台
本文研究采用的机顶盒是Telechips公司的STB810开发板,STB810使用基于Linux的软件架构和提供能迅速使用设备特性的标准API,不需要对底层驱动和嵌入式DSP编程有更多的了解就可以使用该客户端进行应用程序开发。
硬件接口有:RJ45以太网接口、两个SATA硬盘接口、两个SCART连接口、分量视频输出(YPrPb)、四个USB接口、两个USB 1.1接口、两个USB 2.0接口、两个UART接口、左右两个模拟音频接口、一个数字音频输入和输出接口(S/P-DIF)和一个高清多媒体接口(HDMI)。其中,第一个SCART连接口连接RGB电视设备或者CVBS信号+快慢开关信号,第二个SCART连接口连接CVBS的视频录像机(VCR)或者Y/C信号+慢开关信号。
STB810的核心设备为PNX8550媒体处理引擎,该PNX8550媒体处理引擎集成了一个MIPS32架构的微控制器和两块功能强大的用于音视频处理的DSP。它可以支持MPEG-2解码,MPEG-2传输流的处理,DVB,DES,Multi2,AES的条件访问,视频的缩放和图片的显示。并在一个单芯片上进行所有数字音/视频处理,提供复杂的视频缩放、解交叉和画质增强功能,并且支持广泛的调谐前端。通过模拟后端设备PNX8510/11转化为模拟视频信号输出给电视机。
2.3 STB810的软件架构
IPTV机顶盒作为客户端,除了需要具有良好的硬件平台外,还需要拥有软件系统才能够实现IPTV业务功能。相应的,STB810和大多数的机顶盒软件一样采用分层结构,分为内核层、中间解释层和应用层三个层次:
内核层:包括机顶盒终端硬件和Linux内核。而对于机顶盒终端硬件这一部分主要是指机顶盒硬件中的流媒体处理引擎与流媒体解码芯片;Linux内核(版本2.6.21)是指嵌入式Linux操作系统,用以控制硬件。
中间解释层:重新搭建整个软件平台的开源软件的工具包。包括一个用于音视频直播/点播使用的视频传输协议栈;用于驱动流媒体解码芯片的驱动程序和外接存储设备以及摄像头的驱动程序;用于绘制界面、将解码后的数据显示并输出到电视上的DirectFB库。
应用层:包括基于中间层开发的应用程序,如视频点播、直播等扩展应用。DVB API采用的是Linux DVB API version3,主要用到其中的Linux DVB Demux Device API,用于解复用TS流。ALSA为Advanced Linux Sound Architecture,先进Linux声音架构,是Linux平台上的用途广泛的音频API,用于音频流混频;DirectFB是专为嵌入式开发的轻量级图形界面库。
3 嵌入式视频点播终端软件环境的搭建
3.1 交叉开发环境的建立
交叉编译,是嵌入式开发过程中的一项重要技术,它的主要特征是某机器中执行的程序代码不是在本机编译生成,而是由另一台机器编译生成,一般把前者称为目标机,后者称为主机。采用交叉编译的主要原因在于,大多数嵌入式目标系统不能提供足够的资源供编译过程使用,因而只好将编译工程转移到高性能的主机中进行。
在本文研究的系统中,就是在Linux PC机上生成在STB810 核心处理器(PNX8550)上执行的代码。该代码包含了Linux内核和根文件系统中所有的PNX8550可执行文件。即整个系统的交叉环境是建立在宿主机Linux PC机上的,目标板即STB810开发板用于运行操作系统和应用软件,而STB810所用到的操作系统的内核编译、应用程序的开发调试都是通过Linux PC机编译成可运行代码,然后再利用交叉编译调试工具编译连接生成可执行代码,最后将其下载到STB810开发板上运行。
3.2 设置环境变量
环境变量因用户不同而定义不同。它可以定义工程的工作环境,也可以定义调用所需库的路径。一旦定义了环境变量,系统脚本就可以通过这些信息得到所需的程序。在本文中设置环境变量的操作为:
在路径“/…/stb810-SP8”下执行:source ./setup.sh。
3.3 重建根文件系统设备
Linux根文件系统包含一些设备文件,这些文件保证了内核向STB810的设备驱动器传送信息。
通过执行:cd /…/stb810-SP8/build_128M_BASE/rootfs/dev && ./MAKEDEV来重新创建根文件系统设备。
3.4 导出根文件系统
文件系统是操作系统的重要组成部分。文件系统的概念使得用户能够查看存储在设备上的文件和路径而无须考虑实际物理设备的文件系统类型。Linux 透明地支持许多不同的文件系统,将各种安装的文件和文件系统以一个完整的虚拟文件系统的形式呈现给用户。Linux的根文件系统具有非常独特的特点,就其基本组成来说,Linux 根文件系统包括支持Linux 系统正常运行的基本内容,包含着系统使用的软件和库,以及所有用来为用户提供支持架构和用户使用的应用软件。导出根文件系统。STB810内核把build_128M_BASE/rootfs这个目录都挂载到了Linux PC机上。build_128M_BASE/rootfs这个路径下包含了STB810的一些样本程序,必须的库和其他的一些软件。
流媒体数据接收模块的实现实际完成了客户端与服务器之间的通信,本系统采用RTP协议来传输实时数据,用RTCP协议来检测网络质量,用SDP协议描述媒体流信息,以便播放器进行解码,用RTSP协议作为控制流,来控制视频点播的播放、暂停、停止等。
用户通过EPG获得感兴趣影片的URL,选择播放该影片,机顶盒与相应的RTSP流媒体服务器建立连接,发送点播请求。根据传递给媒体数据接收线程的参数,解析出请求媒体流的URL。通过函数parseVoDEPGFile(ppVoDEntry_head)解析视频点播节目单Vod.txt获取.stream_info数据,从节目单中提取出.stream_info数据,即关于视频文件的参数,如ip:192.168.101.188,port:8554,streamName:0122等,将这些info数据传递给结构体ip。
4 总结
本文深入讨论了基于Android的家用网络播放终端的技术理论和核心技术,然后重点阐述了IPTV视频点播终端的系统设计:流媒体客户端与服务器的交互流程,音视频的解码播放和消息驱动机制;实现了一种能提供良好视频质量和友好人机交互方式的嵌入式视频播放终端。
参考文献:
[1]李岩.容盘祥基于53C4B0嵌入式ucLinux系统原理及应用[M].北京:清华大学出版社,2005:293.
[2]黄晓桃.视频点播系统的研究与实现[J].中国学术期刊,2008,05.
[3]钱华峰,雷航.面向对象嵌入式GUI研究和模式应用[J].计算机应用,2004,4:10-13.
[4]杨春霞,俞斯乐.数字电视机顶盒图形用户界面的设计与实现[J].信号处理,2003(10):52-56.
数字电视技术与模拟电视技术相比,除了具有抗干扰能力强、误差小、压缩比高、传输信息量大、频率资源利用率高等优点外,最大的优点在于数字电视用户和有线电视台等内容提供商的互动性,可以为用户开展各种增值服务业务。本系统利用HFC网络,在基于数字机顶盒的电视系统上实现会议电视服务。经过八年的实践应用,该系统运行稳定可靠。供业界同仁参考、完善。
・摘 要・
现代通信正在向数字化、宽带化、智能化、综合化发展,数字技术的迅速发展已将CATV网、电话网及数据网紧密联系在一起,提供各种不同类型的信息服务,会议电视就是其中一种。本文主要介绍应用于会议电视系统中的数字机顶盒,及利用数字机顶盒传输会议电视的具体实现方法。
有线电视数字机顶盒的关键技术
数字机顶盒是实现有线电视数字化的标志之一,换言之,数字机顶盒是实现“有线电视向数字化整体平移”战略的跳板。对于有线电视网络运营服务商来说,也只能通过数字机顶盒的推广入户,才能打开数字电视的大门,使数字电视产业链的形成及有线电视由粗放型经营向集约化经营转变成为可能。
在有线电视系统中,使用数字机顶盒(STB)作为前端,连接HFC网络,用于处理来自电视、电话和数据三大网络的数据流。在下行信号中,对数据流的调制方式主要是64QAM 或256QAM,而在上行链路中通常采用对噪声抑制能力较强的QPSK调制方式。数据流经过处理后就可以送到电视机及各种外部标准接口,如并行接口、RS232、USB等。同时,使用一个条件接入模块(CA Unit ),用于数字机顶盒(STB)的安全系统中,只有那些通过授权的用户才能使用付费业务。
为了接收数字电视实现会议电视的功能,数字机顶盒内配置了专门的MPEG-2编、解码器,连接在扩展总线上,承担运算量很大的MPEG-2编、解码工作。若嵌入式处理器的运算速度再有1~2个数量级的提高,各种标准的视频压缩、解压处理都可以由软件完成,就不需要配置专门的视频编、解码器。
一个完整的数字机顶盒由硬件平台和软件系统组成,可以分为4层,从底层向上分别为:硬件、底层软件、中间件、应用软件。硬件提供机顶盒的硬件平台,实现音视频的解码;底层软件提供操作系统以及各种硬件驱动程序;应用软件包括本机存储的应用和可下载的应用;中间件将应用软件与依赖硬件的底层软件分隔开来,使应用不依赖于具体的硬件平台。
1、数字电视机顶盒硬件组成
有线电视数字机顶盒的基本功能是接收数字电视广播节目,如图1所示,调谐模块接收射频信号并下变频为中频信号,然后进行转换变为数字信号,再送入QAM解调模块进行解调,输出MPEG传输流串行或并行数据。解复用模块接收MPEG传输流,从中抽出一个节目的PES数据,包括视频PES和音频PES。视频PES送入视频解码模块,取出MPEG视频数据,并对MEPG视频数据进行解码,然后输出到PAL/NTSC编码器,编码成模拟电视信号,再经视频输出电路输出。音频PES送入音频解码模块,取出MPEG音频数据,并对MPEG音频数据进行解码,输出PCM音频数据到PCM解码器,PCM解码器输出立体声模拟音频信号,经音频输出电路输出。
(1)调制解调模块
数字机顶盒工作在有线电视网络状态下,有线电视网采用模拟传输,因此必须对数字信号进行调制和解调才能在模拟信道传输,调制解调器是系统关键的组成部分,在技术上类似现在的电话调制解调器的原理,但采用了更高的调制方法,下行多采用64QAM或256QAM,在DVB-C(Digital Video Broadcast by Cable)中采用64QAM做为标准调制方法,以MC92305QAM 解调芯片为例,在7M模拟带宽上采用64QAM调制的数字信号速率可达42Mbit/S,采用HFC网时采用QPSK做为调制方案。QAM或QPSK调制器将MPEG格式的数据流调制在一个标准的PAL信道内,与其它视频调制信号一起合路发送出去。
(2) 编解码模块
由于采用模拟通道,为保证数据传输的可靠性和低误码率,前向纠错编码是必不可少的,DVB 采用Reed Solomon编码,RS码是一类纠错能力很强的多进制BCH码。
(3)MPEG II的解码模块
数字机顶盒的核心是数字视频技术,MPEGII的解码模块可以称为CPU以外的核心模块,MPEG II数字传输中采用交织编码,首先需要对码流进行去交织,视频、音频和数据码流的分离工作,以及视频码的解码工作。经以上各步骤MPEGII码流成为视频(CCIR656 格式)和音频数字信号。MPEG多路复用器将各路节目流、数据流复合在一起,以188字节为一帧的MPEG2数据格式发送到射频调制器并提供电子节目单(EPG)。
(4)数字视频编码器和音频DAC
数字机顶盒的“外设”是电视机和音响系统,数字的音视频信号必须转换为模拟音视频信号,以 MC44724为例,MC44724可以将ITU601、656标准4:2:2 并行视频数据转换为PAL或NTSC格式的视频、S-Video、Y/Cb/Cr 或R/G/B,扩展的VBI(Vertical Blanking Interval)信息输入口用于显示图文信息。现代音响系统都支持DolbyProLogic和LucasfilmHomeTHX家庭影院系统,需在音频DAC之前用数字音频信号处理芯片对数字音频信号进行处理,目前有专用处理芯片和采用数字信号处理芯片DSP进行处理两种方式。
(5)加解扰模块和版权保护模块
在有线电视运营中,付费电视是一种主要的业务,要求数字机顶盒必须具备电视信号的加解扰功能,由于采用数字信号,加解扰比模拟信号加解扰容易和保密度高,另一方面,采用数字信号在版权保护上加大了难点,目前采用Macrovision generator 进行活动图像的保护。
在数字电视技术中,软件技术比硬件占有更为重要的位置,因为电视节目内容的重现、操作界面的实现、数据广播业务的实现,都需要软件来实现。
2、数字电视机顶盒软件系统
在机顶盒中,软件系统是一个重要的组成部分。主控制器的工作通过软件的执行来完成。
机顶盒的软件基本结构如图所示。操作系统一般采用实时操作系统。在这个操作系统中主要完成进程调度、中断管理、内存分配、进程间通信、异常处理、时钟提取等工作。硬件驱动部分提供硬件设备的驱动,包括I2C总线、异步串行通信口、并行通信口、非易失内存、键盘、遥控器、调谐器、信道解码模块等。图形接口主要用于完成图形显示功能,以便于为用户提供友好的图形用户界面。音频解码和视频解码驱动用于控制音频解码和视频解码硬件的工作。解复用和数据表提取模块主要是对码流解复用和数据表提取操作的控制。应用程序编程接口将所有与硬件相关的底层函数映射到一个统一的接口上,并且提供一些与硬件无关的公用处理函数,比如网络协议、图形格式分析、业务信息数据表分析等。条件接收驱动用于完成条件接收处理的工作和软件接口。应用程序编程接口为应用程序提供了一个公共的编程接口,把应用程序与硬件屏蔽开,使得应用程序与硬件无关。这样,就便于实现应用程序的可移植性。
数字机顶盒传输会议电视的实践应用
电视会议利用视频摄像和显示设备,经过信号压缩及编解码处理,通过通讯线路传输而在两地或多个地点之间实现交互式实时图像通讯。它利用摄像机和麦克风将一个地点的活动图像和声音实时地传至远端。可连接图文摄像机、投影机和录像机等各种视音频设备,能传送实物图像、图纸、文件和预先制作的视频资料。远端的声音、图像也同样实时传至本地。电视会议还提供专用数据通道,用于连接数据设备如计算机、电子白板等。由此系统在进行视音频交互通讯同时,能同时实现数据的异地实时共享。模拟图像经专用设备转换成数字信号,进行数据压缩,而后通过数字信道进行传输。其简要框图如下。
1、用户需求分析
(1)、会场分布:中心会场设在市内,19个分会场遍布各区局网络分公司。
(2)、功能要求:所有会场可同时开会,实现多点视频会议。也可将各会场分为不同小组分别开会。日常工作中,各会场可以方便地与任一其它会场连通。
(3)、网络要求:简单、方便、可靠。
(4)、数据功能:可进行数据传输、共享。
2、会议电视组网方案
(1)、以市内为中心组成的HFC星形网:主会场设在市内,配置1台机顶盒终端。各分会场各配置一台机顶盒终端。在市内设立网络控制中心, 网控中心负责全网多点会议的设置、召开、管理和会议控制。
网控中心配置终端网管,对全网所有会议电视终端的工作状态实时监控、管理。
市内为网管中心,实现集中管理。全网运行更安全、可靠。
(2)、终端设备
会议电视终端设备主要包括视频输入/输出设备、音频输入/输出设备、视频编解码器、音频编解码器、信息通信设备及多路复用/信号分线设备等。其基本功能是将本地摄像机拍摄的图像信号、麦克风拾取的声音信号进行压缩、编码,合成为64Kbps至1920Kbps的数字信号,经过传输网络,传至远方会场。同时,接收远方会场传来的数字信号,经解码后,还原成模拟的图像和声音信号。
①视频、音频的输入、输出
视、音频(A、V)的输入设备基本为摄像机和麦克风,摄像机为数字摄像机,系统视频输入口应不少于4个。根据会场的规模1台到3台,视频信号同麦克风的声音信号经视音频分配器和视音频切换器,接入到系统。
视、音频输出电路根据输出信号和会场的规模不同而不同。当只有一台显示器时,输出信号在接接到显示器上;当有几台显示器时,输出信号为A、 V时,用一台视音频分配器把一路 A、 V分成几路A、V供几台显示器或用调制器把A、V调制成射频信号(RF)用分配器分成几路供几台显示器;输出信号为RF时,直接用分配器把信号分成几路供几台显示器。最简单的系统只有下行信号而没有上行信号。
②视频解码器
其一方面对视频信号进行制式转换处理以适应不同制式系统直通;另一方面对视频信号进行数字压缩编码处理,以适应窄带数字信道的传送,还支持多点会议电视系统的多点控制单元多点切换控制。视频编解码器宜以全公共中间格式(CIF)或1/4公共中间格式(QCIF)的方式处理图像。在特定条件下,也可采用CTX或CTX PLUS等其他编解码方式,但必须与CIF,QCIF兼容,便于按用户的不同要求选用合适的编解码方式。
③音频编解码器
其主要对模拟音频信号进行数字化编码处理,已进行传送。音频编解码器应具备对音频信号进行PCM,ADPCM或LD-CELP编解码的能力。
④多路复用/信号分线设备:其将视频、音频、数据信号组合为传输速率为64-1920Kbps的数据码流,成为用户/网络接口兼容的信号格式。在广电网中,采用多信道视频/音频编码器1715VC和STM-16同步插分复用设备来传输,171 SVC就是采用混合差分脉码调制(HDPCM)技术,每个STM叫传送2路视频信号和4路音频信号。另外,MPEGII压缩技术(同上述帧间编码原理同)也是当前电视编码的标准,电视信号可压缩到1.5~15Mb/S,通常压缩到8Mb/S; STM-1可传输近20套MPEGII压缩的数字电视信号。
(3)、多点控制单元(MCU Multipoint Control Unit)
在广电网中,MCU主要是指视音频分配器和视音频切换器,对会场的视、音频进行直接切换、控制。
3、系统硬件总体构成
根据目前会议电视的实际情况,考虑现有设备状况,我们可以在各会议室里各配置一台机顶盒的会议终端产品,各分公司只要配备一台电视机就可以参加视频会议。同时,会议终端产品具备视频输出。具体实现办法如下图所示。
4、系统的软件实现
我们将会议电视进行加密。即将会议电视内容放入数字机顶盒中传给各分公司,只使指定的部分用户能够收看,达到加密的目的。即在数字前端将会议电视节目单设一项,名为“会议电视”,“会议电视”的观看权不授予普通用户,使普通用户无法观看会议电视节目,将“会议电视”只授予且仅授予上述各会议室,使其仅能收看会议电视节目。其截图如图5 图6所示。
结束语
通过上面的介绍,我们可以看出,该系统具有极大的优越性和灵活性。主要表现在:(1)设备利用率高,可以充分利用广电部门现有的设备;(2)电视会议召开地点灵活,而且易于扩大规模;(3)电视会议召开费用低;(4)保密性和安全性好。作为一项有着巨大市场空间的电视增值业务,大力发展和使用数字机顶盒来传输会议电视这一先进通信工具,为伊春广电网络带来不可估量的社会效益和经济效益。■
参考资料:
1 刘修文. 数字机顶盒技术讲座 第二讲 数字机顶盒的组成【J】. 中国有线电视, 2004-08
2 张卫锋. 基于DVB的数据广播和客户端数字机顶盒的开发【D】.浙江大学, 2002.
关键词:射频识别;EM4095;曼彻斯特码;读写器
中图分类号:TP334 文献标识码:A
1 引言(Introduction)
射频识别(Radio Frequency Identification,RFID)属无线电通信范畴,基本物理原理就是电磁场感应。射频识别系统由两部分组成:一部分是识别对象(标签);另一部分是识别器(读写器)[1]。
读写器模块是由微控制器、射频基站芯片、线圈和一些阻容器件组成。本文所设计的125kHz低频RFID读写器能够准确可靠的读取标签的内存信息,并送入计算机终端进行管理,实现非接触式门禁考勤、动物识别等系统的核心管理功能。
2 硬件电路设计(The hardware circuit design)
125kHz读写器主要是由射频模块、控制模块,通信模块和电源模块等部分电路组成的,其硬件功能框图如图1所示。
我们选用的EM4095是EM公司设计生产的低频RFID读写器专用芯片,它集成的PLL系统能达到载波频率自适应天线的共振频率,而不需外接晶振,工作频率100kHz―150kHz。EM4095与微控制器接口简单,由EM4095构成的读写器电路图如图2所示,芯片供电后,SHD应先为高电平,对芯片进行初始化,然后再接低电平,芯片即发射射频信号,解调模块将天线上AM信号中携带的数字信号取出,并由DEMOD_OUT端输出。EM4095输出的参考时钟信号RDY/CLK接T0,用作解码的同步时钟。AT89S52从电子标签读取数据,再通过MAX232进行电平转换,实现与PC的通信[2]。
3 读写器的软件设计(Software design of Reader)
这里选用的只读非接触IC卡为EM4100卡。它采用125kHz的典型工作频率,有64位激光可编程ROM,调制方式为曼彻斯特码(Manchester)调制,位数据传送周期为512μs。串行输出的数据包括9位前导位,40位信息位,14位校验位,1位停止位。
射频卡内的EM4100芯片内部预先存储的不可改写的64位数据格式,如图3所示。
全部的64位数据的开头是由9个1组成的前导位,由于数据和偶校验的结合,这种序列不可能在后面的数据串中重复出现,保证了前导位的唯一性。前导位之后是10组4位的数据,每一组4位数据后面是每行的偶校验位,最后一行4位数据是前面10组数据各列的偶校验位。D00―D03和D10―D13是厂商号,最后一位S0是停止位,它恒为0。当传送卡号时,这64位数据通过载波在天线上首尾相接循环出现[3]。
EM4095从DEMOD-IN引脚检测线圈的电压变化,在芯片内部对已调制信号进行解调,然后从DEMOD-OUT端输出曼彻斯特编码(简称曼码)信号。根据曼码的特点:在每一个数据位的“中间”由低电平跳变到高电平代表“1”,由高电平跳到低电平代表“0”。由于信号耦合的原因,实际上由EM4095芯片送给单片机的64位曼码的数据是反过来的,即:数据位中间发生由高到低的跳变代表“1”,发生由低到高的跳变代表“0”。
根据EM4095芯片的特点:接收数据时,RDY/CLK管脚上将输出与天线上载波信号频率一致的方波信号。即使载波频率发生变化,每一位曼码数据所占的宽度仍为64个载波周期。设计电路时,将EM4095的RDY/CLK管脚接入AT89S52单片机的T0口,以对输出方波脉冲进行计数。
EM4095输出信号的波形如图4所示[3]。
分析EM4095输出的曼彻斯特编码,发现数据结束时的上跳沿与数据起始时的下跳沿中间间隔一个数据时钟周期,根据这个特征,不断等待上跳沿,上跳沿到来时,开启T0,下跳沿到来,关T0,如T0计数器计到64个载波左右,则认为找到了停止位后9个1组成的前导位中的第一个1,否则重新找上跳沿。以前导位中的第一个1的下跳沿为计数起点,用计数器计RDY/CLK的脉冲个数,每64个脉冲信号后读取的DMOD_OUT上的电平,该电平取反,就是该位值。再接收8个1就可确定找到了64位数据的前导位中的9个1,然后再接收40位信息位,14位校验位和停止位。如没接受到8个1,就没找到前导位,需重新找上跳沿,确定前导位中的第一个1。解码流程如图5所示。
数据接收在中断服务程序完成,其流程如图6所示。
4 结论(Conclusion)
射频识别技术在生产、生活各领域的应用日益广泛,本文首先介绍了读写器的结构框图,给出了利用EM4095设计的RFID读写器硬件电路。然后分析了电子标签芯片的数据存储格式和EM4095输出的曼彻斯特编码的特征,在此基础上提出了利用计数器累计RDY/CLK的脉冲个数,即计算曼彻斯特码的下降沿间隔的载波数的方法进行解码的方法,此方法提高了解码的速度和准确性,实验证明,读写器读卡稳定可靠,效果好。
参考文献(References)
[1] 单承赣.射频识别(RFID)原理与应用[M].北京:电子工业出版社,2008:1-200.
[2] 张浩博,张红雨.应用单片机的手持式RFID读卡器设计[J].国外电子元器件,2008(9):45-46.
[3] 丁明军,徐建城.射频卡应用中的曼彻斯特码解码技术[J].通信技术,2007(12):65-67.
论文关键词:元语言意识 儿童阅读 语音意识 句法意识
论文摘要:儿童元语言意识和阅读的发展关系一直是心理学家所共同关注的一个重要问题。从元语言及元语言意识的概念含义入手,着重介绍并讨论了语音意识和句法意识对儿童阅读理解能力的影响,从而对研究儿童的元语言的重要性有进一步的认识和了解。
近几十年来,元语言意识在儿童词阅读发展中的重要作用是心理语言学研究中最重要的发现之一,对其研究具有重要的理论意义和实践意义。下文将以元语言和元语言意识的概念含义为基础,着重分析探讨元语言意识中的语音意识和句法意识对儿童阅读的影响,在现有研究的基础上得出一些有益于儿童早期英语教育的结论。
一、元语言及元语言意识
所谓的元语言(metalanguage)是指有关语言的语言,是人类语言的一个普遍现象。它既是语言学家必不可少的描写工具,以其专业性和技术性而被称为是语言学家的“行话”(jargon);同时,它又是普通人指称和谈论语言的一种必须手段,因而元语言有双重性。在儿童的语言教学中,需要培养的基本语言能力有以下两种:一是理解语言并使用语言表达思想,进行交流;二是描述并理解自己所学和所用的语言。第二种层次的能力就是我们所说的元语言能力。
近年来,认知科学领域的心理学家和语言学家都开始更多关注语言使用者的“元语言意识”(metalinguistic awareness)。元语言意识是指个体思考和反思语言的特征和运作的能力。具有元语言意识的人,能够有效地认识和思考语言的本质和功能。从事双语教育研究的学者发现对使用双语的儿童来说,具有较强的“元语言意识”已经成为他们一个独特的优势,因其具有“思考自己的语言、理解词汇的意义、甚至给这些词汇下定义”的能力。元语言意识包括四种一般的类型:语音意识、词素意识、句法意识和语用意识。在儿童读写能力发展的不同阶段具有不同影响,其中尤以语音意识和句法意识在儿童早期阅读中的影响最为突出。
二、语音意识的发展对儿童阅读的影响
语音意识是指操纵和控制语音表征的能力,包括音位意识、音节意识和音节内单元的意识,是对任意一种语音单元的意识。语音意识与个体早期的阅读有着非常密切的关系,大多数关于儿童语音意识发展的研究都是从语音意识对阅读能力的影响这一视角进行的。
阅读是一种高水平信息加工的过程。其中,词汇通达是基础性环节。在词汇通达中,语音解码起着非常重要的作用。所谓语音解码就是将书面的言语符号转换为语音表征系统的过程。在阅读过程中,语音解码过程存在两种机制,一种是词汇机制,它依赖对整个词或词素读音的直接通达自动寻址语音(Addressed phonology);另一种是非词汇机制或称为正字法机制,读者在阅读过程可以应用从正字法到语音的联系将书面词语的拼写一一转换并合成相应的语音表征,这样得到的语音也被称为合成语音。在拼音文字系统的阅读中,一定的语音意识水平对于儿童发现形和音之间的对应规则,利用非词汇机制进行语音解码是十分必要的。语音意识可以使儿童进行有效的语音分解和合成,建立起书面语和口语的对应关系,确认不熟悉的单词以提高单词识别的速度和自动化的程度,从而提高阅读能力。
同时,Shankweiler等学者通过对阅读不良儿童进行大量研究,提出了“语音限制假说”。该假说认为,阅读不良的儿童的主要问题是在语音加工方面存在缺陷,而且语音加工的缺陷会产生“瓶颈”效应,进一步影响其他语言加工过程的进行。因为语言加工的信息是从语音加工单方向上到达句法和语义加工系统,而工作记忆则充当了这个信息加工过程的中转站。当语音加工能力不足时,语音加工中的缺陷就制约了整个信息的正常加工,从而阻止了信息向更高级的加工水平进行传递。“语音加工缺陷理论”试图将阅读困难儿童的复杂原因归结为语音加工缺陷的结果。因此,根据该理论,语音意识对阅读应该具有基础性决定的作用。另外,Gottardo等人对112名三年级儿童语音意识、句法意识、工作记忆以及单词再认、假词拼读和阅读理解能力进行了考察,结果表明在语音意识和工作记忆被控制的条件下,句法意识对单词再认、假词拼写、阅读理解都不具预测作用,该结论也进一步证实了“语音缺陷假说”。
由此我们不难得出:语音意识是阅读能力习得的先决条件,语音加工是阅读速度和阅读效率的重要预测指标。但语音意识对阅读理解的促进作用有两个先决条件:首先,儿童在学习阅读前已经具备一定的口语能力,大量的口语表征已经形成,而且词汇的语音表征和相应的语义联系已经建立。其次,儿童在阅读中能有意识地利用非词汇机制对不熟悉的单词进行语音解码,并能够根据解码的语音确认不熟悉单词的意义,从而提高阅读能力。
三、句法意识的发展对儿童阅读的影响
句法意识是指个体反思句子内在语法结构的能力,也称为语法敏感性。Layton 等人将句法意识的发展分为四个水平:(1)获得默许的句法规则的知识水平;(2)获得自动的修补策略;(3)知道句法规则的存在并能够识别出来;(4)把句法知识反应在语言中或相关的任务上。前面两个水平都是句法上升到意识水平之前必经的准备阶段,第三个水平开始才进入了句法意识时期。这样一种划分可以使我们更清楚句法意识的范畴,同时也为测量句法意识提供了一个指标。
句法意识与阅读之间有着密切的关系。语言学家进行的研究发现以下两点:第一,阅读优秀儿童的测试成绩明显高于不良阅读者;第二,被试儿童在学习阅读前的句法意识测试成绩对以后的阅读成绩有预测作用。流利的阅读不仅需要理解单个词汇的意思,同时还需要在句子和篇章水平上将这些词汇进行整合,这就离不开句法分析。句法分析是辨别句子结构,理解句子意义的有效手段,而句法分析能力的高低在很大程度上取决于句法意识的发展水平。一定的句法意识发展水平不仅可以减少句法分析的步骤,提高心理表征的速度,还能澄清模糊的知识来提高阅读理解能力。
在此基础上,Tunmer等学者的研究进一步证明,句法意识在控制了语音意识之后仍能解释词的解码能力中的变异。他们认为,句法意识对阅读成绩的影响可能通过下列两种方式进行:第一种是句法意识使得读者能更有效地监控他们正在进行的理解过程。儿童的句法意识越高,这种理解监控过程就越有效。第二种方式可能是,句法意识帮助儿童获得语音编码的技巧。首先,儿童要获得形素—音素的对应关系(grapheme-phoneme correspondence)的知识需要经历较长的时间,初级的读者不会记住他们遇到的所有不熟悉的词语。在获得所有形素—音素对应的知识前,句法意识较好的儿童,能够反映句子的结构特征,然后利用有关句子语境限制的知识,再结合不完整的正字法和语音信息来认识那些不熟悉的词汇,也就完成了他们在阅读中对单词的解码。其次,使用语境信息的能力可以帮助初学者发现一些拼写模式有多于一个以上的发音。例如,字母系列ough 在 cough,rough,dough 里面分别有不同的读音;当遇到这样一个包含同形异义拼写模式的不熟悉单词时,那些具有语法意识知识的被试能够产生不同的发音,直到有一个读音与听到过的单词的发音匹配。由此可以看出,句法意识与阅读的成绩可能存在着直接的因果联系。儿童的句法意识和语音意识可能处于相互促进且相互制约的平衡中,而提高儿童的句法意识能够在对语音意识起到促进作用的同时提高整体阅读能力。
综上所述,元语言意识的发展对提高儿童阅读能力有着积极的影响,它们之间的关系可归纳为以下几个方面:第一,元语言意识中的语音意识和句法意识以及其他认知因素一起作用影响阅读能力的发展。第二,语音意识和句法意识通过不同的途径影响儿童阅读能力的发展,即语音意识影响字词解码进而影响阅读理解,而句法意识更多地通过有意识的句法分析而直接影响上下文语境信息的加工。第三,儿童的元语言能力和阅读能力都有一个发展的过程,它们之间的关系也很有可能处于一种动态的发展中。因此,进行儿童元语言意识与阅读能力发展影响的研究,既可以丰富已有的研究理论框架,又可以考察已有的研究结果是否具有普遍性,同时为阅读教学、阅读障碍纠正等提供理论上的指导和帮助。
参考文献:
[1]Bowey J A.Phonological awareness and learning in novice readers and nonreaders[J].Journal of Experimental Child Psychology,1994.
[2]Cummins J.Bilingualism and the development of metalinguistic awareness[J].Journal of Cross-Cultural Psychology,1991.
[3]Gombert J E.Metalinguistic development[M].Chicago: University of Chicago Press,1993.
[4]丁朝蓬,彭聃龄.汉语儿童英语语音意识与拼写[J].心理学报,1998,(3).
[5]董燕萍.心理语言学与外语教学[M].北京:外语教学与研究出版社,2005.
[6]封宗信.元语言与外语教学[J].外语与外语教学,2005,(6).
[7]姜涛,彭聃龄.汉语儿童的语音意识特点及阅读能力高低读者的差异[J].心理学报,1999,(1).
【论文摘要】电话通信作为主要的通信技术,目前得到人们的广泛应用,在社会发展过程中起到了举足轻重的作用。随着社会经济的不断发展,人们对电话通信技术的要求也逐渐提高,比如信号的稳定性,通话质量要求的提升,以及数据量的不断增加,都使得电话通信技术的发展面临重大挑战。计算机网络电话通信技术的发展,很大程度上改善了电话通信技术的效果,促进了电话通信技术的快速发展。本文就点算计网络电话通信系统的电话终端进行探究,指出了网络电话通信技术设计思路以及电话终端实现方法。
计算机网络电话通信技术,是传统电话通信技术的革新和延续,即利用先进的计算机网络技术,实现信号的传输和接收,较传统电话通信来说,计算机网络电话通信技术的信息传播速度更快,数据量传输量更大。网络资源利用率也大大提高,具有非常大的使用价值和推广空间,目前,计算机网络电话通信技术越来越受到人们的关注和欢迎。
1、计算机网络电话通信系统的设计思路
计算机网络电话通信技术,是借助计算机网络技术实现的一种新型信号信号传播模式。通过USB接口,将电话电话终端与网络设备相连接,并在电话终端连接上用户电话,实现网络语音及数据的接收和传播,最终实现网络电话通信功能。一般来说,电话终端设备由脉冲脉冲编码调制(PCM)技术实现,所谓脉冲编码调制(PCM)技术,就是一种能够模拟通信信号的数字化变化方式,相较于其他信号通信技术而言,脉冲编码调制(PCM)技术的信道利用率更高、数据损失更小、通信效果也更好,是一种较为理想的调制技术。
为实现电话终端的PCM码流,往往需要借助USB数据接口,能够有效将计算机设备同电话终端进行连接,实现通话信号的告诉传输,从而快速传递到计算机节点当中。USB接口的有效利用,实现了计算机外设同计算机设备的有效连接,实现了将计算机外的数据信息有效的导入计算机网络当中,从而解决了传输问题,确保了计算机网络电话通信技术的有效实现,USB技术同PCM技术的有效结合,促进了计算机网络电话通信技术的有效实现。
1.1电话终端的硬件实现
计算机网络电话通信技术,需要电话终端硬件来实现最后的数据解码和通话活动,电话终端硬件是计算机网络电话通信系统的重要组成部分。
1.2单片机控制电路
单片机控制电路是计算机网络电话通信系统中电话终端硬件的一部分,是电话终端设备的电路核心,主要由存储电路、CPU、输入接口以及输出接口电路四部分组成,单片机控制电路实现了对电话信号控制音的发生,实现电话信号的输送,并能够对DTMF的双音多频进行有效的控制,从而完成对电路的接受,并能够有效控制USB接口,读取用户在电路中的通话状态,以及对系统参数的读取。
1.3用户电路
用户电路,是一种厚膜集成电路,由MITEL工作研制,能够为用户提供稳定的26mA恒流馈电,用以验证网络电话用户的电话使用状态、电话的拨号脉冲等等数据,从而确保网络电话的正常使用效果。用户电路是确保网络电话终端通过效果的重要组成单元,目前能够有效支持2-4线的交换,属于计算机网络电话系统的基础模拟接口。
1.4编解码电路
编解码电路也是计算机网络电话通信系统的重要组成部分,其中PCM编解码电路是该电路系统中的重要功能单元,该系统主要组成单元有数据接收滤波器、数据发送滤波器、基准电压源、输入电路、输出电路、逻辑控制单元以及PCM编解码电路等等,用以对数据信号的编解码,确保网络通信信号的有效性。
1.5电话终端的软件实现
电话终端数据通信的实现,不光需要硬件的支持,同样需要软件的支持,终端软件功能的实现,才能够使终端硬件发挥应有的作用,从而达到信息的传输、信号的编解码,最终实现计算机网络电话通信系统的正常运作。
2、终端主程序
网络电话终端的出程序,主要工作目标是实现计算机电话通信系统的初始化,包括了单片机定时器、时钟。USB等设备的复位即初始化,对于网络电话终端的使用具有非常重要的意义。一般来说,网络电话主程序软件应用过程中,遵循“先进先出”的原则,即在程序中设置队列性任务表,按照先后顺序履行相关工作任务要求。电话终端主程序其实一种无限循环的数据查询系统,不断更新和制定查询任务表内容,并获知需要处理的相关任务,并以此进行相关任务的实现。在主程序运行过程中检测到了需要执行的相关任务,就会根据程序中已经安排好的子程序序列,进行任务工作的处理和解决,逐一进行任务标准的处理。主程序主要采用“先进先出”的工作原理,如果任务的子程序到最后的工作单元,并实行重复循环。
2.1中断服务程序
中断服务程序,就是实现信号传输的开启和关闭,一般采用的是计数的形式,其定时器由0开始,最大值为65535,并且以16.384Mhz的脉冲进行计数,持续时间约为4ms,如果电话终端设备采用AMBE芯片,则每个接收即发送数据包的周期更变为20ms;当终端服务程序的计数达到5120次之后,就能够实现20ms的数据终端,完成数据包的接收机发送工作。
2.2任务子程序
任务子程序,主要负责对电话终端设备的摘机及断机实现判断,根据用户的主叫和被叫等不同信号接收形式,完成相应的操作及工作的执行。当电话终端设备处于主叫摘机状态时,电话终端设备将会向AMBE程序发送拨号音控制数据;当电话终端设备处于摘机状态时,子程序将会向USB接口发送被叫的应答信号,从而判断电话终端的相关状态。
2.3电话终端设备的工作过程
当通话数据传输到电话终端设备时,用户做出摘机动作,然后USB接口就会向计算机网络传输摘机信号,同时,计算机电话通信网络就会向主叫发送拨号音,并做出信息传输反应,使用户电话重点设备接收数据信号并进行语音通话。当网络电话系统呼叫本电话终端的相关用户时,计算机网络技术就会直接做出内部处理,接通被叫用户;如果呼叫的是其他其他电话终端的用户,则计算机网络电话通信系统就会直接栓送被叫用户号码,并等待对方的应答。当USB接口发回信息表明用户电话终端被叫忙信号时,计算机网络电话系统机会发送语音提示信息告知用户被叫用户繁忙并发送忙音。
如果是外部用户对本网络电话终端用户进行呼叫时,USB接口接收到被叫信号后就会进行数据解码,并进行合理的分析,,如果用户繁忙,USB接口就会向计算机网络电话通信系统反馈相关信息,并向呼叫用户反馈机主繁忙的信息,并发出电话忙音。如果机主处于离开状态,即用户闲时,USB接口就会向向用户发出相关提示信息,以及用户振铃提示,以提示用户进行电话信息的接收。当被叫用户听到振铃并做出摘机反应后,USB接口就会向计算机网络电话通信系统反馈相关信息,并随机开展数据信息的传送,网络电话终端就会开启语音传送功能。
3、 总结
计算机网络电话通信技术应用,是传统电话通信技术的一种革新和延续,能够有效提高电话数据的传输效率和传输速度,使电话通讯信号更加清晰,是未来电话通信技术的发展发展方向。在计算机哦电话通信系统当中,电话终端无需购买其他电话网络设备,经过USB接口同计算机设备向连接,很有效避免了繁琐的电话线路,使电话通信技术设备的成本大大降低,优化了计算机网络的使用效率,对于社会发展以及社会效益的增长都具有非常积极的意义。因此,我们要重视对计算机网络电话通信技术的推广和应用,以先进的网络电话通信技术来逐渐替代传统电话通信技术,确保电话传输系统的稳定性,从而促进网络通信技术的快速发展。
参考文献
[1]董磊.论网络电话类证据.中国政法大学, 2011
[2]郭峰江.网络电话服务质量保证机制的研究.华中科技大学,2011
[3]李正贤.韩国网络电话进入中国的营销战略研究.对外经济贸易大学,2009
[4]邓勇全. PC-PC的IP电话(网络电话)设计.华中师范大学,2009