HI,欢迎来到好期刊网!

钢筋混凝土论文

时间:2023-03-14 14:48:05

导语:在钢筋混凝土论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

钢筋混凝土论文

第1篇

模板的分类有各种不同的分阶段类方法:按照形状分为平面模板和曲面模板两种;按受力条件分为承重和非承重模板(即承受混凝土的重量和混凝土的侧压力);按照材料分为木模板、钢模板、钢木组合模板、重力式混凝土模板、钢筋混凝土镶面模板、铝合金模板、塑料模板等;按照结构和使用特点分为拆移式、固定式两种;按其特种功能有滑动模板、真空吸盘或真空软盘模板、保温模板、钢模台车等。

二、我国在二十世纪六十年代前的水利水电工程施工中主要采用木质模板,由于木材易于制作成各种形状,有些形状特殊的构筑物,如水电站的尾水管的混凝土浇筑,通常均采用木材制作模板,近代仍然有许多国家、许多水利水电工程中使用木模板或钢木混合结构。

七十年代以来,我国在混凝土坝施工中多采用大型钢木混合模板,混凝土(预制)模板等,随后广泛发展了滑动模板以及由此而带来的混凝土浇筑工艺的革新。1973年丹江口水库下游引水工程排子河度槽的空心墩,采用了滑动模板施工方案。1975年密云水库溢洪道工程的溢流堰和陡槽陡坡混凝土衬砌,采用了沿轨道行走的拖板式滑动模板,1997年在曲率变化复杂的清水闸双曲拱坝上采用了滑动模板施工,在这一时期还有竖井、隧洞、渠道、拦污栅工程等采用了滑动模板施工。

七十年代末,我国执行以钢代木的技术政策,组合钢模板大部分用于基础、柱、梁、板、墙等施工中,尤其用于水电工程中的大体积混凝土施工中,呈现了明显的优势。

1946年在狼溪坝(worfcreek)首次使用悬壁模板,随后在使用中不断改进,颇受欢迎。中国在二十世纪五十年代已采用半悬壁模板,七十年代中期,开始研制钢悬壁模板,由于混凝土施工中模板的吊装十分频繁,美国在七十年代初研制并在德活夏克重力坝中,使用自动锚固的自升悬臂模板,取得了很好的技术经济效益。

三、模板工程之所以受到重视,并努力提高和改进其工作和使用性能,与它在混凝土施工中的重要性是分不开的。

首先,水工混凝土施工中模板工程费用比重很大,约占混凝土总造价的15-30%。在无筋或少筋的大体积混凝土工程中约占5-15%。模板制作与安装劳动消耗量约为28%-45%(一方混凝土中的劳动量)并消耗大量优质钢材和木材,见下表:

大坝名称

龙羊峡

太平哨

葛州坝

清水闸

砼单价(元/m3)

63.0

86.5

54.1

47.0

67.1

75.0

65.4

每m3砼模板费用

三次周转

9.6

12.1

9.7

9.1

9.0

9.0

%

15.2

14.0

17.9

19.4

12.0

15.7

七次周转

7.4

9.3

6.6

6.7

7.0

7.4

%

11.7

10.7

12.2

14.3

11.0

12.0

备注

83年单价不计吊车工作占班费

模板的作用,还常常表现于控制施工进度上,在大体积混凝土施工中,根据一些工程的统计,模板的拆装时间,约占总施工周期的35%。模板工序在许多情况下是施工网络图中的关键线路,模板工艺的改进常常可以加快施工进度。

水利水电工程中模板的地位,还可以从国外混凝土坝施工经验中看到,下面是国外工程中模板工程占施工费用的比例。

1、苏联:模板的平均劳动消耗占混凝土单价的10-22%。

2、日本:模板费用占施工中的费用为:拱坝47%,重力坝30%。

3、美国:模板工程占总费用的20%。

(注:日、美是对单个有代表性的坝的施工总结而得。)

由上可知:模板工程在钢筋混凝土施工中占有相当重要的作用,做好模板的结构设计和工艺设计对提高工程效益和加快施工进度是有相当的意义。

一、四、模板的型式和结构有时能改变混凝土的浇筑工艺

传统的模板型式是采用拉条固定面板,这种结构方式妨碍入仓,混凝土拌合物的整平与捣固,妨碍面层的凿毛清理,妨碍浇筑仓面的施工准备工作,无法进行机械化作业。

悬臂模板则大大克服了传统的模板型式的缺点,在机械化施工和减少劳动消耗上呈现了很大的优势。

意大利修建阿尔卑—得热拉大坝时,采用了一种不拆除的模板(钢挡板),由于这种模板形成了承压面,所以大幅度降低对大坝混凝土砌体的要求,取消了浇筑块间接缝的防渗,采用分层铺筑混凝土,取消施工中的工作面,(在混凝土铺完之后用专门机械切出工作缝)。

苏联在萨扬诺—舒申斯克水电站施工中架用带“锚杆”的双层悬壁模板,这种模板的支承柱不是向下伸而是向上伸出,下层模板的支承柱支撑上层模板的面板,模板的自重和混凝土的侧压力均由下层模板承受,因此每个浇筑仓至少有两层模板,这种模板只需拆除下层模板的固定螺栓。从而,减少了各浇筑层间的时间间隔,提高了浇筑速度也减少了混凝土表面的清理工作与准备工作量。

滑动模板则对混凝土浇筑速度更显示出优势和潜在的生命力,这种型式的模板除表现在时间效益(工期缩短)之外,模板本身的价格也可以降低,而且能很大程度上提高混凝土浇筑效果。

总之,不同的模板型式决定了混凝土浇筑的不同施工工艺,也对混凝土的质量和工程效益有不同的影响,如何改进模板工艺是一个重要课题。

五、我局在参加的水电建设工程中对模板工程仍然以传统的模板型式为主,尽管在太平湾电站建设中引进了一些新的工艺技术(试用),但有些问题仍然值得探讨。

1、我局一直倡议施工单位在混凝土施工中尽量使用钢模板,但在实际施工中,有许多部位诸如挡水坝段,厂房立墙等都仅使用少量钢模,这不仅浪费了大量木材而且大大降低了工效。成功的工程总结出,钢模可比木模提高工效2-4倍(工效包括安装、拆模、电焊、凿毛、搭设平台等的综合用工),而且钢模的成本费(达到标准周转率)仅为木模的一半。因此,合理的以钢模代替木模是提高经济效益的好方法之一。

2、我局在模板管理上有许多不足。其主要表现在模板的使用周转率上,按规定,钢模板的周转率为50次,大型木模板为15次,一般木模板为7次,而我局实际周转率远远达不到这个要求,仅以一般木模为例,我局使用周转率为4次左右,这大大增加了施工费用,解决这一问题的办法除了提高工人思想素质,业务水平外,我们的管理水平有待提高。

3、在我局引进使用新的模板工艺上,滑升模板是突出的一例,有成功也有失误,在云峰大坝修补工程中,使用的滑模是比较成功的,而在太平湾清水闸闸墩上使用滑模则值得探讨,排除试验目的来谈,滑升模板一次性投资较大,因此它适用于高层混凝土浇筑中,高度较低的混凝土浇筑中使用则效益不显著或者没有效益,因此新技术的使用中应考虑其适用范围,并与经济效益挂钩才是适宜的。

4、模板工程在近几年已形成一个专门学科,但这方面的书并不多,我们在工程施工中应对每一项工作,各种形式的模板认真总结,使得在今后的工作中对每种建筑型式的模板有路可循,既方便工作,又能不断改进,不断进步。

六、鉴于模板工程在钢筋混凝土施工中的重要作用,世界各国都在研究并不断改进模板工程的施工技术和工艺,伴随着模板专业公司的建立,模板工程的发展将不断向快速、节省方向迈进。

模板工程的发展前景将是以如何加快混凝土施工为中心发展,1973年十一届世界大坝会议提出了混凝土坝设计与施工的任务和课题,讨论的结论是:“降低混凝土造价的根本出路是加快施工进度。”为此提出了新的混凝土坝施工方法就是:大体积混凝土连续垂直浇筑法,这相应给模板工程带来了新的课题。

我认为加快进度的途径之一就是:

1、认真研究滑动模板的使用问题。

2、增加浇筑层厚度,减少水平接缝,采用自升模板。

3、加大浇筑块尺寸,减少施工缝,以缩小立模面积。

随着改革的不断深入,适应工程招、投标的需要,就要做为前期工作涉及的内容有:

1、模板工程的规划,主要是结合施工方案拟定,选择模板体系,组织生产,选购机具以及编制概算。

第2篇

(1)自然条件。工程基本风压0.40kN/m2、地面粗糙度C类、抗震设防烈度8度、设计地震分组第一组、设计基本地震加速度0.20g、特征周期0.35s、建设场地类别为II类、场地黄土湿陷类型为I级的非自重湿陷性黄土。

(2)主构件混凝土强度标准。工程基础、人防地下室梁与板、5~13层墙与柱、1~13层梁与板混凝土强度等级为C35;人防地下室墙与柱、设备层地下室墙与柱、1~4层墙与柱混凝土强度等级为C40;基础垫层混凝土强度等级为C15;13层以上墙与柱、13层以上梁板、女儿墙、阳台栏杆、其余混凝土构件混凝土强度等级为C30。

(3)均布活荷载。厅、卧室、厨房、上人屋面、暖井活荷载2.0kN/m2;卫生间活荷载4.0kN/m2;挑出阳台活荷载2.5kN/m2;楼梯及门厅活荷载3.5kN/m2;电梯机房活荷载7.0kN/m2;室外地面活荷载10.0kN/m2;不上人屋面活荷载0.5kN/m2。

2案例高层剪力墙住宅钢筋混凝土施工技术的应用建议

2.1框架节点核芯区柱箍施工技术

本工程梁、板钢筋绑扎期间,需事前检查、验证和鉴定核心箍的情况,以免遗留工程隐患,具体做法借助钢筋探测仪,于外露柱角侧立面上下缓慢移动,测出核心箍的间距、位置,以及是否受到钢筋的约束干扰。本工程边柱和角柱解剖检查有内箍的正常情况。框架节点核芯区柱箍绑扎的规范化,是施工的难点所在。在施工时,由于施工现场未能第一时间提供数量足够的钢管脚手架,而是采用木支柱和小桁架支模代替,不仅费工费时,而且要求梁底模、侧模、板模独立安装,这种施工方式不适用于本工程,并且存在一定的危险性。笔者建议将本工程的核心箍,制作成双向交叉X型配筋,而且配筋的所有箍,做成双肢л形状,施工时将л形箍向下斜侧面梁底标高位置,就能够将配筋有效锚固在箍筋加密区域,有效约束斜裂缝的出现。本工程使用X型核心箍内外箍,需要紧靠主次梁上下纵筋的上皮与下皮,同时焊接笼子形状,在绑扎梁筋的时候,将其套之其上,其中笼子的规格,主要根据截面积的大小,选用合适的钢筋,而且需控制好节点实际配箍量,原则上大于加密区,借此就能够解决核心箍绑扎的难题。除此之外,л型筋在向下锚固时,容易影响柱下2/3位置的混凝土强度,以致梁下局部范围内,出现不同程度的水平收缩裂纹。针对该问题,需控制好柱混凝土浇筑的时间,以及检查浇筑时是否受到支梁、楼板、梁钢筋等的扰动,在绑扎梁筋后,再进行混凝土浇筑,同时,必要时在预留混凝土施工缝标高位置,插入箍筋辅助浇筑。通过以上施工,本工程框架节点核芯区柱箍基本达标,但其中存在的施工细节性问题,还需要结合工程施工现场的实际情况,进行因地制宜的调整。

2.2钢筋连接技术

(1)微松动问题解决举措。本工程钢筋连接,借助直螺纹机械连接,要求控制好连接安装的扭矩,否则无法顶紧钢筋连接对头位置,以及确保符合主体结构的受力要求。为此,在连接钢筋对头位置两个断面时,应该在丝扣加工之后,检查安装表面是否平整,实际施工时,发现加工的钢筋连接丝头,其表面过于粗糙,而无法拧紧,尤其是在构件反复受拉和受压后,微松动的现象更为明显,需要适量增长拧入套筒内的长度,将其增长大约20mm左右。

(2)防腐问题解决举措。钢筋连接的螺纹热轧加工,表面会形成“烤蓝”层,从而降低了钢筋表面部分抗氧化能力,另外等边三角形牙型的粗牙螺纹,螺距为2.5mm,安装之后,螺纹与钢筋、连接套筒会产生径向间距,从而影响了防腐的敏感度。针对该问题,一方面在加工螺纹的时候,应适当加长螺纹的高度和提高加工的精度水平,缩小螺纹与钢筋、连接套筒的径向间距,另一方面连接部位混凝土保护层的增厚,大约增加一个套筒大小的厚度,控制混凝土对钢筋环向接触面的突变影响。除此之外,在连接钢筋之前,包括套筒、丝扣等在内,都可适量涂抹防潮、耐高温的结构胶,如果发现钢筋连接松动,亦可将结构胶填充满松动缝隙。

2.3混凝土施工技术

目前大多数建筑工程应用商品混凝土,收缩裂缝成为混凝土施工的主要问题。其中商品混凝土中骨料级配、水泥安定性、水泥用量,以及使用时的坍落度和振捣程度等,均是导致混凝土裂缝的主要原因。基于此,本工程将采用以下方法进行混凝土施工,旨在提高混凝土施工的质量水平。

(1)混凝土质量把控。混凝土的骨料级配、水泥安定性、水泥用量等,与混凝土本身的质量息息相关,本工程选用的骨料级配,要求密切关注石子的级配,尤其是不同顺序装车的石子,要严格控制级配的差异性,在此建议选用5~31.5mm连续级配的石子,同时根据石子的级配,因地制宜地调整砂子的用量;水泥的安定性,重点兼顾水泥的收缩性,选择水泥供应商时,应考虑到供应商水泥的供应能力,严禁使用陈化期尚未结束的水泥,同时在使用水泥时,实验检查水泥的安定性;混凝土强度等级的提高,不能单一地增加水泥用量,应根据水泥砂浆的比例,同时使用适量的石子、砂子等,以此缩小混凝土的收缩量。

(2)拌合温度控制。由于本工程不使用商品混凝土,采用现场搅拌混凝土的施工方法,在搅拌混凝土的时候,必须严格控制混凝土的拌合温度。其中以表示混凝土拌合温度,基本单位℃,通过公式,进行拌合温度的计算,其中表示材料的总重量,单位kg;表示材料质量比热,单位kj/kg.k;表示材料初始温度,单位℃;表示总热容量,单位kj/k;表示总热量,单位kj。工程的材料包括水泥、砂子、石子、粉煤灰、拌合水,这些材料配制而成的混凝土。

(3)设置脚踏架。为便于混凝土的振捣施工,工程现场利用φ10-φ16的钢筋,焊接若干个长1500mm、宽500mm、高度200mm的钢筋脚踏架。混凝土振捣施工时,将脚踏架放置在负弯矩筋之上,在初步振实和找平混凝土之后,再将脚踏架移走。施工实践证明,在浇筑混凝土的时候,保护层厚度一般控制在20mm左右,如果使用脚踏架,进行混凝土的振实和找平,保护层的厚度可明显增厚2~3mm,如果发现混凝土存在较大的坍落度,可站在脚踏架上,利用撬杠等工具连片提出负弯矩筋,再缓慢放下,负弯矩筋自动沉入的深度会更深,这对于混凝土坍落度的控制,起到很好的效果。

(4)结构问题应急措施。在混凝土施工完毕后,如果发现混凝土结构存在质量问题,可灵活选择包钢法加固梁、粘钢法加固梁、叠层法加固板、粘钢带法加固板、格构柱法加固柱、增加截面法加固柱、挂网加固墙体,具体施工方法,根据施工现场情况而定。

3结束语

第3篇

(一)建筑材料质量控制不严

1.砂、石子:①含泥量控制不严。②石子表面特征及颗粒形状不符合要求。

2.水泥:①水泥品种与标号未按工程性质及所处环境进行选择。②对进场水泥不复试。③不同品种、不同标号的水泥混用,导致质量事故。

(二)模板部分

1.底层支撑的地基夯实不够,混凝上浇筑时,立底模的垂直支撑常在混凝土浇筑时,被水淋湿,地基软化,使受力的支撑随之沉降,造成梁、板弯曲变形或裂纹等缺陷。

2.支撑系统失稳,使钢筋混凝土出现塌落。

3.不进行模板设计,导致模板强度、刚度不足。

4.模板安装不符合要求,导致钢筋混凝土构件尺寸超差。有的模板接缝不平顺,甚至大缝隙、孔洞也不修补就浇灌混凝土,因跑浆而出现蜂窝、麻面等缺陷。

(三)钢筋部分

1.进入现场的钢筋材质与实验单不符;施工时钢筋绑扎不牢固,出现松动和位移,绑扎间距及保护层不符合要求;还有钢筋接头的形式不符合规定,搭接长度小于规定值等。

2.焊接的质量差,使用的焊条品种、规格和质量不符合设计要求和规范规定;施工管理不善,粗心大意。有的操作人员不懂结构,盲目施工。

(四)混凝土部分

1.支模时,由于底层支撑的地基土夯的不密实,浇注混凝土就使受力的支撑发生沉降,造成结构件弯曲变形而产生裂缝。支模时的几何尺寸掌握的不好,造成梁、板的尺寸不符合设计要求,支的模板缝隙过大、孔洞不修补,振捣不密实、骨料配合比不准等原因,使混凝土出现蜂窝、麻面、露筋、孔洞等缺陷。

2.混凝土配合比不准、搅拌不均匀、模板内杂物清理不干净、木模板不浇水湿润,造成混凝土强度不足,拌制混凝土前不试配,搅拌混凝土不计量,使用的外加剂不经试验。

3.混凝土浇注后,没有进行很好的养护,致使混凝土受冻或水分蒸发过快,造成混凝土的强度不足或出现裂缝。

二、控制好钢筋混凝土质量的要点

(一)加强工程监控

1.人的质量意识及组织机构的控制,所有施工管理人员以及施工人员,首先要学习、掌握好国家有关的规范规定,牢固树立“百年大计、质量第一”的思想,建立健全的各种质量责任制,使其自觉的执行有关质量要求的及规定,确保施工的各个环节都能满足质量要求。

2.在建筑工程中全面推进质量管理,建立与健全质量保证体系,加强质量教育,提高各级领导和施工管理人员、操作人员的质量意识,落实质量保证措施,消除质量隐患,在施工企业中开展自检、互检活动,奖优罚劣。

(二)原材料的质量控制

1.钢筋在进料之前,应根据设计要求的钢筋规格和厂家提供的出厂质量证明书或试验单,在准备购进的钢筋中,按不同级别、规格的钢筋分别抽样的作试验。在同一批钢筋中任意抽样,分别在每根截取拉伸、冷弯、化学分析试件各一根,每组拉伸、冷弯、化学分析试件各两根,送至国家认可的实验室去检验,钢筋抽样检验合格后,方可购进钢筋,以免不合格的材料入场。

2.所有材料进入现场后,监理工程师应根据材料报验单上填写的不同级别、规格、数量的钢筋进行验收。现场监督人员也要认真检查和核对,对各种材料的试验单及合格证是否合格,各种指标是否符合要求,材料和试验单是否相符等,在确人无误后方可使用。

(三)施工过程中的质量控制

1.在支模板前,做好板模设计,使其所支的模板具有足够的强度、刚度和稳定性,可靠的承受浇注混凝土的重量侧压力以及施工过程中所产生的其它荷载。

2.在支模板时要做到接缝严密、不得跑浆、漏浆,同时要保证各种结构构件的形状,几何尺寸及相互位置的正确。

3.正确留设和处理施工缝。《规范》CB50204—92规定,施工缝的位置宜留在结构受剪力较小且便于施工的部位。柱应留水平缝;梁、板、墙应留垂直缝。在施工缝处继续浇筑混凝土时,应待已浇筑的混凝土达1.2N/mm2强度后,清除施工缝表面水泥薄膜和松动石子或软弱混凝土层;经湿润、冲洗干净,再抹水泥浆或与混凝土成份相同的水泥沙浆一层,然后浇筑混凝土,细致捣实,使新旧混凝土结合紧密。

4.钢筋在下料加工之前,首先应该计算锚固定长度,以免下料返工,浪费工料。在制作的过程中,要检查其符合规范要求之后,再下料加工。在钢筋绑扎的过程中,要严格按照国家的有关规范执行,做到材质、根数、直径、间距、接头、绑扎位置、焊接等符合设计要求和规范规定。

5.做好成品保护工作,做到认真检查,防止在施工的过程中人为踩踏,改变钢筋的正确位置。

6.严格按设计要求的混凝土标号配合比执行,搅拌时准确控制各种材料的用量误差在规定的允许范围内。混凝土的搅拌时间要达到要求,保证混凝土的和易性和塌落度符合要求。浇注前将模板内的所有杂物清理干净,木模板要浇水湿润,浇注时要设专人振捣,严禁漏振防止蜂窝、麻面、露筋等现象出现。正确留置和处理施工缝使其留设的位置,接搓的处理符合有关规定。

7.混凝土浇注完毕后,必须按规定进行养护,保持必要的湿度,冬季施工按照规定掺加防冻剂,做好保温措施,保证水泥水化正常进行,防止发生干缩裂缝。

总之,建筑过程中的钢筋混凝土质量必须控制好,只有这样才能保证建筑工程的安全,保证千家万户的安全。

参考文献:

[1]蒋晓燕,贾锦龙.浅析钢筋混凝土工程质量低劣的原因[J].河南建材,2005,(1).

[2]姜作杰.钢筋混凝土结构常见质量事故分析及处理[J].呼伦贝尔学院学报;2005,(2).

第4篇

这类结构在水利工程设计中是难于避免的,有时,它在某些水工混凝土工程结构中处于制约设计的重要地位。从逻辑概念讲,只要允许素混凝土结构的存在,必定会有少筋混凝土结构的应用范围,因为它毕竟是素混凝土和适筋混凝土结构之间的中介产物。

凡经常或周期性地受环境水作用的水工建筑物所用的混凝土称水工混凝土,水工混凝土多数为大体积混凝土,水工混凝土对强度要求则往往不是很高。在一般水工建筑物中,如闸墩、闸底板、水电站厂房的挡水墙、尾水管、船坞闸室等,在外力作用下,一方面要满足抗滑、抗倾覆的稳定性要求,结构应有足够的自重;另一方面,还应满足强度、抗渗、抗冻等要求,不允许出现裂缝,因此结构的尺寸比较大。若按钢筋混凝土结构设计,常需配置较多的钢筋而造成浪费,若按素混凝土结构设计,则又因计算所需截面较大,需使用大量的混凝土。

对于这类结构,如在混凝土中配置少量钢筋,在满足稳定性的要求下,考虑此少量钢筋对结构强度安全方面所起的作用,就能减少混凝土用量,从而达到经济和安全的要求。因此,在大体积的水工建筑物中,采用少筋混凝土结构,有其特殊意义。

关于少筋混凝土结构的设计思想和原则,我国《水工混凝土结构设计规范》(SL/T191—96)作了明确的规定。

二、规范对少筋混凝土结构的设计规定

对少筋混凝土结构的设计规定体现在最小配筋率规定上,这里将《水工混凝土结构设计规范》(SL/T191—96)(下文简称规范)有关最小配筋率的规定,摘录并阐述如下:

1.一般构件的纵向钢筋最小配筋率

一般钢筋混凝土构件的纵向受力钢筋的配筋率不应小于规范表9.5.1规定的数值。温度、收缩等因素对结构产生的影响较大时,最小配筋率应适当增大。

2.大尺寸底板和墩墙的纵向钢筋最小配筋率

截面尺寸较大的底板和墩墙一类结构,其最小配筋率可由钢筋混凝土构件纵向受力钢筋基本最小配筋率所列的基本最小配筋率乘以截面极限内力值与截面极限承载力之比得出。即

1)对底板(受弯构件)或墩墙(大偏心受压构件)的受拉钢筋As的最小配筋率可取为:

ρmin=ρ0min()

也可按下列近似公式计算:

底板ρmin=(规范9.5.2-1)

墩墙ρmin=(规范9.5.2-2)

此时,底板与墩墙的受压钢筋可不受最小配筋率限制,但应配置适量的构造钢筋。

2)对墩墙(轴心受压或小偏心受压构件)的受压钢筋As’的最小配筋率可取为:

ρ'min=ρ′0min()

按上式计算最小配筋率时,由于截面实际配筋量未知,其截面实际的极限承载力Nu不能直接求出,需先假定一配筋量经2—3次试算得出。

上列诸式中M、N——截面弯矩设计值、轴力设计值;

e0——轴向力至截面重心的距离,eo=M/N;

Mu、Nu——截面实际能承受的极限受弯承载力、极限受压承载力;

b、ho——截面宽度及有效高度;

fy——钢筋受拉强度设计值;

γd——钢筋混凝土结构的结构系数,按规范表4.2.1取值。

采用本条计算方法,随尺寸增大时,用钢量仍保持在同一水平上。

3.特大截面的最小配筋用量

对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件,规范规定:如经论证,其纵向受拉钢筋可不受最小配筋率的限制,钢筋截面面积按承载力计算确定,但每米宽度内的钢筋截面面积不得小于2500mm2。

规范对最小配筋率作了三个层次的规定,即对一般尺寸的梁、柱构件必须遵循规范表9.5.1的规定;对于截面厚度较大的板、墙类结构,则可按规范9.5.2计算最小配筋率;对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件则可按规范9.5.3处理。设计时可根据具体情况分别对待。

为慎重计,目前仅建议对卧置于地基上的底板和墩墙可采用变化的最小配筋率,对于其他结构,则仍建议采用规范表9.5.1所列的基本最小配筋率计算,以避免因配筋过少,万一发生裂缝就无法抑制的情况。

经验算,按所建议的变化的最小配筋率配筋,其最大裂缝宽度基本上在容许范围内。对于处于恶劣环境的结构,为控制裂缝不过宽,宜将本规范表9.5.1所列受拉钢筋最小配筋率提高0.05%。大体积构件的受压钢筋按计算不需配筋时,则可仅配构造钢筋。

三、规范的应用举例

例1一水闸底板,板厚1.5m,采用C20级混凝土和Ⅱ级钢筋,每米板宽承受弯矩设计值M=220kN/m(已包含γ0、φ系数在内),试配置受拉钢筋As。

解:1)取1m板宽,按受弯构件承载力公式计算受拉钢筋截面面积As。

αs===0.012556

ξ=1-=1-=0.0126

As===591mm2

计算配筋率ρ===0.041%

2)如按一般梁、柱构件考虑,则必须满足ρ≥ρmin条件,查规范表9.5.1,得ρ0min=0.15%,

则As=ρ0bh0=0.15%×1000×1450=2175mm2

3)现因底板为大尺寸厚板,可按规范9.5.2计算ρmin

ρmin===0.0779%

As=ρminbh0=0.0779%×1000×1450=1130mm2

实际选配每米5Φ18(As=1272mm2)

讨论:1)对大截面尺寸构件,采用规范9.5.2计算的可变的ρmin比采用规范表9.5.1所列的固定的ρ0min可节省大量钢筋,本例为1:1130/2175=1:0.52。

2)若将此水闸底板的板厚h增大为2.5m,按规范9.5.2计算的ρmin变为:

ρmin===0.0461%

则As=ρminbh0=0.0461%×1000×2450=1130mm2

可见,采用规范9.5.2计算最小配筋率时,当承受的内力不变,则不论板厚再增大多少,配筋面积As将保持不变。

例2一轴心受压柱,承受轴向压力设计值N=9000kN;采用C20级混凝土和I级钢筋;柱计算高度l0=7m;试分别求柱截面尺寸为b×h=1.0m×1.0m及2.0m×2.0m时的受压钢筋面积。

解:1)b×h=1.0m×1.0m时,轴心受压柱承载力公式为:

N≤φ(fcA+fy′As′)

==7<8,属于短柱,稳定系数φ=1.0,

As′===3809mm2

ρ′===0.38%

由规范表9.5.1查得ρ0min′=0.4%,对一般构件,应按ρ0min′配筋

As′=ρ0min′A=0.4%×106=4000mm2

2)b×h=2.0m×2.0m时,若仍按一般构件配筋,则

As′=0.4%×2.0×2.0×106=16000mm2

现因构件尺寸已较大,可按规范9.5.3计算最小配筋率:

ρmin′=ρ0min′()

式中因实际配筋量As′尚不知,故需先假定As′计算Nu。

①假定As′=4000mm2。

Nu=fy′As′+fyAs

=210×4000+10×4.0×106=40.84×106N

ρmin′=ρ0min′()

=0.4%()=0.106%

As′=ρ0min′A=0.106%×4.0×106=4231mm2

②假定As′=4231mm2。

Nu=210×4231+10×4.0×106=40.89×106N

ρmin′=0.4%()=0.1056%

第5篇

关键词: 钢筋混凝土; 裂缝; 预防; 处理措施

Abstract: in this paper the author to cause of concrete crack control and the theoretical and practical discussion. Although the academic circle for the cause of cracks of concrete and calculation method has a lot of different theories, but to the specific measures to prevent and improve opinion is unified, at the same time in the practical application of the effect is better also, in specific construction depends on our seeing much, much better, problems after analysis, summary, combined with prevention treatment measures of concrete crack is completely can avoid.

Keywords: reinforced concrete; Crack; Prevent; Processing measures

中图分类号:TU37文献标识码:A 文章编号:

钢筋混凝土构件是允许带裂缝工作的, 但对裂缝宽度有严格限制。确切的说, 混凝土在凝结硬化过程中就有微裂缝存在, 这是因为混凝土中的水泥石和骨料在温湿度变化条件下产生不均匀的体积变形, 而它们又粘结在一起不能自由变形, 于是形成相互间的约束应力; 一旦此约束应力大于水泥石和骨料间的粘结强度, 以及水泥石自身的抗拉强度, 就产生微裂缝。

1 混凝土产生裂缝的原因

混凝土裂缝的产生, 都是微裂缝发展的结果。混凝土中产生裂缝有多种原因, 就其本身而言, 一般认为是混凝土材料变形约束所引起的内应力大于材料抗拉强度的缘故。

1.1材料选配不当形成缺陷和裂缝

使用过期水泥, 骨料含泥过量、含活性SiO2 , 水泥中含碱量过高, 骨料石灰石, 水泥水化热等。

1.2施工违反操作规程形成缺陷和裂缝

塑性混凝土下沉, 被顶部钢筋所阻, 形成沿钢筋的裂缝; 混凝土振捣不密实, 出现蜂窝、易形成各种受力裂缝的起点; 混凝土搅拌、运输时间过长, 使水分蒸发, 引起混凝土浇注时坍落度过低, 使得在混凝土体积中出现不规则的网状裂缝; 混凝土初期养护时急骤干燥使得在混凝土与大气接触面上出现不规则的网状裂缝; 过早拆模, 混凝土尚未建立足够强度, 构件在实际施加与自身的重力荷载作用下, 容易发生各种受力裂缝等。

1.3因构件受力、变形形成缺陷和裂缝

砼构件中心受拉; 中心受压; 受弯; 受剪; 受冲切;梁的混凝土收缩和温度变形; 板的混凝土收缩和温度变形;在钢筋混凝土中, 拉应力主要是由钢筋承担, 混凝土只是承受压应力。在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力, 则须依靠混凝土自身承担。一般设计中均要求不出现拉应力或者只出现很小的拉应力。但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。

有时温度应力可超过其它外荷载所引起的应力, 因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要: 主要是温度和湿度的变化, 混凝土的脆性和不均匀性, 以及结构不合理, 原材料不合格(如碱骨料反应) , 模板变形, 基础不均匀沉降等。

混凝土构件多次受冰冻- 溶解循环作用, 使混凝土中产生内应力, 促进已有裂缝发展, 结构疏松, 表面龟裂,表层剥落或整体崩溃。

混凝土硬化期间水泥放出大量水化热, 内部温度不断上升, 在表面引起拉应力。后期在降温过程中, 由于受到基础或老混凝土的约束, 又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时, 即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢, 但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿, 表面干缩形变受到内部混凝土的约束, 也往往导致裂缝。混凝土是一种脆性材料, 抗拉强度约为抗压强度的1 /10左右, 短期加荷时的极限拉伸变形只有(016~110) ×104 ,长期加荷时的极限位伸变形也只有(112~210) ×104。由于原材料不均匀, 水灰比不稳定, 运输和浇筑过程中的离析现象, 在同一块混凝土中其抗拉强度又是不均匀的, 存在着许多抗拉能力很低, 易于出现裂缝的薄弱部位。

1.4 因环境因素影响形成缺陷和裂缝

主要是温度和湿度的变化, 混凝土的脆性和不均匀性,以及结构不合理, 原材料不合格(如碱骨料反应) , 模板变形, 基础不均匀沉降等。混凝土构件多次受冰冻- 溶解循环作用, 使混凝土中产生内应力, 促进已有裂缝发展, 结构疏松, 表面龟裂, 表层剥落或整体崩溃。

2 控制和防止裂缝的措施

(1) 对水泥、水、骨料、外加剂、钢筋材料选用不当形成的裂缝, 必须用对进场原材料按照国家标准进行严格检查和验收的办法加以预防, 凡不合格的次品材料一律不得使用, 或经试验后降低等级使用; 对已发生这类因材料选用不当而产生的砼缺陷或裂缝, 必须作长期详细的观察(因有的问题需要一段时间才能发现) , 认真查明其原因和质量问题的严重程度,研究制定其处理和加固方案。这是因为一旦因材料选用不当而发生的质量问题, 往往带有普遍性的缘故。

(2) 由于砼搅拌运输时间过长, 浇筑速度过快, 振捣不实、施工缝留设位置或处理方法不当、模板走动等原因形成的裂缝可以按照《混凝土施工规程》严格执行混凝土拌制、运输、浇筑、振捣工艺, 妥善处理施工缝设置和旧混凝土连接, 严格执行模板制作、拆模以及养护方面的规定实施预防。对已出现这类裂缝的构件, 要区分构件的类别、构件的受力特征、裂缝所在的部位以及裂缝严重的程度, 分别采用一般混凝土裂缝补强措施或采用充填混凝土材料、钢锚栓加固、甚至粘贴纤维或钢板、预应力加固等补救措施。

第6篇

关键词:钢筋混凝土高层结构;结构设计;剪力墙

中图分类号:tu37 文献标识码:a

随着改革开放以来我国国民经济整体的迅速发展,国内各个行业都得到了巨大的发展,整体的行业水平稳步提高,其中,建筑行业的提升水平是比较快的,建筑行业的发展带来了建筑形式,建筑技术,建筑材料等的多元化变革,其中钢筋混凝土因为安全系数高,抗震性能好等诸多优点而使用广泛,其中高层建筑发展更为迅速,设计思想也在不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给高层建筑结构分析和设计提出了更高的要求。如何高效、准确地对高层结构体系进行内力分析,是结构工程师设计高层建筑结构时需要解决的重要课题。本文通过对高层建筑结构设计过程中经常遇到的问题进行分析,为高层建筑结构设计提供计算方法及理论依据。

1 建筑设计

建筑不同于普通商品,尤其是高层建筑,很多因为是地理标志性建筑。什么是高层建筑呢?10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑。在建筑外观上,我们应该多选择一些新颖的建筑样式,同时又要注意其抗震设计、抗风设计等基础要素。但是建筑也不能盲目的标新立异,结构上应该选择规则性强一些的,不论是平面或者立体都应该尽量遵循这个原则。而且建筑在弹性设计上,尽量要满足延展性的需求。这种概念设计的强调是对建筑师的必须要求,建筑设计师一定要重视各种规范规定,千万不要陷入只管设计不管计算的误区。

2 结构设计

2.1 剪力墙底部加强部位墙厚的确定

抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施避免脆性的剪切破坏,改善整个结构的抗震性能。《高建筑混凝土结构技术规程》jgj3-2010(下简称《高规》)7.1.4条规定,抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/10和底部两层二者的较大值。部分框支剪力墙结构底部加强部位的高度应符合《高规》10.2.2条的规定,底部加强部位的高度应从地下室顶板算起,当结构计算嵌固端位于地下一层底板或以下时,底部加强部位宜延伸到计算嵌固端。《建筑抗震规范》gb50011(以下简称<抗规》)及《高规》规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值规定得更为严格。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度k取法如下:一、二级抗震等级时取层高或剪力墙无支长度的1/16,并且满足bw≥200mm;三、四级抗震等级时,k取层高或剪力墙无支长度的1/20,并且满足k≥160mm。但对于墙底轴力较小且结构层高相对较高的剪力墙而言。其截面厚度按上述方法取值则显得不是很经济合理。因此具体工程设计时,剪力墙截面厚度bw可适当减小但必须按下式计算墙体的稳定性。

公式中:q为作用于墙顶组合的等效竖向均布荷载设计值;ec为剪力墙混凝土弹性模量;t为剪力墙墙肢截面厚度;lo墙肢计算长度。

2.2 结构的超高问题

在抗震规范与高规中,建筑物的高度控制是非常严格的,而在新规范中这一点重新进行了界定,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,所以在进行设计的时候一定不可以超越其应属范围,b级建筑物就应该控制在b级规定范围之内,一旦超过了,那么无论是设计还是施工都要全部进行重新设定。在现实情况中这类问题曾经出现过,结果导致审查时难以通过。

2.3 短肢剪力墙的设置问题

短肢剪力墙使用虽然具有一定的的作用,但是在使用数量上一定要严格参照规范,《高规》7.1.8规定抗震设计时,高层建筑结构不应全部采用短肢剪力墙,b级高度高层建筑以及抗震设防度为9度的a级高度层建筑,不宜布置短

肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。当采用具有较多短肢剪力墙的剪力墙结构时,应符合下列规定:(1)在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%;(2)房屋适用高度应比本规程表3.3.1-1规定的剪力墙结构的最大适用高度适当降低,7度、8度(0.2g)和8度(0.3g)时分别不应大于100m,80m和60m。短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙。

2.4 基础设计

在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定。因此,作为建立在国家标准之下的地方标准,地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确。所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

3 计算与分析

3.1 计算模型的选取

对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。

3.2 抗震等级的确定

对常规高层建筑,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可逐层降低一级,但不低于四级,地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。

结语

钢筋混凝土高层结构作为现代化城市发展的一种客观成果,引领着我国建筑行业整体的发展水平。在设计方面,钢筋混凝土高层结构一定要充分考虑到各种潜在的因素,既要让建筑漂亮美观大方,也要注意建筑的安全性能,毕竟后者是所有建筑的立足之本。在做好相关工作的基础上,希望我国的建筑水平能迎来更好的发展。

参考文献

[1]jgj3-2010,高层建筑混凝土结构技术规程[s].

第7篇

【关键词】钢筋混凝土,楼板裂缝,成因分析,控制措施

【 abstract 】 along with the rapid development of China's construction industry, reinforced concrete in the construction industry has made more and more widely used for our country's construction industry, made an important contribution, but, in construction process, the reinforced concrete floor crack phenomenon more and more, light person is only affect building beautiful, serious, can destroy houses inherent structure, and lead to decline, seismic safety decreased ability. Finally affect the normal use of houses, especially some residential floor crack happens, often can cause for complaint disputes, constructor and users are caused a loss. This article mainly from the reinforced concrete floor crack is discussed: floor crack phenomenon, floor cracks causes and prevention measures and floor crack control method.

【 key words 】 reinforced concrete, floor cracks, cause analysis, the control measures

中图分类号: TU528.571文献标识码: A 文章编号:

一.前言

近年来,随着经济的发展,科学技术的进步,我国的建筑事业也飞速的进步,当前钢筋混凝土建筑趋于主流,其配料,运输,筑造工艺也不断地取得新的成果。我们知道比较传统的空心板已经逐渐走向淘汰,钢筋混凝土楼板日渐取代其重要地位,使用钢筋混凝土楼板,大大的提高了楼板的承受能力,也更加的美观。其特性明显优于空心板。但是遗憾的是在建筑施工的过程中由于各种各样的原因,钢筋混凝土楼板也出现了裂缝。这样就不仅影响了其外观而且影响了保温、隔热和防水等一列的功能问题,甚至影响建筑的安全使用。所以防治楼板裂缝的工作显得格外重要。这也是提高建筑工程质量,增加美观性,实用性及消除安全隐患的重要步骤。

二.钢筋混凝土楼板裂缝产生的原因分析

钢筋混凝土特别是商品混凝土楼板出现裂缝的原因很多,而且也比较复杂。只要出现裂缝,那么处理起来难度很大。所以裂缝问题也受到了各个单位重视,因此从图纸设计到建筑施工我们都必须采用科学的方法,用严谨的态度去执行操作,来防止楼板缝隙的出现。混凝土配合比例、环境温度及温度应力都是其影响因素,但是其具体的产生原因分析如下:

1、设计方面:在设计时考虑不周,结构形式不正确,结构构件断面突变或因开洞、留槽、凹腔四角等容易引起应力集中的地方钢筋布置不当,构件不能随温度变化而自由伸缩,伸缩缝、沉降缝过少,基础设计不合理,梁的嵌接端缺少斜筋加强。非结构性的连接构件配筋不足以及各种结构缝设置不当等都容易导致混凝土开裂。

2、配筋:涉及钢筋的混凝土裂缝问题有两种情况,其一是钢筋配筋率过高,出现超筋;为了满足结构受拉的需要,在结构断面面积有加大的情况下,过度增加的数量,从而容易引起混凝土碎裂。其二是钢筋被腐蚀:正常情况下,混凝土中的钢筋处于混凝土的包裹之中,接受钝化保护。然而,当其钝化保护遭到侵蚀离子(主要是氯化物)的破坏后,钢筋就有可能遭到腐蚀。由腐蚀引起的体积增大使钢筋周围的混凝土要承受很大的径向突发应力,从而导致出现裂纹,裂纹沿钢筋方向扩展,最终形成与钢筋平行的裂缝。

3、模板以及模板支撑力不够

由于模板以及模板支撑力不够导致模板的下沉变形,这主要是出现在模板的跨度较大的地方,由于模板的下沉变形,会导致模板与模板之间形成缝隙,那么在浇灌的时候就会出现漏浆,浇灌出来的楼板也会不规则,导致受力不均,易出现断裂。

4、混凝土的浇筑方法不规范

如果浇筑混凝土的方法不规范,比如混凝土在浇筑时被过分的振捣,就会导致粗骨料全部下沉,反而水分及空气全部被挤出表面,这种材料的分布会极大影响楼板受力度的。再如混凝土被连续的浇捣以及浇岛后又长时间的不做其他工序的处理,这些都是一些不规范的浇筑方法,也是产生缝隙的主要问题。

5、商品混凝土的缺陷所致

水泥的水化热是水泥固有的性质,水化热引起混凝土内部温度的升高,内外产生温差,温差引起的应力可使混凝土产生裂缝。混凝土中的水泥用量越大,总发热量越大。混凝土的温度会随水泥用量的增加而提高,造成混凝土的收缩大,水化热高,产生非受荷裂缝。特别是现在各地都普遍地使用商品混凝土,而商品混凝土为了保证其和易性和便于泵送,减小了粗骨料的粒径和用量,增加了粉料的用量,增加了混凝土因温差引起的裂缝。

6、钢筋位置以及保护层的厚度出现偏差

钢筋在楼板中承受着巨大的拉力,所以钢筋的位置十分重要。如果钢筋的位置不能控制好,就会导致楼板内的钢筋受不到力或者受力太大,甚至出现漏筋的现象,这都是在浇筑中需要注意的问题。

7、建筑施工的荷载超过了实际设计的荷载

由于在施工的过程中,可能在楼板的局部堆放大量的工程物资,其重量太大楼板不能承受,或者因为其堆放太过其中,楼板受力不均导致楼板局部下沉破裂,出现缝隙,同时,还应尽力避免为抢工期而产生的楼板过早堆载问题。所以在施工时一定要考虑到楼板的受力程度,在可以承受的范围内堆放。同时要注意堆放的技巧不要过于集中堆放,要不堆放在楼板跨度最大的中央,尽量堆放在墙角处,以减轻楼板受力。

8、浇筑后的养护不合理

我们知道现在建筑楼板浇筑后的养护方法已经比较落后,这种老式的养护方法已经不符合现代建筑的需要,所以探索改进新的养护方法尤为重要。众所周知混凝土的失水情况会影响到水泥的水化作用,如果在水泥的水化作用完成之前,失水太严重就会造成混凝土的结构疏松形成干缩裂缝等导致楼板的渗水性过大。

三.钢筋混凝土楼板裂缝防治措施

钢筋混凝土结构是当今建筑的主流结构,其优越性和科学性是十分明显的。如果浇筑方法规范合理其缝隙的产生也是完全可以避免的。即使如果出现了缝隙,但是其有害程度也必须控制在一定的范围之内。其控制方法涉及到了设计的科学性、材料质量、施工程序等各个方面。如何将裂缝控制在正常的范围之内。我们必须做到以下几点:

严格遵照施工图纸进行施工

在图纸设计时,要充分考虑各个设计细节。并且根据施工的经验对一些部位作出增强构造配筋等措施,使用细筋密配的原则,周全的考虑并作出慎重对策,来减轻缝隙的产生。

严格的按照图纸设计进行施工,包括材料的选用,施工的注意事项,以及需要特殊加固的部分要严格规范的执行,因为图纸的设计只是理论上的。实际施工出现偏差一样会导致严重的后果。

2、 严格控制上层钢筋的正确位置

在现浇楼板施工中,上层钢筋的准确高度一直是施工中的一大难题,也是楼板支座裂缝和转交裂缝得主要成因。主要有四个方面:钢筋较细、人员踩踏、弯曲下坠造成变形;钢筋网离模板有一定的高度,无法受到模板的依托和保护;各工种交叉作业,行走频繁,无处落脚,难以避免踩踏;上层钢筋网片支撑间距设置过大。宜在以下几个方面进行有效控制:①合理安排各工种的交叉作业时间,各工种完工后做到不留“尾巴”或少留“尾巴”。②在楼梯和主要通道处,铺设简易通道供施工人员走动。③做好职工班前技术交底,重视保护好上层钢筋正确位置的重要性,行走时必须自觉沿钢筋网中支撑点行走,支撑点设置要以人为本,间距应控制在0.6m 左右,呈梅花形布置。④混凝土浇筑前,现场安排足够数量的钢筋工,在混凝土浇筑前和浇筑中及时进行整修。⑤混凝土浇捣工在浇筑时应铺设活动跳板以扩大接触面,尽量避免上层钢筋网受到踩踏而发生变形,避免因混凝土保护层偏厚产生裂缝。⑥预埋管线处增设垂直于管线的短钢筋网加强,管线在敷设时应尽量避免立体交叉穿越,交叉穿越处应采用线盒,同时在多根管线的集散处宜采用放射性分布,尽量避免紧密平行排列。

3、模板及其支撑使用规范

模板及其支撑应通过精确的计算来确定其规格,不仅要能够满足强度要求还要能够满足变形的要求。其具体的有以下几点需要我们注意:如位于回填土上的一系列支撑应该首先将回填土夯实,再加垫上满足厚度条件的垫板,以增大支撑物的受力面积;再如当板跨大于等于4m时,中部最好有一定角度的拱起。

4、浇筑混凝土方法规范

在浇筑楼板时要充分搅振混凝土,但实际不宜过长,最好使用平板式振动器来搅振。在振捣的过程中,应该严格的搅振均匀和时长,当表面均匀的溢出浆液为最佳。具体而言每一个位置连续振捣的时间一般在二十五秒到三十秒之间,不宜过长的振捣。

5、混凝土养护十分重要,如果墙体和柱、梁的保温养护不到位或养护时间过短,很容易产生收缩裂缝。混凝土初凝之前养护不当会出现泌水和水分急剧蒸发,引起失水收缩。此时骨料和水泥之间也产生不均匀的沉降变形,其收缩量可达1%左右。在混凝土表面上,特别是在抹压不及时和养护不良的部位出现龟裂,宽度达1~2mm。

6、按规定处理后浇带和施工缝按照设计的规定,必须把后浇带及施工留下的缝隙留在受力较小的部位,这些部位相对的脆弱必须减少其受力。再之后浇部位浇筑时间间隔在六十天以上的应该确保新旧混凝土能够紧密连接。

7、认真做好浇筑后的养护工作

建筑工程完工交付使用之前,施工单位必须加强建筑物的管理和保养,避免温差过大或者楼板过于干燥导致裂缝,所以必须根据施工环境做好覆盖和保水工作,必要时还应采取室内喷水的方法解决。

四.结束语

钢筋混凝土的裂缝在整个建筑行业中都是一个常见却也比较难以克服的难题,但是只要我们在结构设计、施工程序、材料选购使用等发面严格按照规范的技术标准执行,于此同时不断加强监督和管理养护力度,我们就可以做到缩减其产生的可能性的效果,有效地控制裂缝的产生及危害。

参考文献:

[1]王欣 徐传磊 钢筋混凝土楼板裂缝成因分析及控制措施 [期刊论文] 《土木建筑学术文库》 -2011年1期

[2]祝泉林 杨盈琴 某钢筋混凝土楼板裂缝成因分析及控制措施 [期刊论文] 《江西水利科技》 -2004年z1期

[3]张盛旺 住宅工程钢筋混凝土现浇楼(屋)面板裂缝的成因及控制措施 [期刊论文] 《中国西部科技》 -2009年13期

[4]朱永平 混凝土现浇楼板裂缝成因分析及控制措施 [期刊论文] 《科技与生活》 -2010年9期

[5]余国章 浅谈钢筋混凝土板裂缝成因分析及预防 [期刊论文] 《中华民居》 -2012年4期

第8篇

关键词:时间;钢筋混凝土结构;抗力

1.引言

由于钢筋混凝土结构价格相对低廉,它被广泛应用于现代土木工程中。传统的建筑结构设计和钢筋混凝土材料的研究对钢筋混凝土强度与时间关系研究较少,尤其对钢筋混凝土结构中的钢筋与混凝土的粘结应力随时间变化的研究更少。近年来,随着建筑设计和施工技术的发展,才涉及了钢筋混凝土结构抗力与时间的关系。通过对钢筋混凝土柱的破坏概率的研究,表明低强度的钢筋混凝土柱破坏概率低于偶然荷载作用下的破坏概率,这种方法已经被运用到随时间而变化的破坏概率上。低强度的钢筋混凝土结构和混凝土结构耐久性上的研究认为这种作用加速了钢筋混凝土结构的破坏。钢筋混凝土结构的耐久性分析表明,不同因素作用影响钢筋混凝结构强度。基于混凝土结构的安全性,研究时间对钢筋混凝土结构抗力影响是必要的。

2.影响钢筋混凝土结构强度因素

许多因素影响钢筋混凝土结构的抗力,如钢筋的几何尺寸、钢筋混凝土结构的使用环境以及时间因素等影响钢筋混凝土结构的抗力。

钢筋混凝土结构抗力的变化是的一个随机函数过程或者说是一系列材料和结构变量的相互作用。现在许多研究钢筋混凝土结构中钢筋断裂、疲劳破坏的模型还没有得到大家认可,获得相关钢筋混凝土模型的实际方法是一种多因素理解方法。对于单一的因素许多结果只考虑到混凝土的碳化作用,碳化的厚度公式:

D(t)= K t(1)

式中D(t),K和t分别为厚度,速度系数与碳化的时间。

钢筋混凝土碳化是混凝土合成物与空气中二氧化碳缓慢中和反应的过程。密实的混凝土在空气中碳化需要花几十年的时间,但是非密实混凝土碳化只要几年的时间。若是混凝土合成物的含量较高,随着碳化过程的进行,混凝土的抗力就会下降。碳化作用会造成混凝土碱度下降及钢筋的锈蚀,使钢筋混凝土结构保护层产生裂缝甚至脱落,降低钢筋与混凝土之间的粘结力,造成钢筋混凝土结构抗力下降。

近年的研究成果表明非碳化保护层15mm处的钢筋腐蚀最严重,主要是因为混凝土保护层上裂缝和较薄的表层加速了钢筋腐蚀。当钢筋的应力小于其屈服应力时,钢筋腐蚀较为缓慢,当钢筋的应力超过其屈服应力,钢筋的腐蚀加速。钢筋的锈蚀导致钢筋的面积减小、粘结力破坏,从而引起结构抗力下降。疲劳破坏分为固定疲劳破坏和随机疲劳破坏,固定疲劳破坏是周期荷载作用,随机疲劳破坏是任意荷载。当结构承担活载时,钢筋混凝土结构在钢筋腐蚀的情况下承担活载,其极易发生疲劳破坏,也易造成结构刚度下降及裂缝的扩展。荷载的调幅可以使钢筋混凝土结构的抗力降低。

3.时间对钢筋混凝土结构抗力的影响

3.1时间对钢筋混凝土结构抗力影响解析公式

时间对钢筋混凝土结构抗力影响是属于该情况结构的随机变量是彼此相互独立的,以随机时间相依函数为特征的钢筋混凝土可以用下面公式来表示:

计算结果表明,钢筋混凝土结构的抗力随着时间增加而减小。这对于校核钢筋混凝土结构的安全性不可忽略。

4.结论

通过对影响钢筋混凝土结构抗力因素的分析,可以得到以下结论:

(1)混凝土碳化、钢筋的腐蚀影响钢筋混凝土结构的抗力。

(2)钢筋混凝土结构抗力随时间的增加而减小,这对钢筋混凝土结构养护,安全性评估提供理论参考。

(3)针对钢筋混凝土结构的抗力随着时间的变化,建议采用解析方法进行分析。(作者单位:1.江西建工集团有限公司;2.绿地房地产集团有限公司)

参考文献:

[1] 曾志兴;吴晓斌;;钢纤维陶粒混凝土碳化后力学性能试验研究[J];工业建筑;2009年01期

[2] 曹大富;富立志;;冻融环境下普通混凝土力学性能的试验研究[J];混凝土;2010年10期

[3] 牛荻涛,王庆霖;一般大气环境下混凝土强度经时变化模型[J];工业建筑;1995年06期

[4] 曹双寅;朱伯龙;;受腐蚀混凝土和钢筋混凝土的性能[J];同济大学学报;1990年02期

[5] 徐乃欣;腐蚀控制最近25年的发展――美国腐蚀专家的回顾[J];腐蚀与防护;2000年06期

第9篇

关键词:翼墙;钢管混凝土;Abaqus有限元;加固

0引言

近年来,我国频繁发生地震灾害,比如2008年,汶川大地震;2010年,青海玉树大地震;2013年,四川的芦山县大地震;2014年,新疆省于田大地震,我们对现有建筑结构的抗震性能提出了更高的要求。很多建筑物和构筑物在我们的长期使用中会出现各种各样的问题,如承载力不足、地基沉降、出现裂缝等[1]。为了能够正常使用,防止结构出现严重的损害,给人们带来财产、精神和生命上的危害,应该对建筑物及时的进行可靠度鉴定,并采取相应的措施对建筑物进行加固维修。钢筋混凝土框架结构加固的方法主要包括:外包钢法、粘贴纤维复合材料加固法、粘钢加固法、增大截面法、增设翼墙加固等[2]。本文将通过Abaqus非线性有限元模拟来探究钢管混凝土翼墙的受力性能。

1构件尺寸及模型建立

1.1构件的尺寸

本文模拟中选取如下的模型作为研究对象:混凝土柱尺寸500×500mm,柱高1.8m,纵向钢筋12B16,箍筋B8@ 200mm,底端加密箍筋B8@100mm(B为钢筋直径),两侧的翼墙为钢管混凝土翼墙,用钢套箍将钢管混凝土翼墙的端部与钢筋混凝土柱固结在一起,其它部位没有连接,钢套箍为高度300mm,厚度为5mm。其中的一个构件的截面如图1.1所示。

图1.1 构件的截面尺寸

有限元数值模拟分别以钢管的厚度为参变量,对不同组的构件分别进行低周反复荷载作用下的模拟。其中L表示钢筋混凝土柱的长,B表示钢筋混凝土柱的宽;l表示钢管混凝土翼墙的长度,b表示钢管混凝土翼墙的厚度;n表示轴压比;t表示钢管的厚度。构件尺寸如表1.1。

表1.1 钢管混凝土翼墙加固构件模拟试件表

试件编号 L(mm) ×B(mm) l(mm) ×b(mm) n t(mm)

JGZ-1 500×500 300×200 0.5 3

JGZ-2 500×500 300×200 0.5 5

JGZ-3 500×500 300×200 0.5 7

1.2模型的建立

运用创建部命令件创建混凝土柱、混凝土翼墙、钢管、纵筋和箍筋各部件,其中混凝土柱、 混凝翼墙和钢管为实体单元,而纵筋和箍筋为桁架单元。如图1.2所示。

图1.2 模型建立

2不同试件的有限元分析

2.1试件的滞回曲线

在轴压比0.5时,翼墙中钢管的厚度为3mm、5mm、7mm的钢管混凝土翼墙加固柱的构件滞回曲线如图2.1所示。

图2.1 JGZ-1、JGZ-2、JGZ-3滞回曲线

从图2.1能够看出,在这组模拟中任何一个滞回曲线形状都表现为比较饱满的梭形,这反映了钢管混凝土翼墙加固钢筋混凝土柱具有良好的耗能能力以及抗震性能[3]。

从这组的滞回曲线可以看出,钢管厚度t=7mm的加固构件的滞回曲线的峰值最大,t=3mm的加固构件滞回曲线峰值最小,说明钢管厚度越大钢管混凝土翼墙加固柱的极限承载力越大。随着加载的继续进行,滞回曲环的峰值出现了下降,不同钢管厚度下降的趋势也不同,钢管厚度为3mm的加固柱下降趋势比钢管厚度为7mm的加固柱下降趋势大,说明随着钢管厚度的增大钢管混凝土翼墙加固柱的延性增加[4]。

2.2试件的骨架曲线

在轴压比为0.5时,翼墙中钢管厚度为3mm、5mm、7mm的钢管混凝土翼墙加固柱的构件骨架曲线如下图2.2所示。

图2.2JGZ-1、JGZ-2、JGZ-3骨架曲线

从图2.2可以看出,钢管混凝土翼墙中钢管厚度为7mm时加固构件的极限承载力值最大,钢管厚度为5mm次之,钢管厚度为3mm最小,说明了随着钢管厚度的增加钢管混凝土翼墙加固柱的极限承载力增大。

在骨架曲线的前期弹性阶段,钢管厚度为7mm的钢管混凝土翼墙加固的钢筋混凝土柱的斜率最大,说明随着钢管厚度的增加构件的弹性阶段的刚度增大,加载后期骨架曲线均有一段保持水平,表现出钢管混凝土翼墙加固柱具有良好的塑性性能;随着荷载继续加载,骨架曲线出现下降趋势,说明钢管混凝土加固钢筋混凝土柱的延性降低;钢管厚度为3mm的加固构件下降趋势大于钢管厚度为7mm的加固构件,说明了钢管厚度越大加固构件的延性越好[5]。

3结论

利用有限元软件ABAQUS以钢管厚度为参数建立的3个钢管混凝土翼墙加固钢筋混凝土柱模型,并进行了模拟分析,从提取的滞回曲线和骨架曲线上可以看出,钢管混凝土翼墙加固柱均具有较好的耗能能力及抗震性能。钢管厚度增加则构件的极限承载力增大,刚度增大,耗能能力良好。由于篇幅有限有些参变量没有考虑进来,在以后的研究中将重点关注。

参考文献

[1] 魏闯.增设翼墙加固功能混凝土柱受力性能研究[D]沈阳建筑大学硕士论文,2011

[2] 柳炳康,吴胜兴,周安.工程结构鉴定与加固[M].北京:中国建筑工业出版社,2008

[3] 张心令,王财全,刘洁平. 翼墙加固方法对框架结构抗震性能的影响分析[J].土木工程学报,2012

[4] 景悦.方钢管混凝土轴压短柱非线性有限元分析[D].河北工业大学学位论文,2008

精品推荐