时间:2023-03-17 17:58:39
导语:在电气化铁道论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词 电气化铁路;牵引变压器;接线方式
中图分类号U224 文献标识码A 文章编号1674-6708(2010)26-0112-02
0 引言
近几十年来,随着国民经济的突飞猛进和工业基础设施的完善,我国的电气化铁路发展迅猛,铁路线总里程不断加长,列车载重量不断增加,铁路牵引变压器需求数量随之越来越多,需求容量也越来越大。我们知道,电气铁路的27.5kV(BT制)或55kV(AT制)的单相牵引电网是通过牵引变电所从常规三相电网获取电能的,牵引变电所的主要作用便是将110kV或220kV三相交流电变换成27.5kV或55kV单相交流电,并供电给电牵引网和电力机车。根据供电方式和具体要求的不同,牵引变压所采用的牵引变压器种类也不同,主要有:单相牵引变压器,V/V接线变压器,普通三个绕组对称的三相变压器,三相―两相平衡牵引变压器。本文拟从接线原理、负序和零序影响、容量利用率等方面对两种特殊接线形式的牵引变压器加以总结和评述,以期对电气化铁路牵引供电系统的研究有所帮助。
1 Le Blanc结线变压器
1.1 接线原理分析
Le Blanc变压器绕组结构如图所示,其初级绕组与普通三相变压器绕组相同,基于电气化铁道的不同要求,它们可以为型或Y型,本文仅分析 型,以防由于不平衡负荷产生的谐波(主要是三次谐波)进入系统。在二次侧有5个将三相电源转化为两相电源的非对称绕组,其接线如图1所示。
1.2 负序和零序影响
二次侧各绕组的变比如下
当k=1时,由接线原理图和绕组匝数关系可得电流关系式:
根据对称分量法,电压平衡关系得一次侧各相的正负零序电流:
当Iα=Iβ时,原方三相线电流完全对称,无负序电流存在,故该接线也具有将两相对称负荷转换为原方三相对称负荷的能力[1]。
1.3 优缺点分析
1)其料利用率稍高,最关键的是其制造工艺要求上容易实现;
2)与斯科特变压器相比,中性点也是不接地,低压侧两相输出依然没有电的联系;
3)在具有相等容量的情况下,和平衡变压器相比,体积小、价格低[2]。
2 阻抗匹配牵引变压器
2.1 接线原理分析
阻抗匹配平衡变压器的接线如图2所示。高压侧采用星型接线,每相绕组匝数为W1 ;低压侧采用三角形接线,每相绕组匝数为W2 ,并且还在ab绕组的两端各接一个外延绕组,其匝数为W= 0.336 W2,这样可使两供电臂的电压Uα和Uβ形成90°的相位差。
副边绕组三角形结线结构即在非接地相增设两个外移绕组 。内三角形接线的一角c与轨道,接地网连接。 两端分别接到牵引侧两相母线上。由两相牵引母线分别向两侧对应的供电臂牵引网供电。
2.2 负序和零序电流
根据阻抗匹配平衡变压器的结构,并且变比k=W1/W2=1可得一二次侧电流关系:
由上式知,变压器高压侧没有零序电流,并且当低压侧电流和负荷阻抗角越接近时,高压侧电流不对称度就会越小,当低压侧两供电臂上的负荷阻抗完全相等时,高压侧三相电流完全对称。在同样的牵引负荷作用下,新型的阻抗匹配平衡变压器注人电网的负序电流比普通的Y/-11接线的变压器要小[3]。
2.3 优缺点分析
1)显著的减少电力牵引负荷注入电网的负序电流[4-5];
2)平衡绕组与a(或b,c)绕组的匝数比和阻抗匹配系数两个方面,必须予以考虑.当阻抗匹配系数相匹配时,无论副边负荷电流大小是否相等,原边三相电流平衡,即无零序电流。当副边负荷电流对称时,原边三相电流对称,没有负序电流对电力系统的影响,原边三相制的视在功率完全转化为副边二相制的视在功率,变压器容量可全部利用;
3)原边仍为YN结线,有中性点引出,降低了对变压器绝缘的要求,减少了投资[6],与高压中性点接地电力系统匹配方便。副边仍有结线绕组,三次谐波电流可以流通,使主磁通和电势波形有较好的正旋度;
4)次边两相不对称负荷时,原边三相电流依然具有较好的对称性[6]。对接触网的供电可实现两边供电;
5)设计计算及制造工艺复杂,造价较高。无论从设计上还是制造工艺上来讲,要得到预先确定的某一阻抗匹配系数都是相当困难的,因此在设计上和制造工艺上的难度是不言而喻的;
6)分相绝缘器两端承受的电压为55kV ,绝缘要求高。
3 结论
在对电气化铁路供用电的研究领域里,电力机车作为大功率单相负荷,其运行对三相电网造成的诸多不良影响,一直都是电力方面的研究人员努力解决的问题,而作为电网和牵引网的交叉点的牵引变压器,便是一个不容忽视的研究课题。本文综述了国内单相交流供电环境下两种特殊接线形式的牵引变压器接线、电气原理、及其优缺点。这些研究丰富了电铁研究领域的理论内容,不仅对研究电铁对三相电网的稳定性影响有重要意义,也可为其他大功率单相交流负荷的具体工程的设计和规划提供依据,具有一定的理论意义和工程价值。
参考文献
[1]欧阳帆.基于平衡变压器三相-单相接线供电方式研究[D]. 湖南大学博士学位论文,2008.
[2]丁明,沈军.列波兰变压器功率差动保护的探究[J].合肥 工业大学学报:自然科学版,2000,23(5):636-641.
[3]周勇,王绪雄,刘中元.阻抗匹配平衡变压器的负序电流 [J].郑州大学学报:工学版,2002,23(4):43-45.
[4]林海雪.电力系统的三相不平衡[M].北京:中国电力出版 社,1998.
[5]孙树勤,林海雪.干扰性负荷的供电[M].北京:中国电力 出版社,1996.
[6]关海川.三相-两相牵引变压器保护原理.西南交大研究生 学位论文:21.
关键词:接触网;受电弓;系统响应;接触压力;拉出值;硬点;接触线高度;激光测距
中图分类号:U226 文献标识码:A
在电力机车的运行过程中,受电弓在接触悬挂下高速滑动运行,从动力学角度,表现出弓网接触压力的作用和受电弓滑板产生横向振动的动态响应,如图1表示。
图1 系统信号分析框图
目前国内外广泛采用弓网接触压力直接测试方法。但在高速运行时,测量信号容易受到弓网接触振动造成的电磁火花的干扰;附加的压力传感器,增加了滑板重量,改变了滑板的外形,使受电弓的稳定性和安全性受到影响。
本论文提出的测试方法(图2),是在车顶并排对称安装多个激光测距传感器,通过测试受电弓滑板底部横向振动位移,从而,计算弓网接触压力、拉出值、弓网冲击(硬点)和接触线高度等动态参数。
图2 受电弓滑板响应测试模型
1 弓网接触响应测试原理
滑板在弓网接触运行中的振动,可近似认为是两端固支的滑板弹性梁的横向弯曲振动、两端弹性支撑的滑板刚梁上下传动和平面转动的复合运动。滑板弯曲振动模态则可以用欧拉-伯努利梁求解。图2中表示作用在滑板梁的第个节点的弓网接触激振力,其作用的不同位置示意接触线拉出值的变化。表示放置于车顶平面对准受电弓滑板底部第个高速激光传感器的位移测量值,其动态响应关系用传递函数可表示成如下矩阵形式:
(1)
(1)式中可通过单位冲击响应的数字计算得到,于是,根据卷积原理,弓网接触压力可表示如下:
(2)
由各激光传感器测试的离散位移信号,可实时得到弓网冲击加速度,导线高度和拉出值,表示如下:
(3)
(4)
(5)
上式中为车顶传感器的基准高度,为激光传感器的个数,为激光传感器的分布序号,表示各激光传感器几何位置对称加权系数。
2 滑板梁的动力学分析
将图2的模型分解为一个两端固定支撑的受电弓弹性滑板梁和一个两端等刚度弹性支撑的受电弓刚性滑板梁。先分别求出各自的动态响应,然后在静平衡位置的轴上的同一点对横向响应位移进行叠加。
2.1 受电弓滑板刚梁在平面内的振动
设支撑弹簧刚度为,滑板刚梁长度为、线密度为、质量为、质心为,滑板刚梁绕质心的转动惯量为,取质心的横向位移及滑板刚体绕质心的角位移作为广义坐标(),对滑板进行受力分析,建立受迫振动微分方程如下:
(6)
(7)
令,由此求得刚梁横向振动的固有频率和刚梁绕质心转动的固有频率为:
(8)
(9)
采用Duhamel积分法求解(6)式和(7)式,由图3知当弓网接触力在处作用时,滑板刚体处由横向振动和绕质心转动产生的复合横向振动位移可表示如下:
(10)
2.2 受电弓滑板弹性梁弯曲振动振型函数
以两端固定支撑的滑板弹性梁在横截面对称平面内的横向位移作为广义坐标,并设梁的线密度为,抗弯刚度为EI,受力分析如图4所示。根据达朗贝尔原理和力矩平衡原理可得到滑板梁横向振动的四阶齐次偏微分方程:
(11)
对(11)式用分离变量法求解并应用克雷诺夫函数可得滑板梁固有频率的计算公式和横向弯曲振动振型函数:
(12)
(13)
为计算方便,振动滑板梁的计算参数取值如表1所示。
由此求得1阶模态的固有频率为94.5Hz,2阶模态的固有频率为258Hz,3阶模态的固有频率为505Hz,4阶模态的固有频率为829Hz。
(13)式中可以是任意常数。只要将各阶固有频率对应的的值代入该式,即可求得滑板弹性梁横向弯曲振动的各阶相应的主振型。
2.3 受电弓滑板弹性梁动力冲击响应 (见图5)
在滑板梁的处,假设有一弓网接触压力作用,自由振动运动方程可得到:
(14)
滑板均匀弹性梁的振型函数为式(13),将主振型正则化,利用其正交性特点,可得:
(15)
设各阶固有频率为,主振型为,1,2,3,….则弹性梁动力响应可用模态叠加(坐标变换)表示为:
(16)
利用主振型正交性质,由杜哈美(Duhamel)积分法求解得:
(17)
将式(17)代入式(16),可得滑板弹性梁原广义坐标的响应:
(18)
3 用数字计算方法求响应矩阵和传递函数矩阵
为了求式(1)中的传递函数矩阵[],必须先求下式(19)中的响应矩阵[]。
(19)
传递函数矩阵[]和响应矩阵[]的关系为:
(20)
基于系统响应分析数字计算步骤如下:
(1)如图2所示,先假设在滑板上从左到右第一个确定的输入节点上作用一个确定的弓网冲击接触力,通过式(10)和式(18),分别计算各激光传感器对应位置的位移响应值、、…、。通过下式:
(21)
即可计算出。
(2)其它矩阵元素的计算方法同上,即通过下式可计算得到。
(22)
(3)由式(20)计算[]。
(4)由式(1)和式(2)计算。
(5)由式(3)、式(4)、式(5)分别计算接触网几何参数和动力学参数。
4 响应测试系统仿真
对图2所示的响应测试模型进行仿真,假设对称配置5个激光测距传感器,测试受电弓滑板底部-0.4m,-0.2m,0m,0.2m,0.4m 等5个点的位移,如图6所示,取2.5,取1720Nm2,取0.8m,取2500 N/m 。
假设依次在受电弓滑板上-0.4m,-0.2m,0m,0.2m,0.4m的地方垂直向下施加110N的弓网接触压力,通过式(10)和式(18),分别计算各激光传感器对应位置的位移响应值、、…、。通过式(21)计算,可得到响应关系矩阵式(23)。
由上式D矩阵求逆,可得到传递函数矩阵如式(24)。
如果还是用150N的弓网接触压力,在-0.4m和-0.2m,的地方垂直向下施加,并由此得到,再将代入式(2),反过来求得接触力为150N;如果还是用110N的弓网接触压力,在-0.25m的地方垂直向下施加,并由此得到,再将代入式(2),反过来求得接触力为98.77N,误差为10%,该误差主要由激光传感器的配置位置造成。
如果用150N的弓网接触压力在受电弓滑板上-0.4m 处垂直向下施加,如图7(a)所示,传感器各点位移响应如图6(a)所示;在-0.2m、0m、0.2m、0.4m处施加,力的作用图(图7(b)-(e))与位移响应图(图6(b)-(e))一一对应。
由此可见,采用传递函数计算方法的仿真与实际情况基本相符。
结语
基于系统响应原理测试高速铁路接触网动态参数的方法,其重要意义在于将测试传感器完全从受电弓滑板上撤离下来,这是高速铁路接触网车载动态测试追求的目标。如果采用图象处理和激光雷达等非接触式检测方式,由于其扫描周期和处理时间的限制,使得该方法从原理上无法实现对弓网高频动态特性的测试。在实际应用中,作者认为必须在实验室直接测试数据,然后对数据进行回归分析,校正核实计算模型。
参考文献
[1]于万聚.高速电气化铁路接触网[M].西南交通大学出版社,2003
[2]Gukow,Kiessling Puschmann,Schmider,Schmidt.Fahrleitungen elektrtrischer
Banhnen.B.G.Teubner Stuttgart,1997
[3]张卫华.准高速铁路接触网动态性能的研究[D].西南交通大学学报,1997(2)
[4]藤井保和.高速铁路接触网的受流理论[J].铁道与电气技术,1991.6
[5]夏永源,张阿舟.机械振动问题的计算解法[M].北京:国防工业出版社,1993
【关键词】牵引网;AT;保护方案配置
1.引言
客运专线大多采用AT供电方式,牵引变压器的一次侧采用220kV,二次侧2×27.5kV(AT)电压,牵引变压器的接线方式为单相接线,接触网的额定电压25kV,短时(5min)最高允许电压29kV,最低工作电压20kV,非正常情况下为19kV;牵引变电所设有两台互为备用的(2×27.5kV)的单相牵引变压器;27.5kV侧的设备采用户内布置方式,母线采用电动隔离开关分段;馈线采用100%备用方式。
由于客运专线列车运行速度快、效率高、牵引负荷大、供电臂中负荷突变率高,因此为了保证高速客运专线牵引供电系统高效、可靠、安全地运行,牵引网需要配置新型保护装置。
2.馈线保护的配置
依据AT供电方式牵引供电系统的牵引网特性,AT所和分区所分别都并联于其中,为了实现继电保护的可靠性、灵敏性、选择性、速动性(简称四性)的要求,馈线保护配置如下:低电压启动过电流保护、I段阻抗保护和自动重合闸保护。
所采用的保护配置原理:
(1)低电压启动过电流保护。用于切除过电流故障,对于不对称的短路故障,由于需要取用故障电流,因此,过电流元件应装设于电源侧,电压元件可由牵引变压器的低压侧取得。如果同时满足电流大于整定值、时限大于动作时限时,继电器就会动作。
(2)I段阻抗保护。也叫距离保护。距离保护是反应故障点至保护安装点之间距离(阻抗),并根据距离远近来确定动作时间的一种保护装置。通过阻抗继电器来完成施加于继电器上的电压Uk和电流Ik的比值测量,根据比值大小来判断故障点的远近,并根据故障点的远近来确定动作时间。通常把这一比值叫着阻抗继电器的测量阻抗,可以表示为Zk=Uk/Ik,其中:Zk为测量阻抗,Uk为测量电压,Ik为测量电流。当短路点至保护安装处近时,测量阻抗小,动作时间短;当短路点距保护安装处远时,测量阻抗大,保护时间长,从而保证了有选择性的切除故障。
I段阻抗保护为瞬时动作,为了保证选择性,保护区不能超出供电线路的长度,也就是只有测量阻抗小于该段线路阻抗时才动作。动作的可靠系数为0.8~0.85。
为实现接触网任何位置发生短路故障时,变电所的出口断路器都能瞬时动作,即实现I段阻抗保护,则需将整定阻抗设为供电线路全长的1.5倍整定。
(3)自动重合闸保护。当断路器跳开后,按需要自动投入的一种自动装置,当控制开关位置与断路器位置不对应时,启动。可以大大提高供电的可靠性,纠正断路器的误跳闸。
3.AT所和分区所的进线保护配置
AT所和分区所两者采用的进线保护配置完全相同。根据AT牵引供电系统中AT所的位置及断路器的设置,为了满足进线保护的四性要求并与馈线保护相配合,AT所进线保护配置如下:失压保护和检有压重合闸保护。
保护配置原理:
(1)失压保护。当接触网停电或由于某种原因使接触网的电压降低过多时,即欠压,一般为0.4UN时,小母线处的断路器会跳开,把AT所和分区所自动从接触网上切除,从而缩小了停电范围。
(2)检有压重合闸。当断路器跳闸后,根据断路器的整定时限检测电压,当检测到的电压达到整定值时,一般为0.85UN,则断路器重合闸。如果电压没有达到这一整定值,则断路器不进行重合闸。
4.AT变压器的保护配置
AT所和分区所的AT变压器采用的保护配置完全相同。根据变压器常出现的故障及AT牵引供电系统中AT所的作用和断路器的设置,并与馈线保护及进线保护相配合,AT所和分区所的变压器保护配置设置如下:差动保护、过电流保护、碰壳保护、瓦斯保护、通风和过热保护。
保护配置原理:
(1)差动保护。能反映变压器内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,差动保护是输入的两端TA电流矢量差,当两端TA电流矢量差达到设定的动作值时启动动作元件。差动保护是保护两端电流互感器之间的故障(即保护范围在输入的两端TA之间的设备上)正常情况流进的电流和流出的电流在保护内大小相等,方向相反,相位相同,两者刚好抵消,差动电流等于零;故障时两端电流向故障点流,在保护内电流叠加,差动电流大于零。驱动保护出口继电器动作,跳开两侧的断路器,使故障设备断开电源。
在变压器励磁涌流中含有大量的2次谐波分量(一般约占基波分量的40%以上),利用差电流中2次谐波所占的比率K2作为制动系数,来鉴别变压器空载合闸时的励磁涌流,只有同时满足K2值小于D(D为2次谐波制动系数)和比率差动其他判据时才允许保护动作。
(2)过电流保护。由电流继电器,时间继电器和信号继电器组成。电流继电器接在电流互感器的二次绕组上,组成测量元件用来判断通过的电流是否超过整定值,时间继电器通过设定延时时限来防止变压器空载合闸时保护的误动作。
正常运行时,过流保护回路的电流继电器和时间继电器的辅助接点都是断开的,当被保护区故障或短路引起电流过大时,电流继电器线圈启动,闭合其辅助接点接通时间继电器的线圈,经过预定的延时,时间继电器的常开接点闭合,接通断路器的分闸线圈回路,断路器的操动机构动作,断路器自动分闸,切除故障线路,同时启动信号继电器,发出断路器跳闸的预告告警信号,提醒工作人员进行维修。
(3)碰壳保护。也叫接地保护。将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分用导线与接地体可靠连接起来的一种保护接线方式。
把所有的一次电缆都穿过窗口TA,正常时TA相当于一个零序,流过不平衡电流,当变压器绕组发生接地或碰壳时,流过的电流是接地电流或碰壳电流,不再是不平衡电流,保护装置会动作,否则不动作。
(4)瓦斯保护。瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。瓦斯保护动作迅速、灵敏可靠而且结构简单。但是它不能反映油箱外部电路(如引出线上)的故障,所以不能作为保护变压器内部故障的唯一保护装置。另外,瓦斯保护也易在一些外界因素(如地震)的干扰下误动作,对此必须采取相应的措施。
重瓦斯:设有相应开关输入量输入端子,以便通过该装置发送本地及中央信号,保护根据该开关量信号进行判定,动作时,发出跳闸或告警信号。轻瓦斯:设有相应开关输入量输入端子,以便通过该装置发送本地及中央信号,保护根据该开关量信号进行判定,动作时,发出告警信号。
(5)通风和过热保护。设有相应开关输入量输入端子,以便通过该装置发送本地及中央信号,保护根据该开关量信号进行判定,动作时,发出告警信号或启动通风装置。
5.结束语
针对客运专线采用AT牵引供电方式其负荷电流值大、功率因数高及谐波含量相对少的特点,本文提出的保护配置方案理论上是可以保证牵引网各个保护之间的相互配合,同时满足保护的四性要求。为完善AT牵引网的保护配置方案,还需要进行大量仿真和实验验证,并能与其它形式牵引变压器的保护互相配合,以便该保护方案能够应用于工程实践当中。
参考文献
[1]谭秀炳.铁路电力与牵引供电系统几点保护[M].成都:西南交通大学出版社,2007.
[2]谭秀炳,等.交流电气化铁道牵引供电系统[M].西南交通大学出版社,2007.
[3]高仕斌.高速铁路牵引供电系统新型保护原理研究[D].西南交通大学博士学位论文,2004.
论文摘要:结合实际阐述电能质量的几种改善方法与措施;无源滤波器、有源滤波器、静止型无功补偿装置,介绍了它们的基本组成和原理,这些方法可以有效地解决稳态时的电压质量问题;文章还就电能质量技术的改进与提高,提出系统化综合补偿技术是解决电能质量问题的“治本”途径,以解决动态电能质量问题。
一、电能质量指标
电能质量的定义:导致用户设备故障或不能正常工作的电压、电流或频率偏差。这个定义简单明晰,概括了电能质量问题的成因和后果。随着基于计算机系统的控制设备与电子装置的广泛应用,电力系统中用电负荷结构发生改变,即变频装置、电弧炉炼钢、电气化铁道等非线性、冲击性负荷造成对电能质量的污染与破坏,而电能作为商品,人们会对电能质量提出更高的要求,电能质量已逐渐成为全社会共同关注的问题,有关电能质量的问题已经成为电工领域的前沿性课题,有必要对其相关指标与改善措施作讨论和分析。
电能质量指标是电能质量各个方面的具体描述,不同的指标有不同的定义,参考IEC标准、从电磁现象及相互作用和影响角度考虑给出的引起干扰的基本现象分类如下:
(1)低频传导现象:谐波、间谐波、电压波动、电压与电流不平衡,电压暂降与短时断电,电网频率变化,低频感应电压,交流网络中的直流;(2)低频辐射现象:磁场、电场;(3)高频传导现象:感应连续波电压与电流,单向瞬态、振荡瞬态;(4)高频辐射现象:磁场、电场、电磁场(连续波、瞬态);(5)静电放电现象。
对于以上电力系统中的电磁现象,稳态现象可以利用幅值、频率、频谱、调制、缺口深度和面积来描述,非稳态现象可利用上升率、幅值、相位移、持续时间、频谱、频率、发生率、能量强度等描述。
保障电能质量既是电力企业的责任,供电企业应保证供给用户的供电质量符合国家标准;同时也是用户(拥有干扰性负荷)应尽的义务,即用户用电不得危害供电;安全用电;对各种电能质量问题应采取有效的措施加以抑制。
电能质量指标国内外大多取95%概率值作为衡量依据,并需指明监测点,这些指标特点也对用电设备性能提出了相应的要求。即电气设备不仅应能在规定的标准值之内正常运行,而且应具备承受短时超标运行的能力。
二、电能质量标准
综合新颁布的电磁兼容国家标准和发达国家的相关标准,中低压电能质量标准分5大类13个指标。
(1)频率偏差:包括在互联电网和孤立电网中的两种;
(2)电压幅值:慢速电压变化(即电压偏差);快速电压变化(电压波动和闪变);电压暂降(是由于系统故障或干扰造成用户电压短时间(10ms~lmin)内下降到90%的额定值以下,然后又恢复到正常水平,会使用户的次品率增大或生产停顿);短时断电(又称电压中断,是由于系统故障跳闸后造成用户电压完全丧失(3min,电压中断使用户生产停顿,甚至混乱);长时断电;暂时工频过电压;瞬态过电压;
(3)电压不平衡;
(4)电压波形:谐波电压;间谐波电压;(由较大的波动或冲击性非线性负荷引起,如大功率的交一交变频,间谐波的频率不是工频的整数倍,但其危害等同于整数次谐波)。
(5)信号电压(在电力传输线上的高频信号,用于通信和控制)
三、电能质量污染的治理
1、治理的基础性工作
首先要掌握供电网络运行状态,对电能质量开展实时监测,以掌握其动态;第二是分析诊断其变化,即在详细分析电能质量数据的基础上,利用仿真软件对电网结构的固有谐振特性进行计算与分析,排除虚假的谐波干扰;第三是开展系统的合理设计和改造,变电站的设计和投运以及新的电力用户投运之前都要进行谐波源负荷及电能质量要求等方面的技术咨询,线路网络改造和建设也要结合运行负荷的特点和措施,以降低线损,降低设备损失事故,最后才是开展滤波装置或无功补偿装置的研制、调试和现场测试,以了解治理后的效果,并总结经验。
2、SVC装置
近些年来发展起来的SVC装置是一种快速调节无功功率的装置,已成功地用于电力、冶金、采矿和电气化铁道等冲击性负荷的补偿,它可使所需无功功率作随机调整,从而保持在非线性、冲击性负荷连接点的系统电压水平的恒定。
Qi=QD+QL-Qc(2)
式(2)中Qi、QD、QL、Qc分别为:系统公共连接点的无功功率、负荷所需的无功功率、可调(可控)电抗器吸收的无功功率、电容器补偿装置发出的无功功率,单位均为kvar。
当负荷产生冲击无功QD时,将引起
Qi=QD+QL+Qc(3)
其中Qc=0,欲保持QC不变,即Qi=0,则QD=-QL,即SVC装置中感性无功功率随冲击负荷无功功率作随机调整,此时电压水平能保持恒定不变。SVC由可控支路和固定(或可变)电容器支路并联而成,主要有四种型式:
(1)可控硅阀控制空芯电抗器型(称TCR型)SVC,它用可控硅阀控制线性电抗器实现快速连续的无功功率调节,它具有反应时间快(5~20ms)、运行可靠、无级补偿、分相调节,能平衡有功,适用范围广,价格便宜等优点。TCR装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而在电弧炉系统中采用最广泛,但这种装置采用了先进的电子和光导纤维技术,对维护人员要专门培训提高维护水平。
(2)可控硅阀控制高阻抗变压器型(TCT型),优点与TCR型差不多,但高阻抗变压器制造复杂,谐波分量也略大一些。由于有油,要求一级防火,只宜布置在一层平面或户外,容量在30Mvar以上时价格较贵,不能得到广泛采用。
(3)可控硅开关控制电容器型(TSC):分相调节、直接补偿、装置本身不产生谐波,损耗小,但是它是有级调节,综合价格比较高。
(4)自饱和电抗器型(SSR型):维护较简单,运行可靠,过载能力强,响应速度快,降低闪变效果好,但其噪音大,原材料消耗大,补偿不对称电炉负荷自身产生较大谐波电流,无平衡有功负荷的能力。
3、无源滤波装置
该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。
4、有源滤波器
虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(ActivePowerFliter,缩写为APF)。
APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。它与无源滤波器相比,有以下特点:
a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理;
b.滤波特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险;
c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点。
关键词:电力电子系统;系统级;模块级;标准控制和通信结构
Abstract: This paper mainly from the system level integration of electronic power, which refers to the specific power conversion system; the module level, it is also the analysis of three aspects constitute the standard control and communication system and the structure of power electronic system integration study of electric power system in, want to help develop for the electronic system in our country.
Key words: power electronics system; system; module; standard control and communication structure
中图分类号:TP271+.5 文献标识码:A文章编号:2095-2104(2013)
引言:近年来,随着科学技术的不断发展,我国社会以对电力电子技术的应用也是越来越普遍,这使得我国社会以及个企业也越来越重视电力电子的系统的集成研究。对于电力电子技术的本身来说,它是一种能够实现电能的高效变换以及能够对电能进行高度控制的技术。在现代社会,由于电的利用更加频繁以及广泛,最典型的如现在交通行业的电气化铁道也即是目前我国的电气机车以及磁悬浮列车、小区的电动汽车和目前先进的航空电源系统,还有拥有高速处理器的电脑以及电信设备都应用到了电力电子系统,这也表明电力电子系统的集成研究对于这些领域的发展具有极大影响,因此,对于电力电子系统的集成研究是具有极其重要的社会意义以及现实意义。
1. 电力电子系统集成的系统级分析
电子电路系统集成的系统级研究分析的主要内容主要就是建立电力电子系统的架构,以及研究电力电子系统集成的稳定性以及系统正常运行的可靠性,进而能够解决电力电子系统在集成的各标准模块有关的问题,本文主要分析的是电力电子系统的界面定义,交互作用,系统的容错能力以及各模块在系统中的并联问题,下面是简单的阐述分析:
界面定义。界面的定义指的是在电力电子系统的集成中,应该建立合理实际以及科学的集成系统架构,也就是指的是要制定符合系统集成要求的标准规范,这有利于解决系统集成研究中个模块间的技术参数和指标的分配,从而能够使得集成系统结构性能的优化以及系统模块的标准化。
交互作用。交互作用,具体指的就是在进行电力电子系统进行集成时,系统中的滤波器模块DC/A C,AC/DC以及DC/DC(下文将主要分析)间的作用,这些模块间的交互作用是能够影响电力电子系统的性能以及稳定性。
系统的容错能力。系统的容错能力的分析也就是为了提高电力电子系统集成后的系统的可靠性,也就是指的是 集成系统后系统本身应该具备的处理系统的欠压以及短路、过流等等一般故障的能力。
模块的并联。这主要指的是如何提高集成系统的扩充性以及可靠性的问题,具体方法就是采用模块的输入端并联以及输出端并联的方式使得系统的扩充性更强以及可靠性更强。
2.电力电子系统集成的模块级分析
对于电力电子系统的集成的模块级的分析也即是对电力电子标准模块的研究,就目前我国的电子电子系统集成的模块级分析来看,主要可以从标准模块的这子系统中典型的DC/DC模块为例进行分析,下面对此进行简单的阐述:
对标准模块典型的的DC/DC模块的分析,可以从系统中的三种不同功率对变流器的筛选入手,从筛选之中的条件看出其基本的原理:一般功率,这种功率的标准模块DC/DC 变流器拓扑初步筛选的标准基本就是按标准模块的输入电压高低,输出电压高低以及输入输出范围宽窄,还有就是输出输入的功率等级大小入手,确定最适合的DC/DC 变流器;中等功率,这种功率的标准模块DC/DC 变流器拓扑的筛选和优化是在以一般功率DC/DC 变流器拓扑初步筛选的标准的基础,以及注意拓扑的适应特性和变换效率以及拓扑损耗可集成性等等;小功率。小功率的标准模块DC/DC 变流器拓扑初步筛选的标准由于其基本应用于当前的通信网络以及计算机等等的设备适配器以及各种分布式的电源系统,显得有点特殊,对于这种小功率的标准模块的DC/DC 变流器拓扑主要的还是注重的是同步整流驱动也即是整流的效率最为重要。
3. 电力电子系统的标准控制和通信结构
电力电子系统的集成研究中,标砖控制以及通信结构的研究是极其重要的,下面面就从电力电子系统控制中的三相VSI 逆变器为基础,讨论分析电力电子系统的标准控制体系以及通信结构,下面是简单的阐述:
3.1三相升压整流器标准控制体系。
三相升压整流器的标准控制结构的分析可以知道该标准控制的主回路拓扑与三相VSI 逆变器结构基本一样,而且它的控制结构也也和三相升压整流器本身的控制结构一样,简单的说三相升压整流器标准控制体系就是以触发脉冲产生器、SVM 调制器、电流调节器、电压调节器和坐标变换器和A/D变换电路构成的,但是要注意的是在系统集成中不同的接口有着不同的要求。
3.2电力电子集成系统通信结构。
在电力电子集成系统中,数字式控制通信的一般模式的分析了解,我们可以知道通信结构的组成基本是以三层结构为主的:核心结构,也即是通信结构系统中的标准功率模块控制器HM以及执行PWM,和通信结构中的空间矢量控制驱动的信号生成以及结构本身的过电流保护等等,控制结构,主要就是指应用控制器AM ,AM的任务就是完成集成系统中的标准功率模块的信号同步和协调模块的工作、以及对系统的输入/输出电流和系统电压的控制等等,要注意的是它受到了系统管理器SM 的控制;系统结构,也即是指系统管理器SM,它主要的功能是与集成系统的仪表板和系统的外界的联系,以及协调系统中的多个标准功率模块的正常运行。
结束语:总而言之,从目前的电子电子技术的发展来看。电力电子系统集成是它发展的重要方向以及发展的必然趋势。具体来说,电力电子系统的集成的标准模块能够解决电能变换装置的复杂和不确定性,达到电力电子系统集成后运行可靠性高,功率密度高以及高效低成本的目的。不仅如此,电力电子系统集成本身就是一门融合了电力电子技术以及计算机技术、热处理技术、电磁兼容等等众多学科综合性工程,它的应用能够与偶东整个社会工业的发展以及能源的高校利用,同时对工业生产过程中自动化变革也具有较大影响和推动作用,因此,对于电力电子系统集成的研究具有极其重要的经济效益和社会意义。
参考文献:
【1】 钱照明,张军明,谢小高,顾亦磊,吕征宇,吴晓波. 电力电子系统集成研究进展与现状. 【J】.电工技术学报 2006,(15):1328~1332
【2】 王建冈,阮新波, 陈乾宏, 陈军艳, 严仰光 电力电子系统集成研究.【J】 探索创新交流—中国航空学会青年科技论坛文集
关键词:铁路交通运输
绪论
(一)研究问题的提出
根据《2006年中国铁路运输市场研究报告研究报告》,随着改革开放的深化以及经济产业结构的调整,交通运输企业焕发出前所未有的活力,各种运输方式发展迅猛。铁路交通运输虽然运量逐年增长,但市场份额却逐年下降,铁路面临着越来越严峻的挑战。
在国民经济各部门中,尤其是在交通运输部门中,铁路运输的发展呈现滞后状态。这种状况与“铁路是国家的重要基础设施,是国民经济的重要基础产业部门,是综合交通运输体系的骨干”的地位不相适应,有些地区的线路甚至无法支撑运输需求的巨大压力,铁路运输发展滞后对经济发展的制约作用明显存在。
世界各国经济发展的一个共同规律是,当一个国家处于经济起飞阶段时,铁路对于经济增长往往具有先导性的带动作用。德国和美国是发达国家的后来者,它们之所以能在19世纪末20世纪初后来居上,一个很重要的原因是他们在当时对作为社会先行资本的铁路进行高投入,从而带动和支持了其它产业的大幅度发展,促进了经济的快速增长。
综上所述,分析当前铁路建设存在的问题,研究制定铁路行业的发展战略,是一个具有重大理论意义和实践意义的时代课题。本论文所探讨的铁路运输行业的发展战略,即是基于此而做出的一份努力。
(二)论文的主要内容和研究思路
就我国而言,国家铁路已到了非改革不可的地步,否则就会严重制约国民经济的发展进程。由于铁路运输是基础产业,关系到国计民生,可谓牵一发而动全身,所以在改革实施之前必须要有方向明确、思路清晰的发展战略的指引,才会使改革向预定目标顺利推进。因此论文的主要内容即是围绕“铁路运输行业制定发展战略的基本前提和战略方案如何拟定和设计”而展开,也就是说要从理论和方法上论证为铁路运输行业制定的发展战略是在吸取国外铁路变革经验的基础上,适合中国铁路自己的国情和路情的。
论文的研究思路如下,首先是对我国交通运输行业存在的问题进行分析并归结其原因,提出通过制定发展战略加快铁路运输现代化进程的观点;然后指出铁路交通运输行业制定发展战略的基本前提。最后在借鉴国外铁路运输改革实践和成果的基础上,所进行的对国家铁路运输行业发展战略方案的设计。
二、我国铁路交通运输行业存在问题分析
中国铁路运输行业已有127年的历史。与计算机、通讯、生物等高新技术行业相比,它是个传统行业。进入21世纪,世界铁路交通运输行业正由传统行业向现代行业转变。世界发达国家铁路较高的起点上,以全新的方式,用较短的时间,完成了由传统行业向现代行业的升级,使铁路这个传统行业展现了全新的面貌。中国铁路交通运输行业建设起步并不晚,但与世界发达国家相比,差距很大,还存在很多问题。
(一)我国铁路交通运输行业现状
改革开放以前,国家铁路实行“政企合一”的计划管理体制。这种管理体制,与国家宏观计划经济的整体基础相适应,也与铁路当时自身经营的环境与条件相适应。当时我国经济技术落后,资金资源严重短缺,不可能优先发展资金和技术密集度要求较高的航空和公路运输,适合中国国情、运价低廉的铁路运输因而长期处于垄断优势地位,没有面临生存竞争方面的任何挑战。
进入新时期之后,国家经济运行体制由计划经济向市场经济转变,铁路运输行业随之出现了许多问题,这些问题集中表现在运能短缺上。运能短缺一方面是铁路物质基础相当薄弱的基本情况的客观存在,另一方面是不断扩大的对客货运输的巨大需求。在二者的共同作用下,铁路运能短缺的问题不可避免。
进入上世纪90年代,我国国民经济发展增速,铁路运能短缺的严重后果一览无余。全社会爆发出来的巨大货运需求压向铁路,国民经济发展急需的石油、棉花、粮食、煤炭、磷矿石等重要原材料运输严重受阻,影响东部地区电力供应缺口加大,迫使不少工厂半停产运行。因铁路发展不足制约国民经济的发展,使铁路素有“瓶颈”之称,国家因此而损失巨大。
同时,对局部区域铁路客运列车而言,一方面有些落后地区根本就没有开通铁路交通运输,如湖北恩施州;另一方面普遍超员严重,特别是在重大节假日。客运的全面紧张已成为严重的社会问题。
(二)铁路运输行业存在运能短缺问题的原因分析
铁路交通运输的运能短缺问题除运力基础与运输需求矛盾的原因之外,还有其深层次的原因,这主要是:
1、就认识根源而言,关键在于现代交通运输意识的普遍薄弱。人们并未真正理解现代经济发展交通运输先行这种根本道理,为保障宏观经济高效率、高效益运行所必需的交通富裕度的观念薄弱,甚至视超常紧张为正常。现代交通运输意识的缺乏,根植于我国长期的小农经济及计划经济环境之中。环境封闭、交通不便与运输需求被抑制的长期存在,使人们很难超越小生产者的狭隘眼界去观察和处理市场经济条件下大生产、大流通必然面对的诸多问题。
2、就经济根源而言,关键在于不发达经济的长期存在。百事待举而资金严重短缺,是我国经济发展中的基本矛盾之一。人们在拮据的经济条件下,很自然地会选择将资金投向周期短、见效快、效益高的加工工业及其他产业,而对虽然社会收益广泛,影响久远,但周期长、收益慢、直接效益低的铁路等基础产业,则往往被置于忽视地位,从而忽视“社会成本”与“直接生产成本”间的协调均衡。而这一协调均衡,又恰恰是欠发达国家经济快速健康发展的必要条件。我国是发展中国家,整体财力有限,所以需要一个较长时期来改变铁路的现状。
三、铁路交通运输行业发展战略的基本前提
经过近十几年市场经济导向改革,铁路交通运输行业所依存的经济环境和基础,已发生了深刻变革,面对新世纪的新形势,铁路运输行业制定发展战略必须注意两个基本前提。
(一)将铁路交通运输行业放在优先考虑的战略位置
行业在其生命周期的不同阶段,应该采取不同的战略发展模式。行业生命周期分为开始期、成长期、成熟期、衰退期。曾经有一种观点认为,铁路是夕阳产业,已处于行业发展的衰退期,其实无论从我国铁路与经济发展的实际情况考察、还是从西方铁路复苏的国际比较考察、抑或是从交通运输可持续发展的角度考察,铁路都是需要大发展的重要交通运输方式,它正处于行业的成熟发展期。从我国铁路运能短缺这一基本事实判断,铁路运输行业处在行业的成长期,应加大发展力度,以尽快发挥其应有的经济和社会效益;另外,从节约资源兼顾环境保护的角度考察,公路和航空运输耗费石油巨大,土地资源日益锐减。相反,我国可转化为电能的煤炭和水利资源丰富,因此,占地较少、对环境影响甚微的铁路运输,特别是电气化铁路和城市轨道运输,应成为我国交通运输体系发展的战略重点。世界铁路在全球范围内重新崛起,正处于行业的成熟发展期;而我国的铁路运输行业现处于行业的成长上升期,由此决定了制定的行业发展战略应保证其优先得到发展。
(二)依行业市场化趋势制定行业发展战略规划
在我国铁路运输行业市场化的表现在于:①进入上世纪90年代之后,铁路货物运输需求主体单一的格局己不复存在。多元化的市场经济主体决定了多元化的运输需求主体,瞬息万变的市场行情产生了灵活多样的运输需求,使铁路运输的经营环境向市场化转变;②同一时期,铁路运输生产正常运行所必备的各种生产要素,如钢材、水泥、木材和柴油等,在国民经济市场化的总格局中,也日益市场化,使铁路运输生产的供给主要求助于市场,推动其经营成本随市场价格波动而升降;③铁路运输市场化的另一个推动因素是交通运输市场的激烈竞争,铁路运输行业开始留意研究公路、水路、管道和航空运输的动态和规律,从以前的市场垄断走向市场竞争。
以上情况说明,铁路运输生产的投入和产出两大领域,均已受到市场机制的制约和支配:铁路运输在交通运输市场上已不再处于以前的绝对垄断地位。随着时间的延续,铁路运输向深度市场化方向的发展趋势己不可避免。对铁路行业而言,就是要根据市场需求,提供其适合公众需求的特有的产品和服务,制定其行业发展战略。
四、铁路交通运输行业发展战略方案设计
《中长期铁路网规划》提出,到2020年,全国铁路营业里程要达到10万公里,主要繁忙干线实现客货分线,复线率和电化率均达到50%,满足国民经济和社会发展需要,主要技术装备达到或接近国际先进水平。在分析基本前提和借鉴国外铁路改革经验的基础上,从我国的国情和路情出发,铁路运输行业的发展战略方案可作如下描绘和勾勒。
(一)铁路交通运输行业发展的战略步骤选择
1、实现运输主业和辅业的分离
根据2005年底铁道部的统计数据,中国铁路现在职工人数有228.41万,其中运输主业职工152.68万人,非运输主业职工队伍较庞大,这是世界上其他国家的铁路行业所没有的现象。铁路办社会,大而全,势必制约铁路运输主业的发展。铁路系统中的社会公共部门,如公检法、医院和学校等社会性、事业性单位应剥离出铁路系统,这些单位可以说都与铁路运输没有直接关系,长期“捆绑”在一起将导致运输主业专业优势不突出,竞争能力低下。
另外还应剥离铁路系统中的辅助产业,即工业、建筑、工程、通信和物资五大公司和若干勘测设计院,还与国家邮电网并存的铁路通信网等。机务段、车辆段、车务段和工务段等运输主业中的“多种经营”也应被剔除。这些部门或多经产业虽说与铁路运输相关,但由于没有实行分账独立核算,产业属性不同,容易导致职责不清,扯皮推委。
2、对铁路运输行业进行规范股份制改造
股份制是一百多年来被实践证明为行之有效的资产组织形式,既可以迅速聚集社会资本,又可以完善公司法人治理结构。铁路行业在完成主辅业分离的前提下,选择业内的优质资产,即盈利能力强、管理效率高的资产,结合主干线、客运专线和城际客运铁路等项目建设,寻求境内外投资者,进行股份制改造,可实现企业持续快速发展。
3、通过上市融资
实行股份制改造的目的是拓宽融资渠道,解决铁路建设资金主要依赖于铁路建设基金的收取与国家开发银行的长期借贷而成的长期性的极度短缺问题。其它渠道资金的进入为铁路加快建设速度和更大程度扩展规模注入了强劲的动力,更重要的是有助于帮助铁路部门引进新的经营管理理念、建立新机制。而其他渠道资金的筹集主要是通过公司上市来解决的。
相比客运而言,货运业务彼此独立性较强,更容易把市场前景较好的优良资产单独剥离出去进行公司化改制;而且,货运的国际市场开放程度高,可以更好地吸收地方政府、社会和国际投资。因此,应按照先货运后客运的次序推动股份制改造成功的企业上市融资。
(二)铁路交通运输行业发展的战略措施选择
1、积极通过多种方式筹集建设基金
在我国,制约铁路交通运输发展的关键性问题是资金问题。美国铁路建设之所以能在1887年一年中铺轨2万多公里,一个重要的原因就是拥有发达完善的资本市场,可以迅速吸收国内外的投资资金。我国的资本市场虽不发达,但却具备了吸收投资的有利条件。首先,我国大陆性地理特征条件,决定了铁路还远未达到发展的极限且在综合交通运输体系中具有不可替代性;其次,集装箱、冷冻冷藏、行包快运等具有高附加值的货运业务正在成为铁路新的经济增长点,经过商业性开发、建设和经营之后必将达到较高的投资收益率。在筹集资金的过程中,除了在国内外金融市场上进行股本融资这一方式外,可以选择的方式还有直接债务融资、利用国际贷款以及融资租赁等。
2、明确政府的角色定位,积极转变政府职能,推进现代企业规范制改革
在“政企分开”的基础上,还需要对铁路运输行业进行规范的公司制改造,建立有效激励、严格约束、责权利相统一的法人治理机构。对于具备一定市场生存能力的改制企业,可以直接改制为国有股占49%以下,民营资本持股51%以上的非国有法人控股的法人实体;那些暂时生存能力还比较弱的改制企业,可保持国有股占51%至75%的国有法人的控股地位,但仍应强调产权明晰、独立核算、面向市场、自负盈亏;实在无力经营的可以选择破产清算或者出售。铁路的政府主管部门的职能因而转向宏观管理和行业管理,不再干预铁路运输企业具体的日常生产经营活动,当前的主要任务应是:落实铁路运输企业的市场主体地位,完善资产经营责任制;实现政企分开、社企分开、事企分开和减员增效,组建客运公司及专业货运公司,为实现运输专业化打下良好基础。
3、积极推进铁路行业技术引进开发,提高行业服务质量
科学技术是第一生产力,现代产业进步的最终驱动力是科学技术,包括与之相适宜的管理技术,员工和资金都因科学技术的光明前景而重新优化组合,以实现更高水平的产业生产力。这种技术效应是不可阻挡也无法回避的时代潮流,可谓顺之者盛,逆之者衰。我国铁路系统经过近年来的技术引进和自主开发,铁路技术的开发应用呈现出加速追赶的趋势。当前的工作重点是高速铁路系统技术开发及建设;铁路行车安全技术保障系统开发;重型优质钢轨及新型轨枕制造;编组站自动化、装卸作业机械化及货场设备制造;铁路客货运信息系统开发等。
为顺利实现铁路运输行业的战略目标,铁路运输系统干部和职工必须转变工作是完成国家运输任务的思想,树立铁路运输行业具有服务性特别强、同时竞争性也特别强的观念,此外还需要不断的学习和演练来更新自己的服务知识和技能。为此需要在市场机制的引导下,对现有的铁路系统干部和职工进行全新的思想动员和教育培训,使之在新的工作环境下各司其职,保证社会的稳定和发展。
4、注重和其他运输行业的协调配合,创建交通运输大领域的“共赢”格局
在我国五大运输行业之间不仅存在着资源和市场的竞争,而且还存在着因各自优劣势相异而需要协调配合的实际可能。因此就可能会出现两种结局:恶性竞争与良性竞争。恶性竞争是不突出和强化自己的运输专业优势,不讲究服务的质量和方式,而是拼命压低运输价格,大打价格战,最后落得个共败共伤的结局,既浪费了经济资源,又造成了社会效益的损失;良性竞争与此刚好相反,五大运输行业坚守各自的目标市场,运输价格不下降或略微上扬,在运输服务的质量和方式上下足功夫,靠服务和技术创新来赢得市场,这样的竞争方式不仅合理配置了经济资源,而且创造了越来越大的社会效益。
预计随着市场发育得越来越完善,市场机制作用的越来越普遍和深入,交通运输领域的行业结构将趋向发达完善,通过且只能通过良性竞争而必然形成“共赢”格局。届时,处于独立市场竞争主体地位的铁路运输行业将呈现在世人面前,为国民经济建设发挥其应有的功能和作用。
结论
铁路运输行业的发展战略问题既是一个严肃的实践问题,又是一个重大的理论课题。因为通过中国铁路建设与发展的历史回顾和中外铁路行业的对比分析,很容易得出铁路运输行业物质基础薄弱的结论,发现存在着运能短缺的问题.而仅有这些还远远不够,问题的关键是:铁路运输行业如何在技术飞速进步、行业竞争激烈的时代条件下确定自己的发展战略以及如何实现自己的发展战略。
铁路运输行业的发展战略研究是个内涵丰富、政策性和实践都很强的课题。囿于篇幅和资料的限制和作者的学识水平,论文只是粗线条地对铁路运输行业的发展战略作了整体上的勾画和描述,还远远没有深入、细致和全面地揭示事物本身所蕴含的特征和规律,因此论文的不足和缺陷在所难免,在此恳请各位专家、同行批评和指正。
参考文献:
[1]厉国权.铁路运输经营与管理所面临的体制创新和课题[J].交通运输工程与信息学报,2003.
[2]李红.加快铁路多元经营发展的思考[J].铁道技术监督,2003.
[3]宋强太,杨月芳.中国铁路客运体制改革探析[J].铁道运输与经济,2002.
[4]张江宇.铁路改革:哪种模式能突围[J].综合运输,2002.
[5]王金祥.铁路多元经营新格局的实践与思考[J].铁道经济研究,2003.
[6]郑明理.对铁路跨越式发展中改革问题的思考[J].铁道经济研究,2003.
[7]高婕,高卉.加入WTO后我国铁路行业面对的机遇与挑战[J].中国铁路,2003.
[8]江小国.论我国铁路经营体制改革的市场化取向[J].市场论坛,2004.
关键词:变电站自动化可编程控制器
1引言
地铁的供电系统为地铁运营提供电能。无论地铁列车还是地铁中的辅助设施都依赖电能。地铁供电电源一般取自城市电网,通过城市电网一次电力系统和地铁供电系统实现输送或变换,然后以适当的电压等级供给地铁各类设备。
地铁全面采用变电站自动化设计,由于变电站数量多、设备多,在加上其完善的综合功能,信息交换量大,而且要求信息传输速度快和准确无误。在变电站综合自动化系统中,监控系统至关重要,是确保整个系统可靠运行的关键。
变电站自动化系统,经过几代的发展,已经进入了分散式控制系统时代。遥测、遥信、遥控命令执行和继电保护功能等均由现场单元部件独立完成,并将这些信息通过通讯系统送至后台计算机系统。变电站自动化的综合功能均由后台计算机系统承担。
将变电站中的微机保护、微机监控等装置通过计算机网络和现代通信技术集成为一体化的自动化系统。它取消了传统的控制屏台、表计等常规设备,因而节省了控制电缆,缩小了控制室面积。
2地铁变电站自动化系统组成
在本地铁变电站自动化系统设计中,采用分层分布式功能分割方案。系统纵向分三层,即变电站管理层、网络通讯层和间隔设备层。分层式设计有利于系统功能的划分,结构清晰明了。系统采用集中管理、分散布置的模式,各下位监控单元安装于各开关柜内,上位监控单元通过所内通信网络对其进行监视控制。变电站自动化系统需要对35kV交流微机保护测控装置、直流1500kV牵引系统微机保护测控装置、380/220V监测装置、变压器及整流器的温控装置、直流/交流电源屏等设备进行监控和数据采集。
由于可编程序控制器技术经过几十年的发展,已经相当成熟。其品种齐全,功能繁多,己被广泛应用于工业控制的各个领域。用PLC来实现地铁变电站自动化的RTU功能,能够很好地满足“三遥”的要求。本系统采用了ModiconQuantum系列PLC,来实现变电站自动化的RTU功能。Quantum具有模块化,可扩展的体系结构,用于工业和制造过程实时控制。对应于变电站的电压等级和点数的多少,可以选用大、中、小型不同容盈的PLC产品。
随着当地保护装置功能的日益强大,可以通过与保护装置的通讯来实现遥控和遥信功能。一些特殊要求的情况下,采用DI,DO,AI模块来实现遥控和遥信。使用PLC的DI模块来实现遥信、用PLC的DO模块来实现遥控、用PLC的AI模块来实现遥测、用PLC的通信功来完成与微机保护单元的通讯。利用PLC的各种模块可以很方便的实现“三遥”基本功能。
3地铁变电站自动化系统设计
3.1系统结构
变电站管理单元内的主监控部分采用可编程控制器PLC。CPU模块采用80586处理器,主频66MHz,内存2M,并配有存放数据、可调参数和软件的RAM和FLASHMEMORY。能对CPU及I/O进行自诊断。
电源模块,采用冗余配置。电源采用冗余配置,系统输人两路直流电源,保证系统在1路电源失电时,系统仍可无扰动安全运行,提高系统的可靠性。通讯模块采用Modbus+通讯模块。系统结构如图1所示:
间隔层的微机保护装置经过RS一485总线分成几个组,连接到网桥的Modbus通讯口上,通过网桥收集数据并将这些数据通过MB+网络送到主监控单元PLC。
系统的主监控单元可通过可编程网桥编制不同的规约,满足与不同智能设备之间的接口需要。MODBUS网桥NW-BM85C002MB+网桥/多路转换器,每台网桥具有4个通讯口与间隔层的智能设备通讯,网桥将MODBUS协议的数据进行协议转化,通过MB十网络与PLC建立网络通讯,同时在中央信号屏中还配有可编程网桥NW一BM85C485,通过MB+网络与PLC连接,每个可编程网桥具有四个通讯协议可编程的RS一485口,在本方案中对其中的两个口进行编程,使之通过IEC一60870-7-101与中央控制中心通讯。
系统网络通讯层向上通过可编程网桥的RS一422接口采用IEC60870-5-101国际标准规约实现与控制中心通讯;向下网络通讯层通过网桥RS-422接口MODBUS标准规约实现与主变电站内的各开关柜或保护屏内的微机综合保护测控单元等智能装置通讯,满足变电所综合自动化系统控制、测量、保护的技术要求。通过网桥与智能设备及控制中心通讯,由网桥实现协议转换,降低PLC的CPU模块负荷率,提高系统的可靠性。
配置液晶显示器,用于变电所内监控、软件维护,设备调试,站控层操作等人机接口。带有液晶显示器实现站内数据的显示和控制。液晶显示以汉字实时显示所内所有事故、预告信号、所内各微机综合保护测控单元的运行状态。事件变位的内容、时间等。当多个事故信号同时发生时,液晶显示报警装置按新旧次序,在所内时间分辨率的范围内依次显示各种信息,并能存储。操作员通过按钮对显示进行选择,必要时操作员可通过该组操作按钮对开关进行所内集中控制。
“就地一远方”控制切换装置。为便于系统运行的需要,在中央信号屏内装有“就地一远方”切换开关,实现就地控制和远方控制之间的方式切换和闭锁。在变电站控制上,方便分层控制和管理。
系统的电源采用冗余配置,系统输人两路直流电源,保证系统在一路电源失电时,系统仍可无扰动安全运行,提高系统的可靠性。
3.2开放式、宜扩展性设计
可以与满足相应标准规约(profibus,spabus,modbus等)的其它公司相关的(IED)互联进行信息交换。充分考虑到变电站扩建、改造等因素,间隔层设备基于模块式标准化设计,可根据要求随意配置,变电站层设备设置灵活。
网络通讯层设计考虑到工业以太网、CAN、422、modbus+等现场总线的接口设计,能充分满足大流量实时数据传送的实时性和可靠性。
3.3软件设计
PLC软件方面,由于PLC以循环扫描和中断两种方式来执行程序。为了完成所有RTU功能,PLC采用循环扫描方式,与各个间隔层保护单元进行通讯。通过Modbus总线,读取各个保护单元的遥测、遥信信息,同时通过总线通讯对各个智能保护装置进行设点操作,实现对开关的遥控功能。本系统采用了Quantum系列PLC配套的con-cept编程软件中的FBD方式,进行了PLC的组态,实现了变电站自动化的三遥功能。
如图2所示的遥控功能的组态。通过使用合适的功能块的组合,可以实现你所要的功能。其中的功能块有concept软件的FFBlibarary提供的标准功能块,也可以自己定义,自己独特的功能块。
遥信的实现,有两种方式。一种是通讯方式,当变电站设备发生变位时,通过PLC与智能保护装置的通讯,读取变位的信息到PLC中,并将其上送给控制中心。另一种为D工模块方式,通过连接设备的位置继电器,PLC的DI模块能够感知设备的变位信息。
遥测的实现也包含两种方式。一种是通讯方式,PLC通过与智能保护装置的通讯,实时获取保护装置采集的遥测量信息,相当于由保护装置完成现场级的采集功能。另一种为AI模块方式,由PLC自己来完成现场的遥测量采集,并将采集到的数据存放在RAM中。网桥将RAM中的遥测量信息,作为二级数据,实时的与控制中心进行通讯。
网桥中的报文接收分析程序分析控制中心传来的报文,如果分析认为其是遥控报文,对其进行报文解析,将获取的遥控对象信息写入PLC,由PLC程序与智能保护装置通讯,来完成遥控功能。
3.4系统功能及特点
变电站自动化实施对变电站各种设备进行实时控制和数据采集,实现对各种设备的微机控制、监视、逻辑闭锁、微机测量以及实现所间开关联跳功能。
变电站自动化系统的特点:
(1)完善的自检功能,除通过通信对各单元进行监控外,各单元中保护和监控模块都具有极强的自检功能,同时二者相互监视,一旦发生异常,及时报警,提高系统运行可靠性。
(2)开关、刀闸状态信息采用常开及常闭双位置接点,通过软件判断其合法性。
(3)监控系统采用PLC代替传统的RTU,各智能模块采集的数据通过现场总线上传到通讯控制器。
(4)取消了常规光字牌,采用计算机模拟光字牌,并按不同电压等级的分层模式来显示。
(5)简化防误闭锁设计,重要设备之间用硬接线实现闭锁功能,综合自动化软件具备软件逻辑判别功能,但考虑到已有运行和检修经验,一般不在后台软件中进行闭锁。
(6)对暂态变位信号,经软件处理,采用自保持方式,未经人工确认信号不会消失。
4结束语
在实际运行中,网桥与控制中心的双通道设计,给运营和检修带来了很大的便利。因为是软件自动切换,克服了进口系统手动切换通道的缺点,通道的状态由软件来判断,大大提高了发现问题的及时性。双通道同时出现故障的概率并不是很高,实际运营中有在备用通道长时间运行的情况,这样就给检修人员预留了充足的时间来检查问题。
PLC硬件由于应用工业级可靠性设计,因此实际运行中非常可靠,绝少出现死机的情况,可靠性远高于采用windows操作系统的通用计算机,很好的满足了供电监控的要求。从交付使用到现在PLC还没有出现过硬件故障,凸显了PLC对地铁的潮湿、高温环境的适应性。模块化的设计也使的系统的检修和更换更为便捷。
需要更改进的方面,就是对通信的改进。由于设计中没有采用光纤通讯模块,各设备对由绝缘检修和线缆破损窜进来的高压电,不能非常有效的隔离,会造成设备的高压击穿,造成不必要的损失,计划在今后的设计中对于高电压的隔离方面加以改进,就可以很好的避免这种问题。
参考文献
[1]施耐德.ModiconTsxQuantum硬件手册,1998
[2]黄益庄.变电站综合自动化技术.北京:中国电力出版社,2000,1(2):41-43
[3]谭文恕.变电站自动化系统的结构和传输规约.电网技术,2001,25(9);8-11
论文关键词:管线综合规划 城市规划 运用
论文摘要:随着经济和技术的发展,城市中管线种类还会继续增多。现代城市日益重视利用地下空间,工程管线大都埋在地下。有些城市还有地下铁道、地下街、各种地下建筑物和构筑物等。所以城市管线的综合规划在城市中起着很重要的作用。
1 管线综合规划的分析
随着经济和技术的发展,城市中管线种类还会继续增多。现代城市日益重视利用地下空间,工程管线大都埋在地下。所以城市管线的综合规划在城市中起着很重要的作用。城市工程管线综合规划应重视近期建设规划,并应考虑远景发展的需要。 城市工程管线综合规划应结合城市的发展合理布置,充分利用城市地上、地下空间。城市工程管线综合规划应与城市道路交通、城市居住区、城市环境、给水工程、排水工程、热力工程、电力工程、燃气工程、电信工程、防洪工程、人防工程等专业规划相协调。统筹安排城市建设地区各类工程管线的空间位置,综合协调工程管线之间以及与城市其它各项工程之间的矛盾年进行的规划。城市工程管线规划必须遵循科学合理,超前意识的原则,各类管线要统筹规划,综合安排,执行各专业布置技术规定。城市工程管线综合所说的各类工程管线系就是市政工程中的常规管线,即给水、排水、电力、电信、燃气、供热等工程管线。条文中所谓统筹安排,主要就是采用城市统一坐标系统和标高系统,总体上安排各类工程管线的空间位置,以免发生互不衔接和混乱的现象。需要综合协调能力,就是要综合考虑地形、地质条件、城市道路走向,相邻工程管线平行时的水平距离和相互交叉时的垂直距离,工程管线与其他工程设施之间所要求的距离,城市设施的安全以及环境的美观等要求,协调解决工程管线之间以及与城市其他各项工程之间的矛盾,使其各得其所,方便其工程的运行。在确定城市管线的时候,要注意确定城市工程管线在地下敷设时的排列顺序和工程管线问的最小水平净距、最小垂直净距;确定城市工程管线在地下敷设时的最小覆土深度;确定城市工程管线在架空敷设时管线及杆线的平面位置及周围建(构)筑物、道路、相邻工程管线间的最小水平净距和最小垂直净距。同时由于城市给水、排水、供电、通讯、燃气等城市基础设施建设的系统性很强,涉及面很广,迫切要求有全面系统的城市管线综合规划,来统筹安排好各专业管网系统的建设,协调好管线之间的矛盾,彻底解决城市基础设施建设中网路系统性差,管网间特别是交叉口管位矛盾突出,管线建设返工多,投资浪费等问题。一般在编制详细规划阶段进行,以各项管线工程的初步设计(或施工详图)资料为依据。内容一般为编制工程管线设计综合平面图和管线交叉点标高图;修订道路横断面上管线布置图。综合设计不但要确定各种工程管线的平面位置,而且要检查它们的竖向标高,解决各种管线在交叉处发生的矛盾。根据初步设计资料所作的综合设计,在每项管线工程完成施工详图后,须进行核查。
2 管线综合规划在城市中的规划
在城市中,城市管线的综合规划有着很大的作用,对于这方面,我们应该从管线的设计上进行考虑,主要的原则是:城市中的架空线路和地下管线一般都沿城市道路敷设,并尽可能布置在绿带、人行道和非机动车道范围内。管线一般与道路的中心线平行;道路交叉口的管线交叉点越少越好;管线之间以及管线同建筑物、构筑物、行道树木之间要保持一定的水平距离,以满足技术、卫生和安全等要求。各种地下管线从建筑红线向道路中心线方向平行布置的次序,在地下管线交叉时,管线之间要有一定的垂直距离。如发生冲突,通常是拟建的管线避让已建的管线;内部有压力的管线避让重力自流的管线;小管线避让大管线;易弯曲的管线避让不易弯曲的管线;临时性管线避让永久性管线。在城市建设中应尽可能先敷设地下管线,再铺筑道路路面,尽量避免因敷设地下管线而开挖路面。把城市的主要地下管线集中设置在地下管线廊道中,既可避免因各种管线的建设时间不同,反复开挖路面,又便于检修,减少占地。但建设费用往往比较大。工程管线在道路下面的规划位置宜相对固定。从道路红线向道路中心线方向平行布置的次序,应根据工程管线的性质、埋设深度等确定。分支线少、埋设深、检修周期短和可燃、易燃和损坏时对建筑物基础安全有影响的工程管线应远离建筑物。转贴于 布置次序宜为:电力电缆、电信电缆、燃气配气、给水配水、热力干线、燃气输气、给水输水、雨水排水、污水排水。工程管线在庭院内建筑线向外方向平行布置的次序,应根据工程管线的性质和埋设深度确定,其布置次序宜为:电力、电信、污水排水、燃气、给水、热力。当燃气管线可在建筑物两侧中任一侧引人均满足要求时,燃气管线应布置在管线较少的一侧。沿城市道路规划的工程管线应与道路中心线平行,其主干线应靠近分支管线多的一侧,工程管线不宜从道路一侧转到另一侧。工程管线干线综合管沟的敷设,应设置在机动车道下面,其覆土深度应根据道路施工、行车荷载和综合管沟的结构强度以及当地的冰冻深度等因素综合确定;敷设工程管线支线的综合管沟,应设置在人行道或非机动车道下,其埋设深度应根据综合管沟的结构强度以及当地的冰冻深度等因素综合确定。城市规划区内沿围墙、河堤、建(构)筑物墙壁等不影响城市景观地段架空敷设的工程管线应与工程管线通过地段的城市详细规划相结合。沿城市道路架空敷设的工程管线,其位置应根据规划道路的横断面确定,并应保障交通畅通、居民的安全以及工程管线的正常运行。架空线线杆宜设置在人行道上距路缘石不大于1m的位置;有分车带的道路,架空线线杆宜布置在分车带内。电力架空杆线与电信架空杆线宜分别架设在道路两侧,且与同类地下电缆位于同侧。对于同一性质消工程管线宜合杆架设。架空热力管线不应与架空输电线、电气化铁路的债电线交叉敷设。当必须交叉时,应采取保护措施。在工程管线跨越河流时,宜采用管道桥或利用交通桥梁进行架设,应当可燃、易燃工程管线不宜利用交通桥梁跨越河流。工程管线利用桥梁跨越河流时,其规划设计应与桥梁设计相结合。
3 管线综合规划在城市规划中的运用
对于城市规划中的管线的综合规划,首先就是道路竖向规划,确定各道路交叉口的竖向标高,为管线综合规划的提供基础。 给水规划 。需提供各道路下给水管道管径,及现已铺设的给水管过交叉口的平面位置、管径及标高。 排水规划的时候要求能提供道路下污水管雨水管起点及交叉口标高(包括管道交叉时各支管的标高),现有管线需提供平面位置及过交叉口的管径及标高。电力方面的运用中需要提供各条道路下电力电缆的孔数及过道路交叉口时采用钢管或重型PVC管的管径、竖向穿越空间,及现状已铺设的电力电缆过交叉口的平面位置及标高。综合通讯规划 :规划要求能提供各条道路下通信电缆管孔数、过道路交叉口时采用的钢管及重型PVC管的管径、竖向穿越空间及现状已铺设的通讯线路过交叉口的平面位置及标高。燃气规划 :需提供燃气管道的管径、平面位置、经过交叉口的竖向标高及各条道路上规划的燃气管道的管径,过交叉口的竖向要求。在编制管线综合规划前,需要有根据以上要求编制各专业规划,只有在详细的专业规划基础上才能编制管线综合规划。城市工程管线规划必须遵循科学合理,超前意识的原则,各类管线要统筹规划,综合安排,执行各专业布置技术规定。才能方便城市的管道线路建设。
参考文献:
[1]王璇;陈寿标;对综合管沟规划设计中若干问题的思考[J];地下空间与工程学报;2009年04期