物理理论论文

时间:2023-03-17 17:57:24

导语:在物理理论论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

物理理论论文

第1篇

该学会的主要目标是推广、普及在学校教育和社会生产实践中所需要的物理教育,现在大概有会员1200余名.日本物理教育学会有定期发行的附属刊物《物理教育》.该刊物创刊于1953年,主要刊发各种新的教育演示实验以及探讨物理教育的论文.到1990年为止,该刊物每年大约发行3卷,1991年开始增为每年4卷.截止到笔者发稿时,《物理教育》从创刊号到2011年共计59卷在网上免费开放[3].从1984年开始,日本物理教育学会每年会在暑假期间召开物理教育研讨会,讨论物理教育所面临的种种问题,以及最新科技成果的普及等.中国和日本的物理教育交流活动开始于1989年夏.首次中-日-美物理教育讨论会在夏威夷举行[4],中方共有大、中学教师9人参加.第二次中-日-美物理教育讨论会由日本物理教育学会主办,1991年在日本富士举行,中方有17人参加.以此类会议为契机,日、美双方得以了解中国物理教育研究中的长处,同时中国代表也及时了解了对方的教学改革动态.近年来,日本国内对高中物理教育质量的下降有了一些批判的声音[5],怎样提高学生的学习兴趣就成为解决问题的关键所在.日本教育界对新的演示实验的开发以及教学时平行科目的相互影响的研究很活跃,在物理教育学会刊物《物理教育》以及物理教育研讨会中有很多讨论.另外,长期以来日本的教育体制对于物理类竞赛并不热衷,日本全国范围的物理竞赛仅仅始于世界物理年2005年,并于同年才开始派队参加国际奥林匹克竞赛.

2日本高等物理教育的指导方针及模式

自2004年开始实施国立大学法人化以后,日本国立大学虽然由政府出资运营,但是几乎每所国立大学都拥有相应的自治权,因此各个国立大学的教学重点以及方法风格有很大的差别,每个学校都拥有自己的教育体系与理念.以名古屋大学为例,名古屋大学的物理教育方针和核心主要由理学院的物理学教室(即物理系)会议决定.一般来讲研究生和教员都可以申请成为物理学教室的研究员并列席会议(留学生和外国教员亦可参加).会议一般每季度举办一次,每次会议的讨论内容主要包括实验科目内容的增减,科目课时与学分的分配,科目构成的比例,毕业条件的变更,新教员的聘用,新研究室的设立以及经费的预算及使用等.每次会议一般会按需讨论多个议题,每个议题以不记名投票方式表决.物理学教室有议长和下属各个分支的负责人,议长及主要负责人每年轮换,以投票选举产生.由于有大量的硕士及博士研究生参与讨论,不仅对于物理学教育的创新与改良起到了积极而有效的作用而且使物理系全员参与到物理专业的建设和改良议程中,充分体现了大学法人化法案提出的学术自治所需要达到的要求.

3日本物理本科教育近况

由于国立大学的教学重点以及方法风格有很大的差异,很难对各所大学的教育状况作一全面的论述.以下仅以笔者学习、工作的名古屋大学为例来介绍日本本科教育的一些近况.在名古屋大学,物理类本科教育主要由基础科目、专业科目、实验科目、选修科目、毕业设计等组成.其中选修科目和毕业设计一般相互关联,有高能物理、宇宙物理、凝聚态物理、生物物理4个大的方向.由于大一新生为理学院的数学、物理、化学、生物4个系共同招收,在大一阶段理学院新生需参加公共基础课的学习,教育形态以大班教学为主.大学一年级的教育目标是在培养学生兴趣的同时巩固基础知识,主要进行的是通识教育.教学时一般会配合演示实验以增加课堂活跃度并增进学生对物理现象的观察和理解.学校配有相应的金属器具加工车间,大四以上学生参加安全使用培训后皆可申请使用.课堂演示实验所需教具一般以教员自己制作为主.二年级开始进入物理专业课学习.教学科目主要由数学物理方法、分析力学、电磁学、热学、统计物理学、量子力学等组成.与专业课程相对应的设置有配套的习题课.习题课由教授等教员负责,有相应的学分,属于必修科目.配套习题课的教学以讨论式教学为主,每个班级大约由15~20人组成,分成3~4个讨论小组.除第一节习题课以外,在每节习题课后一般由教员布置一些问题作业.习题课作业一般由研究生组成的学生助理批改、评分,标准答案和评分标准会由负责教员分发到研究生助理手中,并由研究生助理作汇总统计后呈报给习题课的负责教员.每次上习题课时,负责教员把作业发还学生,每个小组先进行内部讨论,再由各个小组派学生轮流讲解,遇到讲解不恰当不全面的时候教员会参与讨论,教员起监督指导辅助作用.习题课成绩评价主要由学生讨论活跃度、出勤率、课题作业完成情况决定.每学期期末考试后会举办教育反思会,参会人包括本科学生代表、研究生助教和专业课教员,对教学中的难点和不足之处进行反馈和探讨.大三阶段增加高级热力学、高级统计物理、高级量子力学、近代物理实验等,并出现多个专业课分支选择,比如高能物理学、宇宙学、固体物理、生物物理等.物理实验以近代物理实验为主,共有14个左右的实验可以选择,每两人一组,一个实验每周一次大约持续一个月,每个学生平均需做3~4个实验才可以获得学分.为了使学生扩大知识面并且使他们对各个研究室的研究情况有初步了解以便他们进入大四时选择教研室进行毕业研究,从2012年起,大三新增了前沿科学讲座这一环节.讲座由20个左右的研究室进行分担,每周进行一次,每次由一个研究室的主要负责人进行讲解介绍,每次讲座结束后会要求学生提交一个简单的小报告.各个研究室的主要负责人亲自负责本科的课堂教学工作,这对于学生的培养十分有利.大学的教学目标不仅是知识本身的教与学,更重要的是研究方法与经验的传承.将最新的科技前沿信息传递到教室,才能不断保持科技创新的活力.在三年级结束进入大四以前学生会自主选报教研室进行毕业设计研究、设计.随着本科生进入各个教研室,大四的教育方式主要以各个教研室的研讨会形式为主.学生在黑板上讲解课本或者文献或者汇报实验进展,教员和其他同学在下面听讲并共同探讨相关的问题要点.每次研讨会大概持续2~3小时,每周1~2次,每次由1~2个学生进行报告.这种研讨会形式的教学很好地激发了学生学习的主动性,培养学生的自学能力以及发现问题和解决问题的能力.

4日本高能物理研究生教育近况

长时间以来,日本物理教育体系发展了一套自己的研究人才培养及传承方法.其研究生的培养主要采用2年硕士+3年博士的方案,类似于我国的硕-博连读.由于一些研究小组对某些课题,研究方法和手段会几十年持之以恒地进行研究,他们在很多问题的研究上积累了丰富的研究经验.这样的物理教育体系为其研究思想的传承提供了很好的保障.例如,名古屋大学的高能物理理论研究长期以来一直受其创立者坂田昌一的影响,其主要研究风格与研究思想与坂田昌一一脉相承.在日本的研究生培养中,教学任务主要集中在硕士一年级,主要有大课教学和讨论课教学两种模式.大课模式主要以出勤率和报告决定成绩.专业课的教学基本上以讨论式教学为主.由指导教员指定教科书以后,由学生每次在黑板上讲解.另外,学生也会针对自己感兴趣的参考书或者研究论文,自己组成讨论小组,视情况会有高年级学生或教员参与讨论,每个小组由3~8人组成.讨论小组每周讨论一至两次,具体时间与长度由学生自己决定,是一种自组织形式的自学自助团体.硕士二年级以及博士生的教育基本上以讨论式教学为主,讨论内容可以是教科书、论文等,在互相探讨中学习研究.对于研究材料的理解每个人会有不同之处,这一思考、讨论的过程就是取长补短,去粗取精的过程.讨论式教学对于深化对物理现象、概念的理解有很大提高和帮助作用.在研究生的论文选题中,除了第一个选题由导师进行稍微具体的指点外,其他的基本是以学生为主.从论文的选题,中间的计算,到结果的分析,论文的书写主要都是由学生完成的.在这一过程中,导师主要是作一些点拨性的指导,以及论文的润色.另外,日本研究生的教育过程中十分注重对团队合作能力的培养.在合作中相互学习,取长补短,从而使工作效率大为提高.除了以上提到的学校内部的学生培养活动外,日本国内还有一些有特色的校际间的研究生教育交流活动,下面列举两个活动项目.(1)集中讲义:由于日本的各个大学研究室的研究内容和方向比较独立,为了深化各个大学之间的交流,使学生对不同大学的研究室的研究内容有所了解,每年各大学会举办2~4次以硕士生或博士生为听讲对象的集中讲义.集中讲义一般持续2~4天,一般在讲义中间会穿插1个面向低年级研究生水平的2小时左右的报告.集中讲义的选题一般都与近期的研究重点、热点相关.研究生通过参加集中讲义既可以了解相关专题的研究进展并较为系统地学习相关专题的研究方法,又可以获得相应的选修学分.(2)暑期-冬季学校:每年长假期间,依据由日本文部省的预算所开展项目的情况而定,会举办一些暑期-冬季学校进行一些专题讲座.其中传统最悠久的当属从1955年夏天开始,到2013年为止共成功举办59次的YONUPA[6]暑期学校.YONUPA是YOungNUclearandPArticlephys-icistgroupofJapan的缩写,每年暑假期间由与高能物理、原子核物理、高能物理实验相关的各个大学研究生院的学生轮流自发组织、策划、主办并参与.为了降低每个筹备学校的劳动量,筹备学校由管理财务报销的学校、管理事务联络的学校、管理各个所属成员邮件的学校、选取会场并维持秩序的学校4部分组成.另外,与这4个筹备学校相独立的,高能物理、原子核物理以及高能物理实验3个方面由另外的3个学校进行管理,负责邀请讲师、组织学生报告等活动.YONUPA的财政预算主要由日本几个大的研究所出资赞助,另外每个大学的研究室也会按一定比例支付学生交通费用等.YONUPA每次持续4~6天,每年大概有200~300人参加.暑期学校期间,高能物理、原子核物理以及高能物理实验3个研究方向会设置一个共同的集中讲义以及针对每个研究方向的2~3个平行的集中讲义,剩下大约一半的时间是学生相互之间的研究报告.每年从硕士1年级到博士3年级的学生都有一定比例学生参加暑期学校,YONUPA为日本从事高能物理研究的青年学生提供了互相学习与交流的良好平台.除了YONUPA,日本文部省的许多大的研究项目也有专门的学生培养方面的预算.例如在2009—2014年的重大项目“ElucidationofNewHadronswithaVarietyofFlavors”中,每年都会组织与该项目相关的研究生暑期学校.暑期学校采用教员授课与学生习题课并重的形式.通过教员授课与习题课的方式,学生可以系统地学习到某一领域的基本知识并掌握该领域研究的相关方法.

5结语

第2篇

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结合力都不大,所以这些电子在极短的时间内(设为t)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

第3篇

医学涉及生物物理学知识非常广泛。为便于学习、掌握可把临床医学常涉及的生物物理学知识归纳为三类。其一,解释各种生物物理现象的知识[2],包括阐明现象的实质、变化过程、规律和成因或机理等。其二,分析各种物理(严格讲应是生物物理)检测结果的知识,包括所检测的生物物理信息的产生、产生机理、变化规律和采集方法,检测手段及图象形成的生物物理原理,检测图象的分析、归纳而获取结论。其三,阐明各种物理因素的生物效应的知识[3],包括物理因素的性质、所激发的生物效应及其变化规律,生物效应产生的机理,对疾病的治疗作用,对机体的危害缘由和防护等。

2要求知其所以然必须开物理课

科学知识可分为理论知识和经验知识两大类。生物物理学也不例外。常说对事物不仅要知其然,还要知其所以然。其实前者就是只要求掌握其经验知识,而后者则要求掌握其理论知识,从理论上把握事物。亦即不仅能认识其表象,还能阐明产生表象的内在实质,揭示表象运动、变化规律的机理。要求医生能从理论上把握临床医学中常涉及的生物物理问题,就必须开设物理课,否则是不可能的。要求医生从理论上解决医学中涉及物理的问题越多越深,所需具备的物理相关知识越广越深,自然物理课学时应越多。一直以来只讲授纯物理知识,不结合讲授在医学中的应用,即不结合阐明医学中的生物物理问题,要学生自学解决是很困难的。应该既讲授物理理论也讲授必要的生物物理知识,才能做到学以致用[4]。学生掌握临床医学常涉及的生物物理知识能适应如下四个方面的需要。其一,行医需要。有了相关生物物理知识才能从理论上全面、准确、深刻分析、理解、掌握行医过程中涉及物理问题的医学理论、技能和方法,才能高屋建瓴,在理论指导下,以清晰的思路,全面思考,准确诊断、有效治疗[5]。其二,科研需要。临床各学科多有涉及生物物理的课题。没有相应的生物物理知识只能望而兴叹。反之则如虎添翼,可以在更宽的知识领域开展科研[6],为医学科学发展作更多贡献,提升人生价值。例如秦任甲教授就发现长期以来人们只从血流动力学角度分析和利用超声多普勒血流频谱图,这里存在个缺陷。可能是有关人员不具备血液流变学知识所致。他率先提出,应该加上血液流变学才能全面、准确分析和充分利用频谱图的丰富内涵,可以把频谱图作为有效手段来研究在体血管红细胞向轴集中的规律,并指导同行开展合作研究取得成果。其三,提高需要。工作中必然会遇到许多尚未掌握的涉及物理的医学问题。这就得靠自学更宽更深的物理、生物物理知识才能解决这些问题,提高自己的理论水平和技能。在校所学将成为自学习提高的基础。其四,思维需要。人的思维不外乎逻辑(抽象)思维和形象思维,都是人在各成长阶段学习积累起来的。大学是人的思维知识和能力形成的十分重要的阶段[7]。在学习、运用物理学、生物物理学过程中,在知识拓展的同时使物理的形象思维和数理逻辑思维得到尤其强的培养提高。数理逻辑思维是逻辑思维的十分重要的组成部分。物理的这些思维能力的增强,使之在学医、行医和医学研究中终身受益。一流名校能安排物理课近百学时,甚至还结合讲授生物物理知识就是认同上述观点的佐证。其决策者和努力学习物理的学生都是有远见的。这正是一流名校要求学生从理论上掌握物理、生物物理,培养高水平医学人才的体现。

3只求知其然则可开可不开物理课

3.1可凭生物物理经验知识行医

大量事实表明,一般医生都是凭借物理、生物物理经验知识而非理论知识来理解、阐明、处置医学中涉及物理的问题。其在三类生物物理知识上的表现为:其一,对医学中涉及物理的现象即生物物理现象不理解,无从解释或者粗略地,含糊地理解或解释。也有以打比方的方式来认识或阐明。例如用粥的浓稀来说明血液黏度大小,流阻大小,而导致血压高低,极少见有医生能用泊肃叶定律等相关知识做出理论解释。其二,当用生物物理检测进行诊断时:对他人的检测,一般只凭检测医生的文字结论做出诊断,有时查看检测图象也只机械地与自己记忆中的正常图象对比而作诊断,并不理解图象是怎样形成的,甚至不理解结论是怎样依据图象分析而获得的;对自己的检测,一般都凭借自己对检测到的生物物理信息与记忆中的正常信息对比而作诊断,至于为什么能产生这样的信息未必明了。其三,利用物理因素进行治疗时,一般只知道某种因素或方法有疗效或只会治疗操作,对其疗效产生的物理机理或不知或不全知。这些表明:一般临床医生的物理知识还只是经验性的,并未上升到理论。但一直以来临床医生就依赖这样的经验知识不也诊治好许许多多疾病?其中许许多多不也成为专家、主任和教授等高级医生?这只能说要求不高时,医生不一定非要多么宽深扎实的物理和生物物理理论功底才能行医。事实上临床教师,甚至生理学教师课堂讲授和相关医学书籍对许多涉及物理的问题也只讲现象,并未从物理、生物物理理论上把产生现象的缘由阐明清楚,仍然只停留在经验知识层面上。学生也只能承认如此,达不到理论认识的高度。这样行医必然缺乏物理、生物物理理论指导,对诊治涉及物理问题的疾病往往思维明晰不起来,只能凭经验了。按以上所述,医生所需物理、生物物理知识的宽深程度伸缩性很大,高则要求具有较宽深扎实的功底,能适应前面提及的四个需要,成为物理理论型医生;低则只要求具备中学物理基础,对行医过程中遇到涉及物理的问题能有所了解,成为物理经验型医生。

3.2对学生的物理要求依培养目标而定

就原则而言,对物理课的要求和学时安排都是由决策者根据各自专业培养目标的需要而确定的。但实际决定时必然受到决策者对物理、生物物理在专业中的作用和地位;医生所需物理、生物物理宽窄深浅的认识程度的影响。鉴于各院校决策者的这种认识难免差异,医生应具备的物理、生物物理的宽深程度伸缩性又很大,不同档次院校培养目标显然不同,导致其物理课学时明显不同。一流名校为八九十学时以上。二流省(市区)属医科大学为六七十学时。三四十学时以下的出自三流学院,除去10来学时的实验课,还能比高中物理加深拓宽多少内容呢?据悉,还有学院把这门课改为任意选修课,选修者不到5%,等同于取消。不排除有些院校对物理、生物物理在专业中到底能发挥怎样的作用,需要安排多少学时为宜,并未作深入的调查研究,其学时数是随意或参照同档次院校而确定的,带有一定盲目性。巧的是各院校安排学时多少与其在人们心目中的地位高低是相吻合的。总之,鉴于医生所需物理、生物物理的宽深程度伸缩性很大,对各院校的学时安排不必厚非。

4改革临床医学专业物理教学内容

4.1改革目标

无论培养物理理论型还是物理经验型医生,只要开设物理课就应该改革纯物理的教学内容。一直以来绝大多数院校都只开物理课,讲授纯物理知识,丝毫不结合讲授医学所涉及的物理问题———医学物理学问题。其结果必然导致:无的放矢,所学纯物理知识不会应用,学而用不上等于不学;不仅使学生得不到把物理知识应用于阐明医学物理学问题的训练,还会造成医学物理学知识断层,很难适应前面提及的四个需要;使学生看不到所学知识的应用情境,使历届学生产生“物理无用论”,求知欲望低,学习不使劲,所学知识似懂非懂,很难用于理解学医和行医过程中遇到的物理问题。改革目的:必须破除思想上长期形成的只讲授纯物理知识,丝毫不与医学中的应用相结合,改革也只增删纯物理知识,丝毫不纳入最为实用的医学物理内容的定势思维,克服过去教学内容脱离医学实际的现象。安排适当的学时数,以临床常涉及的医学物理学内容为主,辅以必要的物理学基础,形成新的教学内容体系,以适应临床医学较高要求的需要,较好发挥物理、医学物理在临床医学中应有的作用。

4.2改革途径之一

没有医学物理学解决不了医学中涉及物理的问题。不开这门课就如同过河断了桥或知识断了层,物理学很难跨越断桥或断层直接阐明医学中涉及物理的问题。开物理课主要为学习、运用医学物理学打基础。只开前者而不开后者就是无的放矢。物理学与化学,医学物理学与生物化学在医学中的作用与地位十分相似。设想只讲授化学知识而不讲授生物化学知识,学生能掌握医学中涉及化学的知识吗?有条件的应该开设物理和医学物理两门课,实现基础知识与应用知识较完美的结合。这应该是物理教学内容改革的首选途径。

4.3改革途径之二

对于不便把物理课和医学物理课分开开设的院校可以把两者合拼开出。以临床常涉及的医学物理知识为主,辅以相关物理基础。这门教材也可称为医学物理学[2]。学时多少都可以开。这样就把基础理论与医学应用有机结合起来,做到有的放矢,学以致用,使学生学习积极性增强,学习效果提高,知识结构改善,增进其解决实际问题的能力。

5改革困难所在

5.1缺乏阐明医学物理问题的知识

要把临床医学常涉及的物理问题纳入教材并非易事。这些问题许多尚未能从理论上获得阐明或者透彻阐明,还有待研究解决,构建起这些问题的较完整的理论知识,否则无多少临床常涉及的物理问题可讲授。不信,可从三个方面考察:其一,查阅生理学、心血管内科学等医学基础和临床书籍;其二,听听医学基础和临床教师讲课。书中所写,教师所讲,涉及物理的许多问题都只陈述现象,或借实验数据、图表阐明,或笼统、粗略交代,或打比喻解释,甚至含糊讲授。这些充其量说也不过是医学物理学的经验层面上的知识,未能从本质上,机理上,亦即理论层面上阐明问题,回答不了为什么?其三,查阅期刊论文,可发现生物物理学的研究火热得很,很多,但属于临床医学常涉及的物理问题却很少。总不能教材所写,课堂所授结合医学的内容尽是经验知识吧?这就必须对寓于人体各脏器的临床医学常涉及的物理问题逐个加以研究,构建起阐明逐个问题的一系列理论,形成丰富的临床医学常涉及的医学物理学知识体系,可供选择讲授。要达到如此,要经历很长时间,付出许多艰辛劳作。秦任甲自上世纪80年代就开始这方面的研究,取得一系列论著成果[8-10]。这还不够,得依靠同行广泛参与才能构建起这个知识体系。

5.2医学物理问题如何通俗化

科研构建起的医学物理的一系列论文形式的理论知识,还只是具备了课堂讲授的素材。必须按照教材而非一般参考书的要求,使复杂、繁琐、深奥、数学表达太深、医学基础要求太多等等而造成教师难以讲授,学生难以理解的内容尽可能通俗、简明、浅显、形象、直观,做到教师好教,学生好学。这些讲起来容易,面对一个个具体问题要加以处理好时一定会遇到不少具体困难的。只要充分发挥群体的智慧,不断深入探索,总有一天人们会造就一本内容丰富,基础和应用知识恰当结合,适用的开创性教材。

5.3教师缺少医学物理知识

第4篇

因为当时双方的洽谈在我国举行,故此签字仪式便由中方负责。在仪式正式举行的那一天,让中方出乎意料的是,美方差一点要在正式签字之前“临场变卦”。

原来,中方的工作人员在签字桌上摆放中美两国国旗时,误以中国的传统作法“以左为上”代替了目前所通行的国际惯例“以右为上”,将中方国旗摆到了签字桌的右侧,而将美方国旗摆到签字桌的左侧。结果让美方人员恼火不已,他们甚至因此而拒绝进入签字厅。这场风波经过调解虽然平息了,但它给了人们一个教训:在商务交往中,对于签约的礼仪不可不知。

签约,即合同的签署。它在商务交往中,被视为一项标志着有关各方的相互关系取得了更大的进展,以及为消除彼此之间的误会或抵触而达成了一致性见解的重大的成果。因此,它极受商界人士的重视。

在商务交往的实践中,尽管君子协定、口头承诺、“说话算数”,在一定程度上有着作用,但是更有效的取信于人、让交往对象心安理得的,则是“口说无凭,立此为据”的文字性合同。

商务合同,是指有关各方之间在进行某种商务合作时,为了确定各自的权利和义务,而正式依法订立的、并且经过公证的、必须共同遵守的条文。在许多情况下,合山又被叫作合约。而在另外一些时候,人们所说的合约则是指条文比较简单的合同。在商务往来中,带有先决条件的合同,如等待律师审查、有待正式签字、需要落实许可证的合同,又被叫做准合同。严格地说,准合同是合同的前身,也是最终达到合同的一个步骤。

为了省事,在一般场合,商界人士往往将合同、合约与准合同混为一谈,统统把它们都叫做合同。这样做虽不甚精确,但也有助于大家“删繁就简”,减少麻烦。

第5篇

物理实验论文标准格式

早检测论文早检测论文2013-10-1002:16:13

国家标准的论文格式

1987年,我国出台了《科学技术报告、学位论文和学术论文的编写格式》,把论文的编写格式分为四大部分:即前置部分、主体部分、附录部分和结尾部分。

前置部分:

封面。封面二(学术论文不需要);题名页;序或前言(需要时);摘要;关键词;目次页(必要时);插图和附表清单(必要时);符号、标志、缩略语、首字母缩写、单位、术语、名词等;注释表。

主体部分:引言-1

正文-2

2.1

2.2

2.2.1

2.2.2

图1(或图2.1)

图2

表1(或表2.1)

结论

致谢

参考文献表

附录部分:(必要时)

附录A

附录B

B.1

B.1.1

B.2

图B1

表B1

结尾部分:(必要时)可供参考的文献题录;索引;封三、封底。

毕业论文的通用格式

对于毕业论文的格式,尽管每个学校的要求不同,文理科也有差异,但我们认为毕业论文至少有两个部分。

前置部分:封面、目录、写作提纲、标题、署名、摘要、关键词。

主体部分:绪论

本论

一、

二、

(一)

(二)

1.

2.

(1)

(2)

结论

致谢

注释(必要时),参考文献

参考范文:

大学物理实验信息化教学与物理实验教学方法的研究

摘要:信息技术将人类从形式化的脑力劳动中解放出来,为培养创新人才提供了任何时代都无可比拟的优越条件,作为教育工作者必须充分利用时代给予我们的优越条件,出色地完成时代赋予我们培养创新人才的历史使命。围绕培养学生的实践能力和创新能力,本文阐述了对以学生为主体、教师为主导的教学方法的研究及应用信息技术建立学生自主学习的网络环境和丰富的网络教学资源,营造教学互动的信息化平台,创造多元化教学模式的研究与教学实践。

关键词:大学物理实验;信息化教学;多元化教学模式;教学方法

一、信息化教学在大学物理实验中的作用和意义

20世纪末以数字化为核心的信息技术的高度发展,预示人类在本世纪又将经历一次重大变革。如果说19世纪的工业革命使人类从依靠体力的劳动中摆脱出来,那么今天的信息革命将使人类社会从繁杂的形式化脑力劳动中解放出来。大规模的记忆容量,亿次计算机的运算速度,互联网的交互管理能力,各种智能数据库、CAD等应用软件的功能,以及它们的准确性都是人脑所不能比拟的。21世纪人类对待这类脑力劳动将如同操纵机器完成体力劳动一样简单。也就是说在信息化时代,脑力劳动性质正在发生着深刻的变化。站在这个角度来思考,对未来科技人才的培养应着重探索、创新和开发方面能力的培养。信息时代需要大批有实践能力、创新能力的优秀人才,同时信息技术将人类从形式化的脑力劳动中解放出来,引发了信息化教育,为培养创新人才提供了任何时代都无可比拟的优越条件,作为教育工作者必须充分利用时代给予我们的优越条件,出色地完成时代赋予我们培养创新人才的历史使命。

物理实验是物理学的基础,大学物理实验反映了理工科及各个学科科学实验的共性和普遍性的问题。在培养学生严谨的科学思维、创新能力,培养学生理论联系实际,特别是与科学技术发展相适应的综合能力,以适应科技发展与社会进步对人才需求方面有着不可替代的作用。

近10多年来,围绕着培养具有实践能力、创新思维和创新能力的高素质人才,我校以教育部世界银行贷款项目、创建国家名牌课程、“985工程”、“211工程”教育部理工科基地建设、国家级精品课程建设、国家级实验教学示范中心等项目为依托,全面进行了实验课程体系、教学内容、教学方法、教学模式等方面的改革,在多年的教学实践中产生了教学理念先进,教学内容丰富,教学条件优良的优秀教学成果。学校实验教学硬件设备、实验室条件也发生了大幅度、跨世纪的改观,由过去的教学弱点转变为教学改革中的亮点。

当前如何进一步更新教育理念,深入进行教学改革;如何进一步巩固和用好已取得的成果,是目前我们面临的又一课题。尤其在实验教学师资队伍正在进行新老交替的今天,该课题显得更加重要。

我们认为实验教学方法的研究,尤其是如何真正在教学实践中实现以教师为主导、以学生为主体的教学方法研究是巩固十多年来的教学改革成果、进一步深入进行教学改革的重要内容和举措,也是实现教学目标的重要保证。

长期以来,我们的理工科教学,特别是物理实验教学长期受到教学环境和师资水平的限制,因袭多年的传统教学模式,客观上引导学生向形式化、记忆型方式学习,制约了学生的创新能力及科学素质的形成;近几年来我国面临高等教育从精英教育到大众教育的转变,学校扩大招生和培养学生实践能力和创新能力的教学目标都需要大量优秀的教育资源。优秀教育资源的缺乏成为严重困扰教学质量的难题,成为教学改革发展的瓶颈。针对上述问题,我们在大学物理实验课程体系、教学内容、教学方法和教学模式等方面进行了改革,并取得了显著成效。在此基础上,近几年来,我们以大学物理实验国家级精品课程网络资源建设为平台,运用信息化教育思想和技术进一步研究以学生为主体、教师为主导的教学方法,改革实验中的“模仿型”教学,建设丰富的优秀的网络教学资源,创造培养创新人才的新的教学模式、教学方法、教学环境,在教学实践中取得了很好的教学效果。

二、以学生为主体、教师为主导的物理实验教学方法的研究与实践

1、注重实验教学过程,激发学生的学习兴趣,引导学生在教学过程中积极思考

实验教学中获得实验数据,是实验课的必然结果,也是在实验课教学中师生都十分重视的重要环节,相对而言,对实验教学过程重视不够。从培养学生的素质和能力的角度来看,实验的教学过程非常重要。实验课的教学过程是提高学生知识,能力和素质的过程,也是正确获得实验科学数据的重要保证。

实验教学过程中的第一步,是引导学生读懂实验的原理、设计思想、实验方法及实验仪器的结构和运行机理等基本知识,只有这样,他们才能在实验教学课堂中积极思考,主动投入,发挥他们在实验教学中的主体作用,这也是实验课成败的关键。实验教学与课堂教学的知识密切相关,但是它们之间往往又没有直接一一对应的关系。在实验教学中,往往一个实验要用到几个学科领域的知识点,并且更加强调实验的方法和知识的综合应用,如何引导学生学会综合应用已学过的知识,并在此基础上学会新知识、新方法,这是实验教学中的重要环节,也是物理实验课教学中的难点。

我们在实验教学中,以实验方法为主线,应用精品课程丰富的网络资源,将学生已学过的知识作为切入点,采用研讨的方法引导学生学会读懂物理实验的原理,理解物理实验设计思想、实验方法,掌握物理实验的实验技能,有效地激发了他们的学习热情,实验教学实践中出现了学生主动参与,积极思考,勇于创新的热烈场面。

2、注重实验的设计性、研究性、开放性

实验的设计性、研究性、开放性是实验的教学方法的重要表现形式,同一个实验,同样的教学设备会因为教学方法的不同而产生不同的教学效果。传统教学模式常常是以教师为主体,学生照葫芦画瓢,抑制了学生主动性的发挥,使得本来就有限的教学资源没有发挥出最好的教学效果。注重实验的设计性、开放性、研究性是在在教学过程中真正实施以学生为主体、教师为主导的教学方法的具体体现,并能充分用好已有的硬件和软件教学资源。

开设设计性实验时,由教师给定的实验题目、实验要求及可供学生选择的实验条件,由学生自己提出设计思想、拟定实验方案,选择测量仪器、确定实验条件、实验参数,并基本独立完成实验的全过程。

开设研究性实验时,教师组织若干个基础物理实验涉及领域的课题,以科研方式组织教学。学生在通过查阅资料理解相关领域的基本知识、基本方法及其应用的基础上,在教师指导下确定研究课题或研究内容、设计实验方案、完成实验、最后写出研究性小论文等。研究性实验可以学生个体或团队的形式进行。

实验的开放性,是指实验的内容、时间和空间对学生开放。上述设计性、研究性实验内容和题目由学生自命题或部分自命题,由教师审核命题,并指导学生完成实验。

我校注重实验的设计性、研究性、开放性。在每一学期物理实验中都安排有设计性或研究性实验内容。设计性、研究性、开放性实验为学生提供了自主、创新学习的平台。学生在设计性、研究性、开放性实验中,积极思考,主动学习,找到了自己在实验教学中应有的主置,并从实验教学中获得了成就感、满足感。设计性、研究性、开放性实验在启发学生的创新思维、培养他们的创新能力方面发挥了很好的作用。

三、建设精品课程丰富的网络资源系统

营造培养学生创新能力的信息化物理实验教学环境

1、建立精品课程丰富的网络资源,营造教学互动的信息化平台

根据教育部有关文件精神,国家级精品课程,应是具有一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理等特点的示范性课程;应建立一个优质的课程资源体系和网络共享平台。

我们认为,国家级精品课程的优质网络资源体系建设是精品课程建设的重要方面。精品课程的网络资源系统必须能反映大学物理实验课程建设的先进理念、课程的体系、内容和教学方法;提炼物理实验课程的基本知识,基本思想和基本方法;体现先进的科学思想、科学方法和科学成果;提供学生独立思考、主动学习的平台和师生交互的平台。

我校大学物理实验精品课程网络资源系统综合了几十年来我校物理实验课程的优秀教学资源;融合了10多年来实验教学改革的新思想、新成果;反映了与实验教学相关联的现代科学技术的新思想、新方法;并不断提高实验的开放性、教学的交互性,满足了各层次学生学习的主动性。

我校大学物理实验精品课程网络资源系统按照大学物理实验课程的新体系提炼了实验课的教学大纲、实验的教案、实验的重点、难点、仪器的原理、结构、运行机理,使用方法和常见故障分析等指导信息;围绕学生实验课程的知识点提供了系统的网上讲座,以便学生从看起来零散的各个实验中,系统地领悟实验的思想、方法、技术和应用;为拓宽学生的知识面,围绕现代物理技术类实验和研究型实验提供了系统的网上现代物理技术讲座。目前我校大学物理实验国家级精品课程网络资源系统已包括4个学期,224学时,78个实验的授课教案和100多个实验的习题;由物理学史,物理实验方法,不确定度和数据处理方法,力、热、电、光学量的测量方法与应用,现代物理技术讲座等内容组成的28讲物理实验系列讲座;力、热、电、光、近代物理实验等各类常用仪器的仪器库,其中包括仪器的实物照片、内部结构、运行机理及使用指导等。为便于学生在教师指导下学习,资源库系统具有很强的交互功能和扩充功能。任课教师可以根据教学需要,在资源库系统中动态更新自己的教案,引导学生学会读懂实验,指导学生建立实验教科书与实验室实物仪器之间的联系,激发他们的学习热情,提高他们自主学习的能力。在几年的教学实践中产生了良好的教学效果,一批学生的优秀教学实践论文脱颖而出。目前在我校大学物理实验精品课程网络资源系统中精选了40篇学生的代表作。

2、建设基于web的远程仿真实验系统,营造多元化教学模式

物理学是以实验为基础的学科,物理实验教学对培养学生创新思维和实践能力以及对物理理论的理解将起到不可替代的作用。但是,在实际教学中,由于受到时间和空间的限制,在有限的学时内,要学生完全理解实验原理和仪器的运行机理,满足学生自己选择参数设计实验,或进一步做研究性实验内容的强烈欲望,有一定困难。学生往往在教师设定好的参数和步骤中完成实验的内容,这个过程中学生缺乏思考,很多是盲目操作走了过场,这样实际上把物理实验教学变成了一种呆板式的模仿型教学。要改变这种状态,就要发挥信息化教育的优势与实际实验的教学模式相结合,创新教学模式来解决。

由我校研制,高等教育出版社1996年出版的《大学物理仿真实验》就是一个具有代表性的创新媒体,是国际上第一套实验教学软件。它利用软件建模设计虚拟仪器,建立虚拟实验环境,学生可在这个环境中自行设计实验方案、拟定实验参数、操作仪器,模拟真实的实验过程,深化理解物理知识。《大学物理仿真实验》可用于学生预习、复习以及自学物理实验,营造了学生自主学习的环境和与真实实验相结合的二段式、三段式教学模式,并使实验教学在空间和时间上得到延伸。在此基础上,1999年以来建设在校园网上的虚拟实验远程教学系统进一步营造了多元化的物理实验教学环境和学生自主学习的平台。目前虚拟实验远程教学系统已包括力、热、电、光、近代物理实验在内的56个大学物理仿真实验,多年来在开设网上实验选修课、网上实验辅导课、强化师生间的交互,激发学生的主动性和学习热情,提高教学水平等方面发挥了很好的作用。

大学物理仿真实验软件是不断发展的教学媒体,它的动态更新、动态和维护是教学实践中迫切需要解决的问题。传统的教学软件方式是用光盘等硬拷贝模式,常常存在着升级和维护困难等问题。为此,近年来我们研究了基于web的大学物理仿真实验系统,用户无须手动安装仿真实验软件程序,只需通过浏览器就可实现仿真实验等各种类型教学软件的自动下载、更新、运行。基于web的大学物理仿真实验系统更方便更广泛地为学生提供了自主学习的平台、不断更新的优秀教学资源。同时也为解决由于扩大招生、培养学生创新能力需要增加的教学资源的问题提供了解决的途径。

3、建立网络选课系统,教学交互系统,管理系统,实现全方位开放的教学模式

开放性教学模式是满足学生个性化教学的模式。在开放实验室,学生可利用实验室提供的设备,在教师指导下,自己设立实验题目、设计实验方案完成实验,因此它能有效地满足学生求知、探索和创新的欲望,有效地培养学生的创新思维与创新能力,因此我们非常注重实验教学的开放模式。

为了对大面积学生实现在时间、空间、内容上的开放教学,我们建立了网络选课系统、教学交互系统和教学管理系统,并在2个学期内,对2800名学生开设的开放性实验教学中发挥了很好的作用。

4、建设《大学物理实验》(第二版)和立体化教材教材是教学的依据,它反映了教学思想、教学目标、教学内容和教学方法。由我校编写,高等教育出版社于2005年11月至2006年6月陆续出版的面向21世纪教材,《大学物理实验》(一、二、三、四册)(第二版)在第一版的基础上,融进了我校近几年来在教学、科研中积累的科学思想、科学方法、教学思想和教学成果。在反映我校大学物理实验教学的新体系、新内容的基础上,对教材中的大多数实验增加了设计性内容或研究性内容、研究型课题;并配有基于web的大学物理仿真实验系统、大学物理实验资源系统等。应用信息技术建设了体系新颖、内容丰富、适应于各专业、各层次学生多元化教学模式的立体化教材。

四、结束语

20世纪末以来以数字化为核心的信息技术的高度发展,带动了信息化教育的发展,营造了信息时代培养创新人才的崭新的教学环境、教学模式,教学方法,在教学中正在发挥着任何时代无与伦比的作用。任重而道远,如何进一步融合传统教育与信息化教育,培养出合格的新世纪创新人才是我们必须不断面对的课题,我们将为此坚持不懈地努力。

[责任编辑:文和平]

作者:霍剑青   王晓蒲

第6篇

关键词:物权行为、物权行为理论、绝对物权行为理论

自萨维尼提出物权行为理论以来,争论百年而终无定论,时至今日对物权行为理论持肯定说与否定说的观点仍相持不下,但双方的争论仍然未能跳出“留学德国的学者多持赞同说,留学英美和日本的学者多持否定说”这一基本定式。目前,坚持肯定说的学者无法利用现有的理论体系清晰地回答否定说的合理质疑,反对者也无法将物权行为理论彻底击溃,这已经成为民法学界一个难以解开的谜题。本文认为,法律是世俗的行为规范,而决不是魔术,更不是不食人间烟火的精灵,思维方式固然会有所差异,但似乎也不会对一项制度设计达到无法彼此理解的尴尬境地。在物权行为理论的发源地德国,根本不存在关于思维方式的差异问题,但关于物权行为理论的争论同样十分激烈,这就表明争论的来源仍来自于物权行为理论自身。在肯定说和否定说僵持不下的胶合状态之际,明智之举似乎是选择支持其中的一方,因为无论如何,都会拥有一批同盟军,决不至于陷入孤立无援而“两头都不讨好”的危险境地。然而,既然我不能被目前的物权行为理论彻底说服,又无法将物权行为理论中的科学性彻底抛弃,最终我还是决定走第三条道路,大胆地对物权行为理论进行检讨和重构,试图破解物权行为理论的谜题。

萨维尼强调物权行为独立于债权行为而具有无因性,实际上只有在“债权行为无效而物权行为有效”场合才真正具有价值。然而,根据萨维尼的物权行为理论,当债权行为无效而物权行为有效时,虽然物权行为已经发生变动,但并不意味着物权的取得人可以高枕无忧,其最终的结果却是:虽然买受人根据物权行为取得了所有权,但鉴于债权行为的无效,其必须按照不当得利将其取得的物权予以返还。从实际效果来看,物权行为理论所强调的无因性,似乎只是虚晃一枪,最终却使无因性理论的结果被迂回曲折地否定掉。既然物权行为具有独立性,且物权行为的效力不应受债权行为的影响,那么债权行为无效,为何要把基于有效物权行为而产生的利益予以返还?如果债权行为无效,物权行为有效,而最终却因为债权行为无效而将物权行为所产生的法律结果认定为不当得利,这究竟采取的是有因性还是无因性?物权与债权在主体、效力上的本质差别已是不争的事实,但根据萨维尼的物权行为理论,为什么物权行为中的意思表示主体却可以和债权行为中的意思表示主体完全重合?笔者认为,绝对权与相对权之间的区分不无道理,但物权行为理论本身仍有不少令人费解之处,其理论仍有待完善。

由于“物权行为”概念的诞生是整个物权行为理论的逻辑起点,也是构建整个物权行为理论的基石,因此,本文就把对物权行为概念的研究作为对整个物权行为理论进行分析检讨的第一步。

在当前的法律行为理论中,以意思表示的主体为标准进行划分,法学界几乎一致将法律行为划分为单方法律行为、双方法律行为和多方法律行为。目前的立法、司法和法学论著中既没有绝对法律行为和相对法律行为的概念,也没有认可特定人与不特定人之间存在绝对法律行为的观点。我姑且将这种引起特定权利人和不特定义务人之间绝对权变动的法律行为称为绝对法律行为。

如果一项绝对法律关系的变动是基于法律行为而引起的,那么基于私权自治原则,法律关系的主体就应当是法律行为中作出意思表示的民事主体,自然而然的逻辑结果就是:在引起绝对权变动的这种法律行为中,作出意思表示的民事主体理所当然就是特定的权利人和不特定的义务人。简言之,如果绝对权和相对权是存在的,绝对法律关系和相对法律关系是存在的,那么绝对法律行为和相对法律行为同样也是存在的!

法学界普遍承认绝对权的存在,也都承认绝对法律关系存在的客观性,但无人认可绝对法律行为,这恰恰是我们法学研究中的理论盲点!如果不承认绝对法律行为的存在,就无法解释绝对权变动的原因,也无法解释引起绝对权变动的法律行为的性质。正是因为没有绝对法律行为的概念,所以德国物权行为理论才会争论百年而相持不下。物权行为理论的创始人萨维尼在《当代罗马法体系》一文中写道:“交付是一个真正的契约,因为它具备契约概念的全部特征:它包括双方当事人对占有物和所有权转移的意思表示”。根据萨维尼的论述,物权行为中的意思表示是由债权行为中双方当事人作出的。至此,一个理论上的矛盾开始凸显:物权与债权在主体、效力上的本质差别已是不争的事实,但在引起物权变动时,物权行为中的意思表示主体却和债权行为中的意思表示主体完全重合!显然,萨维尼认识了相对权与绝对权之间的本质差异并把它作为研究物权变动的出发点,也认为应当将区分原则贯彻到法律行为领域,所以他认为引起绝对权变动的法律行为和引起相对权变动的法律行为应该是不同的,这是他对物权行为和债权行为进行区分的理由,这是物权行为理论的闪光点,但是萨维尼所提出的“物权行为”这一概念则是逻辑错误的产物,他只是简单地将债权行为中的物权变动意思直接剥离出来,然后生硬地贴上物权行为的标签。萨维尼不仅没有将区分原则真正地贯彻到法律行为领域,而且他所提出的“物权行为”中的意思表示其实也只是债权行为中关于物权变动的意思表示,并非独立的法律行为。事实上,如果切实在法律行为领域贯彻区分原则,就应当将法律行为区分为绝对法律行为和相对法律行为,其中绝对法律行为是引起绝对权变动的原因。简言之,物权行为理论清晰地认识了相对权与绝对权、绝对法律关系和相对法律关系之间的本质差异,但它没有能够把这种区分贯彻到法律行为领域,由此导致了物权行为理论的倾斜,萨维尼物权行为理论的症结恰恰就在这里。

绝对法律行为是破解物权行为理论这一谜题的金钥匙!笔者认为,引起物权变动的不是萨维尼所说的物权行为,而应该是绝对物权行为。所谓绝对物权行为,就是特定权利人和全体不特定义务人之间关于引起物权变动的绝对法律行为。绝对物权行为是绝对法律行为制度在物权领域的运用。笔者认为绝对物权行为才是引起物权变动的真正原因。“绝对物权行为”与“物权行为”的重大区别就在于是否考虑不特定人的意思表示。根据绝对物权行为理论,完整的不动产物权变动过程是由债权行为、绝对物权行为和国家确认行为三个阶段共同完成的。事实表明,绝对物权行为在逻辑上具有合理性,在制度设计上具有可操作性,它不仅对绝对权变动中的利害关系人而言至关重要,而且对法律行为理论、物权制度设计和法学思考方法均有重大影响。物权法中存在着不少重大争议,例如:在我国物权立法中是否要采用物权行为理论、如何确定我国的物权变动模式、不动产登记的性质、无权处分中买卖合同的效力、抛弃是否是法律行为、权利瑕疵担保义务如何履行、登记机关如何进行实质审查等,这些重大争议根据绝对物权行为理论都可以迎刃而解。

第7篇

一、“自然”对“意义”的遮蔽

人生活在两重世界中,即自然本体世界与自由的意义或价值世界,人的本性到底是从人的自然世界去找寻还是应该从人的意义世界去找寻,这在哲学上一直是争执不下的问题。在伦理学中也长期存在着关于自然和意义(或价值、精神)的争论,当代生物伦理学的出现,同这些争论是分不开的。关于这个问题,主要有三种有代表性的回答:一种观点认为人的理性和精神是人之为人的关键,人的自然属性和欲望是理性限制和统治的对象。所以应从人的精神合理性本质出发,通过对人的感性肉体欲望的抑制来尽量限制感官的要求,如人的激情、冲动、欲望、需要等,以达到理性战胜感性的要求,从而实现人的道德理想、价值和德行。这一观点是建立在灵魂统治身体这一认识基础之上的。这种哲学伦理学传统从苏格拉底、柏拉图开始,后经过斯多葛学派和基督教伦理学的拓展,一直到康德的以实践理性为基础的道义伦理学的传统,他们都主张从人的理性本质出发来设定道德规范。第二种观点与之相对,它从人的自然本性出发,把人的自然需求当作人的本质,它充分肯定人的感望的正当合理性,把人的精神和理性看作满足感求的手段和工具,因此把寻求快乐幸福作为人的价值理想和人追求的最高目标,他们甚至把一切能够带来快乐和幸福的东西称之为“善”。这种学派从伊壁鸠鲁的快乐主义后经文艺复兴时期对人的感性需求的高扬一直到近代的功利主义。另外一种观点以尼采为代表,他认为身体和灵魂,人的自然与精神是人的有机体中同样有根据的、对抗的力量,他们相互挑战并激发出最高的成就。他把人的身体称为“伟大的理性”,并试图由此理解精神性的东西在自然中就有其根源,他从自然中获得其生命冲力。尼采为此援引达尔文的自然选择理论。他看到这种自然进化的过程不仅仅是通过自然进化的选择和适应机制来规定的,而且在本质上也是通过这种由自然进化而来的精神形式所规定的。他试图借用黑格尔的辩证法思想来整合达尔文的进化论,把生命体的进化作为一种身体和精神的辩证法加以理解。在这种辩证法中,自然和理性不是相互压迫,而是相互挑战。随着尼采的影响日益增长以及现代自然科学的迅猛发展,建立在上帝创造基础上的古典的人类图景终于实现了向建立在进化论基础上的进化生物学纲领的转变。这场转变从根本上说就是在对伦理学的讨论中引入了生物学,试图从生物的角度对伦理学的有关问题做出说明。建立在生物学基础上的人性论和人类图景直接构成了生物伦理学讨论道德问题的基础和出发点。这种理论对伦理学提出的一个难题是:怎样找寻人的意义和自由?既然人是彻头彻尾的的“生物人”,人是自然进化的结果,并且继续处在进化之中,他并没有作为“创化的王冠”而达到终极状态。这样人作为自然的出生不再可以被当作神圣生物的肖像,并由此也不再具有自由人格,而是被理解为从纯粹的偶然事件中演化而来的,那么,人的意义世界只有通过自身生产创造才能产生。它只有通过行动赋予它的生命以一种价值。但是,倘若他只是进化的产物,其因果机制可能完全支配着他,以至于自由只是一种纯粹的幻想。生物伦理学不仅颠覆了传统伦理学的基础和人类图景,并且在这个过程中,它还彻底埋没了人的精神和意义世界。[5](P379-380)事实上,人与一般动物不同,人不仅具有生物性,是自然世界的一部分;人还具有社会性、反思性和创造性,在自然世界的基础上,他还能创造一个意义世界、价值世界。在意义世界中,人能按照自己的愿望,使自身从本能和现实环境中超越出来,通过自身创造性的实践活动打破生命本能和现实规定性的关系束缚,使自己的存在获得开放的、应然的和生成的性质,意义的存在是人之为人的根本,诚如赫舍尔所说,“人的存在从来不是纯粹的存在;他总是牵涉到意义。意义的向度(dimension)是做人所固有的,正如空间的向度对于恒星和石头来说是固有的一样”[6](P46)。如果没有意义,人只是一个客观的、有限的存在,是“一条在卵石和土地上蠕动的虫”,或是“一个在无边无际的浩渺宇宙中盲目浮游的生物”[7](P18),如果人只是生物性的生命,则与禽兽昆虫并没有本质的差异,那么这种存在不足以贵称为人的生命。只有不同于动物属性的意义世界的构建才能凸显人性的尊严。生活在意义世界中,追求价值是人不同于动物的独特的生活方式。动物是单一自然性的存在,而人具有二重化的存在结构,生活在“双向度世界”充满张力的否定性结构中。一方面,人是自然的一部分,在其身上始终禀赋“物性”,但另一方面,人的意义向度又要自身从这种自然中超越出来,做一个“真正的人”,意义意味着超越,不寻求意义的生物人只是一个“未完成的人”。正如当代政治理论家米歇尔•诺威克所说:“人是地球上唯一不盲目、本能地遵循他们自己本性规律的动物,而是愿意自由地选择遵循本性规律。只有人感到自由地做、或不做他们应当作的事情的乐趣”[8](P22)人无时无刻不为超越自身生存的动物性、有限性、偶然性和受动性的愿望所驱使,无时无刻不在内心激荡着一种趋向自由的力量、热情和憧憬,在此意义上,马克思说人“不仅仅是自然存在物,而且是人的自然存在物,也就是说,是为自身而存在着的存在物,因而是类存在物”[9](P169)。人的这种自我超越,自我创造,永远向未来敞开的本性就集结在“意义”这一概念之中,这也是人的独特的价值本性所在,在这种意义世界中,人可以在有限中达到无限,在必然中把握自由,人“虽然充满劳绩,但还诗意地安居于大地之上”[10](P91),在这种意义世界中人获得终极价值依托,获得自身安身立命的基础。人拒绝接受既定的“事实”,他总是生活在“远乡”,生活在“未来”的牵引之中,正是这种对理想和自由世界的绝对指向性,变成了人类超拔自身的强大动力,引导人走上了不断解放自身的历程,意义成为人存在的基础和本性,成如赫舍尔所说“正是意义照亮了人的存在”[11](P48),正是意义和价值对人的这种特殊功用,千百年来的文人学者一直致力于对意义世界的构建。意义不是一种客观实存,“意义意味着一种不能被归结为物质关系或不能被感觉器官感觉到的状态”[12](P50),它要求人类克服自身所固有的生物性倾向,它是人类对实存和定在的超越。生物伦理学把人看作一个纯粹生物性的存在,他们从一种生物性的人类图景出发,把人的社会属性、人的意义的存在和与此相关的价值禀赋都从其考虑中剔除掉了,把人的自然生物性看作是人的道德价值的来源和基础。似乎自然的存在涵盖了人的全部存在状态,意义世界在道德的行为方式中没有留下什么痕迹,它以人的自然本体世界性完全遮蔽了人的自由的意义世界。事实上,人的生物性非但不是作为价值的源泉和根基,相反它是被超越和扬弃的对象。包括道德在内的人的意义世界不是从人的生物属性中产生的,而是由人类超越本体的主观价值赋予的。

二“、物”对“人”的消解

人和物是两种不同的存在,物受单纯的自然法则的支配,它的运行直接为自然律所支配,动物之所以如此行动,并不是因为他们在人类生活中看到了一种必须无条件加以维护的善,而是因为它们不可能采取别的行动:他们的行动是自然规定好了的;人的存在不是完全有自然法则支配的,道德法则或“法”而不是自然法则构成人存在的法则,它现实地体现为人类所缔造的超越本体世界的意义世界。人的理性本质是意志自由,他不为一切定在所束缚,突破自然法则而使自然委质于意志,缔造自由世界是人不同于物的特性所在。康德口中传颂的名言:“两样东西,我对他们越是坚持不断地思考,越是有更新更大的讶异和敬畏充满了我的心灵,这就是在我头上星斗森罗的天空和在我心中的道德规律”[13](P16),也从侧面我们揭示了二者的不同,在康德看来,自然规律主要对物起作用,而对人起作用的规律是道德规律,但从自然规律来看,“那数不清的世界把我当作一个动物,而消灭了我的重要性,这个动物被暂时赋予了生命,谁也不知道什么时候,又把构成自身的质料归还给所居住的行星,这行星不过是苍茫宇宙中的一粒灰尘。”[14](P16-17)。而从道德规律来看“它无限地提高了我作为一个理智东西的价值。道德规律向我展示一个独立于动物性,以至独立于整个感性世界的生活。道德规律向我昭示,人的存在使命决不受这个生命和条件的限制,它将伸向无限。有理性东西的一切行动都必须以道德规律为基础,正如全部现象都以自然为基础一样”[15](P17)。虽然人在一定意义上人也必须尊重客观规律,人作为现实的存在,自然本体构成其不可或缺的前提,但正如赫舍尔所说,人在本质上不是一个纯粹客观的存在,他的本质是意志自由。人不甘为自然定在所束缚,不是被动地接受客观规律的支配,而是通过实践理性在自然基础之上缔造一个自由的意义世界,实现对现实客观定在的超越。人的自然性虽然是人存在的基础,但是它相对于人的本质而言是不自由,是人存在的有限性,是应被扬弃和否定的对象。伦理道德就是这样一种对人的自然定在进行扬弃的基本形式,它通过自由意志对自然感性的扬弃使人摆脱物的奴役和束缚,使人超越自己的客观定在而获得解放,获得自由。这正是人与物相区别的本质所在。卡西尔曾经说过,“我们绝不可能用探测物理事物的本性的方法来发现人的本性。物理事物可以根据它们的客观属性来描述,但是人却只能根据他的意识来描述和定义。[16](P8)生物伦理学好象不了解这一点,它从生物学的意义人去认识和定义人,把人看作是受自然法则趋势和奴役的纯粹客观的存在,完全抹杀和漠视人的能动性和创造性,把人看作与一般动物无异的有机组织,在他们看来,人是遵循自然法则即自然机械作用的因果律,是由本体层面的自然机械规律所主宰和支配的存在。生物伦理学也承认伦理道德的存在,但在他们那里,道德不再是人的自由意志的主观价值赋予,而完全成了人的生物机体的一种生理机能(生命伦理学),或是由人的遗传基因决定的(进化伦理学),并且断定人的一切道德责任、道德行为都是由生物学因素决定的,在这里,人的自由意志再也没有任何立足之地,人完全成了生物学因素的奴隶,所有的道德行为都被还原为“自然”,道德规律变成了纯粹的生物学规律,而不再是处在实践理性基础之上的自由规律,既然人的一切行为都是由生理规律所支配,人就是完全委身于自然的存在。这样生物伦理学完全混淆了人与动物的不同存在方式,与动物一样,人成为自然法则的载体和呈现者,在他们的视野中,真正意义上的人消失了,人完全被降低到动物的层次,这时毋宁说人就是一般的物。既然人是由无法抗拒的客观规律决定的生物性的存在,他的行为必然没有丝毫背离和偏差地遵循既定的客观规律,他永远无法挣脱自然法则的束缚而获得自由,人作为完全由生物规律所决定的客观定在,也不可能拥有任何意志自由,这样也不必为自己的任何行为负责。对意志自由的否认,就意味着对道德责任的消解。道德责任是以责任主体的自由为前提的。如果人的一切都是被某种客观的无法抗拒的因素决定的,自身没有任何选择的余地和空间,那么它就无需为自己的行为负责,这样个体就取得了道德的豁免权,再谈论道德责任就变得毫无意义了。而生物伦理学的错误正在于它在一种决定论的基础上讨论人的道德和道德责任,他恰恰是把人的道德责任置于被客观因素决定的生物基础上,这样一种立论基础和自然主义思考方法,从一开始就彰显了其实践的虚妄性,并且注定它在理论上也不可能有任何建树而只不过是为学界徒增一些聒噪罢了。

作者:高月兰

第8篇

一、财务咨询的涵义

财务咨询从理论上说是管理咨询的一种,剖析财务咨询的内涵首先要深刻理解管理咨询的涵义。咨询,传统意义上讲是指征求别人意见、求助于人或给人出主意、提建议、定计谋之意。管理咨询既可以被看作一种专业服务,又可以被视为提供实际咨询和帮助的一种方法。对管理咨询较为权威的定义是:“帮助管理者和组织,通过解决管理和经营的问题,鉴别和抓住新机会,强化学习和实施变革以实现组织目的和目标的一种独立的专业性咨询服务。”

目前,财务理论界较为明确地提出的财务咨询的概念是:“财务咨询是指具有财务与会计及相关专业知识的自然人或法人,接受委托向委托人提供业务解答、筹划及指导等服务的行为。”笔者认为,财务咨询的涵义应当是十分宽泛的,无论是接受委托提供专业服务的财务咨询,还是从属于全面管理提供咨询服务的附属性财务咨询,都应是不可或缺的。因此,可以将财务咨询大体定义为:咨询公司、证券公司、投资银行等专业机构及其专业人员,为客户、投资者等服务对象提供的有关资产管理、证券投资等财务方面的管理咨询服务,即一切有关财务的咨询服务活动都是广义上的财务咨询。

二、财务咨询的理论地位和功能

理论上,财务是本金的投入与收益活动,在“大财务”的框架下,财务理论体系可分为国家财务、企业财务和家庭财务,这主要是基于财务主体及其特性的不同划分的。从另一角度,可将各财务主体(国家、企业和家庭)的理财活动按其业务性质分为自主理财和委托理财。其中,自主理财又可分为自主决策理财和咨询决策理财。同时,自主决策理财也非真正靠自己的能力单独决策理财,财务咨询常常潜移默化地影响并培育着理财主体自主决策的能力。因此,财务咨询在财务理论中占有很重要的地位。特别是随着管理咨询业的独立发展并逐渐成为一个新兴行业,以及大量专业财务咨询公司的不断涌现,更加凸显了财务咨询在实践方面的重要地位。

财务咨询无论是对宏观经济运行,还是对企业、个人理财活动都具有重要意义。它具有以下功能:

在宏观方面,财务咨询可以引导理性投资,优化社会经济资源配置。在市场经济运行过程中,在“看不见的手”的支配下,财务主体尽其所能追求财务利益最大化,但由于会受到信息、能力等方面的限制,其财务行为难免会出现盲动性、滞后性,这不但会造成财务主体利益受损,而且对国民经济产业整体协调发展非常不利。财务咨询服务于微观经济主体,弥补其能力的不足,减少其决策的失误,客观上减少了投资者的盲目性,校正了市场反应的滞后性偏差,有利于优化全社会资源配置。而且,在目前情况下,国内企业将直面全球竞争,财务咨询将是企业在低效的管理水平和有限的人力资源条件下,提升财务运营能力、综合管理能力、综合竞争力的有效手段,其现实意义非常重大。

在微观方面,财务咨询可弥补企业、个人等财务主体自身知识结构、运营能力等方面的不足,有助于解决经营和管理中遇到的问题。财务咨询专业人员可以为客户鉴别、诊断和解决财务各相关领域的问题,还可以通过客观、专业的分析,帮助客户识别并抓住各种新机会。更为重要的是,财务咨询给客户提供了一个认识、学习财务知识技能的机会,对于提高客户能力、促进其发展具有重大意义。

三、财务咨询的业务定位与基本分类

财务咨询的业务范围非常广泛,咨询业务既包括实物性资产咨询、证券性资产咨询,又包括财务主体筹资、投资及日常管理等业务咨询。具体地,在国外,财务咨询业务通常包括财务估价、经营资金与流动资金管理、兼并与收购、投资项目分析、会计制度设计、预算控制、外汇管理等;在国内,财务咨询业务通常包括设计企业内部控制制度、设计会计电算化实施战略、财务分析、代拟经济文书、培训财务会计人员、记账、税务服务、个人理财帮助、资产评估、投资咨询服务等。

客户所需咨询业务性质不同,决定了各种财务咨询的服务目标、服务方式等方面必定存在差异,由此也就产生了不同的财务咨询类别。就目前开展财务咨询业务的现状而言,财务咨询按业务性质、服务目标大体可以分为以下三类:

1.行业投资评价型。该类财务咨询类似于会计师事务所等提供的社会鉴证业务,咨询服务的目的是提供客观的、不带有利益色彩的建设性观点。专业咨询人员以调查、搜集的数据为基础,进行深入分析,并根据现有分析对未来做出预测。并且以诚实、专业服务为基础,恪守“三公”原则,即不卖产品,也不推进部署,只是提供独立的分析。该类财务咨询业务一般由专业性的财务咨询公司开展。2.财务整体服务型。该类财务咨询侧重于为客户提供专业、全面的服务,获取由于出让知识、脑力劳动而应得的利益回报。专业咨询人员主要提供一整套有关企业、个人财务运作与管理的规划、策划等服务,十分注重市场细分化差别,在提供整体服务的条件下强调业务领域专长,根据企业、个人需要,可以量身定做方案并提供贴身服务。该类财务咨询业务一般由专业财务公司、综合性管理咨询公司、证券公司及部分提供咨询业务的会计师事务所等机构开展。

3.附属增值服务型。该类财务咨询的目的是扩大主营业务,专业咨询人员运用一系列理财工具,为客户提供专业、全面的财务分析和理财建议,并兼顾产品销售。该类财务咨询业务主要由银行、保险公司等金融机构的“个人理财中心”等部门提供。

四、证券投资咨询

财务咨询涵盖范围极为广泛,其中证券投资咨询作为其最为重要的组成部分之一,无论对广大投资者的投资行为还是对资本市场的发展,都影响重大。

在西方发达国家,资本市场建立之初就产生了投资咨询业务的萌芽。1920年,全球第一家投资咨询公司在美国的波士顿成立,证券投资咨询业也便开始发展起来。我国证券投资咨询业正式发展始于20世纪90年代初期,在证券市场初步建立时便已经起步,经过20世纪90年代的跨越式发展,逐步形成了一个具有广阔前景的新兴行业。

随着资本市场的快速发展,证券投资咨询业蓬勃发展起来。目前,受全球经济一体化的影响,证券投资咨询业呈现出两大发展趋势,一是咨询业务的国际化与本土化并存,二是咨询业务的专业化与全面化两极发展。在此两大发展趋势的影响下,我国证券投资咨询业发展面临着前所未有的机遇,同时也面临着巨大挑战。目前,困扰证券投资咨询业发展的主要问题是如何保持咨询业务的客观、独立,如何防范道德风险等。

第9篇

一、认知策略上体现的科学的学习方法

1、尝试错误法

在解决问题的过程中,为了达到目标经常先确定一个解题的方向,选用某一方法试探性地力求达到解题目标。如果这种试探过程毫无结果,或许就可以从这一错误方法中获得正确解题的启示。这种做法就称为尝试错误法。

在解题过程中可以通过尝试错误更加深入地理解概念、规律的实质;通过尝试错误的方法可以进一步归纳出科学的方法。

2、小结的作用及进行

当学习告一段落时就需要进行小结。小结些什么?如何进行?这是一个“二而一”的问题。可以通过下面的顺序来实现:

(1)首先考察知识的类属、性质、意义。

考察知识的类属即是要将所学知识归到一个知识体系中去,形成新的知识体系。考察知识的性质、意义即是要从不同角度去认识知识的本质及它的作用。

(2)对知识结构与认知结构的理解:理解知识体系中各组成部分的本质、相互联系及差异;掌握解答各类课题的规则、方法、和步骤,形成一定的认知结构。

(3)对知识间因果关系的理解:认识某一物理现象为什么会发生;某一物理状态、物理过程在某种条件下可能产生的结果。

(4)对逻辑关系的理解:认识概念、规律间的内在逻辑关系与相应的依存与类比关系。

小结的目的从本质上是深入对知识的理解。关于理解要经历以下阶段:关于知识字面的理解;关于知识的解释(能用自己的语言加以说明。或举例、或论述);关于知识非本质的认识(能够区分本质与非本质因素);关于知识在新情境下的应用。

3、触类旁通,举一反三,乃求知之捷径

如何才能做到触类旁通,举一反三?

首先,需要明确认识对象之间的在内容与方法上共同的本质因素,而后才能“触类”。但这只是“旁通”的前提。知识之间、技能之间的共同因素是触类旁通,举一反三的重要客观条件。

其次,更关键的是学习者已有知识经验的概括化水平与新课题类化的能力。已有知识经验的概括化水平高,能够反映物理现象、过程的本质(则能够“触类”、“举一”),就能够根据新课题的特点准确地对课题进行分类,就会避免根据表面特点进行猜测、盲目尝试、或者不顾条件死套公式(就能够真正做到“旁通”、“反三”)。

4、原型启发——创造的源泉

当我们进行创造性思考、解决问题时,从其他事物中得到了解决问题的启示,从而找到了解决问题的方法和途径。我们把这种具有启发作用的事物称作“原型”。从本质上说,原型之所以有启发作用,主要是因为这一事物本身的特点和属性,与所要创造的东西有相似之处。

物理学中的原型可以通过学习过程建立。在学习中,物理学概念模型(如质点、理想气体、点电荷等)、物理过程模型(如各种典型运动过程、碰撞、反冲等)、典型的解题过程(方法、技巧、思路)等都可以抽象为学习者头脑中的“原型”。

为了获得原型,在学习中应该注重基本概念、基本规律、基本技能的学习及训练;注重典型例题的学习与思考;注重典型物理过程的分析;注重归纳思路、方法、技巧。

二、智慧品质特征对“如何学习”的启示

人的智慧能力不是根据他在模仿的基础上能做些什么或在详尽的解释以后能掌握些什么来判断的。

人的智慧表现在:相当独立地掌握或“发现”对自己来说是新的知识,在于他在解决新问题时把这些知识迁移到新的情景的广度。

1、“它”是什么?“它”不是什么?

智慧的最重要品质之一是它的深度。这个品质表现在人掌握新材料、解决问题时能抽象各种特征的本质的水平上以及对各种特征概括的水平上。

在学习中,智慧的深度体现在学习新知识、解决新问题时能明确新知识、新问题的本质,能够知道“它”是什么?“它”不是什么?并能够形成关于它们的简约的概括。

在学习新知识时为了达到把握学习对象本质的目的,学习不妨经过如下的顺序:

(1)明确新旧知识的结合点。

(2)比较新旧知识的异同。明确新知识的构成要素。

(3)新知识的各种不同表述及其应用的可能性。

(4)新知识没有别的用途吗?解决问题时假如用别的代替?假如去掉新知识表述中的某些条件?假如将其叙述反过来?

2、发散与无限——创造力之源

“想当然”乃思维中的弊端。想当然的事情,可能是最不可思议的事情。

把你的思路向各方面展开,奇迹就会在你面前出现。

智慧的最重要品质之二是它的灵活性。在学习中创造性思维的前提是,不仅广泛地运用已掌握的知识、而且要克服以往经验的障碍、脱离思维的习惯的束缚,解决知识同问题情景要求之间的矛盾。这就要求学习者必须克服以往经验、思维习惯所带来的“想当然”,将思路向各个方向尽可能地发散,以便新颖而独特地用知识解决问题。

例如:在中学物理中“如何确定物体的受力?”。对这一命题可以进行发散思考:可以从力与运动关系中、力对时间的累积效果中、力对空间的累积效果中等几个角度去思考。

3、整体大于部分之和

智慧最重要品质之三是它的稳定性。对学习者来说,重要的不仅仅是区分出学习对象的本质特征,而且在头脑中要保持着它的全部特征,根据这些特征进行操作而不受所分析情境的外部、偶然特征的重大影响,即是保持智慧的稳定性。将学习对象作为一个整体而不是被分割的部分进行把握,能够更好地认识学习对象的本质。

掌握事物之整体,作为人认识世界的特性之一,乃是达到顿悟的关键所在。

4、用心感知自己的思绪

智慧的最重要品质之四是它的自我意识性。学习者清楚地意识到自己的思维活动、使自己的思维活动成为解决问题的主体的思维对象,便能揭示自己思维进程中的错误及其原因,并能够找到纠正它们的方法;同时还能用词或其他符号表现思维活动的结果(如新形成的概念和规律的重要特征)、借以找到形成这种结果的方法。学习者可以在学习中不断地去反省自己的思维活动,增强思维的自我意识,提高思维能力。

5、独立思考些什么?

智慧的最重要品质之五是它的独立性。即学习者在运用新知识方面的独立性。它表现在以下几个方面:

(1)学习者能够自觉提出学习的具体目的

学习的目的性是学有所得的保证。有目的的学习可以激发较强的心理能量,为完成学习任务创造了良好的心理条件。

学习目的的确定应该分散到每一次的学习中,即每一次学习应该提出具体且可以达到的目标(如做什么、做多少、做到什么程度),以此来避免由于缺乏目标而迷失方向,避免学习计划落空。

学习的目的性更应该体现在课堂上。在听新课之前应先预习提出问题,以此来确定听课的目的。这样才能在课堂上处于主动的地位上,才能明确学些什么,才能在释疑中产生学习的兴趣,从而培养出学习的兴趣。

(2)学习者能够独立发现并提出问题

独立发现并提出问题,需要学习者对学习对象进行深入的分析与思考。可以从“求同”、“求异”、是否存在因果关系、逻辑关系等角度对学习对象提出问题。

(3)学习者能够针对发现的问题提出假设并独立地解决这些问题。

在学习中遇到的问题很多情况下具有不确定性。例如:一个物体向东获得一个瞬时冲量后将做什么运动?由于受力情况未知,需要做出假设。再如:关于被动力(弹力、摩擦力)的大小和方向的假设。

三、学会思考优化思维

1、正确处理分析与综合的关系

解题中的分析与综合的关系:创造活动的本领,首先在于综合——现状的再构成。分析不过是旨在实现综合——现状的再构成的准备阶段。必须认识到为了什么目的而进行分析,换言之,是以怎样的综合为目标进行分析的。尤其在解题中,我们的分析从哪里开始?分析什么?怎样分析?如此等等,都需要先对问题有一个综合后而达到的整体的认识。

2、怀疑与否定——思维升华的必经之路

二元对立统一是自然界和心理世界都遵循的规律,在物理世界中当然不能例外。物理概念、规律的本质与其非本质是对立统一的。本质与其非本质都强调着自己而否定对方。但另一方面,它们又都以对方的存在为自己存在的必要前提,没有自己当然也就没有对方,而没有了对方,自己也就不复存在。

在物理学习中要敢于对既成的理论提出怀疑和否定。在怀疑后的探索中,更清醒地认识其非本质,最后达到对其本质的把握;在否定后才能创建新的理论。

因此,我们要在观念的对立面之间撑渡思想之舟。把思想不断地推向其否定之否定,便会在这一对立与统一的运动之中有所创见,使思想得到升华。

3、妨碍思路的因素。

在学习过程中思维的流畅性是学习成功的重要保障。如何锻造流畅的思维?在客观上,呈现的学习对象的复杂程度固然是影响我们思考的因素,但我们别无选择,我们只能从主观上找寻妨碍我们思路的因素。从主观的角度看,以下几个因素值得考虑:

(1)克服个人中心倾向。在思考的过程中,“想当然”之所以出现,是因为我们不假思索认为它是什么,而没有认真地去考虑它真的是么?应该时常将自己摆在旁观者的位置上,全方位去审视学习与思考的对象。

(2)在思维过程中加强自我提示。思维遇到困难造成间断,要变得流畅起来,需要不断地进行自我提示:为什么是这样?怎样才能解决?如果…就…、还有哪些可能的解决方法?如此等等。

(3)要选择最佳的思维角度与思维起点。从哪个方面或角度去思考?比如,求电势差U?是从其定义出发?还是从功能关系出发?亦或从电场的性质出发?是从整体的角度还是隔离分析?是先假设判定吗?还是先进行等效变换?等等。思维从哪里开始?是从问题开始还是从已知条件开始?或者从物理过程中的某个位置开始?

4、加速思路变换的方法:

(1)改变条件考察内涵的变化。

物理学的概念、规律等都是有其存在条件的。着意改变它们的存在条件,考察它们内涵的变化,明确各种制约关系,为由此及彼、及它的思路变换做准备。物理问题的解是与特定的条件对应的。改变物理问题的题设条件,考察解的变化,并从这种变化中归纳出解题的各种思路,从而使思路灵活起来,能够快速变换思路。

(2)求同训练。

“求同”是指在不同的学习阶段上,不断地对所学内容或已做过的习题进行考察比较,找出它们的共同点。这种共同点可以是多种多样的,比如,条件上的、结论上的、形式上的、物理过程上的、思维方法上的、解题技巧上的等等。求同的目的是为了将来进行类比思考、对命题进行题目归类,选择思路、方法、技巧,加速思路变换做准备。

(3)从现状出发探索目的——有没有别的用途?

物理学中的牛顿第二定律研究了加速度与力、质量的关系,它除了能够已知其中两个量求第三个量之外,它还能够干什么?它与其他两个定律联合起来能够解决哪些问题?它能否与动量定理、动能定理、动量守恒定律、能量守恒定律等联合解决问题?解决哪些问题?

5、向目标收敛、自目标发散——“锲而不舍,金石可镂”

心理学家在长期的研究中发现,人们在解决一个具体问题时究竟会采取什么样的思考方式,或者遵循着什么样的解决的方式,常常是由具体问题本身所具有的形式所决定的。在物理问题中,常见的问题是以具有固定的必然唯一的答案为特征的。比如,物理问题常常是明确地要求:求移动的距离是多少,求电路中的电流是多少,求速度是多少,求时间是多少,求电压是多少,求弹簧的最大弹性势能是多少(这些问题源自2000年高考物理试题计算题部分)。由于这一类问题总是有一个固定的唯一解答可求,也就好比给我们树立了一个目标,使我们的全部思维活动都指向这一目标,围绕着它而展开。

由于在这类问题中,答案本身以某种变化的形式被呈现出来,我们首先就认定确有答案可寻。于是,我们所采取的每一个步骤都受这最终的答案所支配,都试图向答案逼近。这就形成了一种思维的方式:指向性思维或收敛思维。我们思想的每一个环节,都被目标所检验,而不受其前一个环节所制约。

进行收敛思维,贵在恒心,利在方法。

自目标发散是收敛思维的逆过程,称为发散思维。发散思维是指`从问题出发围绕问题开始思考,通过递推从未知达到已知。这是解决复杂问题常用且行之有效的思维方法。

四、心理因素对学习的影响

1、动机对思维的影响

思维活动是有目的的。心理学中,推动和指引人们去从事某种活动的内部动因被称为“动机”,它能唤起行动,使活动指向一定的目标,并在相当的时间内维持这一活动。

对任何事情都毫无兴趣的人,或者即便有,也很难在一个相对较长的时间内维持的人,或者那种对既定目标缺乏执著追求的热忱,尤其在挫折面前少有毅力、丧失信心的人,是很难在其思维活动中有所建树的。一般来说,动机水平很低的人,其思维活动也必然是很贫乏的。但,动机太强时,人的注意力高度集中于目的物,其知觉、思维活动的领域变得十分狭窄,并且思维变的僵化,难于在不同的策略之间灵活转换,容易“认死理儿”,“钻牛角尖”。当我们的动机太强时,乃是处于欲望不可遏制之态,已丧失理智。要知道,“欲速则不达”。因此,应把动机调节到适度的水平上,使我们的思维处于最优水平。

2、情绪的参与——思维的催化剂

像恼怒、厌烦、沮丧、恐惧等负性的情绪破坏了对待问题的积极心态、对可能的线索具有的敏感以及对种种策略选择上的灵活性,从而严重地阻碍了思维的加工。而另一方面,成功所带来的极大的喜悦,过渡的兴奋、机动或满足后的松弛,也同样不利于信息的加工,从而影响思维的正常有效地进行。

良好的情绪状态——良好的心境:(使你的一切体验、活动都带上良好情绪色彩且相当持久的心态)是使你的思维被易化的心理基础,对你的思维具有效果良好的催化作用。

3、意志的作用

认识过程离不开意志的作用。意志促使认识过程具有目的性和有效性,从而使认识广阔而深入,并有一定效果。特别是当人们从复杂情境中探求本质和规律的认识过程遇到阻抑时,意志对认识过程的作用就更加明显。同时,意志有调节情感、情绪的功能,可以控制情绪使之服从于理智。

人的主要意志品质有:自觉性、果断性、自制性、坚持性。它们对学习的影响是显而易见的。对学习目的的正确性和重要性有清楚而深刻的认识,并能按照目的调整和控制学习活动,以达到既定目的,这需要具有意志自觉性品质;在学习过程中,已经发现问题之所在,能够坚决地采取措施改进学习的习惯或学习方法或及时补缺,这需要具有意志果断性品质;能够克服学习中的消极情绪和浮躁的不顾行动后果的冲动,学习纪律性强,情绪稳定,学习注意力集中,记忆力强,思维清晰,这需要具有意志自制性品质;在完成艰难的学习任务时能够坚持不懈地克服困难,尤其是当学习任务比较艰难和需要长期坚持时也能够取得学习的成功,这需要具有意志坚持性品质。