时间:2023-03-15 14:53:35
导语:在数学研究论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词数学课程标准数学之花数学思想数学方法
新课程下的教育,是关爱学生生命发展,弘扬学生灵性的教育。新课程理念下的数学教学是以思维能力培养为核心,促进学生对数学思想、数学方法的理解与把握。让学生从看似枯燥的数字、图形和抽象的逻辑思维中,体会到数学的魅力,让数学之花在小学数学课堂上尽情绽放,这是我多年来在课堂教学中一直努力追求的境界。下面结合自己多年的教学实践和探索,谈一谈自己的一些做法和体会。
一、良好的学习情境------数学之花生长的土壤
“让学生在生动具体的情境中学习数学”,“让学生在现实情境中体验和理解数学”是《数学课程标准》给我们广大数学教师提出的教学建议。良好的学习情境是让数学之花生长的土壤。妙地创设各种情境,最大限度地激发孩子的求知欲,像磁铁把每一个孩子的心紧紧地吸在一起,把有限的课堂时空变为人人参与、个个思考的无限空间。
在教学《谁先走》一课时,我一开始就创设一个“下棋比赛谁先走”的游戏情境,大大激发了学生的学习兴趣,将学生带入游戏规则是否公平的讨论之中;然后通过“掷骰子”和“掷硬币”两个游戏活动让学生验证、体会游戏规则的公平性,修改不公平的游戏规则;再通过玩转盘游戏,给转盘游戏制定公平的游戏规则;最后组织学生自己设计一些对双方都公平的游戏等,给全体学生再次参加游戏活动的机会,并引导学生联系生活实际,关注身边的不确定现象,应用所学去解释、解决一些简单问题。本节课自始至终都是在各种游戏活动的情境中发现问题,探究知识,解决问题,学生在玩中学,学中悟,课堂成了欢乐的海洋,原来数学学习也可以这样的生动活泼、快乐有趣。
再如北师版第四册《整理与复习(一)》是学生在学习了“除法”、“混合运算”、“方向与路线”“、生活中的大数”几个单元之后的一节综合复习课。在教学此课时,我针对春天来了,学生都特别喜欢外出游玩的心理特点,结合生活实际为学生设计了一个“淮南草莓节一日游”的教学情境,把枯燥的数学知识变得生动、有趣、贴近生活。在让学生说行车路线和各个景点相互位置关系时复习了方向与路线这一知识点;接着在不同时间景区游玩人数的比较中,有效地复习了万以内数的读写法;然后在购买旅游食品这一环节巧妙的复习了四则混合运算的运算顺序和计算方法,以及运用混合运算的有关知识来解决实际问题。整节课学生兴趣盎然,在精心创设的一日游情境中进行综合的复习和运用。良好的学习情境是数学之花生长的肥沃土壤。
二、积极的探究活动------数学之花孕育中绽放
《新课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”探究式学习为每一层次的学生提供了选择的空间,人人都能参与,人人都有收获。在课堂上我根据教学内容的实际情况,给学生提供充分的探究活动空间,让学生在活动中探究,探究中体验,体验中发现,发现中提高。数学之花就在实践和创新的过程中尽情绽放。
在教学《三角形内角和》时,我先请学生测量并标出各种不同三角形三个内角的度数,然后报出其中任意两个内角的度数,请老师猜一猜第三个角是多少度,老师对答如流,准确无误。学生带着惊奇和疑问,走进了数学知识的发现和探索中,有的用测量后再计算的方法,有的用折纸的方法,有的把三个角撕下来,重新拼在一起,还有的用长方形对折成两个三角形推导等不同的方法探究得出了三角形内角和是180°。学生们很快揭穿了“老师总能猜对”的秘密。接下来又是一次具有挑战性的探究——“根据三角形内角和是180°,你能推导出五边形、六边形……一百边形的内角和是多少度吗?”在积极的探究活动中,孩子们通过自己的努力,终于发现了多边形内角和等于180°×(边数-2)的规律。课上有疑问、有猜想、有惊讶、有争议、有沉思、有联想……学生在探究、交流、发现规律的过程中处处闪现着智慧之花,数学之花在攀登数学高峰的征程中尽情绽放。
三、适时的激励赏识------数学之花盛开的催化剂
德国教育家第斯多惠曾说:“教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。”可见,激励学生,充分发挥学生的积极性、主动性和创造性,营造出一种“海阔凭鱼跃,天高任鸟飞”的育人氛围是非常重要的。一句充满期待的话语能激活一个人潜在的巨大的自信。一次成功的体验能激发学生浓厚地学习兴趣。我始终坚持用激励和赏识去评价学生,我努力地寻找契机,挖掘他们内在的潜能,真诚地赞许他们,激发他们向上的动力。“你的思维很独特,你能具体说说自己的想法吗?”“你发现了这么重要的方法,老师为你感到骄傲!”“试一试,相信自己,老师知道你能行!”“你是个求上进的孩子,你能够学得更好!”……一句真诚的鼓励,一个关注的眼神,一次温柔地抚摸,让课堂变得温情四溢,充满生机和活力。我精心创设使他们都能获得成功的机会,营造一个享受成功的氛围,使不同学生都能品尝到成功的喜悦和胜利的自豪。不断的激励,不断的赏识,不断地享受成功带来的快乐和自信,培养了孩子们热爱数学、钻研数学的浓厚兴趣,而孩子们的不断投入,使得一朵朵数学之花在不断的赏识和激励中含苞欲放。
四、生活中实际应用------数学之花绚丽多彩
论文关键词:数学;教学;知识;教师教育
一、数学知识研究
传统上认为数学教师至少要掌握他所教的数学知识。班级授课制成熟后,人们开始同意这样一个原则:除了所教的数学知识以外,数学教师还需要掌握像组织教学、控制课堂秩序等一些教学知识。随着教学研究的深入,人们发现教师仅仅知道他所教的数学的术语、概念、命题、法则等知识是不够的。…除此之外,教师还要知道数学的学科结构。学科结构的概念最早源于Schwab。他指出了理解学科结构的两种方式:一个方式是句法性地(syntactically),另一个方式是实体性地(substantively)。所谓句法性地是指从学科所表现出来的逻辑结构方面去了解学科结构。比如,引入无理数表示不可公度线段,引入负数与复数表示某些方程的解。前者可以看到,后者看不到,仅是为了保持方程都有解这个论断的完整性和通用性所做出的一种假设与解释。对这三个概念含义的理解,只能通过产生这些概念的前后联系才能揭示。所谓实体性地是指从学科的概念设计角度去了解学科结构。比如,欧氏几何与解析几何有不同的概念框架。Ball把数学的学科结构知识称为关于数学的知识。它是指知识从哪里来,又是如何发展的,真理是如何确认的,又将用到哪里去。
主要有三个维度:一是约定与逻辑建构的区别。正数在数轴的右边或者我们使用十进位值制都是任意的、约定的。而0做除数没有定义或者任意一个数的零次幂都等于1就不是任意的、约定的;二是数学内部之问的联系以及数学与其他领域之间的联系;三是了解数学领域中的基本活动:寻找模式、提出猜想、证明断言、证实解法和寻求一般化。
对数学知识的研究,拓宽了人们对教学用的数学知识的理解。它显示教学用的数学知识是很复杂的,除了术语、概念、法则、程序之外,还有数学学科结构或者关于数学的知识。这些知识对于教师确定为什么教、选择教什么和怎么教都会产生影响。比如,约定的与逻辑建构的概念的教学策略会有很大的不同,逻辑建构的概念就必须讲清楚它怎么来的,为什么要定义这个概念,怎样定义,它会有什么用,它与其他的概念的关系是怎样的,它的应用有哪些限度。而约定的概念就没有这些必要。但是,有效地数学教学,仅仅具有上述知识还不够。它缺少对学生的考虑,不能给教师提供教授一群特定的学生所必须的教学上的理解。比如,仅仅通过推导知道(+6)=a+2ab+b对有效教学是不够的,教师还需要知道一些学生容易把分配律过度推广而记成+6)=a+b,知道用矩形的面积表征可以有效地消除这一误解。学生误解的知识与消除误解的教学策略显然不能纳入数学知识的框架,教学用的数学知识的复杂性要求更精致的框架来描述。
二、教材分析研究
有效的教学必须考虑学生已有的知识和知识呈现的最佳序列。在数学学科中,马力平的知识包(Knowledgepackage)是国际上较为典型的此类研究。知识包是围绕着一个中心概念而组织起来的一系列相关概念,是在学生的头脑里培育这样一个领域的纵向过程。(n知识包含有三种主要成分:中心概念、概念序列和概念结点,也包括概念的表征、意义和建立在这些概念之上的算法。下例是20以内数的加减法的知识包(图1)。在这个知识包内,中心概念是20至100数的“借位减法”,它是学习多位数的加减的关键前提。
马力平的知识包实际上是我国内地传统的教材分析研究。这类研究结果是教学参考书的主要内容之一。它是一种课程知识,是教师对课程的分析,比对数学知识的分析更接近教学用的数学。但它也不是教师教学时使用的数学知识。它最多是教师对教学的考虑,没有考虑师生互动时产生的数学需求。教师在教学时,能够动员起来的知识不一定符合教学情境的需要。比如教师预期的一种学生的反应在与学生的互动中没有出现,教师以学生的这种反应为跳板的后继知识就没有了用武之地。马力平概括出的知识包,与教师在课堂教学时使用的数学知识还有一段距离,教师在教学时可能用得上,也可能用不上。教师在教学时所需要的数学知识远远超出教材分析所能提供的内容。
三、教学用的数学知识研究
Ball开创了教学用的数学知识研究。她通过分析数学教学的核心活动,直接研究课堂教学中教师使用的数学知识及其影响。下面以Ball的一个课例来说明其研究方法与结果。该课内容是三年级多位数减法:Joshua星期一吃了16粒豌豆,星期二吃了32粒豌豆。问Joshua星期二比星期一多吃了多少粒豌豆?学生在解题过程中提供了六种解法。Sean从16的后继数l7开始向后数数,一直数到32得到答案。ba认为,32的一半是16,答案就是16。Betsy把表示16和32的教具(豆子)一一配对,数一下表示32的教具中剩余的没有配对的豆子得到答案。Mei的方法是直接从表示32的豆子中拿走16粒,数一下剩余的就行了。Cassandia提供了标准的减法算法,Scan受到启发,提供了另一种解法:16+16=32,整节课,学生想尽办法鉴定这些解法的异同。L6JBall认为,这节课教学的核心活动是处理数学知识的关联和控制课堂讨论。知识的关联涉及到在具体和符号的模式中,减法和加法是如何关联的、减法的“比较”和“拿走”的解释是如何关联的、教具的表征如何转化为符号表征、Betsy的配对比较法如何转化为Sean的向后数数的方法、Betsy的方法如何和Mei的方法协调,控制课堂讨论首先表现在提供线索和解释,推动正确的方法的发展;其次表现在搁置有问题的方法。比如搁置Riba的说法。Riba的论断是正确的,但要使其他的学生能够明白他的意思,还需要添加几步推理。但这几步推理与用它来证明Sean的结论超过了三年级学生的理解能力。
Ball对这节课教师需要使用的数学知识进行了归纳。除了传统的教材分析提供的借位减法的符号算法及其背后的位值制之外,教师还需要其他知识。首先需要知道问题的两种表征模式(如减法32—16:?与缺失加数的加法16+?=32)是等价的。其次,还要知道此问题的一些表征:比如像Sean的从17数到32,或者Mei的从32里拿走l6个等等。第三,教师还需要具有深刻的数学眼光去审查、分析和协调学生的多种解法。最后,教师还需要一些关于数学论证的知识。通过上述分析,Ball指出,教材分析只能提供教学用的数学知识的一部分,其余大部分只能在分析数学教学的核心活动中才能得到。
四、启示
1.教学用的数学知识是有效教学的知识基础。它与数学家的数学知识、教材分析得出的数学知识是不一样的。它具有一种教学上有用的数学理解,这种理解主要集中于学生的观念和误解上。学生对特定内容的理解是有差异的,教师需要调和学生不同的理解方式并在这些方式之间灵活自如地转换,引导学生把知识进一步组织,促进学生在已有的知识基础上有效学习。
2.教学用的数学知识是高观点下的数学知识,它联系着更深刻的概念和方法。Ball的课例仅是小学三年级的两位数退位减法,但是,通过对课堂教学核心数学活动的分析显示,隐藏在退位减法之外的,是高等数学的等价、同构、相似性和表征之间的转化等概念。从结构上说,前五种解法是同构的,前五种解法和最后一种缺失加数的加法是等价的。但前四种解法的解释模型是不同的,有三种是“拿走”模型,一种是“比较”模型。只有从数学结构上理清这些解法的关系,才能有效地引导学生在不同的方法之间转换并分清这些方法的异同,促进学生高效地组织自己的数学知识。香港的“课堂学习研究”也证实,数学专家参与的教研活动,能提升课堂教学的有效性。
3.教学用的数学知识存在一定的结构。首先是学生理解的知识。像Ball的课例所展示的,学生对退位减法的理解有不同的方式、不同的层次和一些误解,这些知识是教师教学的起点。以学生已有的知识为起点自下而上的讲授使知识加以扩充,把新知识与学生已经构成内在网络的概念和方法联系起来,这是提高教学效率的奥妙;其次是教学策略。像Ball的课例所展示的,学生的理解各种各样,需要教师使用相应的策略来控制课堂讨论,协调不同的方法,促进正确的方法发展,搁置有问题的方法,这是提高课堂教学效率的重要手段;第三、控制与反馈的知识。教师需要提供线索和解释,矫正学生的误解,促进学生自我评价的参与,促进学生进一步精简合理化知识;第四,课程知识。像马力平的知识包概念所揭示的,特定课题呈现的最佳序列,它的来龙去脉及与其它学科的横向联系,是教师用来教学的数学知识基础。顾泠沅的研究也揭示,辨明一门学科各知识点的固着关系及其潜在距离,构建适合学生特点的、具有合适梯度的结构序列,是提高教学效率的基础;最后是教学目的的统领性观念。像退位减法,是像Ball那样对学生的经验进行精简合理化还是直接教授退位减法的法则,取决于教师对数学的理解、信念数学的认识论以及对特定学生最有价值的数学知识的判断。当然,这些成分是从不同的维度来说明教学用的数学知识的属性,它们之间的关系及提高课题教学效率的机制还需从课堂教学的经验出发进一步的概念化。
由于受学校的,一般人认为数学仅仅是对家、工程师,或许还有家才有用的一系列技巧。这样的教育导致了对这门学科的厌恶和对它的忽视。当有人对这种状况提出异议时,某些饱学之士可以得到权威们的支持。圣?奥古斯丁(St.Augustine)不是说过吗:“好的基督徒应该提防数学家和那些空头许诺的人。这样的危险已经存在,数学家们已经与魔鬼签定了协约,要使精神进入黑暗,把人投入地狱”。古罗马法官则裁决“对于作恶者、数学家诸如此类的人”应禁止他们“几何技艺和参加当众运算像数学这样可恶的学问。”叔本华(Schopenhauer),一位在现代史上占有重要地位的哲学家,也把算术说成是最低级的精神活动,他之所以持这种态度,是基于算术能通过机器来运算这一事实。
由于学校数学教学的影响,这些权威性的论断和流行的看法,竟被认为是正确的!但是一般人忽视数学的观点仍然是错误的。数学学科并不是一系列的技巧。这些技巧只不过是它微不足道的方标题是本文译者加的,副标题为原标题面:它们远不能代表数学,就如同调配颜色远不能当作绘画一样。
技巧是将数学的激情、推理、美和深刻的内涵剥落后的产物。如果我们对数学的本质有一定的了解,就会认识到数学在形成现代生活和思想中起重要作用这一断言并不是天方夜谭。
因此,让我们看一看20世纪人们对这门学科的态度。首先,数学主要是一种寻求众所周知的公理法思想的。这种方法包括明确地表述出将要讨论的概念的定义,以及准确地表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。数学的这一特征由17世纪一位著名的作家在论及数学和科学时,以某种不同的方式表述过:“数学家们像恋人。……承认一位数学家的最初的原理,那么他由此将会推导出你也必须承认的另一结论,从这一结论又推导出其他的结论。”
仅仅把数学看作一种探求的方法,就如同把达?芬奇“最后的晚餐”看作是画布上颜料的组合一样。数学也是一门需要创造性的学科。在预测能被证明的时,和构思证明的方法时一样,数学家们利用高度的直觉和想象。例如,牛顿和开普勒就是极富于想象力的人,这使得他们不仅打破了长期以来僵化的传统,而且建立了新的、革命性的概念。在数学中,人的创造能力运用的范围,只有通过检验这些创造本身才能决定。有些创造性成果将在后面讨论,但这里只需说一下现在这门学科已有八十多个广泛的分支就够了。
如果数学的确是一种创造性活动,那么驱使人们去追求它的动力是什么呢?数学最明显的、尽管不一定是最重要的动力是为了解决因需要而直接提出的。商业和金融事务、航海、历法的、桥梁、水坝、教堂和宫殿的建造、作战武器和工事的设计,以及许多其他的人类需要,数学能对这些问题给出最完满的解决。在我们这个工程,数学被当作普遍工具这一事实更是毋庸置疑。数学的另外一个基本作用(的确,这一点在现代特别突出),那就是提供现象的合理结构。数学的概念、方法和结论是物的基础。这些学科的成就大小取决于它们与数学结合的程度。数学已经给互不关联的事实的干枯骨架注入了生命,使其成了有联系的有机体,并且还将一系列彼此脱节的观察研究纳入科学的实体之中。
智力方面的好奇心和对纯思维的强烈兴趣,激励许多数学家研究数的性质和几何图形,并且取得了富有创造性的成果。今天很受重视的概率论,就开始于牌赌中的一个问题——一场赌博在结束之前就被迫中止了,那么赌注如何分配才合理?另外一个与社会需要或科学没有什么联系的最突出的成就,就是由古代希腊人创造出来的,他们把数学转变成了抽象的、演绎的和公理化的思想系统。事实上,数学学科中一些最伟大的成就——射影几何、数论、超穷数和非欧几何,这里我只提到我们将要讨论的内容——都是为了解决纯智力的挑战。
进行数学创造的最主要的趋策力是对美的追求。罗素,这位抽象数学思想的大师曾直言不讳地说:数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。
除了完善的结构美以外,在证明和得出结论的过程中,运用必不可少的想象和直觉也给创造者提供了高度的美学上的满足。如果美的组成和艺术作品的特征包括洞察力和想象力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。
尽管已清楚地表明,上述所有因素推动了数学的产生和,但是依然存在许多错误的观点。有这样的指责(经常是用来为对这门学科的忽视作辩解的),认为数学家们喜欢沉湎于毫无意义的臆测;或者认为数学家们是笨拙和毫无用处的梦想家。对这种指责,我们可以立刻作出使其无言以对的驳斥。事实证明,即使是纯粹抽象的,更不用说由于和工程的需要而进行的研究了,也是有极大用处的。圆锥曲线(椭圆、双曲线和抛物线)自被发现二干多年来,曾被认为不过是“富于思辨头脑中的无利可图的娱乐”,可是最终它却在天文学、仿射运动和万有引力定律中发挥了作用。
另一方面,一些“具有头脑”的作家断言:数学完全或者主要是由于实际需要,如需要建筑桥梁、制造雷达和飞机而产生或发展的。这种断言也是错误的。数学已经使这些对人类方便有用的东西成为可能,但是伟大的数学家在进行思考和研究时却很少把这些放在心上。有些人对实际漠不关心,这可能是因为他们成果的应用在几百年后才实现。毕达哥拉斯和柏拉图的唯心主义数学玄想,比起货栈职员采用“+”号和“一”号的实际行动来(这曾使某一作家深信“数学史上的一个转折点乃是由日常的社会活动所致”),所作的贡献要大得多。确实,几乎每一个伟大的人物所考虑的都是他那个的,流行的观点会制约和限制他的思想。如果牛顿早生二百年,他很有可能会成为一位出色的神学家。伟大的思想家追求时代智力风尚,就如同妇女在服饰上赶时髦一样。即使是把数学作为纯粹业余爱好的富有创造性的天才,也会去研究令专业数学家和科学家感到十分激动的问题。但是,那些“业余爱好者”和数学家们一般并不十分关心他们工作的实用价值。
实用的、科学的、美学的和的因素,共同促进了数学的形成。把这些做出贡献、产生的因素中的任何一个除去,或者抬高一个而去贬低另外一个都是不可能的,甚至不能断定这些因素中谁具有相对的重要性。一方面,对美学和哲学因素作出反应的纯粹思维,决定性地塑造了数学的特征,并且作出了像欧氏几何和非欧几何这样不可超越的贡献。另一方面,数学家们登上纯思维的顶峰不是靠他们自己一步步攀登,而是借助于社会力量的推动。如果这些力量不能为数学家们注入活力,那么他们就立刻会身疲力竭;然后他们就仅仅只能维持这门学科处于孤立的境地。虽然在短时期内还有可能光芒四射,但所有这些成就会是昙花一现。
数学的另一个重要特征是它的符号语言。如同音乐利用符号来代表和传播声音一样,数学也用符号表示数量关系和空间形式。与日常讲话用的语言不同,日常语言是习俗的产物,也是社会和运动的产物,而数学语言则是慎重地、有意地而且经常是精心设计的、凭借数学语言的严密性和简洁性,数学家们就可以表达和研究数学思想,这些思想如果用普通语言表达出来,就会显得冗长不堪。这种简洁性有助于思维的效率。J.K.杰罗姆(J.K.Jerome),为了需要求诸于代数符号,在下面一段描写中,尽管与数学无关,却清楚地表现了数学的实用性和明了性:
当一个12世纪的青年堕入情网时,他不会后退三步,看着他心爱的姑娘的眼睛,对他说她是世界上最漂亮的人儿。他说他要冷静下来,仔细考虑这件事。如果他在外面碰上一个人,并且打破了他的脑袋——我指另外一个人的脑袋——于是那就证明了他的——前面那个小伙子——姑娘是个漂亮姑娘。如果是另外一个小伙子打破了他的脑袋——不是他自己的,你知道,而是另外那个人的——对第二个小伙子来说的另外一个。因为另外一个小伙子只是对他来说是另外一个,而不是对前面那个小伙子——那么,如果他打破了他的头,那么他的姑娘——不是另外一个小伙子,而是那个小伙子,他……。瞧:如果A打破了月B脑袋,那么A的姑娘是一个漂亮的姑娘。但如果B打破了A的头,那么A的姑娘就不是一个漂亮的姑娘,而B的姑娘是一个漂亮的姑娘。
简洁的符号能够使数学家们进行复杂的思考时应付自如,但也会使门外汉听数学讨论如坠五里云雾。
数学语言中使用的符号十分重要,它们能区别日常语言中经常引起混乱的意义。例如,中使用“is”一词时,就有多种不同的意义。在“他在这儿”(Heishere)这个句子中,“is”就表示一种物理位置。在“天使是白色的”(Anangeliswhite)这个句子中,它表示天使的一种与位置或物理存在无关的属性。在“那个人正在跑”(manisrunning)这个句子中,这个词"is”表示的是动词时态。在“二加二等于四"(TwoandTwoarefour)这个句子中,is的形式被用于表示数字上的相等。在“人是两足的能思维的哺乳动物”(Menarethetwo—leggedthinkingmammals)这个句子中,is的形式被用来断言两组之间的等同。当然,在一般日常会话中引用各种各样不同的词来解释is的所有这些意义,不过是画蛇添足,因为尽管有这些意义上的混乱,人们也不会因此产生什么误会。但是,数学的精确性——它与和的精确性一样,要求数学领域的者们更加谨慎。
数学语言是精确的,它是如此精确,以致常常使那些不习惯于它特有形式的人觉得莫名其妙。如果一个数学家说:“今天我没看见一个人”(Ididnotseeonepersontoday),那么他的意思可能是他要么一个人也没看见,要么他看见了许多人。一般人则可能简单地认为他一个人也没看见。数学的这种精确性,在一个还没有认识到它对于精密思维的重要性的人看来,似乎显得过于呆板,过于拘泥于形式。然而任何精密的思维和精确的语言都是不可分割的数学风格以简洁和形式的完美作为其目标,但有时由于过分地拘泥于形式上的完美和简洁,以致丧失了精确竭力要达到的清晰。假定我们想用一般术语表述图1所示的,我们很有可能说:“有一个直角三角形,画两个以该三角形的直角边作为其边的正方形,然后再画一个以该三角形斜边作为其边的正方形,那么第二个正方形的面积就等于前面两个正方形面积之和。”但是没有一个数学家会用这样的方式来表达自己的想法。他会这样说:“直角三角形直角边的平方和等于斜边的平方。”这种简洁的用词使表述更为精炼,而且这种数学表达式具有重要的意义,因为它的确是言简意赅。还有,由于这种惜墨如金的做法,任何数学的读者有时会发现自己的耐心受到了极大的考验。
数学不仅是一种、一门或一种语言。数学更主要的是一门有着丰富内容的知识体系,其内容对科学家、科学家、哲学家、逻辑学家和艺术家十分有用,同时着家和神学家的学说;满足了人类探索宇宙的好奇心和对美妙的冥想;甚至可能有时以难以察觉到的方式但无可置疑地影响着的进程。
数学是一门知识体系,但是它却不包含任何真理。与之相反的观点却认为数学是无可辩驳的真理的汇集,认为数学就像是信仰《圣经》的教徒们从上帝那儿获得最后的启示录一样,这是一个难以消除的、流传甚广的谬论。直到1850年为止,甚至数学家们也赞同这种谬论。幸运的是,19世纪发生的一些数学事件(这些我们随后将进行讨论)向这些数学家表明,这种看法是错误的。在这门学科中没有真理,而且在它的一些分支中的定理与另外一些分支中的定理是矛盾的。例如,上个世纪创立的几何中所确定的一些定理,与欧几里得在他的几何学中所证明的定理就是矛盾的。尽管没有真理,数学却一直给予了人类征服自然的神奇的力量。解决人类思想史上这个最大的悖论将是我们所关注的课题之一。
由于20世纪必须将数学知识与真理区分开,因此也必须将数学与区分开,因为科学确在寻求关于物质世界的真理。然而数学却无疑地是科学的灯塔,而且还继续帮助科学获得在文明中所占的位置。我们甚至可以正确地宣称,正是由于有了数学,现代科学才取得了辉煌的成就。但是我们将会看到,这两个领域有着明显的区别。
在最广泛的意义上说,数学是一种精神,一种理性的精神。正是这种精神,使得人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地人类的物质、道德和生活;试图回答有关人类自身存在提出的;努力去理解和控制;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。在本书中,我们最为关心的将是这种精神的作用。
数学还有一个更加典型的特征与我们的论述密切相关。数学是一棵富有生命力的树,她随着文明的兴衰而荣枯。它从史前诞生之时起,就为自己的生存而斗争,这场斗争经历了史前的几个世纪和随后有文字记载的几个世纪,最后终于在肥沃的希腊土壤中扎稳了生存的根基,并且在一个较短的时期里茁壮成长起来了。在这个时期,它绽出了一朵美丽的花——欧氏几何。其他的花蕾也含苞欲放。如果你仔细观察,还可以看到三角和代数学的雏形;但是这些花朵随着希腊文明的衰亡而枯萎了,这棵树也沉睡了一千年之久。
这就是数学那时的状况。后来这棵树被移植到了欧洲本土,又一次很好地扎根在肥沃的土壤中。到公元1600年,她又获得了在古希腊顶峰时期曾有过的旺盛的生命力,而且准备开创史无前例的光辉灿烂的前景。如果我们将17世纪以前所了解的数学称为初等数学,那么我们能说,初等数学与从那以后创造出的数学相比是徽不足道的。事实上,一个人拥有牛顿处于顶峰时期所掌握的知识,在今天不会被认为是一位数学家。因为与普通的观点相反,现在应该说数学是从微积分开始,而不是以之为结束。在我们这个世纪,这门学科已具有非常广泛的,以致没有任何数学家能够宣称他已精通全部数学。
数学的这幅素描,尽管简略,但却表明数学的生命力正是根植于养育她的文明的社会生活之中。事实上,数学一直是文明和文化的重要组成部分,因此许多历史学家通过数学这面镜子,了解了古代其他主要文化的特征。以古典时期的古希腊文化为例,它大约从公元前600年延续到公元前300年。由于古希腊数学家强调严密的推理以及由此得出的结论,因此他们所关心的并不是这些成果的实用性,而是人们去进行抽象的推理,和激发人们对理想与美的追求。因此,看到这个具有很难为后世超越的优美文学,极端理性化的,以及理想化的建筑与雕刻,也就不足为奇了。
数学创造力的缺乏也表现在一个时代文明的文化里,这一点也是真实的。看看罗马的情况吧。在数学史上,罗马人在一定时期内曾作出过贡献,但从那以后他们就开始停滞不前了。阿基米德,最伟大的古希腊数学家和科学家,在公元前221年被突然闯入的罗马士兵杀害了,当时他正在画在沙盘中的几何图形。对此,A.N.怀特海(AlfredNorthWhitehead)说过:阿基米德死于一个罗马士兵之手,是一个世界发生头等重要变化的标志;爱好抽象科学、善长推理的古希腊在欧洲的霸主地位,被重实用的罗马取代了。洛德?比肯斯菲尔德(LordBeaconsfield),在他的一部小说中,曾把重实用的人称为是重复其先辈错误的人。罗马是一个伟大的民族,但是他们却由于只重实用而导致了创造性的缺乏。他们没有发展其祖先的知识,他们所有的进步都局限于工程技术的细枝末叶。他们并不是那种能够提出新观点的梦想家,这些新观点能给人以更好地主宰自然界的力量。没有一个罗马人因为沉湎于数学图形而丧命。
事实上,西塞罗(Cicero)夸耀自己的同胞——感谢上帝——不是像希腊人一样的梦想家,而是把他们的数学研究派上实际用场的人。
一、表述教学法的结构
运用表述教学进行教学,教师先向学生提供丰富的经过精心加工编排的感性材料,让学生对所学知识的重点、难点进行充分的感知。然后把这些感性知识,运用语言、操作、画图等方式,进行比较集中的有序的表述。接下来,教师指导学生自学新教材。在此基础上,组织学生进行初步练习。最后由教师进行讲解。概括地说,表述教学法的基本结构,可以划分为五个阶段,即感知阶段表述阶段自学阶段练习阶段讲解阶段。
下面,我们结合具体的教学实例,对表述教学法五个教学阶段,做一些简要的介绍。
教材内容:菜店运来豆角140千克,运来黄瓜的重量是豆角的3倍。运来豆角和黄瓜一共多少千克?(六年制小学数学第五册第44页例3)
第一,感知阶段。向学生出示图(1)
(附图{图})
启发学生观察思考:萝卜的重量是白菜的几倍?你能把萝卜的重量计算出来吗?怎样计算?
出示图(2):
(附图{图})
启发学生继续观察思考:图中提出了一个什么问题?这个问题怎么解答呢?
出示图(3)
(附图{图})
提问:把这幅图与前面两幅图进行比较,哪些内容相同?哪些内容发生了变化?谁能根据这幅图编出一道应用题呢?出示所编的题目:
食堂买来30千克白菜,买来萝卜的重量是白菜的4倍。买来白菜和萝卜一共多少千克?
接着指导学生以题为主,题图对照,进行深入分析。
(1)这道题的问题是什么?
(2)最基本的算法是什么呢?(或者问,只用一步把问题算出来,该怎么算呢?或者问,知道了哪两个条件,就可以把问题直接算出来呢?)
(3)根据题中所给的条件,能用一步计算把问题直接算出来吗?
(4)需要先算出哪个数量?
(5)下一步该怎么算呢?
在老师的启发下,学生依靠表象,对题目的数量关系以及计算方法有了正确的理解,感知阶段基本结束,开始转入第二个阶段。
第二,表述阶段。这是整个表述教学法的关键阶段,要求学生把所感知的内容,用自己的语言,进行比较集中而又有系统的表述,以此为手段,促进对新知识的理解。在前面的感知阶段,教师一边引导学生观察分析,一边将感知的重点内容写成如下板书:
(1)求什么?
(2)怎么算?(=)
(3)能用一步计算直接算出来吗?为什么?
(4)先算什么?
(5)再算什么?
我们把上面这种编排有序的题目,叫做表述题目,也叫表述提纲。利用表述提纲的导向作用,能使表述的难度大为降低,所以,就连中差生也能讲得比较清楚和系统。
第三、自学阶段。进入自学阶段,一般的做法是,利用小黑板或投影等手段,先由教师出示例题,尽量避免让学生直接阅读书上的例题,其用意在于将例题与题后的算理分析、算式解答等教材的内容分开,以便收集和了解学生真实的反馈信息。教学中,教师要鼓励学生独立地进行分析讲解,因为这是对新知识能否理解的重要标志,也是学生参与学习的重要过程。在讲解之后,大家都想列出算式进行具体的计算解答,都急于想获得自学的“劳动果实”,所以,教师应及时组织学生解答题目。把题目算完以后,再让学生打开课本阅读教材,进行自我对照和校正。要使学生明确,他们在自学阶段的主要任务是,看一看自己理解的思路,与书上所解释的是不是一致。自己表述的语句,有书上分析的那么准确简炼吗?再看一看列式计算有什么差错没有。如果有错误,要求学生尽量做到自己去分析比较,找出原因并加以改正。
整个自学阶段,可分四步进行:(1)出示例题;(2)分析讲解;(3)列式解答;(4)看书对照。通过自学,当学生看到自己能够“独立”地解答问题时,成功的喜悦便会油然而生。这时,他们非常希望再做一些题目,证明他们真正把新知识学到手了。于是,转入第四个阶段的时机成熟了。
第四,练习阶段。教师选择书上的练习题(第44页练习十六第1题),组织学生进行书面练习。与此同时,也可以挑选上、中、差三类学生上讲台去板演,教师加强巡回观察,了解学生对新知识掌握的情况。练习之后要组织学生进行讲解、讨论和订正,主要讲解题目的数量关系和解题思路。对不同的解题方法,要启发学生展开讨论,或品评优劣,或分辨正误,使学生对新知识的理解与掌握,得到进一步的巩固和提高。
总的来说,整个练习阶段,是让学生运用刚学到的新知识,独立地解答应用题的过程,通过练习以及练习后的讨论,教师能比较准确地了解到哪些学生已经真正理解并掌握了新知识,哪些学生还有“夹生饭”,这就给教师在下一步教学中,怎样调查与补救提供了可靠的依据。
第五,教师讲解。这是表述教学法的结尾阶段。首先,要对学生们在练习中获得的学习成效,给予充分的肯定。其次,要对新授知识的重点、难点进行归纳与整理。第三,对学生在练习阶段出现的错误,给予辅导和纠正,对易错、易混、易忘的问题,给以指点或强调,使已出现的错误,消灭于萌芽之中,而对尚未出现又极易发生的差错,引起警觉,防患于未然。总之,教师的讲解,既应对本堂课的新知识进行小结,又应为学生进一步学习铺平道路。
表述教学法的五个阶段,是一个有机的整体,它构成了表述教学法的基本框架。教学有法而又无定法,表述教学法的五个阶段,根据不同的教学目标与不同的教学内容和条件,是可以灵活调整或适当增删的。
二、表述教学法的特点
1、符合小学生的认识规律。小学生的思维正处在以具体形象思维为主要形式向以抽象逻辑思维为主要形式逐步过渡的阶段。对小学生来说,在这个过渡阶段中,最好的媒价是什么呢?那就是客观事物的具体形象;最主要的过渡渠道是什么呢?那就是引导学生利用多种感官对这些具体形象进行综合性的感知。我们以小学生特有的这种认识规律和表述教学法的结构设计原理相对照比较,就会很容易地了解到,表述教学法是符合小学生的认识规律的。例如,教学这样的应用题:草地上有8只羊,又来了3只,一共有多少只羊?(义务教育六年制小学数学第一册第65页第4题)教学中,先向学生出示模仿题的图片:一块草地上,有8只黑兔子在吃草。提问:草地上有几只兔子?教师在图片上又贴出3只白兔。提问:又跑来了几只兔子?哪个小朋友能把看到的情况说一说?谁能按这幅图的内容提出一个问题来?我们从学生多种回答中,选出“一共有多少只兔子?”继续进行讨论:“谁能把图上的内容和这个问题,连在一起说一说?”教师向学生强调指出:同学说的“草地上有8只黑兔,又跑来了3只白兔,一共有几只兔子?”这几句话,写下来就是一道应用题。提问:要算出一共有几只兔子,应该把哪两个数合起来呢?(做“合”的手势)用什么方法计算是“合”呢?(重复“合”的手势)怎样列式呢?接着引导学生由模仿题向书上的例题过渡:如果图上画的都是羊,你会列式计算吗?然后让学生看书上的例题,再进行讨论。
从上面简单的叙述中,我们可以清楚地看出,表述教学法的主要教学程序,体现了一条这样的线索:感知表象抽象。对于传统的教学程序,可以说这是一种新的突破。正是由于它符合儿童的认识规律,所以我们运用表述教学法,能取得比较满意的教学效果。
2、符合小学生的学习心理。小学生学习心理的特征是好奇、好胜、好动、好问,运用表述教学法,往往能比较好地满足小学生这种心理趋向和要求,因此也就自然会收到良好的教学效果。例如,教学这样一道题目:二年级一班有男生22人,女生18人,平均分成4组,每组有几人?(六年制小学数学第五册第46页例4)教师先组织学生进行学具操作:每人摆两堆小方木块,一堆摆5块,另一堆摆7块。提问:要把这两堆木块分成4小堆,而且要使每小堆的块数都一样多,你们会分吗?怎么分?动手试试看。学生们对这类操作活动很感兴趣,当学生把这两堆木块合在一起再进行均分时,教师及时提问:这些木块是怎么得到的?为什么要把原来的两堆木块并在一起呢?一共有多少块?怎样才能算出每小堆的块数呢?具体的学具操作,能把求平均数的算理简单明了地反映出来,给学生留下深刻的印象。
再比如讲解长方体棱的概念,教师做切萝卜的演示,学生们看得分外专注。先横切一刀,问:被切开的地方出现了什么?(一个平面)再纵切一刀,问:又出现了什么?(又出现了一个平面)追问:仔细看一看,还出现了什么?(还出现了一条边)这条边是哪个面上的边?(属于两个面共有的)它在什么地方?(两个面相交的地方)教师告诉学生:在长方体上,像这样的边,它有个漂亮的名字--棱。问:你们能把棱的含义说出来吗?这时,学生对棱的概念将会有确切的理解。
在感知阶段,我们可以利用图片、线段图、实物、学具、音像材料等多种直观手段进行启发引导,这些方式富有儿童情趣,深受学生的喜爱。由此可见,表述教学法的成效,与儿童学习心理有着密切的联系。
3、能充分发挥学生的主体作用。用现代教学论思想来分析,在教与学这一对矛盾中,学生是处于主导地位的。所以在教学中,教师应当充分调动学生学习的主动性和积极性,充分发挥学生的主体作用。只有这样,才能让学生变消极被动地接受知识为积极主动地获取知识。
运用表述教学法,从开始的感知阶段,学生就会被生动形象的教学内容所吸引,产生浓厚的学习兴趣。在表述阶段,他们需要开动脑筋,积极主动地把诸多感性材料“内化”为“自己的知识”,进而组织数学语言进行表述。表述促使学生对新知识的理解,发生了“质”的变化,为自学课本奠定了基础。通过自学课本,学生对知识的掌握,心中觉得更有“底数”了。所以会引起他们独自解答问题的兴趣,他们跃跃欲试,并充满了信心。练习之后,他们又迫切希望得到教师的肯定和鼓励。总之,运用表述教学法,有利于调动学生学习的积极性,使学生绐终处于主动获取知识的状态,这正是让学生参加到知识形成过程中的具体体现。
4、能有效地培养学生的自学能力。有人说,未来的文盲不是没有知识的人,而是不会学习的人。这话讲得很好。我们的教学,不仅要让学生“学会”,而且更重要的是要让学生“会学”,这已是我们广大教师的共识。可见,培养学生的自学能力是整个教学改革的主要目的之一。
运用表述教学法培养学生的自学能力,效果十分明显。感知阶段,要善于培养学生敏锐的观察能力要连贯有序,尽量为学生进行表述创造良好的辅助和分析推理能力。语言是思维的载体。常有这样的情形,理解了的知识,不一定能讲清楚,而能讲清楚的知识,则一定是理解了的。这正如爱因斯坦所说:“一个人的智力发展和他形成概念的方法,在很大程度上是取决于语言的。”可见,表述训练是促进学生思维发展尤其是逻辑思维发展,培养学生能力和智力的重要途径,也正是表述教学法的“强项”。
表述教学法还体现了让学生先自学,先试练,教师后辅导,后讲解的教学思想。就表述教学法的整体设计原理来讲,就是一个自学体系。因此,长期运用表述教学法,对培养学生的自学能力是十分有利的。
5、能有效地提高中差生的学习质量。在中差生中,尤其是差生,他们学生上感到吃力,成绩低下。究其原因,一是基础差,即原有的认识结构往往“残缺不全”,形不成一个“健全”的网络,所以在学习新知识时,他们的“同化”与“顺应”能力很差。另一个原因是他们不知道怎样去思考问题,不知道怎样去自学课本。再看表述教学法,它能向学生提供大量的感性材料,不仅引起了他们的兴趣与注意,还能有效地为他们设计出“低坡度”的学习途径。比如在表述阶段,讲什么内容,按怎样的顺序讲,都有比较具体明确的要求,加之教师的启发辅导,使差生感到“知道往哪儿去想”,“心理明白应当说些什么?表述教学法强调自学课本和当堂独立练习,改变了传统的教学程序,作业大多是在课堂上完成,消除了差生在课下抄袭别人作业的条件,这对培养差生的自学习惯,也是一种促进。
三、运用表述教学法应注意的一些问题
首先,在感知阶段,主要应处理好以下几点:(1)向学生提供的感性材料,一定要突出教材的重点和难点。例如教学这样的题目:一个林场用喷雾器给树喷药,2台喷雾器4小时喷100棵。照这样计算,5台喷雾器6小时可以喷多少棵?(六年制小学数学第九册第45页例5)重点是要理解“照这样计算”的具体含义是什么?究竟应当照什么样的标准来计算呢?知道这个标准后,又应当怎样计算呢?针对这个重点和难点,可以利用图解示意的办法,启发学生观察分析,这样能够收到较好的教学效果。(2)向学生出示的感性材料,要力求简单、形象、生动,目的是让学生观察后容易理解题中的数量关系;容易弄清题的算理与方法。(3)出示的例题,要和书上的例题基本相仿,为的是便于学生在自学课本时,能顺利地进行知识的正向迁移,获得良好的自学效果。
在表述阶段应注意的问题是:(1)要向学生提供表述提纲,使学生明确需要对哪些内容或哪几个知识点进行表述,提纲要少而精,语句要简而明,排列条件。(2)指导学生进行表述,可根据不同的教学要求,按以下几个层次,有选择地进行:①每个学生按照表述提纲,以自问自答的方式进行练习。②分成小组或同桌之间,互问互答。③教师提问,学生回答。④由一个学生按照表述提纲,从头到尾进行讲解。⑤不用看表述提纲就能系统而又流畅地进行分析讲解。教师要鼓励学生力争达到最后两种要求。(3)对学生的表述,要及时给予评价(初练时,要求不可太高,要逐步培养和锻炼,要多加鼓励与表扬),要使学生意识到,这是一项必不可少的基本功。既要鼓励学生用自己的话来进行分析讲解,更要鼓励学生用规范的数学语言,表述出自己的见解来,在传统的教学方法中,也有让学生分析讲解的要求,但是,从教学结构设计的角度来看,从内容到质量,从形式到时间,都缺乏明确的要求和具体的落实措施。我们在课堂经常见到的是少数优等生为“主角”,进行“表演式”的讲解,中等生成了无足轻重的“配角”,差生几乎是“听众”。现在,从教学结构上专门设计安排了表述这个阶段,突出了表述的地位与作用,这对于克服上述缺陷,培养学生运用数学语言的能力、抽象概括能力、逻辑思维能力等,都具有明显的促进作用。
在自学阶段中,要引导学生独立地读书学习。学生学习知识犹如渡河,应锻炼他们自己学会铺路、搭桥的本领,直达未知的彼岸。因此,在自学过程中,关键的问题是落实“真正的独立”,要把这部分时间“完全”交给学生使用,力戒因不必要的担心而向学生琐碎地补充指导,要突出地强调个人看书钻研,让学生有充分的机会,凭借自己的能力去消化新的知识,自我建构新的认识结构。
在练习阶段中,先让学生做基本练习,从书上的练习中,选择与例题的结构基本相同的题目进行初步练习,练习的数量要少,重点放在学懂学会方面。教师要注意收集分析学生在练习中反馈出来的各种信息,对于具有普遍性的问题,要及时给以点拔、辅导或纠正,对于少数差生,应加强个别指导。
全日制义务教育新《数学课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆”,教师应当帮助学生“在自主探索和合作交流的过程中真正理解和掌握的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”这实际上从一个角度要求数学教师,要重视学生的认知学习。但在实际教学中,还未重视认知结构的研究运用。尤其到了复习阶段,连续不断的向学生发放复习试卷和机械地向学生布置复习题给予强化,以达到反应结果。或者在平时教学中,让学生死记一些结论,不注重“有意义的学习”。学生的学习似乎还停留在“S—R”阶段。这种简单的操作方法在短时间内能使考试成绩上去,但代价是学生沉重的学习负担,并造成学生思维僵化,不利于培养“发展型”人才,与素质教育背道而驰。如学生对于绝对值概念,只知道│a│是a绝对值,而不明白它的真正内涵。没有通过学生生活中已建立起来的认知概念与数学内容的新认知结构进行联结。结果是造成对绝对值概念理解的是似而非。本文就数学学习的联结问题及导向策略上作一些探索。
二、关于联结理论
数学学习是什么过程?“人类的学是以一定的经验和知识为前提,是在联想的基础上,更好地理解和掌握新知的。”①数学学习也不例外,这里的联想即为知识的联结过程。
关于联结,理论上的研究,目前有两大派别。一是以美国心理学家桑代克为代表的联结主义的行为学习理论。二是以美国心理学家布鲁纳和奥苏伯尔为代表的认知学派学习理论。桑代克的主要观点是,学习就是作尝试错误。如果把当今的学习刺激设为S,学习反应设为R,学习就是S—R的联结过程。它是在动物实验的基础上提出的,是一种盲目的尝试。通过不断尝试,出现错误,不断矫正,从中学会知识和技能。
而认知学派认为,学习就是知觉的重新组合,这种知觉经验变化过程不是简单的“S—R”过程,而是突然的“顿悟”,强调“情景的整体关系”。而以美国心理学家托而曼为代表的观点进一步认为,在S与R之间应该有一个“中间变量”,即认知和目的,学习是期待,就是对环境的认知。因而,学习过程是一个S—O—R的过程。布鲁纳和奥苏伯尔还把它进行了发展为现代认知理论,认为“学习就是类目即及其编码系统的形成。”②它不仅批评S—R直接、机械的联结,而且提出学习存在一个认识过程,是认知结构的重新组合。强调原有的认知结构的作用,也强调学习材料本身的内在联系。把内在联系的材料和学生原有的认知结构联结起来,新旧知识发生作用,新材料在学生的头脑中达成“内化”,学会了对“S—O—R”中的“O”的捕捉,成为真正的意义的联结,或者说学生对新材料有了深刻地理解和超越。
显然,在不同的时代,上述理论对数学教育都有积极的贡献。但时至今日,在数学教育中,我们不能不重视,数学学习重要的应该是认知学习,它是一个建立学生心理内部学习机制的过程。这里要明白三点:学生学习数学,一要利用学生原有的认知结构,二要重视学生一定年龄阶段的心理发展水平,三要充分考虑不直接参与的情感、意志、兴趣等问题。
三、数学学习的两种联结思想剖析
下面结合教学实践,说明“S—R”与认知结构连结之间的各自意义。
例:如图,已知在O内接ABC中,D是AB上一点,AD=AC,E是AC的延长线上一点,AE=AB,连结DE交O于P,延长ED交O于Q.求证:AP=AQ.
按“S—R”的行为主义联结理论,可以让学生直接操作。这时,学生可能不去仔细审题。由图形“先入为主”,不断尝试,不断碰壁,然后再回头去审题。在点、线、角、三角形、圆的离散图形中不断产生错误。偶而碰上解题思路,才得到问题的解决。之后,再不去认识、总结。下次在碰上此题,又重新错误尝试。显然,这样的问题解决法,造成精力的极大浪费,所学知识也难以巩固。平时,我们老师经常说:“此题我让学生解过,还做不出!”原因在于“S—R”联结不是“有意义的学习”,没有找出新旧知识之间的内在联结,没有建立学生的新的认知结构。
而利用认知结构理论思考,首先是认真审题,进入“上位学习”③,对自己提问:
1、见过这个问题吗?见过与其类似的问题吗?用到那些基础知识?(图类似?还是条件类似?还是结论类似?)
2、见过与之有关的问题吗?(能利用它的某些部分吗?能利用它的条件吗?能利用它的结论吗?引进什么辅助条件,以便利用?)
以此,把原建立的认知结构中的全等三角形、圆周角性质、等腰三角形的判定等旧知加以调运。在此基础上,使学生进入“下位学习”④
然后,盯住目标——始终盯住要证的结论AP=AQ。就是要明确方向,哪怕中间状态不断变化,但始终与目标比较,及时调整自己的思路,建立“认知地图”⑤,以不迷失方向。其基本框架如下:
有什么方法能够达到目标?(1、达到的目标的前提是什么?2、能实现其中的某个前提吗?3、实现这个前提还应该怎么办?)
如上题,我们不妨采用逆向分析进行探索。这是认知策略的其中一条有效途径:
AP=AQ(目标)
∠AQP=∠APQ(前提)
以下为实现前提需找中间量,
即∠AQP=中间量=∠APQ.这时,逆向分析无法进行,此时一般就是添辅助线的时候,转化圆周角∠AQP,连结BP,即有
∠AQP=∠ABP.
因此,只要证明∠ABP=∠APQ.
由于∠ABP=∠ABC+∠PBC,∠APQ=∠E+∠PAC,
而∠PBC=∠PAC,所以,只要证∠ABC=∠E,即证ABC≌AED.
(以下略)
这样,学生在原有的认知结构思维水平基础上发展他的联想思维,使新旧知识加以联结,找到证题方法,达到解决问题,建立起新的认知结构。
因此,我们在教学中,一定要把精力化在建立学生认知结构的工夫上,善始善终加以引导。少用或不用“S—R”这种“尝试错误”的机械方法,多用科学成功的尝试,引导学生认真寻求“中间变量”,努力使学生的新旧知识加以联结,促进学生的数学素养不断提高。
四、数学学习联结的教学策略
事实上就学习者对数学问题的解决,无论是数学概念的形成、数学技能的掌握,还是数学能力的培养,都是学习者由未知到已知的联结过程,即“S—R”的联结过程,重要的是寻求“中间变量O”,从而构建数学认知结构。所谓数学认知结构,就是学生通过自己主动的认识而在头脑里建立起来的数学知识结构。可以这样说,数学学习的联结过程,就是数学认知建构的过程,学会自觉主动的寻求“中间变量”。最终达到解决问题的目的的过程。那么,在这一过程中数学学习究竟有那些规律可循?说具体一点有那些主要途径,这里谈一些粗浅的认识。
策略之一:以数学知识结构为基础,构建学生的数学认知结构
学习过程就其本质而言是一种认识活动。因此,数学教学的根本任务是发展学生的数学认知结构,首先应明确:数学认知结构是由数学知识结构转化而来的;要建立学生的数学认知结构,首先必须以数学知识结构为基础,进行开发、利用,从而转化为学生的数学的认知结构。着重把握以下三个方面:
(1)加强数学知识的整体联系。数学是一个有机整体,各知识相互联系,教学中教师对数学知识的组织应能促进学生从前后联系上下照应的角度对数学知识进行整体性构建从而在头脑中形成经纬交织的知识网络,这是一种“情景的整体关系”。对于一个具体的数学问题,应该感知有效的信息。如在本文第二部分的例题分析中提出的第1、第2个问题,就是寻求有效信息,找其联结点;对于“准类”的一块知识,要注意纵向联结。如函数,初一年级学习一次式、一元一次方程、二元一次方程组时,就要向学生渗透函数思想,初二学习正比例函数、反比例函数、一次函数,要回首前面知识与函数的联系,并在学习一元二次方程时,自然与二次函数联结作准备。到了初三,初中数学的“四个二次”(二次式、二次方程、二次不等式、二次函数)有机地综合联结;对于一章知识,要让学生逐步自己小结,构成知识网络,输入大脑,形成数学认知结构。
(2)注意揭示数学思维过程。数学被称为“思维的体操”,但是数学的思维价值和智力价值是潜在的,决不是自然形成的,也不是靠教师下达指令能创造出来的,课堂教学中,教师应精心创设问题情景,引导启发学生积极思维,其间应注意两个环节:①制造认知冲突——充分揭示学生的思维过程,即使新的需要与学生原有的数学水平之间产生认知冲突。传统的教学在教师分析讨论解题时,往往思路理想化、技巧化、脱离学生的认知规律,忽视了学生的思维活动,导致学生一听就懂,一做即错。学生无法达到真正的连结。为此,在引导学生学习中,为了使学生联结中,必须充分估计知识方面的缺陷和学的思维心理障碍,揭示他们的思维过程,从反面和侧面引起学生的注意和思考,使他们在跌到处爬起来,在认知冲突中加强联结。②稚化自身思维——充分揭示教师的思维过程。即教师启发引导要与学生的思维同步,切不可超前引路,越俎代疱。如果教师在教学中,对于各类问题,均能“一想即出,一做就对”,尤其是几何证明题,辅助线新手拈来,或者把自己的解题过程直接抛给学生,使学生产生思维惰性,遇到新的问题情景,往往束手无策。只有通过教师的多种方式的启发,稚化自身,象学生学习新知识的过程一样展开教学,把自己认识问题的思维过程充分展示,接近学生的认知势态,学生才能真正体会、感受到数学知识所包含的深刻的思维和丰富的智慧。③开发解题内涵——充分揭示数学发展的思维过程。在引导学生学习中,除了学生、教师的思维活动外,还存在着数学家的思维活动,即数学的发展思维过程。这种过程与经过逻辑组织的理论体系是不同的。如果将课本内容照搬到课堂上学生就无法领略到数学家精湛的思维过程。学生要吸取更多的营养,必须经自身的探索去重新发现。这就需要教师帮助学生开发数学问题的内涵,努力使学生的整理性思维方式变为探索性思维方式,有效地使学生从数学知识结构出发,构建新的认知结构。
(3)有机渗透数学思想方法。所谓数学思想方法就是数学活动的基本观点,它包括数学思想和数学方法。数学思想是教学思维的“软件”,是数学知识发生过程的提炼、抽象、概括和提升,是对数学规律更一般的认识,它蕴藏在数学知识之中,需要教师引导学生去挖掘。而挖掘的过程就是数学认知结构形成的过程,也就是数学学习的最佳连结过程。数学方法是数学思维的“硬件”,它们是数学知识不可分割的两部分。如字母代数思想、集合映射思想、方程思想、因果思想、递推思想、极限思想、参数思想、变换思想、分类思想等。数学方法包括一般的科学方法——观察与实验、类比与联想、分析与综合、归纳与演绎、一般与特殊,还有具有数学学科特点的具体方法——配方法、换元法、属性结合法、待定系数法等等Æ。这就要求在数学知识教学的同时,必须注重数学思想,数学方法的有机渗透,让学生学会对问题或现象进行分析、归纳、综合、概括和抽象等。只有这样,才能有助于学生一个活的数学知识结构的形成。现举一例:
例:如图,在线段AB上有三个点C1,C2,C3,问图中有多少条线段?若线段AB上有99个点,则有多少条线段?AC1C2C3B
探索分析:①如果一条一条数,这是一种思想方法;②如果AB上有99个点就得另辟溪径;③假如一开始要你对后一种比较复杂的情况作出回答,就必须回到简单情况去考虑,这就是一般到特殊、简单到复杂的数学方法,也就是“以退求进”的变换思想;
当有1个点C1时,有线段AC1,AB,C1A,共有2+1=3条;
当有2个点C1C2时,有线段AC1,AC2,AB,C1C2,C1B,C2B,共有3+2+1=6条;
当有3个点C1C2C3时,有线段AC1,AC2,AC3,AB,C1C2,C1C3,C1B,C2C3,C2B,C3B共有4+3+2+1=10条;
当有99个点时,共有线段100+99+98+……+3+2+1=5050条.
这里用到了重要的归纳思想。
策略之二:以学生的层次性出发,引导学生构建新的数学认知结构
一方面,认知结构总是在学生头脑中进行建构的。学生学习活动的主动性,自觉性是建构认知结构的精神力量;另一方面,认知结构总是不断发生变化的,原有认知结构是构建新认知结构的基础,新认知结构是原认知结构的发展与完善。因此教师应积极探索在课堂教学中根据学生实际按层次引导他们去构建数学认知结构。
(1)对整体水平较高的班级集体,由于学生有较丰富的知识积累,具有较强的形成“思维链”的能力,因而可采用快(教学节奏)、多(问题系列)、变(习题丰富多变)等思路进行教学,启发学生的思维向纵深发展,培养学生思维的敏捷性和独创性。促进以高效快速建构。
(2)对学生基础和发展水平中等的班级集体,教师应以课本为本,按教材本身的内在逻辑有序地组织教学,理清知识体系,形成知识网络,注意方法指导,培养学生自学能力和应用知识解决实际问题的能力。
(3)对整体水平较低的班级集体,重在考虑以下策略:①采用“小步子”方式循序渐进,经常“回头观望”,调整教学进度和内容的难易度以符合学生认知结构;②尽可能多地利用多种手段(例如:形象生动的语言或多种教学媒体的辅助)激发学生学习兴趣,启发学生思维;③对学生因新旧知识衔接不良难以迁移时,及时制定有针对性的复习对策,通过提问、书面作业、补充辅导等帮助学生过渡,以取得整体水平的提高。现举一例课堂实录片段,特别适用数学整体水平较低的的学生:
例:课题——无理数。学生学了有理数后,不能有效地容纳无理数概念,即学生用“同化”的过程形成新概念,只能通过“顺应”的过程达到无理数概念的形成。对于基础较差的班级学生,若直接用“无尽不循环小数叫无理数”死灌,感到抽象,学生难以理解。我们不妨用形象生动的教学情景,从感知着手:教师上课进教室,手拿一个骰子。上课开始,教师问学生:“这是一件什么东西?”学生感到诧异:“老师怎么把赌具拿到教师里来,这不是搓麻将用的吗!”引起学生一片好奇心。接着教师把一位同学请到讲台前进行抛骰子,教师作好记录,黑板上跳出一串数:2.25361554261……,这时,教师问学生:“无尽的投下去,结果出现的数能循环出现吗?”由于这是学生直接感知到的,又贴近实际,学生很自然地得出了无理数的概念。这是一种巧妙的联结,是行之有效的策略。
总之,从数学知识结构本身不同层次学生来说,创设联结的“最近发展区”,引导他们乐于构建新的认知结构这一导向策略,体现了因材施教,因人施教的原则。
策略之三:以学生发展为目标,使学生自主地构建新的数学认知结构
根据数学认知结构来构思教学策略较好地解决了知识与能力的关系,但是,教学的根本问题乃是人的问题。面向二十一世纪的中学数学教师应该看到:学生的学习主要不只是为适应当前的环境,而是为适应今后发展的需要。从当前看,学生的学习容易成为一个被动的接受过程;从未来看,他们的学习又有待于发展到完全独立而主动的自学阶段,因些,数学课堂教学的重点是要培养起独立积极学习的态度和自我教育,自我发展的自主的、能动的、创造性的能力。数学认知结构的建立,最后归根到底,不是依赖教师去建构,更不是简单的联结,而是要求学生离开教师后,能自己主动地建构。因此以“人的发展”为主题,进行中学数学课堂教学策略的探讨和构思是一种趋势。
“人的发展”是课堂教学的出发点和归宿,而课堂教学如何促进人的发展呢?必须以培养学生独立学习的能力为突破口,独立学习的实质是强调学生的独立思考。传统的教学模式是先教后学,即课堂教学在先,学生复习作业在后。然而独立学习将这种天经地义的教学关系(或顺序)颠倒过来,先学后教,即学生首先必须独立学习,然后再进行课堂教学。在课堂教学中应着重解决学生在独立学习中遇到的问题。中央教科所卢仲衡先生倡导的数学自学法、北京师范大学裴娣娜教授的自主发展性教学、上海华东师范大学叶澜教授的“自主教学”、江苏特级教师邱学华先生的尝试教学法、江苏洋思中学的“先练后学”教学模式等等,不失为使学生自觉构建新的认知结构的有效连结途径。因此,此时的课堂教学是在独立学习的基础上进行,其教学策略则应侧重在以下几个方面:①通过检查阅读笔记和作业本以及课堂小测验或提问来了解学生独立学习的情况;②反映和解决学生独立学习中存在的主要问题。关键在于教师在引导学生对存在的问题进行分析归类,将大部分问题在分析过程中得以解决,小部分问题则通过质疑,讨论来解决;③教师应充分寻找学生思维的闪光点,让学生充分表现,鼓励学生大胆发表自己的独立见解。同时教师留心寻找学生的创见,作为深化课堂教学的契机,使全班同学共同受益。④小结引导学生对本节内容进行小结,要求学生按照自己的思路的方法把小结内容记入阅读笔记。
小学数学教师应具备怎样的教学语言素质呢?
小学数学教师的教学语言素质包括以下两方面的内容:一是具备较高的文化知识素质,它包括对数学知识掌握的深度,要想给学生一碗水,教师就要有一桶水。没有广博的知识,就不可能有科学的教学语言,就不可能吸引学生的学习注意力。前苏联教育家苏霍姆林斯基在《给教师的建议》一书中,在谈教师的教育素养时写道:“只有当教师的知识视野比学校教学大纲宽广得无可比拟的时候,教师才能成为教育过程真正的能手、艺术家和诗人。”
二是教师本身的素质,一名教师只有文化知识还远远不够,教师是一个综合能力比较强的职业。教师本身的素质包括:1.表达能力;2.教态;3.说好普通话的能力;还有最为重要的就是:必须热爱教师这个职业,必须热爱学生。
一、小学数学教学语言应科学、严密
数学是科学性和逻辑性很强的一门学科。小学数学是学好中学数、理、化的基础,也是今后学好科学文化知识的基础;因此,小学数学的教学语言应该是科学和严密的。
有的教师教学语言不够科学,也不够严密。例如:在教学“三角形的初步认识”这节课时,当教师对三角形下定义时,说:“由三条边组成的图形是三角形。”这是不严密的,因为三条边组成的图形可能是三条不相交的直线。这样说才是正确的:“由三条边围成的图形是三角形。”
有的教师在教学“长方形、正方形和平行四边形的认识”这节课中,在比较长方形和正方形的异同点时,学生说,“相同点是长方形和正方形的四个角也都是直角;不同点是长方形的对边相等,而正方形的四条边都相等。”比较异同点的目的是什么呢?教师不清楚,学生也就不清楚了。接下来教师一定要问:“长方形和正方形有什么关系呢?”可是教师没有问,学生也不知道。正方形是特殊的长方形,也就是正方形包含在长方形中。接下来学平行四边形,比较平行四边形和长方形的异同点,相同点是对边相等,不同点是平行四边形的四个角不是直角,而长方形的四个角都是直角。最重要的是平行四边形和长方形有什么关系?长方形、正方形和平行四边形有什么关系?教师没有问。为什么把长方形、正方形和平行四边形放在一起认识,而不把长方形、三角形和圆放在一起认识呢?因为长方形、正方形和平行四边形有包含关系,正方形是特殊的长方形,长方形是特殊的平行四边形,它们又都是特殊的四边形,还可以画一个示意图。而这节课教师只讲了这三种图形都是四边形,它们各自的特点,它们之间的异同点,它们之间的关系也是最重要的,教师没有问,也没有讲。教师只有把旧知识和新知识联系起来,教给学生一个完整的知识体系,这样才能使学生头脑中的知识形成一个完善的知识结构,这样的知识才是完整的、科学的和严密的。
二、小学数学教学语言应准确、精炼
有些教师不注意自己的教学语言,随意性很大,例如,在教学“长方形、正方形和平行四边形的认识”这节课中,复习一道判断四个角是不是直角的题,教师出示的题目是“判断出直角”,这话很不规范、很不准确。应该说,“判断下面每个角,哪个是直角?”
有些教师就比较注意自己的教学语言,在课堂上语言比较精炼,没有多余的话。在教学“三角形的认识”这节课中,教师问完好以后,接着说:“先拿三根小棒,围一个图形,谁愿意到前面来做?”单刀直入,开门见山,直入课题,没有浪费学生宝贵的时间。有的教师话就比较多,语言不够精炼。问完好以后,她说:“今天,我们要在这里上一节数学课。大家看一下,教室里来了很多领导和老师,还有校长,希望同学们就象在自己班级上课一样不要害怕,积极思考,主动发言,让领导和老师们看一看,好不好?”没用的话,与这堂课的知识内容没有关系的话,请不要说,不要浪费大家的时间,上课的时间多么宝贵,就40分钟啊!
三、小学数学教学语言应形象生动、有启发性
教师形象生动的语言,带有启发性的语言,能激发学生的学习兴趣,进而能调动学生学习数学的积极性,让学生主动学习。例如:长春市第二实验小学鞠孟贤老师,在讲“两步计算应用题”时,她把两步计算应用题中的间接条件,用一个非常形象的字“藏”来代替,她说:“这里还有一个条件,藏起来了,谁能把它找出来?”学生的学习兴趣被这一生动的字调动起来了,他们都想自己找出来。
再如教师在讲“小数的性质”这节课中,教师上课的第一句话就说:“你们去过商店买过学习用品吗?”一句话就把学生的学习兴趣调动起来了,因为买学习用品和他们的生活太贴近了。教师接着说:“文具盒5元,圆珠笔1元6角,你们会不会写?”让学生动笔写,这样有两种不同的写法:5元,5.00元;1.6元,1.60元。教师又接着说:“同样的钱为什么用不同的形式表示?你们想不想知道?”这诱人的加之亲切的语言,激发了学生的求知欲,全班学生都盯着教师想知道为什么。
我们听过不少这样的课,课堂气氛沉闷,教师说的话很多,而且重复的话很多,多数学生没有发言的机会,只有个别几个“好”学生才有发言的机会,全班学生没有动起来,所以课堂气氛沉闷。我们要求教师在课堂上,要充分发挥教师的主导地位,让学生主动的学习,主动的获得知识。教师在课堂上,应提出一些启发性的问题,尤其是在新旧知识的连接点上,让学生积极思考,如果大多数学生没有想出来,那么可以让学生前后桌讨论一下,让全体学生都有发表自己意见的机会,这样课堂气氛绝不会沉闷了。
四、小学数学教学语言应鼓励学生学习的积极性
教师在课堂上,应该经常用一些鼓励性的语言,使学生能够自觉主动的学习。例如,在讲“一位数除三位数”的教学中,教师出示题:428÷2,教师说:“根据这道题的特点和一位数除两位数的计算方法,你有勇气独立完成这道题吗?”当全班学生都做对时,教师又说:“你们真聪明!”这样的语言对学生的学习积极性是很大的鼓舞和推动,而且师生的情感得到发展。“老师对我们真好,我可喜欢学数学了。”“我非常愿意学数学。”
有很多教师愿意把学生分为好学生、中等学生和差学生,这是从学习成绩来分的。但是,我们最好不要这样分,这样会伤他们自尊心的。我们不妨这样分:对学习有兴趣的,积极主动学习的学生;对学习兴趣不大,但比较听话,老师让我学,我就学,被动学习的学生;再就是对学习一点兴趣也没有,或学习有困难的学生。学习有困难的学生,对学习不感兴趣的学生和被动学习的学生,有时会对学习采取冷漠的态度,教师就要以满腔的热情去温暖这些冷漠的心,让他们逐渐解冻,恢复活力。
在课堂上,经常会看到这样的情景:当一名学生正确的回答了教师提出的问题或一名平时不爱发言的学生把问题回答正确,教师会说:“同学们,鼓励他!”全班同学会热烈的、带有节奏的鼓掌;有的老师还会用亲切的语调说:“回答得非常好!”“李聪,今天表现得真好!”我想:就这样一句话,会使这名同学全天都能愉快地学习,甚至,从此以后,他就非常喜欢数学了。
教育家赫洛克作了一个有名的实验,他把学生分成四个组,学习同一难度的内容,第一组为受表扬组,经常受到表扬,成绩扶摇直上。第二组为受谴责组,责备经常不断,这些责备,开始起点作用,后来就“疲”了,成绩就持续下降。第三组为被忽视组,只是在一旁静听前两组所受到的表扬与谴责,自己既得不到直接的表扬,也不遭受直接的谴责,学习成绩比前两组都差。第四组为控制组,既不给予任何表扬与谴责,也不让他们听到对前两组的表扬与谴责,学习成绩最差。由此赫洛克得出结论说:“奖惩都是必要的,不给予奖惩会引起学习下降,而奖励比惩罚对学习的促进作用更大。
教师要善于表扬学生,尤其是对学习没有兴趣的学生和学习有困难的学生。有的老师会说,这样的学生没有优点,怎么表扬他呢?做一个细心的教师,只要发现学生有一点点进步,那怕是微不足道的,你也应该及时的表扬他,鼓励他,使他感到我也有优点,我也能进步。如上课时,当你提出比较简单的问题时,让他回答,及时表扬他、鼓励他,“他回答得非常正确,进步很大。”还有的学生上课举手发言,即使他回答错了,你也要鼓励他,“看他能大胆发言了,虽然问题回答得不完全正确,但是他已有了很大的进步,我相信下一次他一定能把问题回答正确。”对于学习有困难的学生或不爱发言的学生来说,老师能表扬他、鼓励他,他当然非常高兴,甚至非常自豪,由此他会对学习产生兴趣,会认真的听课,积极的发言,这样他的学习成绩会很快地提高。
五、教学语言要用标准的普通话,克服方言
有的教师一定要问:又不是语文课,数学课为什么还要用标准的普通话呢?我省有的地区普遍有地方口语,就是平翘舌分不清。如:14,他们发“十市”。我国很早以前就提倡说普通话,这里说的普通话是标准的普通话。我们到南方一些省市听课,老师和学生们说的都是普通话,而且都很标准。我省有几个地区有地方口语,要改变家乡的面貌,首先从教师做起。教师说的不是标准的普通话,这样会影响学生的学习质量。
教师发音是否准确,也标志着教师的业务水平。发音不够准确的教师,可以查字典,请教发音准确的教师,师生之间可以及时纠正;学生发言时,如果发音不准,老师和学生都可以及时纠正。
六、教师自然得体的教态是无声的教学语言
教师的教态一般是指,教师的外表、说话的表情以及说话的语调等等。
教师的教态非常重要,我们一般要求教师表情亲切,语调适中。教师笑盈盈地面庞,亲切的目光,使学生感到老师可敬可亲。这样老师和学生之间的距离拉近了,学生就会主动、自觉地学习。辽源第一实验小学吴敏老师的教态就是非常自然的,她的声音也非常美,听她讲课就是一种享受。而且她和学生的感情也很好,课堂气氛很活跃,学生敢想敢说,他们不害怕老师,说错了,老师也不会批评他们,经常这样训练,学生的语言表达能力和思维能力都能得到提高。
还有吉林市第一实验小学陈晓梅老师,她的教态也非常自然得体。
我们也听过一些这样的课,教师板着面孔,说什么话,都是一种语调。语言没有错误,复习、新课、练习,一步是一步,课堂气氛死气沉沉,好象学生都在听讲,其实学生的思维已不知飞向何方了。
(一)
中学是大学的基础,大学教育要想有一个好的开端,就必须提高中学教育的质量和水平。就中学教师来说,人人都希望自己的教育与教学活动能高效率,但这并非易事,它涉及到方方面面的诸多因素,如自己的工作能力、教育的大环境与小环境等主客观原因,无论如何,学习、掌握、借鉴各种优秀的教育、教学方法则是非常必要的。作为一名数学教师,应该了解国内外先进的数学教学方法,找出各种方法的优缺点,然后根据中学的实际情况,吸收他人教学方法的长处,使自己的教学更上一个新的台阶,从而促进中学教学方法的不断完善和发展。
国内外中学数学施教的对象都是中学生,年龄段在13-18岁,心理发展阶段属于青少年期,他们具有相似的心理和认知水平,教学内容大同小异,所要达到的目标和遵循的原则基本一致;正是由于在施教对象、教学内容、教学目标等方面具有共同性,因此中学数学教学存在着可比性。比较中西方中学数学教学方法,发现有如下的相似之处:
(1)教学程序基本一致。各国中学数学讲授新课基本上采用这样的程序:老师提出问题,学生自学预习:学生在老师的指导下理解所学的内容;巩固所学的内容;检测所学的知识。
(2)讲授法是各国中学数学教学普遍采用的基本方法。不论中国还是美国,或者西方其他发达国家,数学知识的传授基本上是以讲授法为主,其他方法为辅助。
(3)普遍重视启发式教学。第二次世界大战后各国都进行了程度不同的教学方法改革,中学教学也不例外。通过教育改革各国都重视如何提高学生素质、培养能力的教学,尤其重视启发式教学思想在学科教学中的应用。①
从中学数学教学实际来看,我国的教学方法与西方发达国家的相比,存在着差别,主要表现在:
(1)教师与学生在教学过程中关系和作用不同。中国大部分的教学方法都是以老师为中心,有“重教轻学”的倾向,在教学过程中大都是采取灌输式的教学方法。这主要是我国长期的应试教育导致的。尽管我国的教育改革努力向素质教育的方向发展,但由于中考、高考对学生的影响仍然很大,使得大多数学校教育自觉或不自觉地滑向了题海战术、应试教育。这样的教学方法虽然有利于学生记住数学概念、数学公式,在一定程度上掌握了较深、较难的数学知识。但弊端是很明显的,它不能很好地调动学生的兴趣,束缚了学生学习的主动性。而国外特别是发达国家的教学方法重视学生自学能力的培养,注意探索学生的好奇心;多采用启发式教学方法,注重应用教育,鼓励学生发展。在教学过程中讲究自愿,学生享受学习的充分自由,学习比较轻松愉快。
数学教学中学生与老师的关系不同也造成教学气氛有明显的差异。发达国家中,老师和学生基本上是朋友关系,可以互相自由地交往、交流,教师在教学过程中起辅导提示的作用。课堂上老师有目的地让学生讨论,学生可以自由出入,有时老师甚至可以别出心裁地把课本搬到野外与学生们一起在明媚的阳光下、柔和的清风中愉悦地学习。这种教学方法能促进学生积极开动脑筋,增加对学习数学的快乐,减轻学生压力,造成欢快的教学气氛,但中国学生长期以来处于严格的课堂管理中,强调教室、强调自己的座位,老师也不敢放开,担心过分放松,会造成课堂上活泼有余、严肃不足和自由散漫的混乱场面,因为学习到底不是娱乐。同时由于中国传统思想习惯不同,在严重“尊师”思想的影响下造成了老师与学生之间存在不可逾越的“鸿沟”,在教学过程中教师往往过分严肃,学生过分紧张,再加上数学不同于文科,故事性的内容少,更加使学生失去学习的兴趣,学生很容易感到疲惫懈怠,致使一部分学生特别是差生把学习数学当成是服“若役”。
(2)对培养能力与个性发展的重视程度不同。在发达国家中强调个性的培养,鼓励学生自由发展,因而分层次个体教学方法使用得比较多。比如他们在教改中提出的非学校论的教学方法,及计算机程序教学法(把所要学的知识编成程序,让学生面对计算机自学)。这些方法强调自学,注重因材施教,能较好地培养学生自学能力,满足不同学生学习的需要。但这样的教学方法也存在一定的弊端,如使学生很少听到老师主动的讲解,难以与同学进行互相帮助,互相影响;此外使学生很少接触到课本以外的数学知识,影响学生的社会化。我国一般采用的教学方法大多是集中型吃“大锅饭”的统一的教学。这样的教学方法虽然有利于学生系统地掌握知识,有利于教师全面考虑、统筹安排,教师易于把握节奏。但是容易造成优差生的严重分化,教学没有针对性,不利于因材施教,实际上忽视了个性的差异。
在国外的数学教学中,注重对学生的了解和沟通。如美国一些学校使用的教学日记法,学生以日记的形式记录教学中的思维过程、心理状况,使学生与教师能经常通过日记进行交谈,教师易于了解学生的认知水平、知识经验、兴趣及个人思维风格等非智力因素的个体差异,教师能从学生的这些资料中综合出各种学生的成就抱负水平、焦虑水平、意志水平,从而设计出教学方案,提高教学水平。而我国教师过分注重智力因素,相对忽视了非智力因素,教师和学生的交流少,自然而然在他们之间形成隔膜,老师对学生的心理、情感、动机、兴趣难以了解,无法得到反馈,学生的焦虑、交际需要等得不到及时的满足。导致学生学习积极性不高。教师的教学具有很大盲目性。②
(3)培养学生的数学意识与应用数学教育的思想存在差异。国外的教学方法一般注意培养学生的数学意识。重视应用数学教育,具体反映在注重数学与日常生活的联系,数学中采用的例子尽量来源于现实生活。如日本的CRM教学法(复合的现实数学教学法),在教学过程中选取一些学生熟悉的事物,针对其中所包含的数学知识进行讨论和探索,最后得出结论。这种教学方法深化了学生对数学知识的理解,有利于培养他们利用数学眼光看问题和建构数学模型的意识,培养了用数学方法解决实际问题的能力,学生毕业后能较好地适应社会的需要。当然如果过分地联系难免有牵强附会之嫌。我国的教育目标虽然说重视应用教育,但至今未有与之协调的教学方法,事实上成了纸上谈兵,仍然只是从数学本身的结构出发培养学生的数学素质,造成曲高和寡的情形。另一方面,中国当前的教育方法对培养学生的解题能力非常有效,善解题是中国教学方法中比较突出的特点,这从数学奥林匹克竞赛中取得的突出成绩可以看出。
(4)教学中使用的工具和教学媒体也存在着差异。国外由于经济和科技发达,直观教学手段有了极大提高,计算机辅助教学及各类教学媒体普遍被使用。随着我国教育的改革,中国也力争改善教学手段,如多媒体教学,但由于经济、科技等方面的原因,多媒体的普及远远不是近期可以实现的。③
(二)
当前我国的教育改革在极力推进由应试教育向素质教育的转轨,因而以后教学的关键是如何提高学生的素质。所谓的全面素质可以概括为“四素质三能力”,即:文化科学素质、思想道德素质、身体心理发展素质、劳动技术素质等四素质和逻辑思维能力、应用能力、创造能力等三能力。故通过中外数学教学方法的比较,结合我国的实际情况,按照素质教育的要求,我认为改进教学方法应从以下几个方面入手:(1)重视教师和学生的交流,改善教师与学生的关系,加强对学生的全面了解,调动学生的积极性;(2)重视能力的培养,真正做到使学生的素质全面发展;(3)改进教学方法必须与改革考试制度相联系,不破除升学率的压力,就无法使教师与学生从考试的繁重负担中解放出来。必须改变考试凌驾于教学之上,考试是“指挥棒”的不合理状况,使考试成为教学的检测手段,起辅助教学的作用。
教学有法,但无定法,世界上没有一种放之四海而皆准的教学方法,因而对任何好的教学法都不能完全照搬,而应根据实际情况,吸取合理的思想和有效的成分,创立一套合符实际的教学方法;在教学中不要固守一两种教学方法,而要根据不同的教学内容、不同的学生采取相应的教学方法,因材、因人施教是教学方法的唯一出发点。
主要参考文献
①王子兴主编《数学教育学导论》,南宁:广西师范大学出版社
[键字]件数学教学效果
人类已进入信息时代,以计算机和网络为核心的现代信息技术正在越来越深刻地改变着我们的工作方式和学习方式。所谓多媒体课件,简单地说就是利用数字处理技术和视听技术,以计算机为中心,按照教师的教学设计,将文字、语音、图像等多种媒体信息集成在一起,以实现对教学材料的存储、传递、加工、转换和检索的一种现代教学技术手段。由于它图、文、声、像并茂,能够实现人机频繁地多种交互控制,方便辅助教学,所以越来越受到人们的重视。在中学数学教学中,适时恰当地运用多媒体课件进行辅助教学,利用其图、文、声、像并茂的特点,创设具体的教学情境,可以充分调动学生的学习兴趣,可以使抽象的教学内容具体化、清晰化,可以开拓学生的思路、增强思维灵活性,还可以有效地发挥学生学习的主动性,使他们积极参与教学过程,从而提高教学质量,优化数学教学过程。
一、创设情境,激发学生学习兴趣
一堂好课好比一本趣味盎然的好书,开篇就该引起读者的兴趣。课上,巧妙成功的开头,能有效地激发学生的求知欲,使他们的注意力很快地集中到教学内容上去,学生在轻松愉悦的氛围中由被动变主动,畅游课堂,学习新知识。
例如,我在上一节数学归纳法的课时,我可以让学生先看看电脑投影机上的先后出现的几张扑克牌红桃2,红桃3,红桃4,,然后盖住一张牌让学生猜它是什么牌,学生马上有很多猜是红桃红桃5,当我用鼠标点开这张牌时发现它是张牌确实是红桃5,他们很开心,然后我盖住一张牌让学生猜它是什么牌,学生马上有很多猜是红桃6,而当我用鼠标点开这张牌时,同学们发现它是一张黑桃Q,这时我及时由不完全归纳法的不足引入数学归纳法的概念。学生对数学归纳法就有了极大的学习兴趣,使我这堂课上的很活跃。
像这样,在课堂伊始,让学生欣赏一段动画,倾听一段音乐来引入课题,能极大地激发学生的学习兴趣,唤醒他们的有意注意,在活跃的课堂上,学生的心会一直被教师引导着,使教学过程顺利进行,从而提高教学效率。
二、变抽象为直观,突出重点,突破难点
由于多媒体课件形象具体,动静结合,声色兼备,所以在课堂上恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点。
比如我在讲数学归纳法的概念时,我首先让同学们看一段多米若骨牌倒下的动画,然后让同学们归纳出要所有的骨牌倒下,骨牌必须满足哪几个条件,当学生们归纳出第一、要第一张牌倒下,第二、要每张牌倒下后它后面的牌一定能倒下,这时我们就能推断所有的牌一定会倒下,这时我就归纳出证明中的关键两步,第一、当n=n0(例如n=1或n=2等)时结论正确,第二、假设n=k(k∈n*且k>n0)时结论正确,证明n=k+1时结论也正确。然后让学生对比着两者来理解数学归纳法的本质,及其在证明中运用两步走的方法的原因,再通过几个实例练习后,让学生通过一个直观的动画深刻理解了数学归纳法这个较抽象的概念。
又如在上一节折叠问题专题课中一道题
下面左图为一个简单多面体的表面展开图(沿图中虚线折叠可还原),则这个多面体的顶点数为个
学生对于这个立体图形没有一个形象的思维,但是通过电脑动画演示整个折叠过程,最后结果如右上图,学生马上就可以知道答案是七个角。
另外在的一个教三视图课堂中,如果要求学生们通过观察下图左边三个侧面图想象实物图象,这是比较难的事,但是如果通过如图的各个对应面闪烁动画演示,学生就很容易理解。
动静结合,引发了学生的思维,提高了学生的注意力,融化了知识的难点。
三、调整学生情绪,调动学生积极性
实验心理学家Treichler做过两个著名的实验。一个是关于人类获取信息的途径。他通过大量的实验证实,人类获取的信息83.5%来自视觉,11%来自听觉,3%来自嗅觉,1.5%来自触觉,1%来自味觉,可以看出,人们通过听觉和视觉获得的信息占其所获得总信息的94%;另一个实验是关于知识保持即记忆持久性。结果是,人们一般能记住自己阅读内容的10%,听到内容的20%,看到内容的30%,听到和看到内容的50%,在交流过程中自己所说内容的70%。另外,记忆率的研究结果表明相同的结论。心理学家研究记忆率发现,对同样的学习材料,单用听觉,三小时后能保持所获取知识的60%,三天后则下降为15%;单用视觉,三小时后能保持70%,三天后降40%;如果视觉、听觉并用,三小时后能保持90%,三天后可保持75%。
因此,如果在教学的过程中,能同时调动学生的视觉、听觉、触觉等多种感知器官参与感知活动,从而会有助于学生对知识的理解和接受。
计算机的强大媒体处理功能使我们现代课堂教学有了新的发展,用计算机制作的课件实现了文字、图形、声音、动画及活动影像等多种媒体间的互相配合和协调呈现,把电视机所具有的视听合一功能与计算机的交互功能结合在一起,产生出一种更合乎自然的交流环境和方式,直接诉诸学生的多种感官,调动学生主动运用多种感官积极参与媒体的活动,使学生由知识的被动接受者转变为知识的主动发现、探索者。在教学过程中有效地激发了学生的学习兴趣,使学生产生强烈的学习欲望,形成学习动机,更积极有效的接受知识。
在多媒体计算机交互式学习环境中,学生还可以按自己的学习基础、兴趣来选择自己所要学习的内容,选择适合自己水平的练习,甚至能够选择教学模式。这种主动参与性为使学生发挥积极性、获得有效认知创造了很好的条件
四、运用多媒体课件教学,增加课堂的信息容量
传统的数学授课中,由于教师可利用的教学手段少,而数学概念抽象而枯燥,学生接受的刺激单调,呆板,往往兴趣不浓,课堂效率不高,容量当然就小。利用CAI的先进技术,课堂教学就可以变得生动活泼。
首先,计算机的信息存贮量大、处理迅速,具有方便的人机交互功能。我们在分析数学概念时,可设计一些与概念相关情境,从多个角度、不同层次考察,学生就可以全方位的把握概念的内涵和外延。同时在展示问题时,设置“飞入”、“百叶窗”、“螺旋”等动画效果和“打字”、“机关枪”、“爆炸”等声音效果,或把重点、难点的内容设成彩色文字,以刺激学生的视觉和听觉,加深学生的印象,使学生很好地记忆和理解数学概念。
其次,利用计算机的模拟功能,可使抽象内容形象化,静止内容动感化,枯燥内容生动化,重点内容突出化,为学生创造生动、活泼、直观、有趣的教学条件,可极大地调动学生的学习热情,激发学习动机,便于学生形成有意注意,消除学习的疲劳和紧张。这样做既有助于学生良好的心理品质的形成,又使学生获取准确、深刻的直观感知,从而形成完整的理性认识,提高课堂教学质量。比如在进行三角函数图象变换的教学时,通过几何画板生动的动画功能演示出y=sinx变换成图象的相位、周期、振幅的变化的全过程,变课本上死板的画面为栩栩如生的动画,使学生获得充分的感性认识,从而加深对知识的理解和掌握。对学生而言,课堂教学中运用CAI手段,形成多角度、多层次的信息剌激,能够强化学生对知识的记忆和理解,缩短学生对知识的掌握时间,提高了学生学习的积极性,扩展了学生的知识面,在提高课堂容量的同时,提高教学效益。特别是上高三数学复习课时,因为很多知识都是学习过了,所以学生主要需要的就是大量的做练习,这时如果运用多媒体课件就可以节省许多的板书时间,而且可以通过形象的图形及动画使得解题过程更易理解,从而节省了讲解题目的时间,最终可以使得一节课的题目容量大大增加。
五、通过多媒体课件,让学生多了一种自学途径
一、数学知识研究
传统上认为数学教师至少要掌握他所教的数学知识。班级授课制成熟后,人们开始同意这样一个原则:除了所教的数学知识以外,数学教师还需要掌握像组织教学、控制课堂秩序等一些教学知识。随着教学研究的深入,人们发现教师仅仅知道他所教的数学的术语、本毕业论文由整理提供概念、命题、法则等知识是不够的。…除此之外,教师还要知道数学的学科结构。学科结构的概念最早源于Schwab。他指出了理解学科结构的两种方式:一个方式是句法性地(syntactically),另一个方式是实体性地(substantively)。所谓句法性地是指从学科所表现出来的逻辑结构方面去了解学科结构。比如,引入无理数表示不可公度线段,引入负数与复数表示某些方程的解。前者可以看到,后者看不到,仅是为了保持方程都有解这个论断的完整性和通用性所做出的一种假设与解释。对这三个概念含义的理解,只能通过产生这些概念的前后联系才能揭示。所谓实体性地是指从学科的概念设计角度去了解学科结构。比如,欧氏几何与解析几何有不同的概念框架。Ball把数学的学科结构知识称为关于数学的知识。它是指知识从哪里来,又是如何发展的,真理是如何确认的,又将用到哪里去。
主要有三个维度:一是约定与逻辑建构的区别。正数在数轴的右边或者我们使用十进位值制都是任意的、约定的。而0做除数没有定义或者任意一个数的零次幂都等于1就不是任意的、约定的;二是数学内部之问的联系以及数学与其他领域之间的联系;三是了解数学领域中的基本活动:寻找模式、提出猜想、证明断言、证实解法和寻求一般化。
对数学知识的研究,拓宽了人们对教学用的数学知识的理解。它显示教学用的数学知识是很复杂的,除了术语、概念、法则、程序之外,还有数学学科结构或者关于数学的知识。这些知识对于教师确定为什么教、选择教什么和怎么教都会产生影响。比如,约定的与逻辑建构的概念的教学策略会有很大的不同,逻辑建构的概念就必须讲清楚它怎么来的,为什么要定义这个概念,怎样定义,它会有什么用,它与其他的概念的关系是怎样的,它的应用有哪些限度。而约定的概念就没有这些必要。但是,有效地数学教学,仅仅具有上述知识还不够。它缺少对学生的考虑,不能给教师提供教授一群特定的学生所必须的教学上的理解。比如,仅仅通过推导知道(+6)=a+2ab+b对有效教学是不够的,教师还需要知道一些学生容易把分配律过度推广而记成+6)=a+b,知道用矩形的面积表征可以有效地消除这一误解。学生误解的知识与消除误解的教学策略显然不能纳入数学知识的框架,教学用的数学知识的复杂性要求更精致的框架来描述。
二、教材分析研究
有效的教学必须考虑学生已有的知识和知识呈现的最佳序列。在数学学科中,马力平的知识包(Knowledgepackage)是国际上较为典型的此类研究。知识包是围绕着一个中心概念而组织起来的一系列相关概念,是在学生的头脑里培育这样一个领域的纵向过程。(n知识包含有三种主要成分:中心概念、概念序列和概念结点,也包括概念的表征、意义和建立在这些概念之上的算法。下例是20以内数的加减法的知识包。在这个知识包内,中心概念是20至100数的“借位减法”,它是学习多位数的加减的关键前提。
马力平的知识包实际上是我国内地传统的教材分析研究。这类研究结果是教学参考书的主要内容之一。它是一种课程知识,是教师对课程的分析,比对数学知识的分析更接近教学用的数学。但它也不是教师教学时使用的数学知识。它最多是教师对教学的考虑,没有考虑师生互动时产生的数学需求。教师在教学时,能够动员起来的知识不一定符合教学情境的需要。本毕业论文由整理提供比如教师预期的一种学生的反应在与学生的互动中没有出现,教师以学生的这种反应为跳板的后继知识就没有了用武之地。马力平概括出的知识包,与教师在课堂教学时使用的数学知识还有一段距离,教师在教学时可能用得上,也可能用不上。教师在教学时所需要的数学知识远远超出教材分析所能提供的内容。
三、教学用的数学知识研究
Ball开创了教学用的数学知识研究。她通过分析数学教学的核心活动,直接研究课堂教学中教师使用的数学知识及其影响。下面以Ball的一个课例来说明其研究方法与结果。该课内容是三年级多位数减法:Joshua星期一吃了16粒豌豆,星期二吃了32粒豌豆。问Joshua星期二比星期一多吃了多少粒豌豆?学生在解题过程中提供了六种解法。Sean从16的后继数l7开始向后数数,一直数到32得到答案。ba认为,32的一半是16,答案就是16。Betsy把表示16和32的教具(豆子)一一配对,数一下表示32的教具中剩余的没有配对的豆子得到答案。Mei的方法是直接从表示32的豆子中拿走16粒,数一下剩余的就行了。Cassandia提供了标准的减法算法,Scan受到启发,提供了另一种解法:16+16=32,整节课,学生想尽办法鉴定这些解法的异同。L6JBall认为,这节课教学的核心活动是处理数学知识的关联和控制课堂讨论。知识的关联涉及到在具体和符号的模式中,减法和加法是如何关联的、减法的“比较”和“拿走”的解释是如何关联的、教具的表征如何转化为符号表征、Betsy的配对比较法如何转化为Sean的向后数数的方法、Betsy的方法如何和Mei的方法协调,控制课堂讨论首先表现在提供线索和解释,推动正确的方法的发展;其次表现在搁置有问题的方法。比如搁置Riba的说法。Riba的论断是正确的,但要使其他的学生能够明白他的意思,还需要添加几步推理。但这几步推理与用它来证明Sean的结论超过了三年级学生的理解能力。
Ball对这节课教师需要使用的数学知识进行了归纳。除了传统的教材分析提供的借位减法的符号算法及其背后的位值制之外,教师还需要其他知识。首先需要知道问题的两种表征模式(如减法32—16:?与缺失加数的加法16+?=32)是等价的。其次,还要知道此问题的一些表征:比如像Sean的从17数到32,或者Mei的从32里拿走l6个等等。第三,教师还需要具有深刻的数学眼光去审查、分析和协调学生的多种解法。最后,教师还需要一些关于数学论证的知识。
通过上述分析,Ball指出,教材分析只能提供教学用的数学知识的一部分,其余大部分只能在分析数学教学的核心活动中才能得到。
四、启示
1.教学用的数学知识是有效教学的知识基础。它与数学家的数学知识、教材分析得出的数学知识是不一样的。它具有一种教学上有用的数学理解,这种理解主要集中于学生的观念和误解上。学生对特定内容的理解是有差异的,教师需要调和学生不同的理解方式并在这些方式之间灵活自如地转换,引导学生把知识进一步组织,促进学生在已有的知识基础上有效学习。
2.教学用的数学知识是高观点下的数学知识,它联系着更深刻的概念和方法。Ball的课例仅是小学三年级的两位数退位减法,但是,通过对课堂教学核心数学活动的分析显示,隐藏在退位减法之外的,是高等数学的等价、同构、相似性和表征之间的转化等概念。从结构上说,前五种解法是同构的,前五种解法和最后一种缺失加数的加法是等价的。但前四种解法的解释模型是不同的,有三种是“拿走”模型,一种是“比较”模型。只有从数学结构上理清这些解法的关系,才能有效地引导学生在不同的方法之间转换并分清这些方法的异同,促进学生高效地组织自己的数学知识。香港的“课堂学习研究”也证实,数学专家参与的教研活动,能提升课堂教学的有效性。
3.教学用的数学知识存在一定的结构。首先是学生理解的知识。像Ball的课例所展示的,学生对退位减法的理解有不同的方式、不同的层次和一些误解,这些知识是教师教学的起点。以学生已有的知识为起点自下而上的讲授使知识加以扩充,把新知识与学生已经构成内在网络的概念和方法联系起来,这是提高教学效率的奥妙;其次是教学策略。像Ball的课例所展示的,学生的理解各种各样,需要教师使用相应的策略来控制课堂讨论,协调不同的方法,促进正确的方法发展,搁置有问题的方法,这是提高课堂教学效率的重要手段;第三、控制与反馈的知识。教师需要提供线索和解释,矫正学生的误解,促进学生自我评价的参与,促进学生进一步精简合理化知识;第四,课程知识。像马力平的知识包概念所揭示的,特定课题呈现的最佳序列,它的来龙去脉及与其它学科的横向联系,是教师用来教学的数学知识基础。顾泠沅的研究也揭示,辨明一门学科各知识点的固着关系及其潜在距离,构建适合学生特点的、具有合适梯度的结构序列,是提高教学效率的基础;最后是教学目的的统领性观念。像退位减法,是像Ball那样对学生的经验进行精简合理化还是直接教授退位减法的法则,取决于教师对数学的理解、信念数学的认识论以及对特定学生最有价值的数学知识的判断。当然,这些成分是从不同的维度来说明教学用的数学知识的属性,它们之间的关系及提高课题教学效率的机制还需从课堂教学的经验出发进一步的概念化。超级秘书网