时间:2023-03-15 14:54:42
导语:在数学知识点总结的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
一、算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
二、方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
三、分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
四、体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
五、数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
1 、整数加法
把两个数合并成一个数的运算叫做加法。 在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
【公式】
加数+加数=和
一个加数=和-另一个加数
2 、整数减法
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3、 整数乘法
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
【公式】
一个因数× 一个因数 =积
一个因数=积÷另一个因数
4 、整数除法
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
【公式】
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
二、小数四则运算
1、小数加法
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2、小数减法
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3、小数乘法
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4、小数除法
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5、乘方
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
三、分数四则运算
1. 分数加法
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
高二数学知识点总结(一)
【一】
(一)基本概念
必然事件
确定事件
1、事件不可能事件
不确定事件(随机事件)
2、什么叫概率?
表示一个事件发生可能性的大小,记为P(事件名称)=a;
练习一:判断下列事件的类型
(1)今天是星期二,明天是星期三;
(2)掷一枚质地均匀的正方体骰子,得到点数7;
(3)买彩票中了500万大奖;
(4)抛两枚硬币都是正面朝上;
(5)从一副洗好的牌中(54张)中抽出红桃A。
(二)预测随机事件的概率
1、步骤:
(1)找出所有机会均等的结果,作为概率的分母
注:不能仅凭主观判断,而应利用列举法、树状图、列表法等方法找。
(2)明确关注结果,作为分子
2、用列表法或树状图分析复杂情况下机会均等结果
【二】
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.
【三】
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
高二数学知识点总结(二)
第一章 算法初步
算法的概念
算法的特点
(1)有限性:
一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:
算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当 是模棱两可.
(3)顺序性与正确性:
算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个 确定的 后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每 一 步都准确无误,才能完成问题.
(4)不唯一性:
求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5)普遍性:
很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过 有限、事先设计好的步骤加以解决.
程序框图
1、程序框图基本概念:
(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来 准确、直观地表示算法的图形。
一个程序框图包括以下几部分:
1.表示相应操作的程序框;
2.带箭头的流程线;
3.程序框外
4.必要文字说明。
(二)构成程序框的图形符号及其作用
画程序框图的规则如下:
1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退 出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果; 另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而
下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B
框是依次执行的,只有在执行完A框指定的操作后,才能接着执
行B框所指定的操作。
2、条件结构:
条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结 构。条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B 框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可 以有多个判断框。
3、循环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况, 这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。 循环结构又称重复结构。
循环结构可细分为两类:
(1)一类是当型循环结构
如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
(2)另一类是直到型循环结构
如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
当型循环结构 直到型循环结构
输入、输出语句和赋值语句
赋值语句
(1)赋值语句的一般格式
(2)赋值语句的作用是将表达式所代表的值赋给变量;
(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两 边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;
(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或 算式;
(5)对于一个变量可以多次赋值。
注意:
①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。
②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)
④赋值号“=”与数学中的等号意义不同。
注意:
在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2
第二章 统计
简单随机抽样
1.总体和样本:
1.研究对象的全体叫做总体.
2.每个研究对象叫做个体.
3.总体中个体的总数叫做总体容量.
4.样本容量:一般从总体中随机抽取一部分:
研究,我们称它为样本.其中个体的个数称为样本容量.
2.简单随机抽样:
从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点:
每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间 无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在 总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:
(1)抽签法;
⑵随机数表法;
⑶计算机模拟法;
⑷使用统计软件直接抽取。
4.抽签法:
(1)给调查对象群体中的每一个对象编号;
(2)准备抽签的工具,实施抽签
(3)对样本中的每一个个体进行测量或调查
5.随机数表法
系统抽样
把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样 本。第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
(1)按比例分层抽样:
根据各种类型或层次中的单位数目占总体单位数目的比重来抽取样本的方法。
(2)不按比例分层抽样:
有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便 于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体 时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢 复到总体中各层实际的比例结构。
2.2.2用样本的数字特征估计总体的数字特征
1、平均值:
2、.样本标准差:
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍
2.3.2两个变量的线性相关
1、概念: (1)回归直线方程 (2)回归系数
2.回归直线方程的应用
(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
第三章 概 率
随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在某种条件下,一定会发生的事件,叫做必然事件;
(2)不可能事件:在某种条件下,一定不会发生的事件,叫做不可能事件;
(3)随机事件:在某种条件下可能发生也可能不发生的事件,叫做随机事件;
(4)基本事件:
试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样 的 时间叫基本事件;
(5)基本事件空间:
所有基本事件构成的集合,叫做基本事件空间,用大写希腊字母Ω表示;
(5)频数、频率:
在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验 中事件A出现的次数为事件A出现的频数;称事件A出现的比例为事 件A出现的频率;
(6)概率:
在n次重复进行的试验中,时间A发生的频率m\n,当n很大时,总是在某个常 熟附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常熟叫做事件A 的概率,记作P(A),0≤P(A)≤1;
概率的基本性质
1.必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2.当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);
3.若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于 是有P(A)=1—P(B);
4.互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不 会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2) 事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事 件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2) 事件B发生事件A不发生,对立事件互斥事件的特殊情形。
古典概型
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=#FormatImgID_5#
几何概型
基本概念:
(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积) 成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:
P(A)=
(3)几何概型的特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等.
高二数学知识点总结(三)
一、简谐运动
1.机械振动:机械振动是指物体在平衡位置附近所做的往复运动.
2.回复力:回复力是指振动物体所受到的指向平衡位置的力,是由作用效果来命名的.回复力的作用效果总是将物体拉回平衡位置,从而使物体围绕平衡位置做周期性的往复运动。回复力是由振动物体所受力的合力(如弹簧振子)沿振动方向的分力(如单摆)提供的,这就是回复力的来源。
3.平衡位置:平衡位置是指物体在振动中所受的回复力为零的位置,此时振子未必一定处于平衡状态.比如单摆经过平衡位置时,虽然回复力为零,但合外力并不为零,还有向心力.
4.描述振动的物理量:
①位移总是相对于平衡位置而言的,方向总是由平衡位置指向振子所在的位置—总是背离平衡位置向外;②振幅是物体离开平衡位置的最大距离,它描述的是振动的强弱,振幅是标量;③频率是单位时间内完成全振动的次数;④相位用来描述振子振动的步调。如果振动的振动情况完全相反,则振动步调相反,为反相位.
5.简谐运动:A、简谐运动的回复力和位移的变化规律;B、单摆的周期。由本身性质决定的周期叫固有周期,与摆球的质量、振幅(振动的总能量)无关。
6.简谐运动的表达式和图象:x=Asin(ωt+φ0) 简谐运动的图象描述的是一个质点做简谐运动时,在不同时刻的位移,因而振动图象反映了振子的运动规律(注意:振动图象不是运动轨迹)。由振动图象还可以确定振子某时刻的振动方向.
7.简谐运动的能量:不计摩擦和空气阻力的振动是理想化的振动,此时系统只有重力或弹力做功,机械能守恒。振动的能量和振幅有关,振幅越大,振动的能量越大。
高二数学知识点总结(四)
随机事件的概率
平面直角坐标系
证明不等式的方法
绝对值不等式
均匀随机数的产生
随机事件的概率
概率的基本性质
古典概型
不等式与不等关系
基本不等式
等差数列
简单的逻辑连接词
全称量词与存在量词
基本不等式的证明
正弦定理
充要条件
三角函数的诱导公式
函数y=Asin(wx+φ)的图像
正弦函数、余弦函数的图象
等比数列
四种命题
三角函数模型的简单应用
任意角的三角函数
《随机数的产生》
不等式
等差数列的前N项和
任意角的三角函数
函数y=Asin(ωx+ψ)的图象
任意角和弧度制
正弦函数、余弦函数的图象
高二数学知识点总结(五)
练习:
已知方程 表示焦点在x轴
上的椭圆,则m的取值范围是 .
(0,4)
(1,2)
练习:求适合下列条件的椭圆的标准方程:
(2)焦点为F1(0,-3),F2(0,3),且a=5.
(3)两个焦点分别是F1(-2,0)、F2(2,0),且过P(2,3)点;
(4)经过点P(-2,0)和Q(0,-3).
小结:求椭圆标准方程的步骤:
①定位:确定焦点所在的坐标轴;
②定量:求a, b的值.
例1 :将圆 = 4上的点的横坐标保持不变,
纵坐标变为原来的一半,求所的曲线的方程,
并说明它是什么曲线?
解:
将圆按照某个方向均匀地压缩(拉长),可以得到椭圆。
2)利用中间变量求点的轨迹方程
的方法是解析几何中常用的方法;
练习
1 椭圆上一点P到一个焦点的距离为5,
则P到另一个焦点的距离为( )
A.5 B.6 C.4 D.10
A
2.椭圆
的焦点坐标是( )
A.(±5,0)?
B.(0,±5) ?
C.(0,±12)?
D.(±12,0)
C
3.已知椭圆的方程为 ,焦点在X轴上,
则其焦距为( )
A 2 B 2
C 2 D 2
A
,焦点在y轴上的椭圆的标准方程
l 是 __________.
例2已知圆A:(x+3)2+y2=100,圆A内一
定点B(3,0),圆P过B点且与圆A内切,求圆心
P的轨迹方程.
解:设|PB|=r.
圆P与圆A内切,圆A的半径为10.
∴两圆的圆心距|PA|=10-r,
即|PA|+|PB|=10(大于|AB|).
∴点P的轨迹是以A、B两点为焦点的椭圆.
∴2a=10,
2c=|AB|=6,
∴a=5,c=3.
∴b2=a2-c2=25-9=16.
即点P的轨迹方程为 =1.
例3在ABC中,BC=24,AC、AB边上的中线之
和为39,求ABC的重心的轨迹方程.
#FormatImgID_0#
练习
椭圆面积公式:S=π(圆周率)×a×b,其中a、b分别是椭圆的长半轴,短半轴的长。椭圆面积公式属于几何数学领域。c1c2clone可以依据关于圆的有关公式,类比出关于椭圆公式。
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。
(来源:文章屋网 )
考点一、线段垂直平分线,角的平分线,垂线
1、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。2、角的平分线及其性质
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:
(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
3垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。2、三角形中的主要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。6、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。③证明线段不等关系。7、三角形的角关系
三角形的内角和定理:三角形三个内角和等于180°。推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。等角的补角相等,等角的余角相等。
8、三角形的面积
三角形的面积=
2
1
×底×高应用:经常利用两个三角形面积关系求底、高的比例关系或值
考点二、全等三角形
1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。
能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
2、三角形全等的判定三角形全等的判定定理:直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)考点三、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则
关键词:数学;知识;结构构建
一、构建数学知识结构的必要性
数学是一门需要长期学习的课程,从最初的加减法到复杂的微积分,都需要有大量的数学知识储备。在数学学习^程中,由于数学知识不断增多,怎样牢记所有数学知识点是每一名学生都感到苦恼的问题,这时就需要依靠自身积累的数学知识进行结构构建。构建数学知识结构不仅能对所学知识进行全面、系统的整合,将各个知识点紧密联系到一起,有利于学生对所学知识的长期记忆;并且能对相关知识进行及时补充,为学生之后学习定积分、微积分奠定基础。在此过程中,学生提升了自信心,同时提高了思考问题的能力,由此可见构建数学知识结构的重要性。
二、数学知识结构的组成部分
1.数学基础知识
数学这一学科最重要的就是对基础知识的掌握,只有做到夯实基础,才能处理数学问题。基本的数学理论知识是十分重要的,因此教师要重点抓学生对基本知识的掌握,在讲解每一节课程时,首先应对书中的定义进行讲解,再对书中涉及的相关例题进行认真讲解,让学生充分掌握书中的重要知识点。教师要保证学生充分掌握书中所提出的问题,因为教材中的问题是最权威、最典型的题目。例如最值问题,教师应将书中的例题进行深度剖析,以书中的基本知识作为基础,为接下来相似问题的解决提供知识储备。
2.正确的数学思考方式
正确的数学思考方式是解决数学问题的重要手段,一个数学问题可以有多种解题方式,但是最简单的解题方式只有一种。教师应根据学生现阶段数学知识的储备,选择正确的数学解题方式。正确的解题方式可以大大加快学生的解题速度,为考试取得优异成绩提供时间保障。正确的数学思考方式有赖于对数学知识结构的构建,教师应将书中例题的思考方法传授给学生。
三、构建数学知识结构的几点思考
1.重视数学知识构建教学环节
在数学教学过程中,教师应重点培养学生对知识结构的构建能力。构建数学知识结构是一个长期的过程。在这个过程中,学生需要对每一阶段所学的知识进行结构构建。教师应协助学生对数学知识点进行总结、归纳,将目前的知识点与之前学习的知识相结合。另外在每一阶段数学知识的总结方面,教师可以鼓励学生根据自己的理解进行总结,将总结好的知识点交由教师进行评价。
2.重视数学基础知识的积累
在数学知识结构的构建过程中,要注重对各个阶段的数学知识进行总结,这是建立完整知识结构的重要保障。数学知识结构的构建是一个从量变到质变的过程,学生从最基本的数学知识开始,对课堂上讲解的每一个知识点都要做好笔记,然后对较为重要的数学知识点进行重点标注。课堂上应认真聆听教师的讲解,充分理解书中每一个知识点,不断温习所学知识,将现阶段所学的知识点与先前的知识联系到一起,为数学知识结构的构建提供内在动力。
3.构建数学知识结构应注重正确的方法
要想建立完整的数学知识结构,就需要应用正确的构建方法。在数学课程学习过程中,我们会发现数学知识也是分模块的,不同模块涉及的知识不尽相同。在数学知识结构的构建中,可以采取分类式的方法,对每一板块的知识进行总结归纳。在每一章节中,同样要重视对数学知识点的总结,对每一章节的知识点进行小范围的结构构建。例如,在参数方程阶段的学结中,对每个公式的引用条件进行归纳,注重公式的运用条件,之后要将每一阶段总结的小范围数学知识结构填充到大结构中去,以此类推,就会不断扩大数学知识结构的规模。
关键词:思维导图;小学数学;高效课堂;构建
一、基于思维导图的小学数学高效课堂构建的重要作用
(一)能够促进学生知识结构的优化
在传统的教学中,教师传授学生数学知识,都是按照教材的内容对学生进行教授的。剩下的内容就要学生自己对数学知识进行归纳和总结,以实现对数学知识的深入理解和掌握。思维导图在小学数学教学中的应用,可以帮助学生对数学知识进行系统归纳,将数学知识完整地展现在学生面前,促进学生自主学习能力和思维能力的提高,实现对学生知识结构的优化。
(二)能够促进数学教学效率的提高
在数学课程中,教师运用思维导图开展教学就是要学生在学习知识的过程中将新旧知识进行结合,促使学生在学习新知识的同时,改变传统的知识结构,将新知识融入到自己的系统结构中。这种教学方式能促进学生对各种复杂知识的系统归类,在大脑中形成一个完整的知识体系,让学生在数学学习和运用的过程中形成良好的思维模式,培养学生的数学思维,提高数学课堂的教学效率。
(三)能够帮助学生理解数学概念
在新课程标准出台的背景下,教师在教学中应用思维导图能促进高效课堂的构建,有利于帮助学生对数学内容进行归纳整理,可以更好地突出教学的重点知识,让学生对各种数学概念和原理进行直观的学习和展示。不仅如此,思维导图还能将抽象复杂的概念以简单的逻辑关系进行表达,通过各种数学概念的相关性对数学概念进行区别和联系,促进学生对数学概念的深入理解,也为学生运用数学概念解决问题奠定基础。
二、基于思维导图的小学数学高效课堂构建的具体策略
(一)结合思维导图的特点,优化数学教学结构
在小学数学课程中,想要实现对高效课堂的构建,教师就要加强对学生自主学习能力的培养,根据学生的数学学习情况,开展对学生的教学指导,帮助学生对数学知识进行自主学习,促进学生学习能力的提高。[1]因此,教师可以利用思维导图对学生进行教育,将数学知识全面、系统地展现在学生面前,优化数学知识结构,让学生可以很好地理解数学知识点之间的关联,理清各种知识体系,促进数学高效课堂的构建。例如,在指导学生学习北师大版小学数学课程中关于“因数”的知识时,由于教学需要涉及到各个方面,包括笔算、乘法、除法等知识,教师就要通过各种例题向学生进行教学演示,让学生了解其中的每一个知识点。不过,由于其中的知识点过多,因此不利于学生进行理解和记忆。那么,教师就可以通过思维导图对因数知识进行总结,通过分析和总结知识点,让学生对这些知识的关联性进行有效的总结,优化学生的认知结构。
(二)结合思维导图的特点,突破课堂教学难点
在数学课程中,教师可以利用思维导图的优势,帮助学生对各种数学知识进行理解和运用,从而有效突破各种教学难点。在实际教学中,数学知识的抽象性和逻辑性给学生的学习增加了很大的难度,学生很容易遭遇困难。思维导图可以对各种相似的知识或者有关联的知识进行总结和整理,并通过简单的导图进行展示,帮助学生进行快速理解。[2]例如,在指导学生学习北师大版数学课程中关于“几何图形”的知识时,由于几何图形包括长方形、正方形、梯形等,对于小学生来说很难在短时间内进行学习和辨认,教师就可以利用思维导图在黑板上对图形关联点进行分析。在教授图形知识时,教师还可以通过对图形之间的一些特征进行区分,帮助学生进行针对性的记忆,从而提高学生的学习效率。
【关键词】小学高年级数学;数学思想;渗透策略
在数学学习中存在着不少的数学思想,它是一种抽象性的思维,它在无形中引导学生轻松解决数学难题。数学思想作为数学的精髓,也数学中各种规律以及方法的综合概括。教师在进行数学教师时,不仅需要让学生对各种数学概念以及数学方法有所了解,同时也需要注重对学生数学思想的渗透,让学生具备相应的数学能力,进而可以自己独立解决问题。在小学数学新课标中,数学思想已经成为小学数学教学的重要内容。但是,如何在小学高年级数学教学中进行思想渗透呢?本文主要就小学生高年级数学教学中数学思想渗透的策略进行了研究分析。
一、小学高年级数学思想渗透的重要性
数学思想是无数人对数学知识、数学解题方法的总结,也是从本质上对数学的一种认识。数学思想是从无数次的数学实践中总结出来的,同时,它又反作用于数学实践,为人们解决数学难题提供思想指导。数学方法是进行数学实践的操作方法,其中,数学思往往渗透在数学方法中,指导数学方法进行数学活动[1]。因而,在小学高年级数学教学中渗透数学思想具有非常重要的意义,不仅可以让学生在解题的过程中具有清晰的思路,同时也可以提高学生的认知水平以及分析问题、处理问题的水平。在当前的数学教学中,多数数学教师并没有重视在教学中渗透数学思想,而只是进行知识点的讲解,这会让学生的思维日益僵化,并逐渐降低对数学学习的兴趣。尽管提升学生的数学知识是较为重要的,但更重要的是学生对数学知识的应用能力。在小学高年级数学教学中的教W目标是对学生学习能力以及综合素质进行提高,数学思维作为数学教学中的重点,教师应该重点提升,在数学教学中渗透数学思想,这样才能促进学生走向全面发展。
二、小学高年级数学思想渗透的主要策略
1.教师需要转变自己的教学观念
数学思想是存在于每一个教学活动中的,教师是数学教学活动组织者,只有教师有意识地在教学中渗透思想思想,才能让学生受到数学思想潜移默化的影响,并逐渐形成学生自身的数学思想。对此,教师需要转变自身原有的教学观念,认识到数学思想的重要性,进而有意识地在数学课堂教学中对学生进行数学思想的渗透。一般可以从教材中挖掘数学思想,在日常教学中进行渗透。教师在小学高年级数学教学中的教学内容与分类讨论和函数有所联系就可以进行分类讨论、函数等数学思想的渗透,这样学生今后在学习函数以及解决数学问题将会更加轻松[2]。
2.通过创设教学情境进行数学思想的渗透
在小学高年级数学中,创设情境是我们常用的一种教学方式,也取到了非常好的教学效果。这主要是由于数学知识多是一些抽象性的知识点,小学生由于受到年龄的限制,对这些抽象的知识点难以理解,进而容易打击小学生学习数学的积极性。这时,教师在进行情境教学时,可以在教学中渗透相应的数学思想。教师可以将数形结合的数学思想融入在教学中,让学生对数学知识有一个清晰的认识,如在进行路程和速度的讲解时,可以将通过画图的方式进行,也可以通过比较生动的情境[3]。创设情境的教学方式可以抓住学生的注意力,让学生更快地接受数学思想。
3.在进行新课学习中渗透数学思想
数学知识多是一些比较抽象化的概念,尤其是一些数学概念以及数学公式。小学生对这些数学知识点需要一个适应的时期,但是多数小学生还是无法理解这些知识点,而且非常容易出现混淆的情况。对此,教师可以使用一些数学思想,如归纳法的使用,教师在进行概念教学时可以引导小学生对数学中的概念进行提炼和总结,这样能够加深学生对知识点的理解,避免出现知识点混淆的情况。除了对概念进行归纳外,教师还可以让学生对数学其他知识点进行总结、归纳,找到知识点和知识点的联系。同时,教师也可以通过找规律中渗透数学思想,引导学生自己进行规律探究,进而提升对知识点的理解能力。
4.通过建立数学知识体系进行数学思想渗透
在数学学习中是一个模块一个模块进行学习的,是独立存在。但是,数学知识是是系统化的体系,知识点和知识点是具有联系。学生只有将数学知识的体系建立起来,这样才能更好地进行学习。对此,教师不仅仅需要注重数学知识和数学方法的讲解,而且还要注重数学知识体系的建设,这样一步一步搭建起数学知识体系,并让小学生在搭建的过程中获得数学思想,进而提升数学能力。如小学生在学习数学函数时,教师不能只是让小学生学习简单的数字、公式,而是应该在其中渗透相应的数学思想,让学生自己从中找出规律,并将其内化为自己的思想,为数学学习打下基础。
5.在课外生活中渗透数学思想
课堂时间是有限,在这短短的课堂时间中需要交给学生知识,也需要对学生能力进行培养。在这种情况下,多种课堂目标会难以实现。因而,教师可以充分利用学生的课外生活进行数学思想的渗透,它可以有效对学生的课堂知识点进行巩固,也能有效激发学生对数学学习的兴趣,并将数学知识灵活运用于实践中。教师可以通过布置课后作业的形式展开,引导学生对课堂的知识点进行消化,同时也需要学生对课堂的知识点进行总结,让学生自行获得数学思想。与此同时,教师也可以通过一些实践操作来让学生获得数学思想,不仅可以增强学生的动手能力,也能加深学生对知识的理解,提高学生的素质。
三、结束语
小学高年级阶段是小学生逐渐向初中阶段过渡的一个重要的阶段,在这一时期,小学生不能还是一直采用死记硬背的方式进行学习数学,这会对学生今后的数学学习造成极大的影响。对此,教师需要在数学教学中有意识地渗透数学思想,让学生在无意识中提升数学能力,并从中获得数学的趣味性。同时,这种数学思想将会转化成学生的思维,进而影响学生学习和生活,帮助学生更好地生活。
参考文献:
[1]孙刘玮.数学思想的本质意蕴及建构策略――基于小学数学教学实践的思考[J].中国教育学刊,2014(6):68-72.
【关键词】初中数学教学;数学方法;数学思想
1 透过方法,熟知思想
初中的学生在抽象思维理解能力还比较单欠缺,最大的问题就在于初中学生对数学知识认知度不够、数学知识贫乏,所以如果如果单独把数学方法与思想作为一个单独的科目进行教学,学生很难理解和应用。数学老师应当在教学数学知识的同时,溶合进数学思想和方法的教学。数学老师要把握时机,把数学知识的提出过程,知识点的形成过程,解决问题的过程,包括数学规律的概括过程,作为重点进行教学。引导学生了解这些过程,并且进行抽象思维的拓展,引导学生在拓展过程当中,发展自身的创新意识,并从中收获和了解更多多的新知识点。不要只是简单地进行“填鸭式”地教学方式,这样的传统教育方式,会大在程度上的降低溶合数学思想与方法的时机。数学老师在进行教学时,可以把重点和难点进行难易等级分级,通过了解数形结合的思想,也可以让生在学习过程较易接受。整个数学教育过程中,数学老师应该有意识地进行精心设计,溶合数学方法与思想,有效引导学生理解在数学中的各种数学方法与思想,切莫死搬教条等传统教学方式。例如:二次不等式知识点教学,可以在溶合二次函数图像进行了解和应用,可以通过数形结合,让学生总结解集在“两根之间”、“两根之外”,这样能够轻松地进行新旧知识点的过度。
2 熟练方法,了解思想
想要有效地锻炼学生的思维能力,数学老师针对数学思想内容丰富的特点进行分析。需要针对数学思想进行分层次溶合与引导。这点就要求数学教师必须要对初中三个年级的数学教材进行全方位的精研,从中去发现初中数学教材中的数学思想与方法溶合的各种时机,通过思想方法的角度分析所有的初中数学知识点,可以根据初中不同年级学生的知识理解能力,接受能力循序渐进地进行从易到难的分等级关于数学思想与方法的教学。比如同底数幂的乘法这个知识点在教学时,指导学生先分析底数、指数为具体数的同底数幂的运算方法和运算结果,总结出一般方法。再运用一般法则进行运算分析出用a表示底数、用m、n表示。这样的循序渐进的方式,把数学方法进从易到难进行分等级,能有效的溶合知识点,可以有效引导和开发学生的思维拓展能力。
3 熟练方法,运用思想
对于数学知识的教学,需要引导学生在知识点的掌握中,不仅是在学习过程中要听讲、复习、做习题,还需要不断的重复练习,才能对数学思想与方法有一个深入的了解。在通过熟练,引导学生可以自如自觉地运用数学思想与方法的能动性,从而形成一个行之有效“数学思想方法系统”。例如:为了让学生更容易对新的数学概念或知识点的理解与掌握,那行数学老师可以使用类比的数学方法。在传授一次函数时,老师可以结合乘法公式类比;在传授二次函数性质时,老师结合一元二次方程的根与系数性质类比。通不断地演示,引导学生可以在遇到新概念或知识点时自觉地运用类比的数学方法,有效的提升学生学习质量。
4 精炼方法,健全思想