时间:2023-03-08 14:54:15
导语:在电路与模拟电子技术的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
【关键词】EDA技术 模拟电路 Multisim 10.0
EDA技术即为通过计算机来设计电子电路和系统的计算机软件。将其应用在电路设计中能够显著提高电路设计的工作效率,减少误差,增强可靠性。
1 EDA技术概述
1.1 EDA技术特点
EDA技术就是以计算机为基本工作平台,结合了多种现代计算机技术而形成的开展电子产品设计技术。典型的EDA工具都包括综合器与适配器,通过EDA技术能够在设计电子系统时减少大量的工作量而交由计算机完成。并且通过EDA技术能够将电子产品从电路设计直至设计版图的整个流程都在计算机上实现自动智能化处理。当前EDA技术的应用范围十分宽广,例如机械、航空、生物、军事、教学等各个领域都已经广泛开展使用EDA技术。
1.2 EDA技术类别
EDA软件大致能够分为芯片设计辅助软件、可编程芯片辅助设计软件以及系统设计辅助软件三大主要类别。通过EDA软件的功能和应用领域可以将其分为电路设计、仿真工具、IC设计软件与其他EDA软件等。常用的模拟电子电路包括晶体管放大电路、集成运算放大器以及电源电路等。
2 Multisim 10.0软件的应用
2.1 Multisim 10.0特点
2.1.1 元件库丰富
Multisim 10.0配备了海量的元件模型数据库,其中有数以千计的电路元件,其中包括基本元件、基础电路、继电器等元器件。同时,用户还能够根据自己需求来新建元器件库,给客户提供了极大的便捷。该软件中各元器件的参数可以根据需求调节。
2.1.2 强大的虚拟仪表与分析功能
Multisim 10.0中配备了双踪示波器,逻辑分析仪、频谱分析仪等十余种虚拟仪器仪表,并且操作界面十分友好,不论是专业人士还是学生都能够快捷方便的进行操作。
2.1.3 仿真范围大
Multisim 10.0不仅可以对数字或模拟电路实现仿真,还能够仿真射频电路。
2.1.4 兼容性良好
Multisim 10.0网络表文件可以与Spice网络表文件进行相互转换,并且形成电路原理图。Multisim 10.0中电路原理图还能够与PCB软件进行传输,进行印刷电路板设计。可以看出,Multisim 10.0能够全程完成电路设计与印刷电路板所有设计工作,电子产品开发速度得到了提升。
2.2 Multisim 10.0应用实例
2.2.1 差动放大电路与差模信号
差动放大电路在电子技术与IC制造业中应用十分普及,其能够放大差模信号,对共模信号起到抑制作用,因此可以有效的避免零点漂移,妥善解决了直流放大电路中增益与零点漂移的问题。图1为恒流源的差动放大电路图。如不加输入信号时,首先调节R2,输出电压接近0.图2为输入差模信号电路图,输入端加上50mV,1KHz的差模信号,对节点8与节点3进行瞬态分析,获得两个大小相同,方向相反的差模输出信号。
用后处理器获得双端输出电压波形曲线图。最大输出电压为Vod=4.1034V。
2.2.2共模信号
使用相同的方法对节点8与节点3进行分析,可以得到两个大小相同,方向也相同的共模输出信号。单端输出最大电压值为38.04Pv.从该数据可以得知,共模信号单端输出的抑制程度也较高。
2.2.3 结论
Multisim 10.0是一个系统的,功能齐全的电路仿真软件,其强大的元件数据库与大量的虚拟仪表具有多种分析方式。Multisim 10.0软件存在以下几大优势:
(1)进行模拟电路能够调整电路参数,观察不同参数与电路性能之间的关系,同时可以重复多次的选择最合适的元件参数来设计方案。
(2)Multisim 10.0能够在电路测试中分析数据、曲线图形都集中在单一的设计窗口中,使用人员可以直观形象的观察到数据和图形的改编。其所显示的曲线图也较为平滑,这是其他硬件测试中无法比拟的优势。
(3)Multisim 10.0的虚拟仪器仪表调试十分便捷,信号干扰因素小,双踪显示时不会出现断断续续和闪烁的现象。相对于传统的模拟电路方式来说,其十分容易受到外界电源信号的影响,并且实验设备不先进,十分容易导致测量结果精确度欠佳。然而该测量结果将通过数字表现,其精确度较高。
3 结束语
随着自动化水平的提高和电子领域的迅猛发展,EDA技术在电路设计中的作用越来越明显。利用EDA技术电路设计师能够高效、准确的设计电路。Multisim 10.0能够提供强大的元件数据库与虚拟仪表,分析方法十分多元,是电路设计教学、电路设计模拟中不可或缺的软件。EDA正在面临发展的关键时刻,EDA技术将电子设计技术推向了新的阶段,未来EDA技术将会向新器件、新工具软件等趋势发展。
作者简介
高昀(1984-)女,四川省遂宁人。大学本科学历。现供职于四川职业技术学院。主要研究方向为Eda技术。
电路与电子技术基础是高职院校电类专业的专业基础课程,内容包含电路基础、模拟电子技术和数字电子技术三方面的知识,课程难度较大,内容繁多。文章分析了目前教学中存在的普遍问题,提出了在课程教学中引入“五环模式”,结合多种教学方法,吸引学生的学习兴趣,从而提高教学质量。
关键词:
“五环模式”;项目;教学改革
电路与电子技术基础课程是电类专业的专业基础课程,高职院校的电类专业大都开设了此课程。本课程内容多,包括电路基础、模拟电子技术和数字电子技术三门课程的内容,其目的是使学生获得电路的分析方法、电子技术方面的基本理论、基本知识和基本技能,培养分析问题和解决问题的能力。由于学时少、内容多,该课程一直被认为是比较难学的课程,如何让学生有兴趣地学习,提高学生的学习效率,就成为教学能否成功的关键。根据人才培养方案,高职院校物联网专业学生毕业后能够胜任物联网设备、产品测试与维修、物联网感知层与传输层节点产品的辅助设计、制造、物联网工程系统安装与调试、物联网嵌入式系统应用、能够承担各类物联网业务技术支持、维护与应用工作。因此物联网专业中电路与电子技术教学主要要求学生能够掌握电路与电子技术基础知识和基本技能,为后续课程奠定基础,提高学生的学习兴趣。
一、目前高职教学中存在的主要问题
1.教学中知识的讲解以本科院校的内容为参考,偏全偏难偏理论,学生在学习的过程中,由于基础差,不能很好地吸收知识,课程学完后,连最基础的高、低电平概念都没有掌握,因此,可以说是失败的教学。2.学生的学习主动性不够。电路与电子技术基础的学习,纯粹由上课听课,课后作业不主动完成,学生往往后面部分学了忘记前面部分,而本身此课程的学习是前后关联紧密的,越学就越不懂,导致学习兴趣缺失。因此,如何在课程教学过程中,吸引学生,培养学生的学习兴趣,在参考了其他院校的教学经验、企业调研及教师在教学中的教学积累,项目组最终确定了引入“五环模式”,可以较好地解决以上存在的问题,从而提高课堂教学质量。
二、什么是“五环模式”
所谓“五环模式”,由“项目导入”、“制定计划”、“实施计划”、“制作实物”和“总结与评价”五个环节组成。下面简单介绍“五环模式”的具体内容:1.“项目导入”环节,任课教师的活动包括三个内容。(1)借助实物展示和虚拟实验平台,导入项目任务及目标、展示项目结果,让学生对项目有一个直观的认识,然后再布置具体的学习任务。(2)利用虚拟实验环境的EDA软件,让学生明确自己应当完成的具体任务和完成任务后可以得到哪些知识以及达到什么样的水平。(3)在充分考虑学生的现有知识和能力水平的基础上,按照适合协作学习的分组办法对学生进行分组,安排具体的完成时间和成果的评价方式等。2.“制定计划”环节,学生通过自主学习、小组协作学习等方式,对该项目的任务目标进行分析,确定任务所涉及的各种要素,充分应用已掌握的前序知识,确定任务的实施步骤,为任务的实施做好充分的准备。3.“实施计划”环节,学生在虚拟仿真实验平台上按照已制定好的计划逐步完成项目任务。教师在此过程中对学生进行过程指导,实现教师和学生以及学生之间的交流。学生通过应用已学习的知识完成工作任务,进行知识的建构,形成职业岗位能力。4.“制作实物”环节,学生在完成设计电路的电路图指导下,进行实物制作,制作完成后,进行调试。在调试过程中,对出现的问题与教师探讨,寻求解决问题的方法,并与理论的仿真进行对比,分析出现问题的可能原因。5.“展示与评价”环节,学生在展示自己的项目成果,然后接受他人的评价和教师的反馈。同时,学生在汇报和听取同学汇报的过程中,通过对比自己与其他同学的成果,查找不足,反思其成败。“五环模式”对电路与电子技术基础的实践过程进行了详细的分解,让学生在整个过程中,把理论知识的学习和实践能力的提升有机地结合在一起。
三、“五环模式”的实施
根据“五环模式”的内容,项目组的教师们注意寻找电路较为简单且知识覆盖面较广的项目,从简单到复杂,以任务为主线,学生为主体,注重基础知识和能力的培养,使学生在教、学、做的过程中真正学到知识、掌握技能,激发学生的学习主动性。项目组成员确定了11个项目:电路基本元器件的识别、应用和测量;电子制作手工焊接技术;基尔霍夫定律的仿真实践;二极管三极管的测试;共发射极放大电路的装配与调试;稳压电源的设计与实现;信号灯的逻辑控制;简单抢答器的电路与试验;由触发器构成的改进型抢答器;编/译码及数码显示;计数显示器。确定了项目后,根据“五环模式”的内容,在教学中设计了主要的教学情境。并在教学过程中,引入多种教学方式,如现代化教学方法、理仿实一体化、教学做一体等的运用。在两届学生的课程教学中实施,效果较好,验证了教学方法改革的可行性和有效性。
四、结束语
在项目实施的过程中,学生对于电路与电子技术基础课程的学习由原先的漫不经心,到后面的痛并喜欢着(在学习过程中,实物制作过程的艰辛和调试成功的喜悦),让教师在教学中有了极大的成就感。“五环模式”的引入,对课程的实践教学有了很大的促进作用。今后的任务是,依托工作室培养的优秀学生,在课堂教学中充当小老师,帮助教师对学生进行指导,促进教学质量的进一步提升;在教学内容方面,如何设计更多更适用的教学案例,更好地发挥电路与电子技术基础课程的基础作用.
参考文献:
[1]高玉良.电路与模拟电子技术课程教学改革的实践[J].长江大学学报,2008(3)
[2]张琳.电工电子技术课程教学改革探索与实践[J].天津职业院校联合学报,2012(10)
关键词:电路;教学内容;教学改革
作者简介:张宇飞(1961-),女,江苏丹阳人,南京邮电大学电子科学与工程学院,副教授;史学军(1967-),女,江苏宜兴人,南京邮电大学电子科学与工程学院,讲师。(江苏 南京 210023)
基金项目:本文系南京邮电大学教学改革项目(项目编号:JG03311J61)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)16-0080-02
随着电子信息技术的快速发展,新知识和新技术的不断涌现,电路作为电类本科生必修的专业基础课,改革教学内容势在必行。在南京邮电大学(以下简称“我校”),培养高素质创新型人才的需求成为该课程改革的强大推动力。本文讨论了电路课程体系,强调了电路理论的应用,阐述了电路和信号与系统、模拟电子技术、数字电路、通信电路、电力电子技术课程的一些关联内容,对教学内容进行了重组,引导学生通过电路课程的学习,充分了解电路知识体系构架,为学生后续专业课的学习确立明确的方向和目标。
一、对电路教学内容改革的认识
目前,在我校自动化、电气工程及其自动化、测控等电气工程类各专业所开设的电路课程,内容主要涵盖直流电路、动态电路和正弦稳态电路的分析,理论教学64学时。为适应该类专业的要求,通过调整增加了正弦稳态电路、三相电路部分的课时,以加强交流部分内容;通过调整部分例题内容,加强了能量传输的概念;为引用工程应用的实例,增加了运算放大器的内容,通过补充介绍应用实例,以强调工程概念的培养。并尝试在教学中予以实施。通过几届学生的教学实践,也取得了初步的成效,在改革的过程中也看到了目前电路课程仍存在的不足以及和兄弟院校的差距。根据我校培养高素质创新型人才的需求,通过对兄弟院校教学的考察和调研,电路教学组深入研究了我校学生现状,提出应着重从以下几个方面进行改革。
1.学好电路、用好电路
传统的电路课程只研究基于电路模型的分析,不讨论实际电路元件的建模背景;只研究模拟电路,不讨论数字电路。其结果使学生学完电路后甚至不知道受控源为何物,往往是考试成绩很好,遇到问题却不知如何下手。随着电子信息技术的快速发展,超大规模集成电路和数字系统得到广泛应用,新知识越来越多,而学时是有限的,这些都给电路教学带来了新的挑战。一些新的知识应在电路课程中体现,电路理论的应用也应该在课堂加以讨论。学习电路不应当立足于只会解电路题,要会用电路所学知识解决实际问题。使学生进一步明确学习电路的目的,体会到要用好电路,必须要学好电路。因此电路教学应当教什么,怎么教,是任课教师迫切需要研究和解决的问题。
2.电路与后续课程的联系
任课教师在授课过程总是会强调电路课是本科生必修的专业基础课、是后续专业课程的重要基础,如何让学生在学习电路这门课的过程中真正体会到电路课的基础性和桥梁作用,正是我们需要探讨和解决的问题。应提炼出与后续课程关联的电路教学的具体内容,使学生切实感受到各门课程之间不是相互独立的,而是相互关联的,也就自然体现出了电路课的基础性和重要性。如果在电路课程的学习中打下了良好的基础,将有利于学生进入后续课程的学习或将来进入其他领域的进一步深造。因此,迫切需要适当调整教学内容,使学生在有限的课时内不仅掌握好基本概念、基本理论和基本的分析方法,也能通过对基本电路理论的应用,使学生真正感受到一些知识点在实际中的应用和后续课程中的延深,深刻感受到电路课程承上启下的作用,充分调动学生学好电路课的积极性。
二、与相关课程交叉的主要内容
我校电路课程在大一下学期开设,电路是第一门具有工程色彩的专业基础课,这时的学生并不清楚电路与自己所学的专业有多大关系以及它的重要性。不能等学生把四年大学读完了,才知道一些知识点的重要性,这就会使学生失去主动学习的积极性。教师有责任在授课过程中梳理出电路和后续相关课程的内在关系,引导学生尽早对本专业课程体系、知识体系、研究对象和发展方向等有所了解,使学生早日认识本领域研究内容的宏观面貌,这将有助于学生主动的有目标的学习。基于此,笔者梳理了电路和信号与系统、模拟电子技术、数字电路、通信电路教学的一些关联内容,为电路课程内容的重组奠定了基础。
1.与信号与系统交叉内容
电路课程在正弦稳态电路的分析中,专门介绍了非正弦周期电路的稳态分析,讨论这一问题,是因为工程实际中经常遇到的是激励为非正弦的周期信号,比如自动控制和计算机领域常用的脉冲信号就是典型的非正弦周期信号,对于这类信号,利用傅里叶变换将信号分解为一系列不同频率的正弦量,然后根据叠加定理就可以求出电路的响应。在后续的信号与系统课程中,对连续信号与系统的频域分析做了详细的讨论,同样以傅里叶变换理论为工具,将信号从时间域映射到频率域,进一步揭示了信号内在的频率特性以及信号时间特性与频率特性之间的对应关系,才有了信号和系统的频谱、带宽及无失真传输等重要概念。在对信号有了全面认识的基础上,就有可能对实际工程问题进行准确的分析,并解决实际中关于电信号的处理问题。可见信号与系统中的傅里叶变换是电路课程相关内容的延伸。
2.与模拟电子技术交叉内容
在电路课程中,大量的篇幅都是针对由理想电路元件(线性元件)构成的模型电路的分析,关于非线性电阻电路的分段线性化、小信号分析法以及含有二极管的电阻电路分析,往往不作为重点内容讲解。而模拟电子技术中所用到的电路主元件都是非线性元件,比如二极管、三极管、场效应管等,小信号分析法就是工程上的近似方法,在模拟电子技术课程中用于解决放大器的交流等效电路问题,将非线性电路在一定条件下线性化,这才有可能对放大器构成的电路进行解析分析。电路课程关于非线性电阻电路的分析是模拟电子技术中放大器交流等效电路分析的基础。
3.与数字电路交叉内容
虽然电路课程只研究模拟电路,不讨论数字电路,但当今数字系统的广泛应用,促使教师在电路课程中有责任引入数字电路的一些基本概念。在使用数字计算机控制的工业生产自动化系统中需要把模拟量转为数字量,即模数转换(A/D),如果要用计算结果去控制工业对象,又需要把数字量转换为模拟量,即数模转换(D/A)。计算机为一个二进制系统,因此可以方便地和逻辑系统结合起来,且在物理上实现具有两个稳态值的数字系统也比较容易。在电路课程中,当学习了电路的基本概念以及叠加定理后,就可以讲解由直流电源和电阻元件构成D/A解码网络、实现D/A转换的内容,可以让学生在电路课程中就能学习到数字电路的一些基本概念,以便于在以后的数字电路学习中能够与电路的相关内容融会贯通,从不同角度全面深入掌握重要的知识点。应当将电路学习阶段已经涉及到的数字电路的基本概念介绍给学生,帮助学生及时掌握所需的基础知识,让学生带着探究的心态进入到后续课程的学习。
4.与通信电路交叉内容
通信电路中无线通信系统的各个重要部分都需要由具有特定功能的电路来实现,建立这一系统的目的是做好信号的产生、传输和处理,也是电路用于信号处理的典型应用。电路课程中关于电路的频率特性和L、C谐振电路的分析等内容都是通信电路中的重要电路部分。
5.与电力电子技术交叉内容
电力电子技术中发电系统的各个重要部分都需要由具有特定功能的电路来实现,这一系统是电路用于能量处理的典型应用。电路中有关三相电路的基本概念、基本分析方法以及三相电路功率的计算,是电力电子技术课程中三相整流电路、逆变电路的基础。即电路课程中关于三相电路分析的基本概念和基本理论都是发电系统的重要基础内容。
三、教学内容的重组
在电路教学中,教师应当下工夫、花时间提炼出经典内容并不断总结教学经验,将基本内容和重点内容以更简明、更容易被学生接受的方式传授给学生,不失时机地讲解与知识点相关的新知识及实际应用,同时要注意到电路与后续课程相关内容的讲授,使学生在电路这门课程的学习中能对本专业的知识体系结构有一个全面的认识,切实感受到各门课程之间不是相互独立的,而是相互关联的,以便于学生针对自己将来的发展方向,积极主动学习相关课程。基于以上的思考,对电路教学内容进行了重组。
1.电阻电路部分
网络定理讲解之后,引入例题D/A解码网络,通过电路实现D/A转换,引导学生建立数字电路的基本概念;将二端口网络内容提前,强调二端口网络端口的u、i关系,运算放大器就是一个典型的二端口网络,实际使用时只需关注其端子上的u、i关系,即端子效应。这种抽象观点是今后分析和设计复杂电路所必须具备的。这一内容是模拟电子技术和数字电路分析的基础。
2.动态电路部分
在电路课程中,对零输入响应、零状态响应、全响应的内容应当从概念上扩展到非直流激励的响应问题,引导学生提出这个问题,关注在信号与系统中的解决方法;强调动态电路阶跃响应的概念及重要性,增加介绍阶跃响应和电路系统响应之间关系的内容。这样极大地增强了学生的探究意识,有利于学生带着问题进入到信号与系统课程的学习中。
3.正弦稳态电路部分
正弦稳态电路中的频率特性和L、C谐振电路的分析等内容都是通信电路中的重要电路部分,为此应当把一个完整的无线电发射、接收系统介绍给学生,让学生深刻领会电路的基础作用,基础打好了,在通信电路中才能掌握好这部分内容。而三相电路分析的基本概念和基本理论都是电力电子技术中的重要电路部分,是发电系统的重要基础内容,为此应当把整流电路、逆变电路的概念介绍给学生,引导学生早点接触本专业所研究的基本内容,激发学生学习的积极性,便于学生自主学习。
四、总结
在电路教学中,对教学内容的改革进行了探讨,阐述了电路和信号与系统、模拟电子技术、数字电路、通信电路、电力电子技术等课程相关联的教学内容,对教学内容进行了重组,引导学生通过电路课程的学习,充分了解电路知识体系构架以及所学专业的研究对象、发展方向,对激发他们的学习兴趣和热情、学习后续专业课起到了积极的作用。
参考文献:
[1]于歆杰.研究型工程教育的特点与实现[J].高等工程教育研究,2004,(6).
[2]张建荣.工科学生实践能力培养的探索和实践[J].辽宁教育研究,2007,(7).
[3]孙雨耕,等.“电路”课程研究型实验的有益探讨[J].电气电子教学学报,2008,(6).
[4]邱关源.电路原理[M].北京:高等教育出版社,2005.
[5]张宇飞,史学军,周井泉.电路分析基础[M].西安:西安电子科技大学出版社,2010.
[6]Franco S. Electric Circuit Fundamentals [M].Saunders College Publishing,1995.
关键词:通信;课程;电子技术;项目载体
以数字化、网络化、智能化为特征的信息化浪潮蓬勃兴起,开启了通信大发展的时代,使社会对高职通信类专业人才的需求迅速增长。电子技术课是高职通信类专业的必修基础领域课程,是完成好通信技能培养的奠基石。开展电子技术课工学结合的教学改革,构建以学生为主体、以项目为载体的课程教学模式,对提高教学质量具有重要意义。
一、传统教学模式下电子技术课开设的现状
电子技术是一门理论与实践相结合的课程。在高职通信类专业教学计划中,电子技术的教学目标是:培养学生的电工电子应用职业能力,包括熟悉元器件与性能、掌握基本电路分析方法、熟悉电工电子一般应用、熟练使用常见仪器仪表;在课程学习的过程中培养方法能力与社会能力;为专业领域课的学习奠定电工电子基本理论知识。在教学组织方式上,囿于传统学科体系的课程组织方式和讲授式的教学模式,电子技术课普遍采用了“理论课程+实验教学+实习课程”的分设方式。仍然遵循着课程、实验、实习分离开设,一学期理论教学和实验,另一学期再实习;一位老师讲授理论,另一位再指导实验实习。在教学内容上,电路分析、模拟电子和数字电子的理论知识体系严谨慎密,但实验基本以实验箱验证测试为主,设计性和综合性实验较少,学生常常是为完成实验而实验,很难将实验上升到知识;实习则用1~2周,完成某单一电路安装为主。在教学考评上,一般以单独的理论笔试、实验验证操作、实习操作等终结性考核为主,辅以平时出勤与纪律的考核。与本科相比,高职学生底子相对薄、基础相对弱,对单纯的知识讲授感到乏味,学习积极性不高,甚至厌倦电子技术的学习。学科化的电子技术课程体系和授受式教学模式,在高校精英教育时期,以及在学生素质较高、学习能力较强、逻辑思维较好的学生中,发挥了重要的作用。但是随着高职进一步放宽入学门槛,高职学生普遍趋于行为导向能力和感知能力较强,对策略性体验型知识易于掌握。因此,电路与电子技术课就亟需改革传统学科化的课程组织模式和授受式的教学模式。
二、通信类专业的电子技术知识与技能需求
通过对高职通信类专业面向的主要从业岗位职责进行调研,分析提炼岗位工作典型任务,湹清通信类专业岗位的核心职业能力,分析核心职业能力所在的专业领域课程,建立通信类专业核心职业能力对电路与电子知识技能的主要需求关系。
三、以项目为载体的电子课体系建构设计
以项目为载体的工学一体化,就是把项目作为学习载体,教学以项目任务的形式开展。重构以项目为载体的电子技术课基本思路是:先选择合适的载体,即设计出能承载图1中技能和知识点的项目。在实施项目的过程中,通过学生主动参与项目的“咨询、决策、计划、实施、检查、总结”,教师对项目任务进行“布置、引导、提问、检查、小结、反馈”,从而达成电子技术课的教学目标,完成“电路电子能力+方法能力+社会能力”的培养。电子技术课程的知识与技能包括四个部分:电工与电路、模拟电子、数字电路和常见仪器仪表。但高职通信类专业一般只包括图1所列的24个基本知识点。为此只需对应选择相应的有效载体,如图2所示,可选择7个项目24个子任务,来承载24个知识点并完成相应的知识与技能。
四、以学生为主体的电子课教学模式构建
选定了7个载体24个子任务,逐一明确每个任务引导知识点,其设计思路即体现了以学生为主体的教学思想,但还需站在高职学生的认知水平去组织教学。先引导知识点,再采取“关联、主动、合作、对话”的方式去实现工学结合的教学。即在在关联方面,情境化的设置,体现真实工作场景,使学生身临其境。在主动方面,让学生领受任务任务阅资料制定计划,分析解决问题并进行具体实施。在合作方面,小组讨论提升团队能力。在对话方面,学生展现项目,书面和口头总结策略、步骤,展现成果。实现电子技术工学结合教学模式的路径:一是要设计编写项目任务所需的引导讲义;二是要准备项目任务书材料;三是要建立任务所需的教学情境并做好准备;四是要合理教学调度安排。通过项目设计、任务引导、情境设置、学生咨询决策计划、讨论实施总结、教师点评、布置作业等步骤,达到“让我去做,我会理解”的目的,从而实现电子技术课的教学目标。
五、构建知识与技能并重的考核评价
课程评价是教学过程必备的重要环节,既要达到考核目的又要能调动学习积极性。电子技术课教学改革后,需要过程评价和终结评价结合,也需要知识考核和项目动手技能相结合。考核方式的设计,着重要体现完成任务与掌握知识并重,知识融于任务过程。避免改革后出现轻知识的情况,考核方式建议包括:平时成绩由任务引导的准备与提问、分工与提交的任务方案计划、任务总结发言情况、作业练习等环节构成;项目成绩由任务进程中的观察记录、制作项目结果情况、操作规范情况等构成;笔试成绩由单元知识测试、半期笔试、期末笔试等构成。
六、结语
实施高职通信类专业电子技术课教学改革,着重体现了以学生为主体的教学情境构建、以项目为载体的课程设计、以教学做一体化的教学模式构建、以过程评价和终结考核相结合的考评方式设计。突出学生参与电子项目后再上升到知识的过程,契合了高职学生的思维模式,有助于提高学习的愉悦度,从而提高电子技术技能和知识素养,为后续通信职业能力奠定基础。
参考文献
[1]杜爽,朱凤武,郭瑞娟,孙上媛.电工与电子技术教学改革的研究与探讨[J].高教学刊,2016(9).
[2]庄晓燕.电子技术课程的课堂教学研究与探索[J].教育教学论坛,2016(5).
[3]韦泽训.构建高职移动通信技术专业工学结合人才培养模式的思路与方法[J].继续教育,2011(9).
[4]刘新.以项目为载体的工学一体化教学改革探讨[J].职教通讯,2015(27).
关键词:多媒体技术;高职;模拟电子技术;课程教学
随着计算机信息处理技术、网络通讯技术、多媒体数字化技术的快速发展,传统的教育观念、教育思想、教学内容、教学模式、教学环境、教学方法、教学手段和教学管理等正在发生深刻的变革,其中对现代信息化教学技术的应用是诸多教育教学改革的重要组成部分。《模拟电子技术》作为高职院校电类专业的一门重要基础课程,主要研究各种半导体器件的性能、电路及应用,是后续电类课程的理论和实践基础。然而,《模拟电子技术》课程概念抽象、非线性特性多、电子器件参数分散性大、工程应用性强,在传统教学中,往往是教师讲得通学生却听不懂,或学生听懂了却想不通。将现代信息化教学技术——多媒体技术应用到《模拟电子技术》课程教学,具有非常重要的现实意义。
高职《模拟电子技术》课程教学的特点
(一)概念抽象
该课程的概念和理论比较抽象,给教学带来了较大困难。如PN结单向导电性、正弦波振荡电路起振过程等,学生对这些概念和理论很难理解。为了使学生能够较好地接受这些单调、枯燥的理论,课程教学中教师多采用启发式、互动式、引例式、演练式等教学方法来加深学生的理解,但教学效果并不显著。
(二)非线性特性多
模拟电路是由半导体二极管、三极管为主要器件组成的。二极管、三极管均具有非线性特性,因此,线性电路理论对于分析和设计模拟电路不适用,必须采用非线性电路的分析方法。传统教学在这方面收效甚微。
(三)电子器件特性分散性大
电子器件的参数是特性的定量描述,也是实际工作中根据要求选用器件的主要依据。然而电子器件参数分散性较大,相应的特性分散性也较大,往往需要通过手册查得,在实际电路中往往难以或是不需要精确计算输出值。
要准确选取具有分散性的电子元器件,除了需要扎实的理论,还需要丰富的经验。
(四)工程应用性强
在科学技术飞速发展的今天,模拟电子技术几乎在所有的领域——科学研究、生产实践、日常生活中无处不在。模拟电子技术工程应用十分广泛,设计、应用一个模拟电路,即便是一个小型的应用电路,也是一项系统工程。
多媒体技术在教学中的优势
(一)多媒体技术形象生动,容易激发学生的学习兴趣
多媒体教学手段以灵活多变的教学方式,给学生提供鲜明、生动、清晰的感受,使学生感兴趣。多媒体教学手段以大量视听信息和高科技手段来冲击学生的思维兴奋点,可以极大地激发学生学习《模拟电子技术》课程的兴趣,从而调动起学生的学习积极性。
(二)多媒体技术丰富课堂信息量,能大大提高教学效率
《模拟电子技术》课程的主要特点是合理利用视图及表达方法表达各种元件及电路图的结构及有关国家标准。为了收到较好的教学效果,教师往往在课堂上手绘各种电路图。这个过程要占用许多授课时间,如果刻意减少绘图,势必会影响教学效果。而将多媒体技术应用到《模拟电子技术》课程教学中,制作电子教案、绘制电路、解答习题、做虚拟实验、进行仿真应用,能极大地丰富课堂教学信息,从而提高课堂教学效率。
(三)多媒体技术便于理论联系实际,有助于培养学生的动手能力
处于工作状态的模拟电路看似平静,实则正在发生量和质的深刻变化。这样的过程,传统教学手段根本无法在学生面前展示,学生的兴趣点往往只停留在电路的输出结果上,而忽视电路的实际工作原理和工作过程,不利于学生动手能力的培养。多媒体技术教学最大的优势是可以将复杂模拟电路的工作过程形象化,使理论联系实际。这对于促进学生实际操作、设计、应用模拟电路具有十分重要的意义。
多媒体技术在高职《模拟电子技术》课程教学中的应用
(一)使微观世界和抽象概念直观化
由于半导体内部的载流子是微观粒子,看不见、摸不着,因此,在传统教学中,学生对PN结形成过程的理解全靠想象,学生感到太抽象、难以接受,在短时间内很难透彻理解。
采用多媒体动画教学,可将P型半导体与N型半导体内部的空穴与电子用不同的标识符形象地描绘出来,生动地演示PN结内部微观粒子的运动。这样,将学生带入微观世界,就可以让学生去观察和发现“奥秘”:扩散运动内建电场漂移运动扩散与漂移达到动态平衡,从而理解PN结的形成过程。
通过在PN结两端加不同极性的电压来破坏PN结原有的动态平衡,会使它呈现单向导电性。可利用多媒体动画演示PN结加正向电压处于导通状态时,外加电压的方向与内电场方向相反,使P区的多子空穴和N区的多子电子都推向空间电荷区PN结厚度变窄内电场削弱PN结原有的平衡被打破扩散运动大于漂移运动在外电源作用下,P区空穴不断扩散到N区,N区的自由电子不断地扩散到P区,从而形成了从P区流入N区的正向电流PN结正向导通。PN结反偏时的动态过程正好相反,少子漂移运动形成极小的反相饱和电流。这样,就能使学生真切感受PN结的单向导电性,“亲眼见到”在微观世界里PN结如何正偏导电与反偏截止。
三极管与场效应管内部载流子的运动都可以用多媒体动画形象生动地演示,将肉眼看不见的微观世界载流子传输过程非常形象和直观地展现出来,学生的学习效果会非常好。
(二)使非线性特性形象化
非线性电压放大电路对低频信号的放大作用是本课程的重点,是学生学习后续各章节的基础,同时也是难点。许多学生很难在脑海中建立交直流共存的概念,尤其是对于非线性电路。为了使学生更好地理解交直流如何共存于一个非线性电路,最直观的方法就是图解法。
这种方法通过波形图与非线性元器件的特性曲线来动态展示电路的电压放大特性。先画出只有直流信号作用下的共射极放大电路的直流通路,带领学生分析仅在直流信号作用下流过三极管的静态基级电流与静态集电极电流的波形图。然后在直流通路的基础上,输入与输出端加上耦合电容,由输入耦合电容将低频交流小信号加在放大电路的输入端。最后利用动画效应给出输入端交流小信号随着时间的推移电压ui波形的动态变动情况。此时,在交流信号的作用下,基级电流ib,集电极电流ic,集电极与发射极之间的电压uce以及输出电压u0的波形,随着ui的动态变化就生动形象地显现在各支路与输出端。动画演示可采用慢放方式,使学生在波形的缓慢变化中看到输入与输出信号之间的动态关系与变动过程,以及ube与ib和uce与ic的非线性关系,由此即可形象展示交直流的共存现象。动画展示时,信号波形的变化快慢以及信号的周期可以根据具体情况调整,启发学生从中观察输入信号频率变化对输出信号的影响。
分析温度、电路参数对静态工作点的影响时,利用多媒体课件,可逐步展示随着温度与各电路参数的变化,静态工作点逐步上移或下移的过程,以及工作点位置不当时,输出信号波形出现的非线性失真。静态工作点过高使放大管进入饱和区输出波形出现饱和失真,过低使放大管进入截止区输出波形出现截止失真,以及波形上半周或下半周出现畸变的情况,都可以用动态图像形象地展示,进而取代书本上的静止图像。这样,就能马上吸引学生的目光,促使学生去思考。恰当地运用多媒体刺激学生的多种感官,不仅可以吸引学生的注意力,而且能有效地突出重点,突破难点。
(三)使电子器件参数分散性带来的不必要复杂计算简单化
电子器件的参数是特性的定量描述,也是实际工作中根据要求选用器件的主要依据。二极管参数分散性较大,在实际电路中难以精确计算输出值。利用多媒体技术可以简化因电子器件参数分散性带来的不必要的复杂计算(有时复杂精确的计算对于电路分析也没必要,只需知道局部电路的输出值即可反映电路设计的有效性),从而直观演示模拟电路的工作过程。
教师在讲授直流稳压电源内容时,传统的教学方法是先介绍整流、滤波与稳压的理论,然后再通过复杂数学计算与理论推导来求解负载上的输出电压值以及电压脉动系数,最后通过实验演示或实施分组实验教学来验证理论以提高教学效果。如果在这部分教学中辅以多媒体教学,对半波整流电路与桥式整流电路的整流效果、电容滤波与电感滤波的区别,电容C以及负载RL对滤波效果的影响(如图1所示),均可以通过视频动态镜头来展示。可通过慢放展现各种情况下的输出电压波形,引导学生对比波形的不同之处,让学生根据过程演示推导出正确的结论,从而使学生自然而然地得出结论。这要比通过繁杂的数学理论推导得出结论更有说服力,更容易使学生牢记结论。
尤其是在实验条件没办法满足教学要求时,通过多媒体技术进行实验演示,可以使学生通过观察实验过程和现象总结出规律或得出结论,有助于提高学生的学习积极性,提高学生的动手能力。不过要注意的是,多媒体课件所演示的实验难以替代学生亲自动手进行的真实实验,若完全代替真实实验,有可能会扼制学生活跃的思维和丰富的想象力。
(四)虚拟化工程应用实践
对于振荡电路的起振过程,传统教学全靠学生想象,由于学生的知识水平和阅历有限,对起振情景想象不出或想象不全,从而限制了他们对相关知识点的理解。多媒体技术在正弦波振荡电路课堂教学中的应用却能很好地解决这一难题。利用电路仿真软件EWB或PROTEL先搭建振荡电路,接通电源后由虚拟示波器来测试振荡信号的波形(如图2所示),来模拟实现振荡电路的起振与振荡过程,不仅可以使学生深刻体会和理解振荡的抽象理论,而且还可以间接地教会学生如何利用虚拟仿真软件进行电路仿真,可谓一举两得。
正弦波振荡电路的理论讲授完成后,为了使学生能够将所学理论知识运用到实践中,加深对专业理论知识的理解,应带领学生做一个信号发生器。但由于教学资源与教学条件受限,实现起来比较困难。在这种情况下,可以考虑利用虚拟技术来实现,带领学生运用计算机技术与多媒体技术做一个虚拟信号发生器。在制作虚拟信号发生器的过程中,加深学生对振荡电路的理解,从而掌握振荡频率与谐振电路元器件及谐振频率之间的关系。
将多媒体技术应用于教学不仅可弥补有关理论教学、实践教学环节的不足,而且可使仿真软件与虚拟仪器的强大功能在教学领域获得进一步应用。
多媒体辅助教学引入高职模拟电子技术课堂教学后,弥补了传统教学的不足,优化了教学效果,不仅使枯燥乏味的理论变得形象生动,提高了学生的学习主观能动性,也使得学生不再惧怕实验与实训,学会在实践中去思考问题,从而提高动手能力。但多媒体技术的运用要恰到好处,不能取代教师的主导地位与学生的主体地位。巧用与妙用多媒体技术,才能使学生消除对本课程的畏难心理,真正激发学生学习电类专业课的兴趣。
参考文献:
[1]陈吉利,黄克斌,杨斌.多媒体技术在《模拟电子技术》课程教学中的应用[J].软件导刊(教育技术),2009,(5):32-33.
“电路分析基础“”模拟电子技术“”数字电子技术”作为电子信息工程专业的专业基础课,它不仅为后续专业课程打基础、提供知识储备,更为重要的是使学生具有本学科领域内扎实的专业基础知识、合理的知识结构、终身自我发展和开拓的能力,培养学生进行科学研究的基本素质、科学的思维方法及创新能力。在传统的课程设置中“,电路分析基础”被定义为“电路”理论的入门课,与“电子技术”课程的界限划分严格,课时分配上更重视其独立理论完整性和系统性,而较少考虑其实践性和如何为后续课程服务;传统的“电路分析基础”课程内容都不涉及与电子器件有关的内容,只研究理想化元件模型构成的电路,不讨论其建模背景,课程重点过多集中于“列电流电压方程求解”;导致学生在学习完该课程后宏观层面没有模块端口特性、子电路抽象和分层分析处理的概念,微观层面并不知道具体的理想器件和实际电路中的元件如何对应(例如受控源和开关)。“模拟电子技术”“数字电子技术”课程在大多数应用型本科院校的培养方案中设置为第三四学期开设,根据后续课程开设顺序前后次序有所调整。从三门课程内容的前后承接关系考虑,课程开设顺序依次为“电路分析基础“”模拟电子技术“”数字电子技术”,若考虑为“微机原理与接口技术”等第四学期开设的课程服务,课程开设顺序依次亦可调整为“数字电子技术”在前“模拟电子技术”在后;但不同程度上均存在课程内容前后衔接不紧密,部分知识点重复覆盖,理论与实验内容不协调的问题。为保障教学质量,培养学生的工程应用和创新意识,将“电路分析基础“”模拟电子技术”“数字电子技术”三门课程纳入“电子电路”课程体系进行优化改革是解决现有问题的有效途径。
2基于课程体系建设的调整优化
“电路分析基础”、“模拟电子技术”和“数字电子技术”三门课程的内容前后联系紧密,考虑课程之间的相互衔接,从课程体系角度对课程内容进行优化和整合是目前较为有效的解决方案。
2.l课程衔接设置与内容整合
课程内容改革要从整体考虑,即应着眼于课程体系建设为目标,对教学内容进行优化、整合和改革。如何在有限的学时内保证课程的完整性和系统性避免重复性,将最基本的知识、技能传授给学生是必须面对并设法解决的问题。为保持课程体系的衔接和紧密联系,陕西理工学院电子信息工程专业采用“电路分析基础“”模拟电子技术”“数字电子技术”课程开设顺序,为保证该课程体系与后续“微机原理与接口技术”等课程的前后衔接关系,将原培养计划中的开设时间前移。“电路分析基础”设置为第二学期第三学期开设,第二学期讲授“电路模型和电路定律“”电阻电路的等效变换“”电阻电路的一般分析”“电路定理”“储能元件“”一阶电路和二阶电路的时域分析”等基础知识,并适当引入二极管、三极管、集成运放等电子元器件的介绍,且在课程中以例题形式说明其基本的模型和分析方法,同时加强非常重要的戴维南定理的内容,以便为第三学期开设的“模拟电子技术”打下坚实的基础。在学生学习完“模拟电子技术”后第四学期前十四周开设“数字电子技术”课程,“微机原理与接口技术”设置为第四学期第四周开设。通过优化理顺课程间的相互关系,此方案的实施不仅解决了课程理论学时压缩的困境,而且有助于教学质量的提高。
2.2理论与实践教学相互补充与加强
“电子电路”课程体系中课程的共同特点是兼有理论和实验两个环节,二者相辅相成,相互补充。为保证内容进度上的协调,增强实验促进理论知识理解和工程实践动手能力提高的效果,从课程体系建设角度出发,制定了统一的教学大纲。为了帮助学生更快地将实际电子电路与理论教学建立直接的联系和对比,更好地掌握教学内容,强化知识点,提高学生的动手能力和工程应用的素养,实验环节按照理论教学的重点、难点设置实验内容,为了加强理论与实验知识传授的标准化,减少双方知识的重叠,对实验环节的时间和任务以及任务量做合理的调整和安排。
2.3层次型实验体系建设
从培养工程系创新型人才的角度出发,基于“电子电路”课程体系建设的思想,建立“以人为本,激励创新,目标驱动,融合贯通”的实验教学体系。将实验内容分为验证性、综合性、设计性、创新性四个层次,并在第三学期末和第四学期末增加“电工电子工艺实习”“电子技术课程设计”实践环节。基础验证性、综合性实验重点培养学生的基本实验技能和方法,学会正确记录数据,科学分析处理数据,规范撰写实验报告;设计性、创新性实验要求学生根据具体的应用问题,从实际工程应用角度完成设计、仿真、安装调试的全部过程,以提高学生的实验兴趣,培养学生分析问题、解决问题的能力和工程创新意识。
3教学方法和手段的改革
3.1转变教学观念和授课方式
从过去的以教师为中心,课堂为中心、传授知识为目的的传统教育观念,转变成以学生为中心,学生学到和如何利用知识的新观念,引导学生主动学习。在教学过程中增加主动学习和动手实践,强调分析问题和解决问题的能力。采用多媒体结合板书授课的同时引入演示实验,用投影仪展示实验的实物和实验的波形、结论,激发学生的学习兴趣,增加对知识的理解。
3.2开放课堂教学,培养仿真设计能力
课堂教学与工程教育新模式“构思—设计—实现—运作”进行有机结合,精心设计课堂引导问题,在课堂教学中与学生实时互动。“电路分析基础”从基本电路阶段就开始引入EWB仿真软件,结合电路对EWB的功能和使用加以介绍;“模拟电子技术”讲授模拟电子基础知识的同时引入Multisim等仿真软件的使用介绍;“数字电子技术”课程讲授的同时引入VHDL语言,利用ALTERA公司的QUARTUS软件综合训练学生进行数字电子技术综合设计。
3.3加强实验教学,培养归纳总结能力
实验教学中通过验证性、综合性、设计性、创新性四个层次实验项目的设置丰富实验内容,通过“电工电子工艺实习”和“电子技术综合课程设计”强化了学生对知识体系的理解应用,把“电路分析基础”“、模拟电子技术”和“数字电子技术”相关联的知识点有机结合起来。培养学生以工程问题为背景来分析计算具体的电子电路。实验指导中教师的指导形式采用自然分层分流,因材施教的方案,营造人人可以成才、人人都能成才的育人环境。分流分层,因材施教思想的核心是根据具体实验项目类型指导形式明确化,验证性、综合性对全体学生开设,采用集体辅导和讲解的形式进行,所有学生必须掌握基础知识、常用工具和基本分析技能。对学有余力的学生开放创新实验室,通过专题讲座的形式开出设计性、创新性实验,重点讲解与实验项目相关的设计方法和调试手段,鼓励学生自主提出不同的设计方案。从而实现分流分层培养,达到因材施教,个性化培养的目的。实验考核与测试科学规范化,根据实验项目类型不同安排多次阶段考核与交流答辩,帮助学生巩固实验内容,提高工程实践水平。重视学生实验报告的撰写,每个实验项目均要求学生按照正式论文格式撰写实验报告,必须重点处理实验测试数据,严谨分析得出实验结论。
4结束语
关键词:模拟电路;数字电路;唯物辩证法;学习方法
中图分类号:G642.46 文献标志码:A 文章编号:1674-9324(2012)04-0192-02
工科院校学生,无论是电专业的还是非电专业的本科生、专科生都要学习模拟电子技术和数字电子技术,简称模电和数电。因为这两门课程对电专业的学生来说是他们学习后续课程的专业基础课;对于非电专业的学生,是他们接触电的知识的一门必修课。也是培养他们缜密的思维、具有良好的工程意识、树立全局的观念处理问题的一个很好的训练机会。然而大部分的同学在学习这两门课程,尤其是模拟电路课程,都感到异常的头疼。他们把模电称为“磨电”――折磨人的电路。更有甚者,干脆把模电称为“魔电”――变幻莫测,模棱两可,琢磨不定,难以驾驭,简直就是“魔鬼”。同学们到了期末,如果考试科目太多,顾此失彼,首先放弃的就是模电。那么,模电到底是怎样的一门课程呢?它有什么样的特点?为什么会让同学们如此头疼?我们在学习模电时应注意哪些问题才能驾轻就熟呢?
一、模电的课程特点
1.什么是模电。模电是“模拟电子技术”的简称,它是电子技术的一个分支。电子技术是研究如何应用电子元器件组成特定的电路完成特定的功能的一门专业技术。它包括模拟电子技术和数字电子技术,习惯上称为模拟电路和数字电路,简称“模电”和“数电”。模拟电路研究的是连续信号的加工和处理,包括信号的放大、滤波、变换和运算等。数字电路主要是对离散信号的处理。
2.模电的特点与现状。模拟电路研究的是连续变化的信号。事物的发展变化是一个连续的渐变的过程,是由多个因素决定的,并且各个因素之间是密切关联的。于是模电给同学们的感觉就是模棱两可,不确定性,琢磨不定,难以把握。事物的发展总是从一个阶段变化到另一个阶段。数字研究的是从起点到终点的因果关系――逻辑关系,具有确定性。而模拟电路则要研究从起点到终点的整个变化过程,难度显然要大于数字电路。从这个意义上说,数电是简化了(抽去中间过程)的模电;模电涵盖了数电。所以同学更偏爱于数字电路。根据多年的教学经验,同学“惧怕”模电的原因主要有三点:①电路原理的基础不扎实,对电路的感觉不够;②模电的学习中要求用全面的、关联的、变化的眼光去看待事物,前续课程这方面的训练远远不够;③对模电中出现的半导体元件,如二极管、稳压管、三极管、场效应管、运算放大器等感到很陌生,尤其过去没有接触过非线性元件,感觉很不适应。
3.模拟与数字的关系。其实模拟电路与数字电路并非完全割裂的,它们是相互对立、相互统一、相互依存、相互转化的。因为事物的发展都会有一个由量变到质变的过程,数量上累积到一定程度就会发生质的飞跃。例如,把一个正弦波送到一个电压放大器进行线性放大,在输出端得到的是一个成比例的正弦波。如果加大输入信号的幅值,或加大放大器的电压放大倍数,则输出的正弦波将出现上、下削顶,变为梯形波。如果不断加大放大倍数,则输出波形将变为方波。这时就把一个连续变化的正弦波变成了一个离散的方波信号,完成了模拟信号到数字信号的转换。
4.模拟与数字的优劣。在普通人眼中,似乎存在这样一种共识:数字的东西总比模拟的好。其实这是一种认识上的误区。模拟技术可以控制信号连续变化;数字技术只能做到按阶梯变化。也就是说模拟技术可以控制得更精细,数字技术可以保证有更好的重复性,两者各有优缺点。比如,用遥控器调节电视机的音量,有时侯(尤其是夜深人静时)会发现调到数字9,声音小了点;调到数字10,声音又大了点,最好是调到9.5,可是数字调节做不到。而采用模拟方式则可以在9~10之间任意调节。反之,在电视机或收音机调台时,数字技术比模拟技术更有优越性。用模拟的方式找台,需要来回搜索几次,再选择一个最佳点。采用数字的方法,其实也要来回搜索,只不过它能把最佳位置――谐振点,记录和储存起来,并给它一个编号,下次只要输入该编号,即可选择该电台节目,无须再重新调整,因为上次已经存储好了,使得电台的调节很方便。那么,模拟技术和数字技术孰优孰劣呢?根据上述介绍可以看出,模拟和数字没有优劣之分。因为事物的变化都是连续的,即便是数字化后,最后还是要回到模拟信号,因为世界本身就是模拟的,数字化不过是一种手段,使我们能够更好地进行操控,本质的东西还是模拟技术。
二、模电的学习方法
针对模拟电路的特点和同学们的学习状况,结合多年的教学经验,我们提出以下一些学习方法,希望对同学们学习模拟电子技术能起到抛砖引玉的作用。
1.掌握器件外特性。初学模拟电路会遇到很多未曾接触过的半导体器件,这些器件都有一个共同的特点――非线性。其实,正是它们的非线性构成了这些器件的特殊作用。二极管正是因为有单向导电性才能完成整流和开关的作用;稳压管正是利用了反向击穿特性才能实现稳压功能;三极管利用线性区可以完成电流放大的作用;利用非线性区可以作为开关来使用。场效应管的特点是高输入阻抗,属于电压控制器件。在学习这些新器件时,不管其内部结构有多么复杂,只要注意掌握器件功能、内部结构、工作原理、特性曲线、典型应用这些基本要素,就能达到事半功倍之效。
2.不能就事论事。例如,在分析共射连接单管放大电路的电压放大倍数时,电压放大倍数的表达式为:AU=-β(RC/rbe)。AU的大小与三极管的电流放大倍数β、集电极电阻RC成正比,与输入电阻ri(≈rbe)成反比。要想提高AU好像加大β即可。可事实上,单方面加大β并不能提高AU。因为rbe=rhb+(1+β)26/IE,加大β的同时,rbe也随之增加,AU并不增加。而且β加大后,穿透电流ICEO=(1+β)ICBO也加大,对放大电路静态工作点的稳定性不利。
3.不能看表面现象。仍以电压放大倍数为例,AU=-β(RC/ri)。表面上看减小输入电阻ri可以提高电压放大倍数AU,可事实上却适得其反。因为放大电路的输入端要接信号源,而信号源都会有内阻RS,RS要和输入电阻ri分压形成输入电压ui,即ui=USri/(RS+ri),US为信号源的电压。ri越小,分得的输入电压ui反而越小。再说,作为电压放大电路的输入电阻ri应该尽量大些,才能减前级输出的负担。而且作为仪器放大器使用时,其输入电阻ri越大,相当于电压表的内阻越大,测量越准确。
4.要全面地看问题。单管电压放大倍数AU=-β(RC/ri),AU与β、RC、ri(≈rbe)均有关系。要想提高AU,表面上看可以有3个办法:提高β,减小ri,增大RC。如前所述,提高β,rbe也增加,AU并不增加。减小ri,增加了前级的负担,ui反而下降,得不偿失。增加RC,好像可以提高AU。但是在静态集电极电流IC不变的条件下,增加RC,将使集电极电位UC下降,输出的动态范围减小,甚至使三极管进入饱和状态。提高电源电压VCC可以使三极管退出饱和,但VCC变化后,静态工作点发生了变化。电压放大倍数AU需要重新计算。所以,电压放大倍数AU是由多个因素决定的,而且各个因素之间有着相互的关联,相互影响,要学会全面的分析问题。
通过多个实际例题的分析,使同学们了解了模拟电路课程的特点与授课现状,认识了模拟电路和数字电路的相互关系,学会了用唯物辩证法的思想指导自然科学的学习。在学习模拟电路的过程中要善于抓住主要矛盾,忽略次要矛盾,突出重点,带动一般,使复杂问题得以简化,收到了很好的效果,深受同学们的欢迎。
参考文献:
[1]康华光.电子技术基础(第四版)[M].北京:高等教育出版社,1999.
[2]刘蔚东.电工电子技术系列课程教学内容体系的改革与思路[J].高等教育研究,1998,(1).
[3]宋婀娜.电子技术”课程教学改革的探索[J].电气电子教学学报,2008,30(5):7-8.
[4]童诗白.模拟电子技术基础(第三版)[M].北京:高等教育出版社,2001.
[5]阎石.数字电子技术基础(第四版)[M].北京:高等教育出版社,1998.
[6]陈洪明.电子技术基础(模拟部分)(第四版)习题全解[M].北京:中国建材工业出版社,2004.
[7]杨素行.模拟电子技术基础简明教程(第三版)学习指导书[M].北京:高等教育出版社,2006.
[8]肖前.辩证唯物主义原理(修订本)[M].北京:人民出版社,1991.
[9]丁晓红.哲学原理[M].上海:同济大学出版社,2002.
摘要:为解决《电子技术》课程内容抽象学习枯燥的问题,提出以“机器人循迹小车”为主体的项目教学法,将《电子技术》教学内容贯穿其中,有效激发了学生的学习兴趣,提高了学生的学习效率。项目教学嵌入国际流行的CDIO工程教育理念,且融合学科交叉、素质教育等,形成了一套适合大多数理工科院校学生的EIPC-CDIO新的工程教育理念,为电子技术教学质量的提升奠定了基础。
P键词:电子技术;机器人小车;CDIO;项目教学法
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)52-0188-02
一、引言
《电子技术》课程是理工科类专业最重要的基础课程之一,是通信工程、电子信息工程、计算机等专业的必修课。该课程不仅要求有较高的理论基础,而且还需要较强的实践动手能力。其内容抽象、知识点多、实践性强的特点,被众多教师和学生列为难教、难学的课程之一。学生的动手能力得不到应有的提高,这与传统教学模式存在的问题有直接关系。因此,电子技术课程教学改革势在必行。
二、教学改革的总体思路
本文基于CDIO(Conceive Design Implement Operate)国际先进教育理念,根据理工科学生的实际情况,研究出一套合适的EIPC-CDIO(Ethics Integrity Professionalism Cooperation)工程教育理念教学改革方案。将《电子技术》教学内容按章节生成几个子项目,各个子项目之间相互关联,且融合交叉学科内容,教师开篇教学以项目问题的形式引出,教师带着问题去引导学生学习相关章节知识,当子项目完成时,电子技术各章节知识点也随即完成。教师再将各个子项目融合在一起,适当加入当今流行的课外知识,并使其有机关联,形成一个综合项目,以任务的形式安排给学生。学生接到综合项目后,仔细分析发现与各个子项目关联很大,自然会思考如何根据之前所学子项目知识来设计综合项目。学生在整个学习过程中,始终带着问题去学习,注意力更加集中,有目的地去查找问题和解决问题,通过查找资料、设计电路、安装调试等环节,有效提高了实践创新能力。
三、教学项目设计
1.子项目设计。《电子技术》包括模拟电子技术、数字电子技术两部分内容。首先将各个章节知识点归类,联系紧密的章节可合二为一,考虑到模拟电路主要解决的问题为信号整形、放大、处理,数字电路解决的问题为组合逻辑电路与时序逻辑电路,因此电子技术内容可融合为控制领域类的项目。为了在教学中能更大程度的激发学生学习兴趣,结合历年全国大学生电子竞赛代表性题型,将综合项目定为机器人循迹小车较为合适,一方面其难度适中,容易入手,另一方面学生也有兴趣研究循迹小车。因此《电子技术》全篇教学将以机器人循迹小车的项目设计来展开,如图1所示。
将机器人循迹小车拆解为多个子项目:循迹模块子项目、控制模块子项目、驱动模块子项目、电源模块子项目等。其中循迹模块与电源模块可映射到模拟电路的基本放大电路、集成运算放大器、直流稳压电源等章节中,驱动模块、控制模块子项目内容可映射到数字电路的组合逻辑电路、时序逻辑电路中,因此机器人循迹小车整个项目已拆解并映射到《电子技术》各相关章节中。
2.教师教学过程设计。教师教学项目设计按以下步骤进行:①思考如何将《电子技术》按章节归类分解,这是一个构思(Conceive)过程;②对各个章节进行子项目设计,子项目要求与课堂教学实例接近,也可与教师科研实际相结合,这是一个设计(Design)过程;③各个子项目设计完成后,教师应该考虑如何教学生去实现这些子项目,学生带着问题去寻找答案,这是一个实现(Implement)的过程;④学生学会了如何设计这些子项目,可通过软件仿真、硬件搭建的方式去实现它,这是一个运作(Operate)的过程。教师项目设计包括构思、设计、实现、运作四个部分,与国际上先进的CDIO理念(构思Conceive 设计Design 实现Implement 运作Operate)四个部分一致,因此本教学设计思路具有较高的可行性。
3.学科融合与交叉设计。在教学过程中,设计、运作步骤可安排学生分组进行。实际教学中,为了丰富教学内容,应融入其他相关学科知识,比如高等数学、EDA、传感器等。这实际是对国际先进CDIO理念的补充和拓展,融合学科交叉、素质教育、道德诚信(Ethics Integrity Professionalism Cooperation)在内,形成一套新的适合我校学生的教学模式:EIPC-CDIO教学模式。
四、结论与思考
选择“机器人循迹小车”作为教学项目,可有效激发学生兴趣,提升教学效果。项目教学基于CDIO国际先进理念,保证了教学改革的可行性,实现了做中学、学中做的理念。结合学生实情,融合了学科交叉、素质教育、道德诚信等,形成了一套新的EIPC-CDIO项目教学法,该教学改革方案具有一定的普遍性,适合绝大多数理工科专业教师教学参考。
参考文献:
[1]杨春玲,朱敏,张岩.数字电子技术基础研究性教学方法的探索与实践[J].中国大学教学,2014,(2):58-60.
[2]王革思.探究式教学在数字电子技术实验课中的应用[J].教育探索,2014,(1):58-59.
[3]何伟,张玲,胡小平.电子技术实验教学改革与实践[J].实验室研究与探索,2012,31(7):135-137.
[4]蔡立娟,张瑜,姜淑荣.“电子技术”课程实验教学改革的探索与实践[J].教育与职业,2011,(3):172-173.
[5]顾佩华,包能胜,康全礼,等.CDIO在中国(上)[J].高等工程教育研究,2012,(3):24-40.
[6]顾佩华,包能胜,康全礼,等.CDIO在中国(下)[J].高等工程教育研究,2012,(5):34-45.
[7]王春模.项目教学法在“电子技术”教学中的应用[J].教育与职业,2014,(18):149-150.
[8]李彤,张璇,王旭等.SE-CDIO工程教育模式的探索与实践[J].高等工程教育研究,2014,(1):52-57.
关键词: 差动放大电路; 输出波形测试; Multisim; 实验仿真
中图分类号: TN722?34 文献标识码: A 文章编号: 1004?373X(2015)12?0132?03
0 引 言
差动放大电路利用电路结构与元器件参数完全对称性的特点,能有效地抑制零点漂移,理论上只对有用的差模输入信号放大,极大地提高了直接耦合放大电路抵抗环境噪声干扰的能力,因此作为直接耦合多级放大电路的输入级,广泛应用于模拟集成运放中。然而,作为模拟电子线路的重要单元内容,差动放大电路一直是大学生学习《模拟电子技术基础》课程的一个难点,表现为电路形式多样、理论分析复杂、以及实验测试困难。在电路形式上,根据输入/输出方式的不同,差放电路一般分为双入双出、双入单出、单入双出、单入单出四种典型电路。正如大多数教材的编写,将单端输入看作双端输入的一个特例(其中一端输入信号恰好为零),可将差放电路仅仅根据输出模式的不同简单划分为双(单)入双出、双(单)入单出两种。在具体的理论分析中,同基本放大电路一样也分为静态工作点测试与动态特性分析两步,分别采用直流通路与交流通路分析,而动态特性分析中针对共模信号和差模信号的具体分析方法又有不同。
由于差动放大电路的输入信号通常是微弱信号,在输出端与负载(或下级电路)之间采取了直接耦合模式,没有电容等隔直措施,因此负载上获得的电压信号是差放电路输出的全部电压,既包含放大后的差模小信号,也包含相对较大的直流成分。对于双端输出模式,两个三极管集电极输出的直流电压互相抵消,但在单端输出模式下,如何在输出端从整体电压信号中测试比例很小的有用差模信号,目前主流教材中均没有明确介绍,查阅参考文献,也没有对单端输出模式下怎样具体测试输出差模与共模信号的相关报道[1?8]。为此,本文以Multisim软件仿真实验形式[9],对《模拟电子技术基础》的这部分内容进行了补充分析。
1 双端输出差放电路动态参数测试
1.1 差模信号测试
电路如图1所示。
采用双通道示波器测试,A通道接两个三极管的基极B1和B2双端输入端口,B通道接集电极C1和C2双端输出端口,测试波形如图2所示。
由图2可知,输出波形与输入反相,利用示波器T1时刻测试结果计算有:
[Ad=通道B代表的差模出Uod通道A代表的差模入2Uid=-0.673 10.008 5≈-79]
1.2 共模信号测试
将两个输入信号源电压有效值都改为13 mV共模输入,示波器A通道接基极B1与地单端输入端口,B通道接集电极C1与C2双端输出端口,测试波形如图3所示。
由图3可知,输入为标准正弦波,而输出为弱噪声信号,利用示波器T1时刻测试结果计算:
[Ac=通道B代表的共模出Uoc通道A代表的共模入Uic=959×10-1218×10-3≈0]
由上述测试分析可知,在双端输出时,由于电路左右结构参数完全对称,C1和C2两点之间仅仅输出差模信号,对共模信号与电路的直流偏置信号几乎完全抑制。
2 单端输出差放电路动态参数测试
2.1 差模信号测试
将电路改为C1点对地单端输出,左右两端输入电压的有效值分别为16 mV和10 mV,示波器通道A接基极B1与B2双端输入端口,B通道接C1与地单端输出端口,测试差模输出波形如图4所示。
将电路改为C2点对地单端输出,输入信号不变,示波器通道A仍然接B1与B2双端输入端口,B通道接C2与地单端输出端口,测试差模输出波形如下:
由图4、图5可知,C1(C2)点对地输出波形与输入反(同)相,且都包含有很大的直流分量,导致输出波形整体上移很多,这是因为单端输出时没有隔直措施,输出信号中既包含放大的交流分量,也包含很大的直流偏置分量。国内《模拟电子技术基础》主流教材中,对此部分内容的介绍均采用了基本放大电路中类似的方法,首先分析三极管集电极的静态直流偏置电压,然后利用交流通路分析动态指标(包括差模与共模输出信号),进而计算差模与共模电压放大倍数。而在单端输出下如何合理测试差模与共模输出电压,所有教材中都没有具体介绍,在各个大学的《模拟电子技术基础》公共视频或PPT多媒体教学中也没有发现有明确讲解,导致在实验课堂上学生测试到图4和图5波形时产生疑惑。
为此把左、右两输入端直接接地,然后单独测试单端输出的集电极静态工作点电压。C1点对地静态工作点电压测试如图6所示。
由图可见,无交流信号输入时,C1点对地输出的静态工作点电压为1.432 V,对C2点测试同样得到1.432 V。
分别利用图4、图5的T1时刻测试结果,并结合图7,计算差模电压放大倍数:
2.2 共模信号测试
将两个输入信号源电压有效值都改为13 mV输入,A通道接B1点对地端口,B通道接C1点对地端口,测试C1点对地单端输出的共模信号如图8所示。
由图8并结合图7,射极耦合的差动放大电路单端输出(C1对地)时,共模放大倍数为:
[Ac1=Uoc1Uic=1.427-1.43218×10-3≈-0.3]
同样方法可测算得到[Ac2≈0.3]。
对于射极耦合差动放大电路,双端输出时,共模输出与直流输出(本质上直流信号也为共模信号)几乎为零;而单端输出时有比较小的共模信号与很大的直流信号。
3 结 语
本文利用Multisim软件,以仿真实验的形式,介绍了《模拟电子技术基础》课程中差动放大电路动态输出波形的具体测试方法。由于差放电路采用了直接耦合,输出端与负载(或下级电路)之间没有隔直措施,单端输出时既包含放大的交流信号,也包含很大的直流成分,因此在输出波形测试中首先需要在输入端对地短接的情况下测试输出的直流成分,然后分别在输入端加载差模输入与共模输入信号,最后在总的输出波形中减去直流分量,得到差模输出与共模输出信号,进而计算得到电路的差模与共模放大倍数。
参考文献
[1] 毕满清,王黎明,高文华,等.模拟电子技术基础[M].北京:电子工业出版社,2008.
[2] 童诗白,华成英.模拟电子技术基础[M].4版.北京:高等教育出版社,2006.
[3] 华成英.模拟电子技术基本教程[M].北京:清华大学出版社,2006.
[4] 康华光.电子技术基础模拟部分[M].4版.北京:高等教育出版社,2000.
[5] 周淑阁.模拟电子技术基础[M].北京:高等教育出版社,2004.
[6] 朱定华.模拟电子技术[M].北京:清华大学出版社,2008.
[7] 李立华.模拟电子技术[M].北京:电子工业出版社,2008.