时间:2023-03-17 17:57:44
导语:在纳米材料论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~nm)。从此以后,不断有文献报道用微乳液合成各种纳米粒子。本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。
1微乳反应器原理
在微乳体系中,用来制备纳米粒子的一般是W/O型体系,该体系一般由有机溶剂、水溶液。活性剂、助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般有AOT[2一乙基己基]磺基琥珀酸钠]。AOS、SDS(十二烷基硫酸钠)、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。
W/O型微乳液中的水核中可以看作微型反应器(Microreactor)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令W=[H2O/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到W的影响。利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况(可见图1、2、3所示)。
(l)将2个分别增溶有反应物A、B的微乳液混合,此时由于胶团颗粒间的碰撞,发生了水核内物质的相互交换或物质传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的晶核或粒子之间的物质交换不能实现,所以水核内粒子尺寸得到了控制,例如由硝酸银和氯化钠反应制备氯化钠纳粒。
(2)一种反应物在增溶的水核内,另一种以水溶液形式(例如水含肼和硼氢化钠水溶液)与前者混合。水相内反应物穿过微乳液界面膜进入水核内与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。例如,铁,镍,锌纳米粒子的制备就是采用此种体系。
(3)一种反应物在增溶的水核内,另一种为气体(如O2、NH3,CO2),将气体通入液相中,充分混合使两者发生反应而制备纳米颗粒,例如,Matson等用超临界流体一反胶团方法在AOT一丙烷一H2O体系中制备用Al(OH)3胶体粒子时,采用快速注入干燥氨气方法得到球形均分散的超细Al(OH)3粒子,在实际应用当中,可根据反应特点选用相应的模式。
2微乳反应器的形成及结构
和普通乳状液相比,尽管在分散类型方面微乳液和普通乳状液有相似之处,即有O/W型和W/O型,其中W/O型可以作为纳米粒子制备的反应器。但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴粒度可控,实验装置简单且操作容易,所以微乳反应器作为一种新的超细颗粒的制备方法得到更多的研究和应用。
2.1微乳液的形成机理
Schulman和Prince等提出瞬时负界面张力形成机理。该机理认为:油/水界面张力在表面活性剂存在下将大大降低,一般为l~10mN/m,但这只能形成普通乳状液。要想形成微乳液必须加入助表面活性剂,由于产生混合吸附,油/水界面张力迅速降低达10-3~10-5mN/m,甚至瞬时负界面张力Y<0。但是负界面张力是不存在的,所以体系将自发扩张界面,表面活性剂和助表面活性剂吸附在油/水界面上,直至界面张力恢复为零或微小的正值,这种瞬时产生的负界面张力使体系形成了微乳液。若是发生微乳液滴的聚结,那么总的界面面积将会缩小,复又产生瞬时界面张力,从而对抗微乳液滴的聚结。对于多组分来讲,体系的Gibbs公式可表示为:
--dγ=∑Гidui=∑ГiRTdlnCi
(式中γ为油/水界面张力,Гi为i组分在界面的吸附量,ui为I组分的化学位,Ci为i组分在体相中的浓度)
上式表明,如果向体系中加入一种能吸附于界面的组分(Г>0),一般中等碳链的醇具有这一性质,那么体系中液滴的表面张力进一步下降,甚至出现负界面张力现象,从而得到稳定的微乳液。不过在实际应用中,对一些双链离子型表面活性剂如AOT和非离子表面活性剂则例外,它们在无需加入助表面活性剂的情况下也能形成稳定的微乳体系,这和它们的特殊结构有关。2.2微乳液的结构
RObbins,MitChell和Ninham从双亲物聚集体的分子的几何排列角度考虑,提出了界面膜中排列的几何排列理论模型,成功地解释了界面膜的优先弯曲和微乳液的结构问题。
目前,有关微乳体系结构和性质的研究方法获得了较大的发展,较早采用的有光散射、双折射、电导法、沉降法、离心沉降和粘度测量法等;较新的有小角中子散射和X射线散射、电子显微镜法。正电子湮灭、静态和动态荧光探针法、NMR、ESR(电子自旅共振)、超声吸附和电子双折射等。
3微乳反应器的应用——纳米颗粒材料的制备
3.1纳米催化材料的制备
利用W/O型微乳体系可以制备多相反应催化剂,Kishida。等报道了用该方法制备
Rh/SiO2和Rh/ZrO2载体催化剂的新方法。采用NP-5/环已烷/氯化铑微乳体系,非离子表面活性剂NP-5的浓度为0.5mol/L,氯化铑在溶液中浓度为0.37mol/L,水相体积分数为0.11。25℃时向体系中加入还原剂水含肼并加入稀氨水,然后加入正丁基醇锆的环乙烷溶液,强烈搅拌加热到40℃而生成淡黄色沉淀,离心分离和乙醇洗涤,80℃干燥并在500℃的灼烧3h,450℃下用氧气还原2h,催化剂命名为“ME”。通过性能检测,该催化剂活性远比采用浸渍法制得的高。
3.2无机化合物纳粒的制备
利用W/O型微乳体系也可以制备无机化合物,卤化银在照像底片乳胶中应用非常重要,尤其是纳米级卤化银粒子。用水一AOT一烷烃微乳体系合成了AgCl和AgBr纳米粒子,AOT浓度为0.15mol/L,第一个微乳体系中硝酸银为0.4mol/L,第二个微乳体系中NaCl或NaBr为0.4mol/L,混合两微乳液并搅拌,反应生成AgCl或AgBr纳米颗粒。
又以制备CaCO3为例,微乳体系中含Ca(OH)2,向体系中通入CO2气体,CO2溶入微乳液并扩散,胶束中发生反应生成CaCO3颗粒,产物粒径为80~100nm。
3.3聚合物纳粒的制备
利用W/O型微乳体系可以制备有机聚丙烯酸胺纳粒。在20mlAOTt——正己烷溶液中加入0.1mlN-N一亚甲基双丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入过硫酸铵作为引发剂,在氮气保护下聚合,所得产物单分散性较好。
3.4金属单质和合金的制备
利用W/O型微乳体系可以制备金属单质和合金,例如在AOT-H2O-n—heptane体系中,一种反相微胶束中含有0.lmol/LNiCl2,另一反相微胶束中含有0.2mol/LNaBH4,混合搅拌,产物经分离、干燥并在300℃惰性气体保护下结晶可得镍纳米颗粒。在某微乳体系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一体系中含有0.513mol/LNaBH4溶液,混合两微乳体系进行反应,产物经庚烷、丙酮洗涤,可以得到Fe-Ni合金微粒(r=30nm)。
3.5磁性氧化物颗粒的制备
利用W/O型微乳体系可以制备氧化物纳米粒子,例如在AOT-H2O-n-heptane体系中,一种乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一体系中含有NH4OH,混合两种微乳液充分反应,产物经离心,用庚烷、丙酮洗涤并干燥,可以得到Fe3O4纳粒(r=4nm)。
3.6高温超导体的制备
利用W/O型微乳体系可以合成超导体,例如在水一CTAB一正丁醇一辛烷微乳体系中,一个含有机钇、钡和铜的硝酸盐的水溶液,三者之比为1:2:3;另一个含有草酸铵溶液作为水相,混合两微乳液,产物经分离,洗涤,干燥并在820℃灼烧2h,可以得到Y-Ba-Cu—O超导体,该超导体的Tc为93K。另外在阴离子表面活性剂IgegalCO-430微乳体系中,混合Bi、Pb、Sr、Ca和Cu的盐及草酸盐溶液,最终可以制得Bi-Pb-Sr-Ca-Cu—O超导体,经DC磁化率测定,可知超导转化温度为Tc=112K,和其它方法制备的超导体相比,它们显示了更为优越的性能。
磁性纳米材料的生物学修饰是利用磁性纳米材料分离富集致病菌的前提,将生物亲和分子修饰到磁性纳米材料的表面,赋予其捕获目标菌的能力,间接地“磁化”细菌细胞(磁细菌),使磁细菌在外界磁场作用下能够从样品液中分离。另外,经修饰后的磁性纳米材料可以获得比单体生物分子更高的结合能力。例如,由于多个抗体分子可被修饰于磁性纳米粒子上,磁性纳米粒子经抗体修饰后,与目标菌的结合能力是单独抗体的8倍;同理,经甘露糖修饰后,与目标菌的结合能力比单体甘露糖强200倍。磁性纳米材料生物学修饰的方法有很多,大体分为直接修饰和间接修饰两种。直接修饰又分为物理吸附和共价偶联。物理吸附是指蛋白质等生物亲和分子和纳米材料间的疏水作用和静电作用;共价偶联是指先在纳米材料的表面修饰硫化物、胺或者羧基,通过这些基团与生物亲和分子形成共价键从而实现纳米材料生物学修饰。间接修饰则需要利用一对具有强亲和力的分子,比如生物素-亲和素。先用亲和素包被纳米材料,再将要修饰的生物亲和分子标记生物素,通过生物素和亲和素的结合间接达到修饰磁性纳米材料的目的。
2磁性纳米材料捕获致病菌的方式及其应用
磁性纳米材料通过生物学修饰,获得可以捕获食源性致病菌的能力,再利用外界磁场从而达到分离菌体目的。表2总结了近几年磁性纳米材料在分离不同食品基质中食源性致病菌的研究。磁性纳米材料表面使用的修饰物不同,捕获食源性致病菌的方式也不同。
2.1抗原-抗体
基于抗原抗体之间的特异性反应实现食源性致病菌捕获是最常用的方式,已被广泛应用于各种食源性致病菌的分离富集。食源性致病菌相应的抗体也是磁性纳米材料最常用的修饰物。将磁性纳米材料的表面包被相应抗体,利用抗体和细菌表面相应抗原间的特异性结合,将食源性致病菌和磁性纳米粒子连接,致病菌被“磁化”后,在外界磁场的作用下将目标菌从成份复杂的样品液中分离出来,便于后续检测。Varshney等通过生物素-链霉亲和素将抗大肠杆菌抗体包被到磁性纳米粒子的表面,用于捕获牛肉样本中大肠杆菌O157∶H7,捕获效率达94.5%。Yang等用相应抗体修饰氧化铁纳米粒子,结合实时定量聚合酶链式反应,检测牛奶样品中的单增李斯特菌,检测限达452CFU/mL。Ravindranath等分别制备了包被有抗大肠杆菌抗体和抗沙门氏菌抗体的功能化磁性纳米粒子,用于分离鸡尾酒和菠菜牛奶提取液中相应的食源性致病菌,结合红外光谱分析,检测限达104~105CFU/mL。Cheng等使用抗大肠杆菌O157∶H7抗体包被的磁性纳米粒子分离牛奶中的大肠杆菌O157∶H7,结合三磷酸腺苷生物发光分析,检测限达20CFU/mL。Wang等制备了两种特异性抗体共修饰的磁性氧化铁纳米粒子用于同时分离菠菜中的沙门氏菌和金黄色葡萄球菌,结合表面增强拉曼散射分析,检测限达103CFU/mL。
2.2黏附素(凝集素)-受体(糖类)
很多细菌会在其表面表达黏附素,它们能与宿主细胞表面相应受体结合,从而使细菌黏附在宿主细胞上。致病菌黏附宿主上皮细胞的机制与多种糖类有关。例如,大肠杆菌的表面可以表达产生多种黏附素,它们可以黏附宿主上皮细胞上的半乳糖、葡萄糖、果糖、岩藻糖、甘露糖和蔗糖等。利用黏附素与受体结合的性质,经凝集素或糖类修饰的磁性纳米粒子可特异性地结合相应的食源性致病菌。EI-Boubbou等用D-甘露糖修饰的磁性纳米粒子分离大肠杆菌,分离效率达88%以上。作者再结合X射线衍射、透射电镜、热重和红外光谱分析,在5min内即可完成检测,检测限达104个菌体/mL。Payne等用凝集素修饰的BioMag®粒子分离食品基质中的致病菌,结果显示,单增李斯特菌、金黄色葡萄球菌和沙门氏菌最低分离起始浓度分别为大于等于10CFU/10g(卡蒙贝尔奶酪)、1CFU/10g(炖牛排)和小于10CFU/10g(生牛肉)。WangYixian等制备了基于凝集素的生物传感器,用于分离检测食品样品中的大肠杆菌O157∶H7,检测限达3×103CFU/mL。
2.3抗生素(万古霉素)
万古霉素是一种糖肽类抗生素,它可以与许多种革兰氏阳性菌形成紧密的连接,其机制是通过细胞壁上的端肽D-Ala-D-Ala的氢键与万古霉素联接。一般认为,由于革兰氏阴性菌外膜的存在,万古霉素不能接触到D-Ala-D-Ala端肽,因而不能识别革兰氏阴性菌。据报道,经万古霉素修饰过的磁性纳米粒子同样可以捕获革兰氏阴性菌,并由透射电子显微镜的照片猜想万古霉素与革兰氏阴性菌连接的机制为细菌外膜上存在缺陷区域,使部分D-Ala-D-Ala端肽暴露给万古霉素。Kell等随后验证了这一猜想。Gu等在FePt磁性纳米粒子表面修饰万古霉素(FePt-Van),从大肠杆菌菌液中分离出菌体后再用透射电镜观察,检测限达15CFU/mL。Kell等制备了万古霉素修饰的磁性纳米粒子用于同时分离水样中革兰氏阳性菌及革兰氏阴性菌,结果显示,不同的致病菌间捕获效率相差很大(7%~88%)。Wan等使用万古霉素修饰的磁性纳米粒子分离磷酸盐缓冲液中添加的海洋型硫还原型细菌(如,脱硫肠状菌属),结合生物传感器,检测限达1.8×104CFU/mL。Choi等在磁性氧化铁纳米粒子表面修饰万古霉素,并用其对临床样本中的细菌进行分离,实验结果发现,革兰氏阳性菌的捕获效率为(84.84±1.70)%,而革兰氏阴性菌的捕获效率为(48.48±1.79)%。Chen等用表面修饰有庆大霉素的磁性纳米粒子用于分离磷酸盐缓冲液中添加的金黄色葡萄球菌,最低分离的细菌浓度为0.5×103CFU/mL。
2.4DNA互补序列
任何细菌都有其特异性的基因片段,该基因片段的互补寡核苷酸片段可以识别样品中的该种细菌。将寡核苷酸片段修饰后的磁性纳米材料用于选择性的分离目标DNA或RNA,再结合PCR鉴定,不仅省去样品的预处理,灵敏度也比普通PCR提高近10倍。Amagliani等用与李斯特菌素O基因序列(hlyA)互补的寡核苷酸链修饰磁性氧化铁纳米粒子分离牛奶样品中的单增李斯特菌的DNA,结合PCR分析,检测限达10CFU/mL。笔者在2010年制备了分别针对单增李斯特菌和沙门氏菌的寡核苷酸修饰的磁性氧化铁纳米粒子用于分离鱼中单增李斯特菌和沙门氏菌的DNA,结果发现,单增李斯特菌和沙门氏菌的捕获效率分别为(62.5±10.0)%和(70.6±7.0)%。结合多重PCR分析,检测限达1CFU/g。XuHongxia等研究了不同食源性致病菌寡核苷酸修饰的磁性纳米粒子在致病菌分离中的应用,实验结果发现,该磁性纳米粒子可以快速富集相应致病菌(如,大肠杆菌O157、沙门氏菌等)。笔者进一步研究了同时使用食源性致病菌多个基因的互补寡核苷酸修饰的磁性纳米粒子分离相应致病菌,结合传感器检测,检测限达6×102CFU/mL。
2.5螯合反应
脂多糖是革兰氏阴性菌外膜的重要组分,其中类脂A有大量的磷酸基团,用金属氧化物(氧化钛、氧化锆或氧化铝)包被磁性纳米粒子,通过金属氧化物与磷酸基团间的螯合反应,可与待测样品中革兰氏阴性菌形成复合物,在外界磁场的作用下可将食源性致病菌从成分复杂的待测液中非选择性分离出来,消除样品基质的干扰。Chen等在磁性氧化铁纳米粒子的表面包被二氧化钛,利用脂多糖和金属氧化物的螯合作用捕获尿样中的大肠杆菌、志贺氏菌和假单胞菌,磁分离富集菌体后经胰蛋白酶水解,再次磁分离除去磁性纳米粒子,最后用基质辅助激光解吸-电离质谱法鉴定蛋白序列,根据蛋白库中的信息确定细菌的种类。该方法是一种快速(耗时15min)、特异性强(可区分两株不同的大肠杆菌)、灵敏(检测限达104个细胞/mL)的分离检测方法。2010年,笔者使用表面修饰有二氧化钛的磁性氧化铁纳米粒子分离细菌混合液中的目标致病菌,随后分离到的致病菌在紫外灯照射下结合二氧化钛的灭菌作用,15min内可以抑制99.9%以上的目标菌的生长。
3结语
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
2.在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
3.在其它精细化工方面的应用
精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境科学领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。
4.在医药方面的应用
21世纪的健康科学,将以出入意料的速度向前发展,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向治疗,已提到研究日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之
附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。
微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。
纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。
【关键词】纳米材料教学方法教学改革
【中图分类号】TB383.1-4;G642【文献标识码】A【文章编号】2095-3089(2018)11-0241-01
前言
纳米材料与纳米技术是21世纪最令人瞩目的前沿科技研究热点之一,纳米科技的蓬勃发展对众多研究领域,乃至人类社会的生产生活产生了广泛而深远的影响,纳米材料的应用和产业化已经成为世界许多国家相继研究和开发的重点。《纳米材料》是高等院校一门重要的新设课程,具有前瞻性、创新性、专业性和实践性强的特点。《纳米材料》及其相关的课程也是许多高等学校材料学化学专业的本科生或研究生的专业基础课程,本课程的开展有助于让学生了解纳米材料与纳米科技的发展方向,提高学生的创新性思维能力,引导学生开展纳米科学前沿课题研究,培养潜在的科研人才,同时,对《纳米材料》的教学也提出了较高的要求,因此需要认真思考和研究。
1.教学内容改革与优化
目前的教材多是围绕着纳米材料的基本概念和基本特性、表征方法、制备技术、纳米材料在各个领域中的应用情况以及功能纳米材料等内容编写,而其中的内容很多都已过时,比如在碳纳米材料这一部分内容时,十前年的主要内容是针对富勒烯和碳纳米管的讲解,而今天,该部分的内容可更多的偏向于目前研究较为热门的层状石墨烯材料。此外,材料表征方面的内容在本课程中占有相当大的篇幅,直接讲解纳米材料的表征特性使学生不能深入的理解,教学内容上有必要加入适当课时讲解较常用的表征手段的原理和分析方法,如X-射线衍射,扫描电子显微镜,透射电子显微镜,红外,拉曼等的分析手段。
2.教学手段改革
纳米材料涉及的课程范围较宽,有些章节较为抽象,学生首次接触常会遇到知识过于抽象不便于理解的问题,因此传统的教学模式已不再适应当前培养高素质人才的需要,针对这样的问题,应利用多媒体数字化资源如动画来辅助教学,利用当前各种模拟软件如3DSMAX或PHOTOSHOP将抽象的纳米材料的制备及生长过程进行直观展示模拟,激发学生的学习兴趣。此外,先进的仪器设备是科学研究的重要基础,本学院拥有高分辨透射电子显微镜、热场发射扫描电子显微镜、X射线单晶衍射仪、电化学工作站等设备,需借助这些良好的教学科研基础条件,引导学生参与科研活动,培养学生科研素养,为今后继续深造和走向工作岗位打下基础。
3.教学模式改革
在教学实践中,采取“分组教学”模式,即学生以10-15人为一小组,在既定大课题方向内,由学生自主查阅文献资料,选定具体研究题目,设计实验方案,并与导师探讨方案的可行性。学生在教师的指导下独立完成一种纳米材料的合成制备,对性能测试的结果进行分析,并完整独立撰写实验报告。这种方式将加强学生从理论上学习和理解并能拓展到实际的应用中。这种综合性、多样化的教学模式不仅能加强学生对理论课程的理解的重视,并能极大的调动学生的积极性和创造性,锻炼学生的独立思考能力、动手能力、创新能力、分析解决问题的能力及团队精神。
4.考核方式的改革
纳米材料课程的专业性和前瞻性都很强,常规的考核方式达不到反应学生学习能力和掌握程度的效果,相反地,概念性的知识点较多,一味的要求學生通过记忆背诵的方式来达到考试要求,一方面增加了学生的学习负担,另一方面学生也难以深刻理解所学知识点。卷面考试虽有必要,此外应加入撰写论文的考核方式。该种方式能够督促大三学生对上学期所学的文献检索课程的掌握利用,还能在查阅文献完成论文的同时,丰富与纳米材料课程相关的前沿知识,增强了学生论文写作的思路和方法,对大四的毕业论文的规范写作提前得到了锻炼,为今后的科研工作打下基础。
结语
纳米材料涉及范围广,发展日新月异,通过开展教学与实践及科研相结合的教学模式,提高学生们的学习兴趣,培养学生的独立思考能力、创新能力及团队精神。在以后的教学实践中将进一步加强改革创新,为学生的全面发展和综合素质的提高不懈努力。
参考文献:
[1]白春礼.纳米科技及其发展前景[J].新材料产业,2001,4:8-11.
[2]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社,2010.
[3]朱世东,徐自强,白真权等.纳米材料国内外研究进展Ⅱ——纳米材料的应用与制备方法[J].热处理技术与装备,2010(31).
目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。
2在涂料方面的应用;
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。借助于传统的涂层技术,再给涂料中添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性从而获得传统涂层没有的功能,如;有超硬、耐磨,抗氧化、耐热、阻燃、耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。
在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,这样可以通过复合控制涂料的颜色,克服碳黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。
3在化工方面的应用;
化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。4其他生活方面的应用:
纳米技术正在悄悄地渗透到老百姓衣、食、住、行各个领域。化纤布料制成的衣服虽然艳丽,但因摩擦容易产生静电,因而在生产时加入少量金属纳米微粒,就可以摆脱烦人的静电现象。不久前,关于保温被、保温衣的电视宣传,提到应用了纳米技术。纳米材料可使衣物防静电、变色、贮光,具有很好的保暖效果。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长墙壁就会变的班驳陆离,纳米技术应用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性提高很多,以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外表材料中必须加入碳黑进行静电屏蔽。如今可以通过控制纳米微粒的种类,进而可控制涂料的颜色,使黑色家电变成彩色家电。
总之,在未来生活中,纳米技术将带给我们无限的舒心与时尚,使人类的生存的条件更加优越。
参考文献
[1]赵清荣:雷达与对抗[J],2001,(3):20-23。
[2]秦嵘等。宇航材料工艺[J],1997,(4):17-20。
[3]张立德,牟秀美,纳米材料学[M],沈阳;辽宁科学技术出版社1994。
[4]刘列,张明雪,胡连成,宇航材料工艺[J],1994,24。
论文关键词:纳米尺寸;性能
关键词: 纳米材料化学双语探索与实践
2001年8月,教育部印发了《关于加强高等学校本科教学工作提高教学质量的若干意见》,明确提出了关于加强“双语教学”的要求;2004年8月,教育部又颁布了《普通高等学校本科教学工作水平评估方案》,明确地将双语授课课程比例列入高校工作水平的考核指标。开展双语课教学,可以培养并激发学生对英语的学习兴趣和应用能力,改变学生学习外语而不能应用外语的弊端[1],是加快复合型国际化人才培养的重要举措。
鉴于此,我校在本科生教学中开展了多门专业课程的双语教学实践,“纳米材料化学”选修课是贯彻教育部相关文件精神的积极尝试。
1.教学前的准备
(1)双语教材的选择问题
纳米材料的研究是目前材料科学最活跃的学术领域之一,其研究成果日新月异。为了拓宽学生专业知识面和培养学生科研思维,教材内容应有足够的知识宽广性和学术新颖性,因此我们选择了Nanomaterials Chemistry:Recent Development and New DirectionsI[2](Wiley,2007)。这是一本全英文教材,它取材于近年来在各类国际知名期刊发表的科研论文,涵盖了纳米材料化学领域最新最前沿的研究成果。考虑到学生的专业英语基础较为薄弱,为了帮助他们克服畏惧情绪、树立学习英文教材的信心,根据英文原版教材的章节内容,我们推荐了一些中文参考书,如《纳米材料化学》(汪信,化学工业出版社,2006)、《表面活性剂与纳米技术》(李玲,化学工业出版社,2004)、《纳米材料的制备与应用技术》(李群,化学工业出版社,2008)和《纳米材料理化特性与应用》(倪星元,化学工业出版社,2006)等。
(2)教学内容的安排
鉴于“纳米材料化学”定位为选修课,课时量少,不可能在该领域各个分支上进行深入探讨,教学内容必须有所取舍、有所侧重。在教学过程中,我们重点介绍了该书前四章,内容包括纳米材料科学概述、各种类型的纳米材料的通用化学制备方法、纳米材料的物理化学特性和纳米材料的广泛应用领域等;而对该书的后续章节进行了适当的处理,将Peptide Nanomaterials和Dendrimers And Their Use As Nanoscale Sensors两章揉合到纳米材料制备、组装甚至表面改性中,将Surface Plasmon Resonances in Nanostructured Materials一章中重点内容穿纳米材料独特的光学特性一节中,而将Applications Of Nanostructured Hybrid Materials For Supercapacitors归并到了纳米材料的电子学应用领域一节中,剩下的章节专业性较强、难度较大,可以作为学有余力的学生的课外科技读物。
(3)备课指导思想
我们立足于英文原版教材,辅以中文参考书,按照中文教材的风格和我们惯用的思维方式对双语课教学内容进行了二次梳理和组织。“纳米材料化学”双语课的课程性质是材料类的专业选修课而不是英语辅导课,具有其本身的专业性和知识的系统性[3],我们不能仅仅考虑术语的英文表达和语法结构,而应着重考虑教学内容的组织、学科知识和研究方法的传授,以及学生专业知识体系的拓展。
总之,双语教学的目的就是培养学生善于利用英语作为获取纳米材料化学专业知识的工具。
2.课程的教学实施
(1)开课时间的选择
从专业知识的角度来讲,材料科学导论、有机化学、材料物理性能和材料测试技术等学科知识是研究纳米材料化学的基础,从而上述课程是纳米材料化学的先修课程。另外,为了保证教学效果,学生必须具备一定的英语词汇量和英文听说能力。我们选择在大四上学期开设这门选修课。此时学生经过前三年的专业基础课学习,基本构建起了专业知识体系,积累了足够的英语词汇,也达到了一定的英语综合水平,这时候开展双语教学容易收到良好的效果。
(2)教学手段的运用
纳米材料体系具有各异的形态和绚烂的色彩,而多媒体教学平台能以图片、视频甚至是音频来灵活直观地展示这个令人叹为观止的神秘世界。双语课多媒体课件制作的难点在于如何掌握好课件中英文语言的比例。实践发现,若采用全英文课件,学生因专业英语词汇基础较为薄弱,很难正确理解授课内容,容易产生畏惧心理。若始终采用中英文对照课件,课件将显得累赘臃肿,而且中英文的交替出现易使学生疲于在中英文句子中寻找对应词语的翻译,专业课演变成了翻译课,这样也就偏离了教学初衷。基于上述原因,在内容较为简单的教学初始阶段,我们采取中英文对照课件,以便学生尽快掌握基本的专业词汇。随着教学的进一步深入,我们逐步减少课件中的中文语言比例,仅在出现新的专业术语时附加中文注释。不过,多媒体教学不能完全取代传统的板书,比如纳米材料化学中涉及很多有机化学专业术语,由于幻灯片容量的限制,在多媒体课件上只能以甲乙丙丁、某醇某酸等命名法来展示,而通过板书可详细写出该物质的分子结构式,能更直观地向学生展示了该物质的组成方式,有益于学生理解反应过程、了解纳米材料制备原理。在课堂上现场回答学生提出的问题时,或在讲解分析学生的作业情况时,我们也需要采用板书的教学方式,以便更好地跟学生沟通。在教学过程中将板书与多媒体教学相结合,二者相得益彰。
(3)课件内容的组织
考虑到授课对象是大四学生,有些学生毕业后要参加工作,而有些学生则要继续深造,那么授课内容就应二者兼顾。在授课过程中,一方面我们介绍纳米材料化学在国内外产业中的应用,将学生的视野从传统的陶瓷、水泥、玻璃产业拓展到新兴的纳米材料产业,让学生对即将从事的工作领域有更全面的认识,另一方面我们也介绍纳米材料化学领域的发展趋势和新兴方向,以及国内外知名研究团队及其特色,培养学生在海量的科技文献中迅速捕捉到前沿科研动态的能力,为他们在报考研究生时选择科研方向提供一些有价值的参考信息。
(4)教学语言的使用
如果采用全英语讲授,学生会因专业英语能力较薄弱而一味关注英文表达,从而忽略课程本身要传达的专业知识,使得教学变成单纯的专业英语课程;但如果仅在多媒体课件上使用英语,而全采用中文教学,则基本没有英语氛围,难以培养学生用英文思考专业知识的能力,失去双语课教学的意义。可见,我们应该在课堂上把握好使用中英文的尺度。在课程刚开始,学生对专业术语还很陌生时,我们应以中文授课为主,有意识地向学生灌输专业词汇的构词方法,比如纳米材料中涉及的一些化学专业词汇,甲、乙、丙、丁等数字的词前缀表达方法,醇、醛、酮、胺、烷烃等词后缀的表达方式。由于专业词汇的词根重复频率较高,通过构词法的学习,学生能在较短时间内掌握基本的专业词汇,具备初步的专业文献的英文阅读理解能力。到了教学中后期,学生已经积累了一定量的专业英语词汇后,我们逐渐加大英文授课比例,用英语表述专业知识、解析专业词汇,只在重点和难点的教学时辅以中文解释,授课时应控制语速,做到有张有弛,给学生留有思考的时间[4]。
高校双语课的教学方法还处在探索当中,为了提高纳米材料化学双语课的教学质量,我们讲求师生互动,多与学生沟通,了解学生的学习需求和对教学的评价,根据反馈及时调整教学方法和教学内容。讲台不应是教师一个人的秀场,教学需要学生的积极参与,一些教学环节可通过以学生为主的研讨方式进行,促使学生积极、主动地利用搜索引擎和科技论文数据库查阅英文文献,引导学生掌握纳米材料化学研究和应用的新动态,为他们进入纳米领域工作和深造打下良好的基础。
纳米材料化学双语课更深层次的目的是营造双语气氛,提高学生的专业外语水平,增强学生的跨文化理解力,促使学生用外语思考并解决纳米科学领域问题的能力,增强学生的科研素养,为纳米材料化学研究培养新生力量和后备军。
参考文献:
[1]傅晶,黎俊波.大学有机化学实验双语教学的探索与实践[J].化学工程与装备,2007,7:232-233.
[2]Rao,C.N.R.Müler,A.and Cheetham,A.K.Nanomaterials Chemistry:Recent Development and New Directions[M].Berlin:Wiley-VCH Verlag GmbH & Co.KGaA,2007.
[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。
一、纳米的发展历史
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。
二、纳米技术在防腐中的应用
纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。
纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。
纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。
我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。
三、纳米材料在涂料中应用展前景预测 转贴于
据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。
由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。
在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。
纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。
纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻性功能涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。
四、结语
由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。
参考文献:
[1]桥本和仁等[J]. 现代化工. 1996(8):25~28.
【关键词】纳米SiO2;耐久性;强度
0.引言
混凝土是现代建筑结构的主要材料,它具有承重大,易成型,原材料广泛、等优点。但混凝土的自重大、抗拉强度低、脆性大等缺陷限制了其在一些方面的应用。纳米材料是指颗粒尺寸在纳米量级(1nm~100nm) 的超细材料,其尺寸大于原子簇而小于通常材料的微粉, 处在原子簇和宏观物体交界的过度区域。纳米材料由于其尺寸小且具有特殊的结构特征,从而具有以下效应:尺寸效应、量子隧道效应、表面效应和界面效应。纳米矿粉主要包括纳米SiO2,纳米CaCO3和纳米硅粉。普通硅酸盐水泥颗粒粒径,水泥内分布着10-100nm的凝胶孔,在水泥中掺入纳米矿粉可以有效填充这些空隙,对于提高混凝土的抗渗性和韧性起了很大作用。
1.纳米混凝土力学性能的研究
研究表明SiO2(NS)的火山灰活性远高于硅粉的火山灰活性,掺入NS的浆体存在流动性变小和凝结时间缩短的现象,同时NS的掺入能显著提高混凝土的早期强度。NS掺入到硅酸盐水泥中,其火山灰反应吸收了大量的Ca(OH)2进而促进了水泥水化,提高了水化开始时的放热速率,并改善了水泥浆体的微观结构,使水泥更加均匀密实[1]。纳米CaCO3掺入到水泥材料中后起到了物理填充效应、水化效应和晶核效应,降低了水泥石内表面积,加快熟料早期水化速度,增加水泥石密实度,降低孔隙率,进而提高水泥石的抗压强度。
黄政宇等[2]将未掺纳米材料混凝土、掺纳米SiO2混凝土和掺纳米CaCO3混凝土三组试件做了对比试验,实验表明掺入纳米SiO2的混凝土的抗压强度提高4%,掺入纳米CaCO3的混凝土养护28d抗压强度比未掺假NC的混凝土提高了16.7%。同时他们得出掺加NS和NC的最佳量分别为0.5%和3%。试验还得出掺入纳米材料的混凝土流动性会降低。
郭保林、王宝民[3]对纳米混凝土的性能进行了系统的试验研究,他们认为掺入NS能提高混凝土早期强度,尤以7天时最显著,此时掺入5%的NS比掺入3%的效果明显,后期的强度也与NS掺入量有关,掺入5%的NS在60天时的强度小于基准混凝土强度,并得到掺加3%的NS对混凝土后期强度增加明显。
唐小萍、魏秀瑛等[4]也做了类似的研究,试验所用纳米材料是SiO2和Al2O3,以三种不同的纳米掺加量作为对比,结果表明掺入该纳米混合材料后可提高混凝土3d、7d、28d抗压强度20%、15%、10%。
2.纳米混凝土抗渗性能的研究
纳米SiO2可以提高混凝土抗裂、抗渗、抗冻等性能。研究表明: 纳米SiO2可以改善混凝土的微观结构和综合性能,能够封堵混凝土内部孔隙,增强其抗裂性,提高混凝土抗渗、抗冻、抗化学侵蚀、抗冲磨等性能,从而提高水工混凝土的耐久性。
黄功学、谢晓鹏[5]将混凝土试件养护至28d,对试件一次加压24h,用压力机劈开试件,测量渗水高度。混凝土抗渗性能随着纳米SiO2掺量的增加而提高;纳米SiO2掺量为1%、3%、5%时混凝土的渗水高度比普通混凝土分别降低了19%、44%、61%。他们认为纳米SiO2使混凝土中渗水通道堵塞或减少,混凝土的密实程度得到提高,降低了溶出蚀的危害。
杜应吉等[6]也做了相关实验,他们将纳米基混凝性剂掺入混凝土中,在电子显微镜下观察发现混凝土内的大孔和微孔数量均大幅下降,使混凝土的的密实度提高,从而提高混凝土(砂浆)的抗渗性。数据显示掺入纳米基混凝性剂的试件比相同配比的普通混凝土试件的抗渗性提高了30%。
李晗等[7]试验方法是将标准试件放入氯化Nacl中浸泡24h,取出试件烘干,循环10次。然后钻取不同深度的混凝土试样测定氯离子含量。2.5mm 深度NS 掺量0.5%,1.0%和2.0%氯离子含量分别为不掺NS 时的92.7%, 92.3%和91.9%,兰成明等[9]也做了抗氯离子的渗透试验,得到了基本相同的数据。
3.纳米混凝土抗冻性能的研究
在严寒地区冻融循环是影响混凝土耐久性的因素之一,在实际应用中最关心的是混凝土的力学性能,因为强度损失直接关系到建筑物的使用性能及安全。因此研究混凝土的抗冻性能有着非常重要的现实意义。
杜应吉等[8]对于纳米混凝土的抗冻性做了以下实验:采用M7.5的试件,用慢冻法进行实验,冻融15次后由电子显微镜图片对比发现掺入纳米材料后极大改善了混凝土内部结构,封堵了孔径小于150nm的微孔。使得混凝土的密实度大大增强,从而避免了由于孔隙水结冰膨胀而产生裂缝导致的混凝土结构破坏。
仲晓琳、李顺凯[9]研究纳米材料对混凝土的抗冻性能试验采用空白样与掺量0.75%纳米材料的试样对比,在-10℃条件下做25次冻融循环。测试结果显示掺0.75%纳米材料的混凝土,经25次冻融循环后混凝土的强度损失率为3.2%,而空白样强度损失率为8.6%。可见,掺入0.75%的纳米材料可以明显地改善混凝土的抗冻性能。
黄功学、谢晓鹏[5]也针对纳米混凝土抗冻性做了实验研究。数据结果显示,混凝土动弹性模量损失随着纳米SiO2掺量的增加而减小; 当冻融循环150 次时,纳米SiO2掺量为0、1%、3%、5% 时混凝土的动弹性模量损失为27.3%、14.9%、7.0%、3.3%。
4.纳米混凝土研究趋势
上述已表明, 纳米矿粉(纳米SiO2、纳米CaCO3等)的掺入对混凝土的强度及耐久性等性能有明显的改善作用,但目前纳米矿粉的价格很高, 这就限制了它们在混凝土中的实际应用,需要进一步在纳米混凝土的制备技术方面研究探索以降低其成本。再有就是纳米材料在水泥中难以达到均匀分散,掺入后易结团,在一定程度上限制了混凝土强度的提高,因此,如何改善纳米粒子的分散性,使其在混凝土中均匀的分散以更大的提高混凝土的强度是需要更进一步研究的问题。
【参考文献】
[1]张梅.纳米材料的研究现状与发展[J].导弹与航天运载技术,2000(3).
[2]黄政宇,曹方良.纳米材料对超高性能混凝土性能的影响[J].材料导报,2012(9). \
3]郭保林,王宝民.掺纳米二氧化硅高性能混凝土性能试验研究[D].大连理工大学硕士研究生学位论文,2009.
[4]唐小萍,魏秀瑛等.纳米Si02提高不同龄期混凝土力学性能试验[J].科技导报,2011,29(21)
[5]黄功学,谢晓鹏.纳米Si02对水工混凝土耐久性影响试验研究[J].人民黄河,2011(7).
[6]杜应吉,韩苏建,姚汝方,李元婷.应用纳米微粉提高混凝土抗渗抗冻性能的试验研究[J].功能材料,2004(7).
[7]李晗,高丹盈,赵军.纤维纳米混凝土力学性能和抗氯离子渗透性能的研究[J].华北水利水电学院学报,2012(12).
“弃暗投明”的新技术
宋延林笑着说,走上“纳米材料绿色制版技术”的研发之路,始自一次“意外”。
那是1995年,正在攻读博士学位的宋延林,琢磨着自己关于信息存储材料的研究工作。他不想重复别人的材料体系,于是有了一个大胆的想法:既然当时国际上主流的信息存储材料是无机材料,那么自己就挑战一下有机材料。
这在当时并不被人看好,但他与合作伙伴最终成功地将信息存储点的尺寸从 十几个纳米缩小至1.3个纳米。相关论文很快被国际权威学术期刊接受发表,研究成果亦被两院院士评选为1997年“中国十大科技进展”之一。“这给了我一个很大的启发,不是国外没有做过的事情就不能做。以前中国人总觉得引领科技进步的一定是西方国家,我们只能一味追赶,似乎最好的成绩也只能是缩小与国际先进水平的差距。但事实不应该是这样。”
从那天开始,宋延林就打定主意,要做与别人不一样的东西。多年以后,灵感聚焦于“印刷技术”。
从成像原理来看,印刷技术的发展可以划分为两大阶段:首先是“物理成像阶段”, 基于物理凹凸结构成像,譬如雕版印刷、木活字印刷、铅字印刷。接下来是“化学成像阶段”,基于化学感光成像,主要有两种技术,一种是激光照排技术,上世纪80年代由王选院士主持研发的汉字激光照排技术,目前仍是中国印刷业的主流技术;另一种是国际上流行的计算机直接制版(CTP)技术。
但无论是激光照排技术还是CTP技术,都是感光成像的过程。激光照排的过程与胶卷曝光类似:先将计算机处理的信息通过激光扫描到感光胶片上,再通过曝光、显影、定影得到一张底片,底片在涂有感光层的PS版上重复曝光、显影、冲洗的过程,得到最终印版。
“事实上,高质量的信息传输,应尽可能减少信息转换的环节。有没有一种办法,可以直接打印出印版,省略化学显影过程呢?”
宋延林首先考虑的是确定印版的材料要求。对于印刷而言,印版的图文区需要“沾油墨”,空白区则“不沾油墨”。高质量的印刷,要求两个区域必须形成足够大的反差,否则很容易“糊版”。宋延林根据信息存储中提高信噪比的要求和纳米材料控制表面性质的研究基础,在印版表面形成特殊的纳米结构,确保图文区和空白区有足够的反差,且界面清晰。
不过事情远没有大功告成,“耐印力”成为紧跟着必须面对的挑战。“如果要让这项技术走向市场,必须确保它可以满足常规生产要求。目前主流印刷版材的耐印力,比如印刷普通报纸,需要在10万份以上。最终我们通过纳米材料的复合增强,使新版材的耐印力达到同一水准。”
所谓“复合增强”,打个通俗的比方,和增强柏油马路耐磨性类似:只铺沥青的路面极易损坏,在沥青中掺入石子,就大大提高了耐磨性。“虽然听起来简单,但实际操作时,还要保证极其细微的纳米颗粒不团聚,特别是在南方、北方零上40℃至零下40℃的温差下,不沉淀,不堵头,打印出的墨滴大小要与版材表面张力、纳米孔的孔径形成定量可控的关系,实现所有这些,背后是一系列复杂细致的研究工作。”
除此之外,由于纳米材料绿色制版技术在国际上并无先例可循,因此亦没有成熟的配套设备。为此,技术团队还要开发针对报业、商业和票据类的设备及相应软件。
当一切都从理论化为现实,一种全新的印刷制版技术横空出世。宋延林一口气描述它的操作原理:“用计算机处理好全部图文信息,直接将印版打印出来,图文区是亲油的,空白区是亲水的,两者反差足够大,足够耐磨。”
新技术的优势显而易见。首先,传统的化学成像过程,印版与胶片的生产、运输和使用过程都要严格避光,非常麻烦。而纳米材料制版技术,则是基于“非感光”的全新原理,宋延林打趣说,有领导说这是个“弃暗投明”的新技术。
其次,依赖化学成像形成的印刷产业链,有两大无法根除的污染。
一是制版的污染。感光成像的化学冲洗过程,是将感光材料全面覆盖在版基上,然后根据实际图文情况,将“图文区”保留,“空白区”侵蚀掉。如此一来,80%以上的感光材料都被浪费,同时造成每年百万吨量级的废液排放。
二是版基的污染。目前主流印刷制版技术的铝版基制备,实际是一个电解氧化的过程,电解液里的浓酸,会腐蚀消耗铝材,再加之曝光过程中的损耗,大量的铝材变成污染物被浪费,并造成严重的金属离子污染。而废酸用石灰中和后,又会形成大量废渣。
“纳米材料印刷制版技术是用计算机直接打印制版,没有化学腐蚀过程,既不会形成废液、废渣污染,也不会损失铝材。被消耗的仅仅是打印的墨水,成本优势明显,有可观的利润空间,且可以通过鼠标简便操作。”宋延林说,这是令他自豪的一点。
他永远都记得,有一期《时代周刊》的封面触目惊心:一只巨大的iphone手机,连接着一座冒着黑烟的工厂,用醒目的字体探讨这只“神器”为什么会选择“made in china”(中国制造),结论有二:一靠“廉价人力”,二靠“超级污染”。“中国留给世界的印象,一定要改一改了!事实证明,我们可以拿出领先、环保的绿色解决方案。”
再见,试验室!