时间:2023-03-07 14:59:18
导语:在抗震设防论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
桥梁的总体布置
1立交匝道桥的特点
互通立交的匝道桥,受地形、地物和占地面积等影响,其总体布局跟其它桥梁相比,有以下特点:
(1)由于互通立交区匝道的最小平曲线半径可达30m,如果桥梁刚好位于小半径平曲线上,则该桥就可能做成曲线梁桥,且往往超高值较大,故桥梁的横坡较大。
(2)由于要在短距离内实现高差,匝道桥往往纵坡较大。
(3)桥面较窄。
(4)匝道桥有时候需要跨越主线或其他匝道,以及非机动车道,因此匝道桥的单跨跨径受到限制,不能减小。
由于匝道桥具有斜、弯、坡、异形等特点,属于不规则桥梁,在地震作用下的响应相对比较特殊,其抗震设计将更复杂,不仅要满足常规桥梁所规定的构造,而且在某些方面需要提出更高的要求。震害表明,曲线梁桥具有较高的地震易损性,薄弱环节较多,因此其抗震概念设计就显得尤为重要。
2上部结构
由于匝道桥很多是弯、窄桥,其在荷载作用下,包括静力荷载和动力作用,上部结构的扭矩较大,上部结构受力处于弯扭耦合状态,故需要采用抗扭刚度较大的截面,且桥梁上部结构的整体性要好。因此,对于匝道桥,特别是在小半径曲线上的匝道桥,宜采用箱形截面(跨度相对较大时)或者实心截面(跨度相对较小时)。也正是因为如此,为增加刚度和稳定性,上部结构宜采用结构连续。所以,对于匝道桥,上部结构采用连续箱梁或者连续实心板,将有效地提高其抗震性能。
3下部结构
3.1桥墩的形式
匝道桥一般相对较窄,桥墩一般采用双柱墩或者独柱墩,桥墩的刚度相对较小。在地震作用下,墩身的弯矩和剪力一般不大,但是位移相对较大,如有较好的限位措施,对于抗震来说,未必是不利的。而对于小半径匝道桥来说,地震作用下,可能会导致桥墩产生较大的扭矩,故桥墩的墩身宜采用抗扭刚度相对较大且整体性较好的结构,如独柱实心墩或者空心墩。如采用双柱式墩,应对其进行全桥空间地震响应分析,对关键部位进行加强。
3.2桥墩的刚度
对于连续梁桥,同一联内各桥墩的高度不同而导致其抗推刚度相差较大,则水平地震力在各墩间的分配不均衡,刚度大的墩将承受较大的水平地震力,严重时可能导致刚度较大的桥墩发生破坏,从而导致全桥的损毁。如果刚度扭转中心和质量中心偏离,上部结构还将伴随产生水平转动,又可能导致落梁或者上部结构的碰撞。而匝道桥恰好容易符合这两个条件:纵坡较大,桥墩高差将会比较大;在小半径曲线上,地震作用下可能会出现上部结构的水平转动。
虽然匝道桥的桥墩高度相差较大,可以通过改变桥墩截面的形式或大小来对其抗推刚度进行调节。对于相对较高的桥墩,可以采用刚度较大的截面形式,或者增加其截面尺寸。如此一来,可以使得地震作用下各桥墩的水平地震相应达到均衡。
如桥梁位于小半径曲线上,地震来临时,桥墩承受的水平力方向是不确定的,且有扭矩的存在。因此,桥墩截面的刚度在各个方向大致相同将会是比较好的处理方法,如采用独柱墩或者空心薄壁墩。
3.3桥墩的配筋方式
近年来,桥梁结构的稳健性(robustness)越来越受到重视。稳健性的意思,即当参数摄动时,仍能保持整体稳固性的能力,故亦称为“参数摄动不敏感性”。对于工程结构,则指意外作用下的结构的整体牢固性,或者说结构破坏的后果与原因的不对应(不相称)时的牢固性。桥梁的抗震设计,除遵守通常规范的承载力准则外,还需力求避免意外的次生损毁、再次垮塌,缩小损毁范围以及损坏的可修复、快修复性。匝道桥一般相对较窄,其桥墩要么是独柱墩,要么是双柱墩,没有“冗余约束”,从结构本身来看,其稳健性相对较差。故需通过配筋来提高其在地震作用下的稳健性。
提高桥墩的延性,是提高其稳健性的有效方法之一。配置数量足够的、锚固合理的横向钢筋,对于墩柱来说,可以起到3个方面的作用:约束塑性铰区域内的混凝土,提高混凝土的抗压强度和延性;提高抗剪能力;防止纵向钢筋压曲。因此,箍筋或螺旋筋的间距小一些。各国抗震设计规范对塑性铰区横向钢筋的最小配筋率都进行了具体的规定。对于尺寸较大的墩柱,除须配置间距足够小的箍筋或螺旋筋外,还应配置横向加劲钢筋甚至是双层箍筋,以满足其对核心混凝土的套箍作用(如图1所示),以提高桥墩的延性,从而提高其地震作用下的稳健性。
其他构造
1支座
为保证桥梁刚度均衡,设计时应优先考虑采用等跨径、等墩高、等桥面宽度的结构形式。如不能满足,也可通过调整墩的截面形式和尺寸,或者调整支座等方法来改善桥墩的刚度均衡情况。其中,调整支座可能是最简单易行的办法,效果也很显著。当采用橡胶支座后,由墩和支座构成的串联体系的组合抗推刚度为:式中:kt是墩和支座的组合抗推刚度,kz和kp分别为橡胶支座的剪切刚度和桥墩的水平刚度。如地震作用下,桥墩仍处于弹性状态,其水平地震力就是按墩的组合抗推刚度的比例分配的,从上式可以看出,调整支座的刚度可以有效地改善桥的刚度均衡状况。
另外,如果地震设防烈度较高(超过8度),须考虑将支座设计成抗震支座,以达到减、隔震的目的。
2墩梁连接方式
一般情况下,桥墩跟上部结构之间,采用支座连接。但是,有些情况下,可以将抗推刚度较小的桥墩和上部结构固结来考虑,刚度较大的桥墩与上部结构之间通过支座连接。如此,一方面可以增加桥梁的整体稳定性,另一方面,也可以让桥墩之间的抗推刚度均衡。
3限位装置
对于桥墩刚度较小的情况,由于地震作用下的墩顶水平位移较大,限位装置是不可或缺的。横桥向的限位措施主要有剪力键和防震锚栓,纵向限位措施包括剪力键、防震锚栓、链索式和拉杆式限位器等(如图2所示)。限位装置应允许梁体在小范围内自由移动,该自由移动范围的大小一般以不影响支座的正常变形为宜。为减小碰撞力和碰撞损伤,限位器常在梁间和主梁与剪力键间设置橡胶等缓冲材料。
工程实例
1工程概况
云南某高速公路的互通立交区桥梁,位于平曲线半径42m的匝道上,超高0.08,最大纵坡5%,桥宽7.75m,设计采用3~20m现浇箱梁,下部结构采用桩径1.4m独柱墩,①号桥墩墩高8m,②号墩高13m。其立面图如图2所示。
原设计未进行概念设计。桥墩高度不同,而截面相同;未设限位装置。现将原设计做局部修改,增加防震销,桥墩截面随高度增加,使其抗推刚度接近一致。对该桥的原设计方案和按照本文前述内容进行修正后的方案进行地震响应分析,比较其地震响应的区别。
2有限元模型
取全桥为分析模型,主要分析纵桥向的地震响应。墩底为完全固结。根据桥址的场地土条特性,选用El-Centro波作为非线性时程分析地震输入,因该桥抗震设防烈度为8度,故将El-Centro波水平地震加速度峰值调至0.2g。计算模型如图3所示。3.3地震响应分析本文对优化前后的桥梁地震响应进行分析和比较。
设置限位装置之后的墩顶位移与原设计墩顶位移对比分析:①号墩仅有微小的变化,②号墩位移相比原来小了14.27%,抗震性能提高明显。可见,限位装置效果的体现对较高的柔性墩有明显的影响。
(2)统一桥墩抗推刚度后的影响(见表2)②号墩直径加大,使其刚度与①号墩一致,计算结果分析对比:桥墩底的内力均有不同程度的改善,其中②号墩改善最显著,墩底内力与墩顶位移均有大幅度的提高。
①号墩也有相对②号墩较小的变化。可见,让各墩的刚度尽量相等,对整座桥桥墩的内力和位移都有影响,优化之后的①、②号墩刚度趋向于一致,使全桥的内力分配更均匀,从而提高的桥梁的抗震性能。
关键词:中国地震动参数区划图;抗震设防标准;建筑结构设计;建筑工程造价
引言
我国是世界上遭受地震灾害最为严重的国家之一。20世纪以来,我国因地震死亡人数近60万,占世界因地震死亡人数的一半,世界上两次死亡人数超过20万的大地震均发生在我国,几乎所有的省、自治区、直辖市在历史上均遭受过6级以上地震的袭击[1]。随着经济和社会迅速发展,为保障经济社会和谐稳定和可持续发展,对地震安全提出了更高、更迫切的要求。国家强制性标准GB18306-2015《中国地震动参数区划图》即第五代地震区划图,于2016年6月1日正式实施。
1新版《中国地震动参数区划图》的意义
地震区划图是依据当地可能的地震危险程度对国土进行区域划分,是一般建设工程的抗震设防要求和编制社会经济发展、国土利用规划、防灾减灾规划和环境保护规划等相关规划的依据[2]。新版地震区划图坚持以人为本,充分考虑公民在地震中的生命安全问题,将建筑物抗倒塌作为编图的基本准则,为全面提高我国建设工程抗震设防能力提供了法律保障和科学依据,是政府部门依法履行公共安全和社会治理行政职能的重要支撑。相较于第四代地震区划图,新版地震区划图有三大变化:(1)设防区域全覆盖;(2)明确了四级地震作用(常遇地震动、基本地震动、罕遇地震动和极罕遇地震动)及相应地震动参数的调整关系;(3)给出了除港澳台地区以外的全国城镇Ⅱ类场地的基本地震动参数。为实现防震减灾2020年奋斗目标和全面防御战略的实施奠定了基础,为从制度上改变我国部分地区不设防的现状做好了技术储备。
2陕西区域抗震设防标准变化
新版地震区划图规定的设防标准有所提高。根据第四代地震区划图标准,陕西省有104个县(市、区)处于抗震设防烈度6度以上的区域,占全省国土面积的91.7%,其中7度及7度以上的高烈度区有58个县(市、区),占全省国土面积的32.3%,只有榆林榆阳区、横山县大部分区域和神木、佳县、米脂、子洲、宝塔区、子长、安塞少部分区域处于6度以下,占国土面积的8.3%。2016年6月1日起实施的新版地震区划图,规定的我省的抗震设防标准总体有所提高,其中,地震烈度8度和7度以上的高烈度区,包括90个县768个乡镇,涉及国土面积7.46万平方公里,占全省面积的37.3%,区域人口2585.5万人,占全省人口的68.2%,GDP达9065亿元,占全省GDP的49.9%。6度区包括57个县,652个乡镇街道,面积13.12万平方公里,占全省面积的62.7%。总体来看,陕西有以下三点主要变化:(1)取消了陕北地区1.71万平方公里的不设防区域,涉及榆林榆阳区、横山县大部分区域和神木、佳县、米脂、子洲、宝塔区、子长、安塞少部分区域,占国土面积的8.3%,这些区域均应按地震基本烈度6度进行抗震设防。(2)全省7度区范围有所扩大。咸阳(彬县、长武)、延安(宜川、黄龙)、汉中(略阳)、榆林(定边)、安康(宁陕、旬阳、白河)、商洛(丹凤、商南)6市共13个县区部分乡镇街道从6度(0.05g)提高到7度(0.10g)。(3)全省8度(0.20g)及以上地区范围进一步扩大。在新版地震区划图中,全省抗震设防烈度8度的县区由原来的14个增加到42个。所增加的县区集中在关中地区,包括西安(长安、高陵、户县、蓝田、周至)、咸阳(秦都、渭城、兴平)、杨凌(杨陵区)、宝鸡(渭滨、金台、陈仓)3市共10个县区的全部乡镇街道从7度提高到8度。咸阳(三原、泾阳、武功、礼泉、乾县)、宝鸡(凤翔、岐山、扶风、眉县、千阳、凤县)、渭南(合阳、富平、澄城、蒲城)、汉中(略阳)5市共18个县区部分乡镇、街道从7度提高到8度。(其中乾县部分乡镇街道由原7度0.10g提高到8度0.20g,其余均为原7度半地区)
3建筑工程设计影响分析
3.1对原抗震设防烈度小于6度地区的影响
榆林市榆阳区、横山县、靖边县均属于抗震设防烈度小于6度[3],但在实际的工程设计中,这些地区虽然不进行抗震计算,但均按6度设防考虑其抗震构造措施。因此本次新修订地震区划图后,对于原抗震设防烈度小于6度地区的工程设计,仅仅是在结构计算时要进行抗震计算,因此对于工程设计的影响相对较小。
3.2对原设防地区的影响
如前文所述,本次新版《中国地震动参数区划图》对于陕西大多数地区而言,抗震设防烈度均有不同程度提高。现以长安区某建筑单体的结构设计为例进行说明。工程条件:建筑高度:28m;结构类型:框架结构;建筑用途:酒店;场地类别:Ⅱ类;抗震设防分类:丙类;结构安全等级:二级。《高层建筑混凝土结构技术规程》(JGJ-2010)6.2.2:“抗震设计时,一、二、三级框架结构的底层柱底截面的弯矩设计值,应分别采用考虑地震作用组合的弯矩值与增大系数1.7、1.5、1.3的乘积。”等等。上表中新旧两版规范对于工程设计的影响,可分为两部分:一是地震加速度增大,抗震设防烈度提高,导致结构计算结果的增大;二是设防烈度的提高,根据《建筑抗震设计规范》表6.1.2,可能会使得建筑的抗震等级提高,由此相应的抗震措施也均有所提高。
4建筑工程造价的影响分析
抗震设防标准决定了建筑物的抗震能力水平,并进而影响建筑物在地震中的损失大小,而抗震设防标准也直接影响着建筑物的初始造价。
4.1理论研究
在《中国地震动参数区划图》(GB18306-2001)制定时,相关的单位就进行了关于最优抗震设防烈度的探讨,在实施后,相关从事防灾减灾专业研究的人员依然对最优抗震设防烈度继续进行研究和论证。高小旺等[4]对河南省洛阳市(6度设防)、郑州市(7度设防)和新乡市(8度设防)以及四川省成都市(7度设防)四百多栋建筑工程造价进行调查分析,其结果表明:对于钢筋混凝土框架结构的建筑,7度较6度土建成本增加约3%;8度较7度土建成本增加约4.8%。李树桢等[5]在1998年,就设防烈度与投资比发出咨询函96份,收到43件,进行统计,其结果表明:对于钢筋混凝土建筑,7度较6度土建成本增加约3.9%;8度较7度土建成本增加约3.8%。周雍年等[6]研究表明:“一般说来,按7、8、9度设防后,工程造价将分别增加3%~5%、7%~10%和15%~20%。”
4.2、市场调查
通过对国内一线地产公司的经济技术控制指标的搜集,针对各基础条件基本一致,仅抗震设防烈度情况下,不同的控制指标进行对比,分析其含钢量及混凝土用量的增加值。分析恒大地产集团含钢量控制指标在设防烈度不同的条件下的差值,大致可总结见表5:两个地产公司,因其产品所在区域及定位有所不同,数值上略有差异,但经济技术控制指标的总体变化规律,基本一致。小结:通过市场调研,分析经济技术控制指标,设防烈度对建筑造价的影响大概是一致的:(1)建筑高度越高,受设防烈度变化的影响越大;(2)7度区与8度区的建造成本的差值较7度区与6度区的建造成本的差值要大。
4.3、工程实例的假定计算
建立设防烈度与工程造价之间的一一对应关系是非常困难的,结构的初始造价实际上是与具体的设计方案有直接关系的,给定同一设防烈度,可以设计出多个满足要求的不同方案,因而其造价也不同[7]。并且影响工程造价的因素十分庞杂,不仅仅是建筑方案,还有结构形式、场地类别、地区的差异性、材料价格、人工价格等等。现以某实际工程为例,结合表3、表5,取平均值,进行假定计算。以收集到的西安地区部分工程实际造价结果为计算基础:(1)建筑总高度为32米的会所,层高4.8米,建筑面积3301平米,取:设防烈度由6度提升至7度:含钢量每平米增加3.5kg,混凝土每平米增加0.02m3;设防烈度由7度提升至8度:含钢量每平米增加3.5kg,混凝土每平米增加0.04m3。经计算,结果如表6所示:(2)西安大兴东路某住宅项目,框架剪力墙结构,地下2层,地上29层,总建筑面积23481m2,设防烈度由6度提升至7度:含钢量每平米增加3.5kg,混凝土每平米增加0.02m3;设防烈度由7度提升至8度:含钢量每平米增加5kg,混凝土每平米增加0.04m3。经计算,结果如表7所示:(3)渭南市某博物馆项目,框架结构,结构高度14.5m,建筑面积:3420.2m2,设防烈度:8度。设防烈度由6度提升至7度:含钢量每平米增加3.5kg,混凝土每平米增加0.02m3;设防烈度由7度提升至8度:含钢量每平米增加5kg,混凝土每平米增加0.04m3。经计算,结果如表8所示:假定计算结果与前文所述论文研究成果基本一致,但考虑到所引用论文研究结果大多是基于原《建筑抗震设计规范》,2000年之后《建筑抗震设计规范》经过几次修订,相较旧版规范要求更加严格和细致,另外建材价格、人工成本、所参考地产集团对于经济指标控制的严苛性以及本次所参考实际工程的特殊性(层高较高),因此实际的一般建设工程中因设防烈度的提高而导致土建成本的增加比例应该比表中数值更高一些。
5结语
(1)抗震设防烈度的提高,设计基本地震加速度的增大,可能会导致建筑抗震等级的提高,会使得结构计算结果增大,并且相应的抗震措施也均有所提高;(2)建筑高度越高,受设防烈度变化的影响越大;(3)7度区与8度区的建造成本的差值较7度区与6度区的建造成本的差值要大;(4)设防烈度由6度提高至7度,土建成本增加比例约为3~4%,设防烈度由7度提高至8度,土建成本增加比例约为4%~5%。
参考文献:
[1]GB18306-2001《中国地震动参数区划图》宣贯教材.北京:中国标准出版社.2001
[2]罗开海,刘培.新一代地震区划图调整统计及抗震规范局部修订简介[J].城市与减灾.2016,5:43
[3]建筑抗震设计规范:GB50011-2010[S].北京:中国建筑工业出版社,2010.
[4]高小旺,等.工程抗震设防标准若干问题的探讨[J].土木工程学报.1997,12:52-59
[5]李树桢,李冀龙.房屋建筑的震害矩阵计算与设防投资比确定[J].自然灾害学报.1998,11:106-114
[6]周雍平,张晓志,谢礼立.工程抗震设防标准的效益分析[J].地震工程与工程振动.2002,2:14-20
[论文摘要]高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。
现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。
一、高层建筑发展概况
80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。
二、建筑抗震的理论分析
(一)建筑结构抗震规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。
(二)抗震设计的理论
1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。
3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。
三、高层建筑结构抗震设计
(一)抗震措施
在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。
(二)高层建筑的抗震设计理念
我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。
三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1641-2475年,平均约为2000年。
对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。
(三)高层建筑结构的抗震设计方法
我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除1 款外的建筑结构,宜采用振型分解反应谱方法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。
参考文献
[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.
【关键词】部分框支剪力墙;结构设计;抗震策略
Abstract: paper first part of the frame supported shear wall structure made a brief overview, and then analyzes some of the shear wall structure supported frame design points. In the right part of the frame supported shear wall design, it should reduce the conversion, make overall planning. Meanwhile, in the design of the time to pay attention to maintaining the stability of the overall structure of a large space, as far as possible in the design calculations to be accurate and comprehensive section. Finally, the paper recommends seismic design of high-rise buildings should be performance-based seismic design, and gives the right part of the frame supported shear wall structure seismic design requirements and strategies.
Key words: section frame supported shear wall; structural design; seismic Policy
中图分类号:TU398+.2 文章标识码:A
0 引言
随着我国经济及社会的快速发展,我国城市化率越来越高,城市有限的空间及土地资源已经很难满足人们的需求,因此为了争取更大的建筑空间,高层建筑越来越多。同时,为了更为有效地利用地面的空间,部分框支剪力墙结构设计越来越多地应用在现代建筑的结构设计中。基于此论文对部分框支剪力墙结构设计与抗震策略进行了较为系统的研究。
1、部分框支剪力墙结构概述
部分框支剪力墙结构是现代高层建筑中常用的一种结构,具有底部大的特点,因此也被称为底部大空间剪力墙结构。从这个界定可以看出部分框支剪力墙结构通常在高层或多层剪力墙结构的底部,这种结构的设计一般是根据实际需要,为增加底部空间的使用功能而设置的[1]。所以上层建筑的部分剪力墙不能沿用到底层,不然的话会影响底层空间的使用效率,甚至有些底层的建筑空间在设计之处就已经规划好用途。所以在建筑的设计过程中就要设计一个结构转换层,通过结构转换层来减少建筑底层的压力[2]。而转换层下面的一层,即建筑的底层则称为框支层,框支层中的贯穿上下层的墙则是剪力墙。同时,界定建筑的部分框支剪力墙结构的时候,不仅要看其抗侧刚度,还要整个结构的特点,看是不是形成了薄弱层,抗侧刚度是不是发生了突变等情况。不能仅仅依据建筑的竖向构件有没有贯通落地。
2、部分框支剪力墙结构的设计要点分析
通过上面的分析可以看出,部分框支剪力墙结构的界定是有一定的规范的,并不是所有的贯穿转换层与底层的墙面都属于部分框支剪力墙结构,还要观察整个建筑本身的特点。所以在进行部分框支剪力墙结构的设计的时候要注意以下几个要点。
(1)在对部分框支剪力墙进行设计的时候,应该减少转换,尽可能采用上下主体竖向布置的方式,以保证主体间的连续贯通。特别是在设计框架—核心筒结构时,要尽量保证核心筒可以上下贯通,这样可以保证设计的安全性及可靠性。
(2)在设计时要注重统筹规划,不要将各部分独立开来,各构件间的关系及布置要主次分明,传力直接,这样便于施工,同时减少识图错误的概率。而在转换层上下主体的竖向结构设计时,要尽量减小水平方向传力的影响,避免多级复杂的转换,这样可以有效地保证水平转换结构的传力比较直接。
(3)在设计的时候要加强转换层下部主体结构的刚度,弱化转换层上部主体结构的刚度,这样就可以有效地保证下部的大空间整体结构的稳定性,转换层上下主体结构之间的刚度及变形度也会比较接近。
(4)在部分框支剪力墙结构设计的计算阶段,最为重要的一点就是要全面而且要确保准确,如果计算及计算结果出了问题,将会严重影响整栋建筑的质量。而且要特别注意将转换结构作为整体结构的一个重要的组成,并采用正确的计算模型进行计算。
3、部分框支剪力墙结构的抗震设计
我国地域广阔,横跨环太平洋地震带与欧亚地震带,所以地震活动比较频繁,而且强度比较大,同时地震常发地区分布广,可以说我国是一个震灾严重的国家[3],所以建筑防震性能的设计非常重要。
3.1 部分框支剪力墙结构抗震设计概述
部分框支剪力墙结构的抗震设计主要是为应对地震发生而进行的一种设计,这种设计是在地震发生的假设前提下进行的。我国高层建筑的城市几乎都在抗震设防范围之内,因此部分框支剪力墙结构的抗震设计是部分框支剪力墙结构设计的一项极为重要的内容。一般来说地面运动主要有三种运用描述方式,即强度、频谱和持时。而地震的强度是由振幅来表示,振幅对建筑的破环程度跟很多因素有关,比如说时间、速度、加速度,还有建筑本身的特性。所以在进行抗震设计的时候要综合考虑多方面的因素。
3.2 部分框支剪力墙结构的抗震设计要求分析
我国为了更好地预防地震灾害,对建筑的抗震设计做了一系列的规定。上世纪80年代的抗震设防目标是“小震不坏、中震可修、大震不倒” [4],但随着我国经济及技术的发展,我国在2010年对建筑的抗震设防目标进行了修改,并给定了具体的抗震设计方法,表3-1是常规的设计方法与抗震设计方法的对比表(表3-1)。通过两种抗震设计的防震目标、实施方法及实践运用方面的对比可以发现,我国明显加大了地震灾害的预防力度。基于性能的抗震设计虽然运用还不够广泛,但是对新技术、新材料的适应性比较好,而且也满足社会发展的趋势,未来的运用潜力比较大。同时,基于性能的抗震设计可以增加结构概念设计的内容,比如刚度尽量对称,框支转换梁上墙体尽量居中布置,从初设阶段将一些对结构不利的东西规避掉。综上所述,对于现代高层建筑的抗震设计应采用基于性能的抗震设计方案。
表 3-1 常规设计方法与性能设计方法的对比分析表
3.2 部分框支剪力墙结构的抗震设计策略分析
通过上面的分析,论文对部分框支剪力墙结构的抗震设计应该采用基于性能的抗震设计方案。因为部分框支剪力墙结构基本上都是高层建筑,采用的基本上都是框架—剪力墙结构,这种结构本身就具有良好的抗震性。导致抗震灾害形成的原因大都是由于建筑物的造型与建筑的抗震性能不协调导致的。所以在设计的过程中要特别关注这两部分的设计。
(1)建筑体型的抗震设计策略分析
对于建筑体型的设计主要关系到的是建筑的布局及体量等方面的设计,这也是建筑设计的一个重要的部分。很多设计师在设计的时候由于太过于关注建筑的造型及建筑本身的使用价值,很容易忽视建筑体型与建筑抗震性能之间的关系。所以在设计的过程中,设计者应该科学地设计建筑的空间体量,包括建筑的高度、比例,建筑的对称性,还要关注建筑的转角的设计,同时建筑周边的抗力,建筑整体的均衡性等方面都要进行综合的考虑。
(2)建筑立面的抗震设计策略分析
建筑立面通常来说都是由大量的建筑部件组成的,所以建筑立面的设计要关注的主要是立面材料的选择,部件之间的比例的设计,还有其尺寸大小的控制等方面。而从抗震的角度来说,建筑的设计则要关注以下几个要点。首先,在设计的时候,不能孤立地进行孤立面的设计,而应该将正立面、侧立面及背立面各个立体面之间协调起来,是他们之间得到统一,从而形成一个完整的整体。同时,要注意立面的空间效果和立面各部件之间的均衡性和规则性。
4、结语
通过论文的分析可以看出,随着城市化进程的进一步推进,部分框支剪力墙结构越来越多地应用在现代建筑的结构设计中,建筑防震性能的设计十分重要。而且在设计的过程中要减少建筑部件间的转换,采用合理的布置方式,以保证建筑的安全性。同时,要注重设计的统筹规划,将建筑的各部件之间有机地联系起来,以实现建筑的整体性和统一性。在分框支剪力墙结构的抗震设计要采用抗震设计方法,并对建筑物的造型及立面的进行抗震设计。最后,希望论文的研究为相关工作者及研究人员提供一定的借鉴与参考价值。
【参考文献】
[1] 京浩.建筑抗震鉴定与加固[M].中国水利水电出版社,2010.
[2] 敬书,潘宝玉.现行抗震加固方法及发展趋势[J].工程抗震与加固改造,2011.
关键词:抗震设计;基于性能;性能水准;性能目标
Abstracts: Performance-based seismic design theroy is the new earthquake engineering concept proposed by international earthquake engineering in the 90’s. It’s a revolution in seismic engineering, and was considered as the future direction of seismic design for development. So it was taken attention and studied at home and abroad. This paper describes the background, basic content and the development of the performance-based seismic design theory, and it make a preliminary discussion of the methods and procedures for the current seismic design under the performance-based seismic design theory.
Key words: Seismic design, Based on performance, Performance level, Performance objectives.
引言
现行的各国抗震规范大多采用以地面运动加速度反应谱为基础,按结构延性调整结构反应的设计计算方法。抗震设计的基本目的是保障生命安全,然而近十几年来大震震害却显示,按现行规范设计和建造的建筑物,虽然在地震中没有倒塌保障了生命安全,但其破坏却造成了严重的直接和间接的经济损失,甚至影响到社会的发展,而且这种破坏和损失往往超出了设计者、建造者和业主原先的估计。因此,20世纪90年代初基于结构性能的抗震设计理论由美国科学家和工程师首先提出来,可概括为:基于性能的抗震设计理论以结构抗震性能分析为基础,针对每一种抗震作用水准,将结构的抗震性能划分成不同等级,设计者根据结构的用途,业主、使用者及邻居的特殊要求,采用合理的抗震性能目标和合适的结构抗震措施进行设计,使结构在各种水准地震作用下的破坏损失,能为业主选择和承受,通过对工程项目进行生命周期的费效分析后达到一种安全可靠和经济合理的优化平衡。随后,这一理论引起了日本和欧洲地震工程界学者的极大兴趣,纷纷展开多方面的研究。近年来,我国学者也开始就这一理论展开讨论。
近年来地震震害分析
当前各国抗震设计理论多采用二级或三级设计思想,三级即“小震不坏、中震可修、大震不倒”的设防水准,并据此制定抗震规范和条例。按这种以保障生命安全为基本目标的抗震设计理论所设计的建筑物,在震中基本保证了人员的安全,却不能有效地控制地震破坏所造成的直接和间接的经济损失。例如,2008年发生在四川省汶川县里氏震级8.0级的大地震地震导致69197人遇难,直接经济损失8451亿元人民币。发生在今年四月的震级为里氏7.1级的中国玉树地震造成2698人遇难,20万人受灾,经济损失超过800亿。发生2010年1月的海地地震造成11.3万人丧生,造成的经济损失约为77.5亿美元。上述震害更使我们认识到过去的规范仅以保证人的生命安全为目标的设计理论,在抗震设计理念、适应社会需求等方面都存在一定问题。实际上,社会和公众对结构抗震性能存在多种层次的要求。如何改进现行的抗震设计理念,使结构在未来地震中的抗震性能达到人们的预定目标,这是摆在地震工程学界面前的重要课题。
现行抗震设计方法的缺陷
目前国际上所广泛采用的抗震设计方法主要为反应谱法和时程分析法,这两种方法是在以往的震害经验和当时的理论基础上发展形成的,随着建筑物形式的不断变化,地震震害也出现新的特点,反应谱法和时程分析法已渐渐难以满足现有结构的抗震设防要求了。反应谱给出的是结构体系的周期与最大反应(加速度、相对加速度、相对位移)的关系曲线。目前,反应谱法已在许多国家的工程结构抗震规范中得到应用。但是,目前所广泛才采用的反应谱法仍存在许多不足之处:首先,反应谱法不能有效地考虑强震时结构的非线;其次,不能考虑土与结构之间的动力相互作用;再次,不能考虑地震动持时长短的影响;并且,反应谱理论只能给出结构的最大地震反应,不能给出结构反应的全过程,以及结构各构件的破坏机理;此外,反应谱法对于非比例阻尼结构以及不规则结构的分析效果还不甚理想。
对于结构进行动力时程分析需要考虑的因素有:地震动输入要符合当地场地情况,对复杂结构要给出三个分量的过程及其空间相关性;结构和构件的动力模型要能真实反映实际情况,能包括非线性特性,动力分析要能够考虑积累损伤、土与结构相互作用、地震波的相位差等。时程分析所用的地震波为实际的强震记录或人工地震波,结构对不同的地震波输入的敏感度不同,输入后反应将会有较大的差异,这让设计人员也往往无所适从,难以定论。
我国现行的结构抗震设计是基于承载力或强度的设计方法,即采用弹性方法计算结构在小震作用下的内力和位移,用计算所得的组合内力验算构件截面,使构件具有一定的承载力。同时,为了防止非结构构件发生破坏,还要进行使用阶段的位移验算。对结构的延性和耗能能力大多是通过构造措施获得的。规范采用的“三水准”设防目标和“两阶段”抗震设计方法建立在定义结构的可靠度为结构在规定的时间内,在规定的条件下,完成预定功能的概率的基础上。表1中列出了我国抗震设计规范所采取的地震水准、结构性态水准和性态指标。表2列出了我国建筑抗震设防分类和设防标准的具体要求,体现了建筑按功能分类设计的思想。
表1我国抗震设计规范所采取的地震水准、结构性态水准和性态指标
表2 我国建筑抗震设防分类和设防标准
这里的“功能”指的是正常情况下结构能够承受可能出现的各种作用、保证结构的工作性态和耐久性态及在偶然事件中的整体稳定性。从某种意义上说,中国的抗震设计规范已包含了某些基于结构性态设计的思想,但在结构功能不断细化的今天,现行指导抗震设计的规范仍有不足之处:
(1)设防烈度(地震动)单纯依据地震区划的结果以及部分工程抗震经验来确定,很少或没有考虑设防烈度的取值对经济损失或人员伤亡的定量或半定量的影响,从而难以通过设防列队(地震动)的取值来控制未来地震的经济损失和人员伤亡。
(2)与结构性态有关的设计参数选择不适当。
现行抗震设计是基于承载力或强度的设计方法,但通过对历次地震震害的调查分析发现,在一些地震动的某些区段内,对结构破坏起控制作用的因素不是力而是速度和位移,因此,结构的抗震设计应该不仅仅是基于强度的设计。
(3)业主的要求得不到满足,损失控制不力。
由于主体结构的破坏与人身安全的关系最大,现行设计理念对主体结构破坏所造成的损失是重视的,但对非主体结构的破坏,内部设施的损坏和功能失效等所造成的损失却估计不足。
(4)规范的形态概念不明确,设计透明度小。
现行规范没有把功能或损失从定量的意义上清楚的定义为多级设防的目标。现行抗震设计方法是以规定的地震力来验算结构截面及变形以确认是否达到想象中的抗震性态,而不是以科学的性态评价为基础。业主对设计的结构性态可能完全不清楚,甚至设计人员对多级设计保证的抗震性态也并非真正领悟。规范通常通过经验系数和细部构造把复杂的抗震设计问题简化,设计出的建筑物只是达到了规范或结构工程师认为合理的性态,整个建筑物和地基系统在地震中所表现的性态对设计者越来越模糊。
(5)规范标准缺少灵活性。
设计者在设计过程中为稳妥起见,只按规范条款设计,不大会采取规范没能体现出来的、有利于抗震性态的新技术,使新技术的推广应用受到限制。而且,这些条款在某种程度上已经成为一种性态水平固定的模式和普遍适用的标准,约束了业主和设计者的主动性。
(6)设计方法具有不足之处。
目前结构抗震设计规范采用弹性加速度反应谱,用具有质量m、弹性周期T和阻尼比的单自由度体系来表示结构,这种基于承载力(或强度)的设计方法还有值得商榷之处:(1)、由于结构的基本周期未知,需要根据经验公式对其基本周期进行估算,影响因素众多,通常使得结构的设计偏于保守;(2)、规范采用的是设计地震对应的多遇地震弹性反应谱,由于结构在设计地震作用下很可能已进入非线性状态,所应用的弹性反应谱计算的地震作用需要进行折减,而折减系数需要考虑多种因素的综合作用;(3)、对结构的位移,虽然很多规范都给出了结构对应的位移限值,但只是将位移作为设计的第二步来验算,这导致设计者不能有效把握结构在地震特别是大震作用下变形行为。
基于性能的抗震设计理论研究的内容
基于性能的抗震设计理论是以结构抗震性能分析为基础,根据设防水准的不同,将结构的抗震性能划分为不同的等级,设计者可根据业主的要求,确定合理的抗震性能指标和合理的结构措施。
我国“三水准,两阶段”具有基于性态设计的雏形,但是两者又有巨大的区别。基于性态的抗震设计要求结构在不同水平地震作用下具有明确的性态水平,而目前抗震方法尽管也提出三个水准,但是并没有被明确具体量化,建筑功能很难在实际设计中得到保证。在基于性态的抗震设计中,目标性态水平的确定要综合考虑社会的经济水平、建筑物的重要性以及建筑物的造价、保养、维修以及可能遭受地震作用下的直接和间接损失来优化确定,这里的性态水平是针对整个结构体系的,而目前的抗震设计规范只针对结构构件和非结构构件,并没有对整个结构提出明确的性态水平。基于性态抗震设计方法可以满足不同业主提出的不同设计要求,发挥设计者的创造性,同时也有利于新材料和新技术的应用。
1995年,美国加州结构工程师协会在Vision2000文件中首次正式阐明了针对建筑结构的基于性态的抗震设计思想。基于性态的抗震设计思想主要包括结构抗震性态等级的定义、抗震性态目标的选择以及通过正确设计实现性态目标三部分。对于具体的工程结构,基于性态的抗震设计过程是:首先,设计人员提出几种抗震性态目标及对应的造价;其次,由社会团体或业主选择结构应达到的性态目标;最后由设计人员根据所选定的性态目标进行抗震设计,使结构满足预期的抗震性态目标。基于结构性能的抗震设计理论的基本内容包括地震设防水准、结构抗震性能目标和结构抗震设计方法等三方面。
4.1 地震设防水准
地震设防水准是指未来可能施加于结构的地震作用的大小。由于地震设防水准直接关系到未来结构的抗震能力,因此地震设防水准的选择在基于结构性能设计的理论中占有重要地位。Vision2000在关于结构性能设计的研究报告中,建议设防地震等级如表3所示。
表3Vision2000中的设防地震等级的划分
4. 2 结构抗震性能水准
结构抗震性能水准表示结构在特定的某一地震设计水准下预期破坏的最大程度。结构和非结构的破坏以及因它们破坏引起的后果,主要用结构破坏程度、结构功能性和人员安全性来表达;对于不同等级的抗震性能,都应根据结构类型、整体结构、竖向和横向承载构件、性能水准、结构变形、设备装修、修复使用等方面加以定义,应该表达为量化指标,以便工程设计和评估。表4为对结构性能等级的描述。
表4 结构抗震性能等级及其划分方法
Vision 2000针对建筑结构定义了四个可接受的抗震性态等级,即:
等级1 完全保持正常使用功能:建筑物基本未遭受破坏,可完全正常地投入使用;
等级2 维持一定的使用功能:非关键设备或设施遭受较小的破坏,建筑物可继续使用;
等级 3 确保生命安全:建筑物遭受中等或大范围破坏,但生命安全无忧;
等级 4 不倒塌:建筑物破坏严重,生命安全受到威胁,但不会倒塌。
建筑结构的抗震性态目标选择示于图1.1。抗震性态目标定义为在预期设计地震下结构应达到的性态等级。图中,三条斜线分别代表三个可供选择的抗震性态目标,从上到下分别为基本目标、提高目标1和提高目标2。对于一般建筑物可选择基本目标,对于重要建筑物(如医院等)一般选择提高目标1,而对于会引起严重次生灾害的建筑物(如核电站等)一般选择提高目标2。越高的性态目标意味着越高的工程造价。
图1 结构的设防目标与设防等级、抗震性能等级的关系
规范提出的抗震性能目标是最低标准,结构抗震性能目标可以根据业主的要求采用比规范的设防目标更高的设防标准。结构的设防目标与设防等级、抗震性能等级的关系如图1所示。
4. 3 基于性能的抗震设计方法
基于性能的抗震设计方法自提出以来,在国内外都受到广泛重视和研究,对基于性能的抗震设计的主要理念和目标,学术界也基本形成一致的认识。但是怎样把基于性能的抗震设计思想合理并且简单有效的应用到实际设计中,目前尚无统一的方法和标准。概括起来,基于性能的抗震设计方法主要有承载力设计方法、直接基于位移进行抗震设计方法、能量设计法。
(1)承载能力设计方法
这是我国规范现阶段采用的设计方法,对于常遇地震,利用反应谱计算底部剪力,然后按一定规则分配至结构全高并与其他荷载组合,进行结构的强度设计,使结构的各部分都具有足够的承载能力,然后再进行变形验算。承载力能力设计方法的优点是为设计人员所熟悉,并易于使用,性能概念清楚,细部设计可靠,通过非线性静力分析验算,进一步增强了对结构非线性反应的控制,可以更好地达到预期性能目标。缺点是该方法基于弹性反应,对于非弹性反应仅用于结构类型有关的系数加以折减,表面上它控制整个性能目标,实际上却只是保证了一种性能目标。
(2)直接基于位移进行抗震设计
该方法采用结构位移作为结构性能指标,与传统方法相比,基于位移的抗震设计方法从根本上改变了设计过程。主要不同是,该方法用位移作为整个抗震设计过程的起点,假定位移或层间位移是结构抗震性能的控制因素。设计时用位移控制,通过设计位移谱得出在此位移时结构有效周期,求出此时结构的基底剪力,进行结构分析,并且进行具体配筋设计。设计后用应力验算,不足的时候用增大刚度而不是强度的方法来改进,以位移目标为基准来配置结构构件。该法考虑了位移在抗震性能中的重要地位,可以在设计初始就明确设计的结构性能水平,并且使设计的结构性能正好达到目标性能水平,是性能设计理论中很有前途的一种方法。但应用于多自由度体系、多种结构类型等时,还需要做更多的研究。
(3)能量法
假设结构破坏的原因是地震输入的总能量,地震对结构物及其内部设施的破坏时由其输入的能量与结构物所消耗的能量共同决定的。能量设计法的优点就在于,能够直接估计结构的潜在破坏程度,对结构的滞回特性以及结构的非线性要求概念清楚。另外,耗能元件的设置可以更好地控制损失。缺点在于应用方法不够简化,不确定因素较多。
可见,基于性态的结构抗震设计,实际上是对人们早已认识的“多级抗震设防” 思想的进一步的细化。这一设计思想使抗震设防目标与设计过程直接相联系,设计工程师可以更准确地把握结构在不同的地震动水平下的实际性态,使所设计的结构更加经济合理。
5国内外的研究与应用发展
自基于结构性能的抗震设计理论提出以来,建立以结构功能评价为理论基础的结构设计体系是近几年美国、日本和新西兰等国家的研究课题。美国成立放眼21世纪委员会,其目的是建立新的结构性能设计体系的框架。1995年4月,日本建设省启动了一项3年联合研究开发项目,称为“建筑结构现代工程方法开发”。该项目旨在建立基于性能的结构工程方法以推动技术革新。另外,欧洲国家和拉美国家也在进行此项研究,中国这方面研究还处于起步阶段。
在未来应用方面,美国《洛杉矶性能高规2005》和《旧金山市性能高规2007》已清晰展现了性能设计方法用于高层建筑结构的具体技术框架,可供我国相应规范进行修订时的参考:
(1)在三水准地震作用下,分别从正常使用、生命安全和防止倒塌三个极限状态对结构进行分析和设计,保证结构满足以上三个极限状态的性能目标。
(2)基本设计地震(中震)作用下的结构分析应考虑P-效应、基础刚度、偶然偏心的影响,但取消(或放松)剪重比限值和层间位移限值。
(3)小震作用下正常使用极限状态只在特殊的情况下才要求进行结构计算分析,并应考虑预期地震水平和结构累计损伤程度,可以采用线性反应谱分析方法,也也可以采用时程分析法。
(4)Pushover方法不再适用于高层建筑,应采用三维非线性时程分析方法,荷载组合考虑双向地震作用。结构非线性分析反应的评估应引入能力设计的思想,将结构构件的评估分成三个水平:延性结构复核、有限延性结构复核和完全弹性状态的非延性结构复核。
(5)混凝土结构的弹性模量应考虑开裂、黏性滑移、屈服强化、剪切开裂后的受拉刚化、节点区变形等影响,取其毛截面的0.5倍进行模量折减,或者根据试验数据拟合。
(6)地震时程记录的选取应满足场地特性与统计意义。
(7)非线性分析模型必须经过试验校正。
6结语
基于结构性能的抗震设计理论是以结构抗震性能分析为基础的结构设计,是设计理念上的一次变革,代表了未来结构抗震设计的方法,采用“投资-效益”准则下的抗震性能水准的划分、抗震性能目标的确定以及常用的性能抗震设计方法,将克服基于承载力的抗震设计不能预估结构屈服后的工作性能的缺陷,可充分发挥工程师的主动性,工程师可以根据实际情况与业主的要求及其它条件自主地选择结构性能目标水准、结构措施等。
7参考文献
[1]小谷俊介. 日本基于性能结构抗震设计方法的发展[J]. 建筑结构, 2000,(6):3-9
[2]韩小雷,郑宜,季静,黄艺燕.美国基于性能的高层建筑结构抗震设计规范[J]. 地震工程与工程振动, 2008, 28 (1) : 64- 70
[3]孙俊,刘铮,刘永芳.工程结构基于性能的抗震设计方法研究[J]. 四川建筑科学研究, 2005, 31(3):98-101
[4]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J]. 地震工程与工程振动, 2001, 21 (4) : 73- 79
对建筑结构震性能一定来自于相对简单的体形,来自简单而直接的传力下结构的多道设防线,在地基和基础的设计中也的变形对建筑的安全影响。另外也应高度重视由地震引发的次生灾害。因此在今后的建筑设计中有必要增强建筑的防最大限度地减轻震害,建筑工程技术力在抗震设防、抗震设计和施工质量三方面都提高到一个新平,才能确保建筑工程具备合理的抗御的能力。
论文关键词:砌体结构;抗震;技术措施
论文摘要:根据目前国家地震专家预测及分析,目前我国仍处于第五个地震活跃期,特别是在四川发生的汶川8度地震造成了巨大的人员伤亡和财产损失。使得人们对日常生活和居住的的安全性有了更高的关注。对此国家也对建筑抗震规范进行了及时的修改,同时也要求我们工程技术人员对地震灾害的措施的研究应有更深的认识。
地震的危害性非常大,建筑物的抗震性能就显尤为重要。目前我国抗震设计的目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用,当遭受高于本地区抗震设防烈度预估的早遇地震影响时,不致倒塌或发生危及生命的严重破坏。目前房屋建筑的结构形式主要有:砌体结构、框架结构、剪力墙结构、钢结构等。其中砌体结构由于选材方便、施工简单、工期短、造价低等特点。多年来是我国多层住宅和多层小型公建使用最广泛的一种建筑形式。
一、多层砌体建筑抗震常用处理措施
砌体结构是采用砌块和砂浆砌筑而成的墙、柱作为建筑物主要受力构件的结构。其是通过砌块和砂浆的互相作用及纵横墙的拉结而达到具有一定整体性和承重能力。但砌体的抗拉、弯、剪的强度又较其抗压强度低,导致建筑变形能力小,抗震性能差等缺点,使砌体结构的应用受到一定限制。因此改善砌体的延性,提高建筑物的整体稳定性和抗震性能具有重要意义。
常用的砌体建筑抗震处理措施,应注意以下几类。
(一)合理布局。建筑平面、立面应尽可能简洁、规整,使结构质量中心与刚度中心相一致。建筑立面应避免头重脚轻,房屋的重心尽可能降低,避免采用错落凹凸的立面,突出建筑屋面部分的高度不应过高,以免地震时发生鞭梢效应,同时应控制好结构竖向强度和刚度的均匀性。如在实际工程中,在不可避免的情况下,应尽量在适当部位设置抗震缝,将体型复杂、平面不规则的建筑分割成几个相对规整的独立单元。
(二)控制建筑高度及层数。历次震害证明,砌体建筑的层数越多,高度越高,其地震破坏就越大。因为建筑层数及高度值越大就意味着侧向地震作用就越大,同时也加大了建筑底部的倾覆力距。因此在地震中,倾覆力矩过大使得底部墙体产生过大的压力和剪力而被破坏。所以控制砌体结构高度及层数对减少地震灾害有很大的作用。在国家新修改的《建筑抗震设计规范》(GB50011-2008)也对多层砌体建筑的总高度和层数有强制性的规定。
(三)增强砌体结构的整体性及刚度。有效增强砌体结构的整体性及刚度的措施有许多种,一般常见及在实践证明的方法有纵、横墙的合理布置,建筑的楼盖为现浇,增加墙体面积及提高砂浆的强度,设置圈梁及构造柱等。在地震中多层砌体结构的纵、横向地震作用主要由相应墙体承担。因此,纵、横墙的合理布置且控制横墙的间距,可控制纵、横墙的侧向变形,增强了空间刚度和整体性,对承受纵、横两个方向的水平地震作用及抗弯、抗剪都非常有利。墙体布置时,应尽量采用纵墙贯通的平面布置,而当纵墙不能贯通布置时,则应在墙体交接处采取加强措施。而横墙最大间距就是为了满足楼盖对传递水平地震所需的刚度要求。其中,在8度设防时,现浇或装配整体钢筋混凝土楼盖板的多层砌体建筑的横墙最大间距为15米。如横墙间距过大时,纵墙会因过大的层间变形而产生平面的弯曲破坏。
根据历次地震后建筑受害情况分析,多层砌体结构的抗震能力与墙体的截面积大小及砂浆等级高低成正比。在多层砌体建筑的抗震验算中,底部两层的地震作用力较大,是结构的薄弱层。此时改变部分墙体的承载面积和适当提高砂浆的强度等级可提高抗震能力,实践证明提高砂浆的强度能同时提高建筑的抗拉、抗压、抗弯、抗剪能力,从而达到提高砌体建筑的抗震性能力的目的。
在多层砌体建筑中设置水平圈梁,可加强内外墙的连接,增强建筑的整体性。特别是屋盖和基础顶两处的圈梁的设置具有提高建筑的竖向刚度和抗御不均匀的沉降能力。由于圈梁的约束作用使楼盖与纵、横墙构成箱形结构,能有效地约束装配板材的散落,使砖墙发生平面倒塌可能性大为降低,以充分发挥各片墙体的抗震能力。
在砖墙设构造柱能提高砌体的延性,发挥砖墙砌体侧向挤出塌落的约束作用,使砌体的抗剪承载能力提高10~30%,提高了砌体结构的变形能力。另外在建筑中设置构造柱能提高建筑物的整体性,利用其塑性变形和滑移摩擦来消耗地震能量,从而提高建筑的抗震能力,且圈梁与构造柱一起对墙体在竖向平面内进行约束,可限制墙体裂缝的开展,并减小裂缝与水平面的夹角,保证墙体的整体性和变形能力,提高了墙体的抗剪能力,因此构造柱与圈梁的设置是一种有效的抗震措施。
二、隔震技术及消能减震技术应用
隔震技术是国际上热门的工程抗震新技术,它通过把隔震消耗装置〈如橡胶隔震垫〉安放在结构底部和基础或底部柱顶之间,把上部结构和基础隔开,这样改变了结构的动力特性和动力作用,明显地减轻结构的地震作用,以达到“以柔克刚”的效果。国内外大量的实验和工程时间证明,隔震体系一般可使结构水平地震加速度下降60%左右,从而消除或有效的减轻结构的地震损坏,提高建筑物及人员的安全性。隔震体系是有很大的垂直承载里(50T-2000T)及很大的垂直压缩刚度,而其水平变形刚度较小〈0.25KN/mm-1.8KN/mm〉,水平及限变位值较大(10-50cm),因此具有足够大的初始刚度,以抵抗风荷载和轻微地震,当强地震发生时,又能自由内柔性滑动,而变形过大时,刚度就回升,具有保护和限制作用。钢板夹层橡胶隔震垫具有较大的复位能力,在多次的地震实践中都是后动瞬时复位。同时,它面抗性能好,一段使用寿命可在70年以上,远远超过一般民用建筑物的50年使用年限的要求。根据其特性,一般来讲隔震技术主要适用于多层建筑及低层建筑中。
建筑结构消能减震技术的方法指在结构的某些部位〈如支撑、剪力墙、节点、连接缝或连接件等〉设置消能阻尼装置或元件,通过消能装置产生摩擦非线性滞形耗能来耗散或吸收地震能量以减小主体结构的水平和竖向地震反应,从而避免结构产生破坏或倒塌,以达到减震、抗震的目的。但此种方法主要使用于高层或超高层。
隔震和消能减震技术虽然能够大幅度提高建筑结构的抗震性能,并且新的抗震设计规范已给出了隔震和消能减震技术工程应用的性意见,但目前建造较高,且该技术从设计到构造,施工复杂。正确合理地掌握和实施尚存在一些问题,因此新技术距离大规模推广和应用还需要一定时间的准备。
三、结束语
【关键词】抗震设计,性能设计、梁柱级差系数
【Abstract】The paper begins with the meaning and the content of the flexural over strength of beams in the capacity design. The measures used in the seismic design codes of different times being contrasted. The importance of the flexural over strength of beams has been found in the earthquake damage of Wenchuan. The reasons of the results are found out, and suggestions are put forward.
【Keywords】seismic design, capacity design,the flexural over strength of beams
一、级差系数的意义和内涵
承载力级差设计法中除了为使结构具有足够的延性而需采取的构造措施外,还有为避免局部脆性破坏而采取的措施(“强剪弱弯”)以及为引导结构形成有利的耗能机制(梁铰机制或梁柱铰混合机制)而采取的措施(“强柱弱梁”)。这后两方面的问题分别是用相应的级差系数来实现的。本文主要就梁柱级差系数进行一些讨论。
为引导结构形成有利的耗能机制而采取的措施主要是通过“促成有利耗能机制级差系数m”乘以由弹性分析所得的节点两侧顺时针(或逆时针)方向梁端的组合内力作为节点上下柱端的弯矩设计值之和,使柱的抗弯承载力之和高于梁的抗弯承载能力之和,引导塑性铰尽可能地在梁端出现,从而形成有利的耗能机制――梁铰机制或梁柱铰混合机制。也就是说,使节点处左右梁端的实际抗弯承载力之和(顺时针或反时针方向)与上下柱端实际抗弯承载力之和之间满足下述关系:
=m
其中的m为大于1.0的“促成有利耗能机制级差系数”。
二、促成有利耗能机构的抗震设计方法
《混凝土结构设计规范》GBJ10―89把框架结构根据设防烈度和房屋高度分为四个“抗震等级”。
1.GBJ10―89中规定对一级抗震等级,柱梁承载力极差要求为:
=1.1或 =1.1λj
――按受拉钢筋强度标准值及实配钢筋面积计算的节点左右梁端按顺针方向或反时针方向抗弯承载力之和,并除以梁的正截面承载力抗震调整系数。但中国规范中未规定在抗弯能力计算中是否考虑受拉翼缘有效板宽内平行于梁的板的钢筋的影响。
――同一节点左右梁端按逆时针(或顺时针)方向考虑地震作用组合的弯矩设计值之和中的较大者。
λj――节点的实配增大系数,可取节点左右梁端纵向受拉钢筋的实际配筋面积之和与计算面积之和比的1.1倍。
1.1――表示钢筋强度标准值与设计值之比。
对二级抗震,梁、柱承载力级差要求为:
对三级抗震,取地震作用组合下的弯矩设计值。
2.GB50010-2002则进行了一些修改:
一级抗震等级的框架结构且9度设防时:且不小于1.4
对其它情况:
一级抗震等级
二级抗震等级
三级抗震等级
四级抗震等级时,柱端弯矩设计值可直接取地震作用组合下的弯矩设计值。
其中各符号的意义GBJ10―89相同。
3.GB50010-2010则进一步进行了修改,区分了框架结构和其它结构的不同处理,对框架结构的规定为:
一级抗震等级的框架结构和9度设防时:
二级抗震等级
三级抗震等级
四级抗震等级
其中各符号的意义与GBJ10―89相同。
由上述规范的变迁可见,从89年至2010年,规范逐步提高了级差系数的取值。
三、汶川大地震中梁柱节点处柱铰的破坏现象
2008年5月12日,发生的汶川大地震,造成了大量房屋的破坏和倒塌,危及了许多的人的生命。笔者在震后到离震中不远的四川绵阳、都江堰等处看到柱铰破坏现象比较普遍。我们知道梁柱级差系数对引导结构出现合理的耗能机制,以防止结构在大震作用下地倒塌有重要作用。梁端塑性铰的出现可以消耗地震能量,减小结构的自振周期,从而减小地震力。而柱出现塑性铰,往往导致房屋倒塌和严重破坏。以下是汶川地震的一些图片。大量的房屋在强震作用下,梁端没有出现塑性铰,甚至连裂缝都没有。而柱端却已经屈曲破坏,严重的导致整层下坐。这与我们期望的梁铰或者梁柱铰合理耗能机制是相违背的。这不得不令我们结构设计师深思。
四、影响梁柱级差系数取值的因素可归纳为以下几点:
1. 结构进入弹塑性状态后,由于构件的开裂、部分钢筋的屈服,引起构件不同程度的刚度退化和强度降低,导致整个结构中各构件之间的内力与弹性分析结果的差异。进入塑性阶段后,由于构件刚度的变化,而使结构产生内力重分布,从而使某些柱端弯矩有可能比弹性分析的组合弯矩值偏大。
2. 结构进入塑性反应阶段后,由于梁端出现塑性铰后对节点转动约束能力减弱以及由于层间相对侧移的差异,可能形成不同的节点梁柱弯矩平衡方式。
3. 底部剪力法是考虑结构反应以第一振型为主的振型分解法的特例,未充分考虑高振型的影响。振型分解法虽然考虑了高振型的影响,但它是一种基于弹性分析的设计方法,未考虑结构进入屈服后弹塑性状态下的内力分布。
4. 结构在地震反应中,板及板中的钢筋在地震反应中对梁的刚度、强度的影响将影响级差系数m的取值。此时为满足>的要求,柱的承载能力相对于不考虑板的梁端承载力的提高幅度就有可能进一步增大。
5. “防止脆性破坏级差系数n”的取值的影响因素,梁纵筋的屈服后强化,将使梁截面的抗弯承载能力比设计的抗弯承载能力高,在“促成有利耗能机构级差系数m”中也应有相应体现。
6. 材料强度离散性可能引起梁端抗弯承载能力偏高而柱端抗弯承载力偏低。
7. 由于人为提高梁端的配筋而削弱梁柱之间实际形成的级差;设计过程中人为放大梁刚度,导致梁计算配筋偏大。
8. 可能出现梁底部配筋受梁跨度内某一正弯矩控制,底部配筋拉通到节点,并满足一定的锚固要求,使梁端实配承载力远大于组合而得的梁端设计正弯矩的情况。此时,如果以梁端的设计弯矩之和乘以m来作为柱端的配筋依据,m的取值就应当进一步增大,才能满足柱比梁强的要求。
在实际设计中很难通过精确计算真正实现考虑这么多因素的影响。所以规范采用规定某一个级差值把柱的设计弯矩相应提高来引导结构形成有利的耗能机制。
五、结论和建议
综上述柱铰出现的其主要原因是:(a)节点两侧梁的抗正弯矩能力有时并不由节点两侧梁的设计正弯矩确定,柱梁级差被削弱。(b) 在地震作用过程中,随着梁、柱塑性铰的先后出现,节点的弯矩平衡关系在地震作用过程中是变化的。实际地震作用下柱的内力与设计阶段柱的弹性分析内力是有差别的。按照梁的实际承载力作为分配到柱端的设计弯矩的依据可达到较好的抗震设计效果,因为它较好的排除了(a)因素的影响。如果抗震设计能按照这种方法或使用梁跨度内的最大正弯矩与节点另一侧梁端最大负弯矩之和作为分配到柱端的设计弯矩的依据,那么就能形成较为合理的抗震体系,为使结构发挥其潜在的抗震能力创造条件。
参 考 文 献
[1]《混凝土结构技术规范》(GB50010-2002),中国建筑工业出版社,2002年
[2]《混凝土结构技术规范》(GB50010-2010),中国建筑工业出版社,2010年
[3]《混凝土结构设计规范》(GBJ10-89),中国建筑工业出版社,1989年
关键词:地震;设计规范;房屋结构;延性设计;抗震设计
在当前经济水平不断提升的过程中,人们对于居住建筑的质量要求越来越高,并且在当前地震灾害频发的导致严重损失和人身伤亡的情况下,就促使建筑行业必须要针对建筑自身的抗震性能进行加强,使得建筑能够在地震灾害下表现出更为优秀的抗震性能,从而达到减少财产损失以及人身伤亡的目的。下文主要针对延性设计在房屋结构中的抗震设计应用进行了全面详细的探讨。
1 抗震设防的目标
根据我国目前的相关抗震规范来看,我国的建筑工程抗震目标主要是以“小震无碍、中震不倒、震不倒、特大震缓倒”来作为一个基本的修建原则,这类原则不仅是现代建筑修建的需要,同时也是我国国情发展的需要,在这一标准之下,我国的建筑抗震性能的到了持续不断的提升。建筑在面临强大地震灾害的情况下,出现倾倒之后所造成的重大伤亡和财产损失是任何国家都无法承受的,而如果建筑能够最大限度的抵抗地震所带来的危害,那么拯救的将是成千上万的人们,挽回大量的经济损失。这就是建筑抗震所必须要达到的一个基本功能,所以现代建筑在进行抗震设计的过程中,务必要以人身安全、财产安全来作为主导,以此为中心来进行设计。而要达到这一目标,仅仅只通过材料提升的方式来加强建筑的强度是无法做到的,必须要通过对延性设计进行强化才能够使得这一目标能够达成。
2 抗震的延性设计
2.1延性的定义
延性主要是形容构件、材料、结构等各个方面的强度在没有发生较大降幅的情况下,所拥有的变形、弹性能力。总体来说,延性自身主要包含了两个方面的性能:首先一个是要能够承受极大的变形力量,并且在承受这一变形力量的过程中,其自身的强度不会在期间出现显著的下滑;其次是利用自身所具有的作用力滞回吸收来逐渐消耗能量。通常情况下,结构自身所具有的延性都是利用延性比的方式来呈现,而延性比就是形容结构自身的最大程序变形以及屈服变形这两者的比例,这方面的数据能够明显地反映出构件所拥有的变形能力;而结构所拥有的延性消耗能力强弱则一般是利用位移滞回曲线的方式来体现,当滞回曲线越发饱满的情况下,其自身所具有的耗能能力才能够更加强大。
3 延性在抗震设计中的应用
我国现行抗震规范提出的抗震设防目标,是以两阶段设计来实现的,第一阶段设计保证结构强度要求及隐含的第二水准变形要求,故又称为强度设计;第二阶段设计主要以检验结构防倒塌的变形能力,故通常称为变形验算。延性设计均在第二阶段中加以实现,具体体现如下:
3.1延性设计在砌体结构中的实现
在抗震方面,砌体墙承重结构是最危险的结构形式之一。因为砌体是脆性材料,用砌体砌筑的建筑物整体性差,延性差,并且随着时间的推移,砌体的强度会严重退化,故而在经济条件许可的情况下应避免采用此种结构形式。但事实上在我国砌体结构占了相当大的比重,这是我国的基本国情决定的;而每次大地震中,造成伤亡最惨重的又是这些砌体结构,故研究延性设计在砌体结构中的实现就显得非常的重要。根据汶川地震灾害的分析,强度和平面布置是砌体结构抵抗地震的最首要的两个因素。
在砌体结构中加构造柱和圈梁以在砌体周围形成一个弱型框架体系,用以增加结构的整体延性,能够提高砌体结构的大震下的弹塑性变形性能。这次的汶川大地震也再次证明这一条的合理性,凡是加了构造柱及圈梁的砌体房屋损害就明显的比周围没有加的要轻很多。另外还可以增加增长墙体中的拉筋,利用一些延性好的材料如钢丝网、钢薄板、纤维(如碳纤维、玻璃纤维等)与砌体形成一种混和结构以改善原用结构的延性或者直接对砌体施加预应力以改善其延性。
另一个虽非设计措施但对砌体结构抗震更为重要的是要加大对农民自建房房屋的抗震设防的宣传,引导农民自觉的在砌体结构中增加改善砌体结构延性的措施。
3.2延性设计在混凝土结构中的实现
在混凝土框架、框架-剪力墙及剪力墙结构中抗震的延性设计主要是通过概念设计及抗震构造措施来实现的。比如概念设计里的强柱弱梁、强剪弱弯、强节点强锚固弱杆件、强压弱拉等以及抗震构造措施里的限制轴压比、纵筋最大配筋率、约束箍筋及配箍形式、限制混凝土受压区的相对高度等,这些在我国的抗震规范、混凝土规范及高规中以及不少书、论文中都有详细的阐述,这里就不再一一重复。应该引起注意的是汶川地震中大量出现的“强梁弱柱”、“柱铰”破坏机制,极少出现“梁铰”,说明由于楼面作用大,框架结构的强柱弱梁机制很难做到,应对框架结构的强柱弱梁机制保证措施进一步研究。
3.3基于性能的位移抗震设计
在对延性设计进行设计应用的过程中,务必要从两个主要的方面来进行考虑,首先一个就是要确定延性自身所具有的确定性设计,而另外一个就是延性所具有的非确定性设计。确定性设计的研究工作主要就是形容实如何将建筑自身的延性进行数字量化,从而使得延性能够进行极为精确的计算。而在这一方面,我国有大量建筑行业的学者都进行了深入的研究,但是其总体结果并不能让人满意。所以,我国目前主要的建筑延性设计还是以非确定性延性设计作为主导。但正如地基基础的设计已经从强度设计即以力为主的设计转变为以变形设计为主一样,基于位移的抗震延性设计是未来必然的抗震设计方向。近十年来不少人在这方面做了不少有益的探索与研究,现在比较统一的主要有三个方法:按延性系数设计的方法、能力谱方法和直接基于位移的方法。
4 结语
综上所述,在对大量理论进行全面详细的分析以及对地震实际损害进行考察之后,我们必须要清晰的认识到:决定建筑物体是否能够在地震灾害下拥有更好的抗震性能,其关键因素就在于建筑的延性。而目前我国在进行建筑抗震延性设计的过程中,还是应当把不确定性的延性设计作为主流的设计方式。而延性设计在现代建筑工程的建树为我国的建筑抗震体系提供了良好发展方向。■
参考文献
[1]陈小川,李嘉林,周俐俐.结构工程抗震中的概念设计[J].西南科技大学学报.2005(04)
关键词:村镇建筑;抗震;发展方向
我国是世界上遭受地震灾害最严重的国家之一,大陆6度到9度地震区占国土面积达60%。而我国村镇地域广阔,多数处于地震区,加之农村建筑多数是自建,抗震能力非常薄弱。因此,一旦发生地震,村镇建筑的损毁极为严重。
1安徽省村镇建筑抗震研究现状
安徽省村镇地区的经济发展较为落后,建筑使用的材料简单,一般以砖、石为主,甚至有的建筑还在采用土坯和砂子作为建材。村镇建筑以自建为主,其最主要的特点是结构简单。安徽省的村镇建筑多采用土木结构、砖木结构、砖混结构。这几种结构的建筑在抗震方面本身就存在主体结构材料强度低、结构整体性差、房屋各构件之间的连接薄弱等问题。以我省村镇建筑中最常见的砌体结构为例。砌体结构施工工艺简单,造价相对较低。很多建筑采用单侧悬挑走廊不封闭砖混结构体系。楼房层数多在2到3层。有的房屋为满足使用功能性,采用大开间、大门洞等,从而削弱了砌体房屋的抗震性能。砌体结构是由脆性材料组砌而成,主要依靠墙体为承重构件,其刚度比较大,当发生地震时,墙体受到反复剪力作用易形成“X”形裂缝和贯通窗间墙的水平裂缝。另外部分结构没有混凝土垫块和圈梁,梁与砖柱在构造上无法保证刚性连接,在地震作用下,结构的抗侧刚度全靠建筑的横墙和纵墙提供,缺少多道设防措施,承重墙体失去承载力将导致房屋发生突然倒塌现象。忽略抗震设计。大多数村镇建筑都没有专业的设计人员进行指导。基本上是按照居民的个人意愿设计,结构体系比较混乱,布局不合理、平立面布置不规则、质量和刚度变化不均匀等。
2提高村镇建筑抗震能力的措施
2.1选址要合理
根据相关资料表明,房屋建造应该选在平坦开阔、土层密实、均匀稳定的有利地段、不宜在软弱土层、可液化砂层、河岸、古河道、陡坡、松软场地建房,不应在可能发生滑坡、塌崩、地裂、泥石流及有活动断层的危险地段建房。
2.2建筑平面立面布置要力求规整
从抗震的角度出发,建筑的平立面设计应形状规则、对称。如因使用和美观要求必须将平立面布置成不规则时,应用防震缝将建筑物分割成若干结构单元,使每个单元的平面尽量规整。
2.3选择合适的结构体系
应优先采用横墙承重或纵横墙共同承重的结构体系。纵横墙的布置宜均匀对称,沿平面内宜对齐,沿竖向应上下连接。同一轴线上的窗间墙宽度要均匀。楼梯间不宜设置在房屋的尽端和转角处。
2.4加强结构的整体刚度
①要做地圈梁。以提高房屋的整体空间刚度、增加建筑物的整体性,对建筑物起腰箍的作用,提高砖石砌体的抗剪、抗拉强度,防止由于地震或其他较大振动荷载对房屋的开裂破坏。②做好楼层面要设置圈梁。圈梁的作用是加强砌块墙体的整体性,将楼板与圈梁连牢箍紧,形成闭合的平面框架,对抗震有很大的作用。③,重视构造柱。为了增强建筑物的整体性和稳定性,多层砖混结构建筑的墙体总还应设置钢筋混凝土构造柱,并与各层圈梁连接,形成能够抗弯抗剪的空间框架,它是防止房屋倒塌的一种有效措施。
2.5处理好细部构造
楼梯、女儿墙、挑檐、阳台、雨棚、装饰贴面等细部构造应予以足够的注意,不可忽视。很多时候,遇到地震,女儿墙、阳台、烟囱等构件容易掉下来伤人。所以这些构件一定要和主体结构连接好。
3提高村镇建筑抗震能力的建议
目前安徽省村镇建筑抗震防御能力差,主要原因是建筑结构专业技术服务无法延伸到的村镇区域。在这种环境下,我们可以因地制宜通过发放标准图集,宣传广播等方式进一步完善村镇抗震建设技术标准,弥补缺乏专业技术和专业施工人员的不足。并且图集的制定,应到简明扼要,还要符合安徽省当地的建筑材料和建筑习惯。图集要想在我省广大村镇地区发挥作用,在很大程度还要依靠政府和基层部分进行图集的推广和宣传,加强村民的抗震意识。针对现有的村镇建筑,应组织专门的专业队伍,对还在服役的村镇建筑进行震鉴定和安全评估,对抗震性能较差,房屋较为简陋的,无法通过加固处理的房屋,进行拆除。对结构相对完善的房屋,应该对其抗震重要部位进行加固改造,使改造后的建筑物符合当地设防烈度的抗震防御能力,使其在遭受地震时,建筑物不会因为结构破坏而引起更大的人员和财产损失。村镇建筑抗震结构体系的发展,应以产业化技术发展、生态环保建材应用、结合新农村建设与村镇地域特点,研发低成本抗震结构和低成本隔震结构。轻钢结构、轻钢-砌体组合结构和混合结构等新型抗震结构体系,在村镇建筑中有良好发展空间,应深化研究。提高广大村镇建筑的抗震防灾能力,不能脱离乡村的实际。目前,我省乃至全国很多地区的村镇经济尚不发达,因此,在考虑提高村镇建筑抗灾能力的措施时,主要不是让群众放弃某种结构类型而选择另一种结构类型,而应是针对现有结构类型和建造方式在地震灾害中表现出的不足加以研究,在此基础上提出改进和加强措施。
[参考文献]
[1]王再忠.安徽省中小学教学楼抗震结构形式调查与分析[J].中国建筑金属结构,2013,(3).
[2]石宁,余海铭.咸阳市农村建房抗震设防存在问题及应采取对策的探讨[J].山西建筑,2016,(4).
[3]朱雁茹,谢杰,钟宪明,等.既有村镇房屋现状调查及抗震对策研究展望[J].工程抗震与加固改造,2016,38(2).
[4]曹万林,张勇波,董宏英,等.村镇建筑抗震节能结构体系研究与应用[J].工程力学,2015,(12).