HI,欢迎来到好期刊网!

数字信号论文

时间:2023-03-17 18:00:40

导语:在数字信号论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

数字信号论文

第1篇

(1)这两种信号都是以8MHz为一个传输带宽单位,模拟频道一个8MHz带宽传输一套节目,数字频道一个8MHz带宽传输5—6套节目,所以在同样一个单位带宽损伤情况下,模拟信号只有一套节目出现故障,而数字信号会直接影响5—6套节目的收看。

(2)网络中传输的虽然都是已调制的高频信号,但数字频道是多电平正交幅度调制(64QAM)的数字调制方式。模拟频道是残留边带幅度调制的模拟调制方式,二者共同点是都有“幅度调制”的特点,对传输网络的幅度线性失真都是非常敏感的。

(3)要全面理解数字频道和模拟频道在传输电平测量上的区别。1)不管是模拟频道还是数字频道,在网络中的传输功率都是相同的,但二者在频道内的能量分布不同,特别是峰值能量的数值差异很大。在测量上,二者的传输电平有不同的表述方式。数字频道是数字信号调制的高频载波,在频道内,能量是相对均匀分布的,各频率处“峰值”相等。测量时用“频道内平均功率”来表示。模拟频道是模拟信号调制的高频载波,频道内功率比较集中分布在“图像载波”和“伴音载波”附近,有明显的峰值,测量时,用峰值处的平均电平表示,所以尽管数字频道与模拟频道传输时功率大致相同,但在测试上数字频道电平要比模拟频道电平低10dB左右。二者差值太小数字频道容易进入非线性状态,除自身信号劣化外,还会干扰网络内模拟频道;二者差值太大,数字频道电平低,载噪比损失大,数字信号也会劣化。或者模拟频道电平的峰值超过网络设备的最大失真范围,信号变劣,还会产生副产物,干扰数字频道。2)每个环节电平控制。网络中传输电平是由光电收发设备、放大器、机顶盒等有源设备,器件的性能,网络拓扑结构、布置,传输节目套数,用户数量等共同决定的,在设计时作了详尽充分的考虑,并在系统图中标定了各关键点的传输电平。所以,按照设计要求,随时控制各关键点的传输电平是网络安全运行的关键,只有如此,才能稳定网络运行。在网络运行维护中,控制各个环节电平,以下几个原则问题应做到:①数字频道与模拟频道的电平是由前端决定的,特别是二者的差值是由前端保证的,所以前端调制器输出电平要严格控制好,随时检测,发现电平差异,立即纠正。②前端输入到光发射机的高频信号电平要认真按设计要求控制,不要因为同轴电缆分配网的某些变化随意提高或降低,同轴电缆分配网的电平调整服从光传输电平。③所有光接收机的输出电平也要按照设计调整,并留有电缆放大器自动控制的余量,用于温度变化补偿,机内各部位的衰减器也要按设计标定的数值安装,因为不同环节的衰减器分别影响非线性失真和载噪比。④原有的模拟同轴电缆分配网不需做大的变动,电平大体可维持正常。偏差太大的,就必须按设计要求重新配置干线放大器,调整电平也要象处理光接收机一样,按要求配置各环节衰减器。光接收机实质上是一台加了光接收模块的干线放大器。用户放大器以下的电缆分配网络调整时以用户获得足够电平、用户之间点评均衡为原则。总之,模拟数字混合传输网各个环节的电平控制至关重要。对于模拟信号,输出信号太高,会造成非线性失真‘出现网纹、交调等;输出信号太低,造成载噪比低,出现雪花、噪点等。而对于数字信号,电平输出过高或过低,都表现为停帧、马赛克或黑屏等。因此,各个环节的电平要控制得当。

2如何检测和处理数字电视故障

(1)初次安装时无法收到数字电视节目,一般由于两个原因:一是有线电视线路故障,维修人员应用数字场强仪测量数字信号电平是否在合理范围内,或者检查连接线接头是否松动,应使各种街头连接牢固。二是因为用户没有将视频线连到机顶盒与电视上,或没有把电视调到AV状态下,这种现象占报修率60%以上。

(2)安装后收台不全,很多频道显示加密状态,多数情况是用户没有弄清数字电视收费政策,只有已付费的频道才能收看,其他需要另外付费的节目虽然可以看到台标但都会是加密状态。

(3)收看时出现马赛克或卡碟的声音,基本是有线电视线路故障,多出在雨雪天或大风天之后,对有线线路进行维修后可以好转。还可能是用户室内有线接头接触不良,现行的方法都是手工完成的,这就要求工作人员在各器件与电缆的连接中不能有丝毫大意,否则将产生电弧及打火现象。当频率较低时阻抗大、信号衰减大,载噪比在25dB以下时,将出现个别频点播出的电视节目出现马赛克或卡碟的声音。

(4)前端机房节目播出频点改变后部分频道无信号,更改播出频点这种问题不会经常发生,但是改动后会给用户收看节目造成不便,如果不重新搜索,部分频道将显示无信号,这时应尽量教会用户如何重新设置新的频点并搜索。也有的机顶盒需要进行软件升级。

(5)如果单个或几个数字频道电平过低,比邻近数字频道低5dB以上,会引起该频道所有节目都无法观看,这时要检查该频道电平比其他频道信号过低的原因。其主要有以下几种故障:同轴电缆屏蔽网接触不良、折断;电缆或插接头的主芯生锈,接触不良;光接点输出故障;致使输出单个或几个数字频道电平过低等。

(6)用户家中线路故障造成有线数字信号线性失真、损耗或反射等,一般有以下几种情况:①用户家中末端几个分头直接拧在一起,而未用分支分配器链接或分支分配器分支口接反;②接头抽芯、松动或屏蔽网线未接,这时需要重新做接头;③同轴电缆老化,芯线氧化腐蚀严重,需要更换同轴电缆线;④机顶盒输入接口连接不良,致使数字信号缺台或马赛克。

第2篇

数字信号是科技发展的产物,与传统的模拟信号比较,其抗干扰能力较强。在传统的模拟信号传输工程当中,噪声的因素对其影响尤为致命,在传输过程当中,噪声的产生极易影响通信质量。反而观察数字信号在传输过程当中的反应,其在接收未超过本身信号频率所能控制的限值时,对于信号的传输轻易不会产生影响,在信号的接收上能够更加具有可靠性。再而,数字信号本身所具有的传送特性,致使其在远距离传输信号时能够完好的保持信号质量,保证通讯质量不受距离的影响,高质量的完成远程信号的传输工作。以上两种情况均表明了数字电视信号更加适合于当今的社会生活需求。

2数字电视信号质量监测过程中会发生的问题

2.1数字电视未能正常播放

在数字电视出现以来,我国的播放设施快速的进行了更新换代的工作。与原有的模拟信号相比较,在观看电视时,屏幕出现雪花和不能同步的问题得到了极大的改善。与传统模拟信号比较,数字电视信号在一般情况下对于电平值的接受要求下降,该情况的发生致使数字电视的抗干扰能力更强,在正常接收信号后电视即可出现清晰画面。但与此同时,数字信号的接收将会出现更多的信号信息,该过程中由于相关人员或者技术的不成熟,电视将无法正常播放。

2.2无法及时对数字电视信号进行处理

数字信号的传输和正常工作对于设备的要求更高,在运行过程当中,任何一个元部件或者是程序的错误都将导致无法接收正确信号。在设备劳损度达到一定程度后,想要在众多部件中找到损毁元件极为不易。该种情况导致工作人员和技术人员无法及时对数字电视信号进行正规的处理,在经过较长的时间后才能查出问题的关键所在。数字化电视更加复杂和多样化,在电视正常工作期间,数字信号会由远端接收器进行传送以及处理。该过程中,数字信号会经历更多的不确定因素,如果无法及时对该过程中的信号进行监测,可能导致信号传输无法预知的中断甚至消失。

3数字电视信号监测手段的建议

在监测数字电视信号过程当中,工作人员的管理应按照有效益性、选择性和相辅相成作为监测原则。由于数字电视信号具有自身特有的性质,在各种环境下的问题不尽相同,因此,面对数字电视信号发生故障时,应该综合多种因素,认真对待每一种可能出现的情况。而对于数字电视信号的质量监测方式通常可划分为三种形式:故障模式监测、故障树监测和部件模型监测。在三种方式运用过程当中,全方位的保持信号的稳定性是所有因素的大前提。

3.1故障模式监测

故障模式监测技术是维护和监测数字电视系统最为常见的一种方式,也被称为FMEA方式,该种模式对于处理系统本身的复杂信号具有明显效果。故障模式监测技术的应用在对数字电视信号监测过程中需要将数字信号的逻辑性重新理顺,将所有部件引起的信号失效状况全部找出,加以分析其失效后会发生的状况,进行归纳和推理,得出任一部件失效后所会产生的故障结果,以此确定由于元部件导致的电视信号受损原因,确定失效部件。并且及时给出相应的改善措施与修复手段。

3.2故障树监测

故障树的监测技术主要是针对于数字电视信号系统在发生错误后,通过发生错误的多种现象来对问题进行分析和总结,检测出整个系统运作是否可靠。在数字电视系统进行工作过程中,可以通过该种方法对系统进行监测和检查,用以协助更好的对系统进行维护。故障树监测技术需要利用图形来进行模拟工作,大体将数字电视信号的故障现象通过图像来进行直观的显示。通过找出信号故障时发生的种种现象,来对故障进行分级。该种分级将数字信号系统设置为第一级,在以下将会如树结构般分支出多种问题,直到问题不能再次进行分支为止。此时说明问题已经找到,利用图表方式来直观找出问题的根本原因。该类方式对于监控工作有着协助作用,能够完善工作内容。

3.3模拟部件监测

在数字电视工作出现问题时,由于其多变、复杂的特性很难从直观上发现其问题所在,且其元件数量极多,期间某个部件发生故障时可能会导致所有流程都失效。但是经过对这些组成元件的可靠性的逻辑关系分析,采用部件模拟的监测方式能够看出不同组成部件之间的模型处于何种关系。利用模型与其工作效果对比,快速找出问题所在,该类型为部件模型监测技术。

4结语

第3篇

关键词:数字信号处理;教学改革;实践教学

作者简介:蓝会立(1975-),男,壮族,广西马山人,广西工学院电子信息与控制工程系,讲师;廖凤依(1977-),女,广西融水人,广西工学院电子信息与控制工程系,讲师。(广西 柳州 545006)

中图分类号:G642     文献标识码:A     文章编号:1007-0079(2012)01-0050-02

“数字信号处理”课程是电气信息类专业本科生的一门重要专业基础课,它以信号与系统课程的理论为基础,直接面向实际应用,注重算法的研究,是继续学习其它信号处理课程、通信与电子系统课程的必不可少的基础。该课程的特点是使用数学语言对工程实践中的数据采集、分析与处理问题进行描述,内容比较抽象,理论性强,包含大量公式的推导和证明,课程阐述的理论与现代信息技术的发展前沿和应用密切相关。因此,有效提高该课程教学质量,对提高学生专业素质和综合分析解决问题的能力有着重要的意义。在广西工学院(以下简称“我校”),“数字信号处理”作为电子信息、自动化和测控专业的重要专业基础课,在初期教学采用传统教学方式,重视研究教师教法和理论教学,而忽视了实践教学及对学生潜力的挖掘和应用基本理论解决实际问题能力的培养,教学效果不明显。近几年来,课程组对课程教学目标进行重新定位,在积极探索课程课堂教学模式,优化教学内容,改进教学方法和手段,完善课程考核方式等方面进行了全面地改革和实践,取得了较好的成果。

一、调整优化教学内容

“数字信号处理”和“信号与系统”构成了我校电气类学科的信号处理基础理论平台,课程内容既具有明确的分工又紧密关联。“信号与系统”涉及信号分析与系统分析,信号分析是基础,突出信号与系统的时域分析和变换域分析的物理概念和工程概念,而三大变换只是实现时域分析到变换域分析的数学工具。“数字信号处理”课程涉及数字信号分析和数字滤波器设计。离散傅里叶变换DFT是实现信号数字化分析的核心技术,FFT是提高DFT运算效率的重要算法。信号分析是信号处理的基础,而数字滤波器设计则是信号处理的具体实现。其中离散信号与系统分析是信号分析和系统设计的理论基础,也是“信号与系统”和“数字信号处理”课程承上启下的内容,在两门课中都占有比较多的学时,造成教学重复和学生的厌学情绪,同时本门课程的重点内容因学时少而缩减。传统教学计划都强调每门课程内容的系统性和完整性,造成内容多学时少的矛盾,单门课程的教学改革很难收到理想效果,如何优化教学内容,避免重复教学是“数字信号处理”课程教学改革的一个核心。因此,建立了信号处理课程群,即将内在联系较为紧密的“数字信号处理”和“信号与系统”等课程组合起来构成一个课群,作为信号处理基础系列课程,其课程体系和教学内容被作为一个整体进行优化整合。课程群建设实行二级负责制,课程群组长负责各门课程之间的协调,课程负责人负责本课程内部的调整,以便能适应当前教学的改革与发展。根据“数字信号处理”课程在课程群中的任务和地位,以及学生就业应具备的能力,重新规划制定课程教学计划,通过对课程内容进行分解、整合,编写适应应用型人才培养和教学的教学大纲,在强调基本概念和原理的基础上,以突出应用性、实践性为原则,侧重于学生综合分析解决问题和动手实践能力的培养,做好“数字信号处理”课程与其他课程部分重复内容的衔接,避免造成课时浪费,使学生掌握课程的精髓部分,提高学生自主学习的能力。

其次,针对课程理论教学大多只讨论算法的理论及其推导,较少涉及实现方法及相关的软硬件技术,我们对实践性教学内容进行改革,开设了少学时的MATLAB信号处理课程和DSP硬件技术应用课程。通过课堂演示、基于MATLAB的算法仿真实验及分析、基于DSP的硬件算法综合实验等三个层次的实践活动,强化工程素质和实践能力的综合训练,帮助学生进一步领会和深化课堂上学到的有关数字信号处理的基本概念、基本原理以及基本的信号处理操作及滤波器设计方法。使学生逐步克服了对DSP的陌生和恐惧心理,激发了同学们强烈的好奇心和求知欲,培养学生的动手能力,分析解决问题的能力和创新精神。

二、教学方法改革

“数字信号处理”课程的特点是理论性、概念性比较强,涉及到大量的数学公式和理论推导,学生普遍感觉吃力,不易理解,缺乏兴趣。要提高教学效果,必须改进满堂灌的传统教学方法,采用多种教学方法相结合来丰富课程的教学过程。在教学过程中,结合学习的规律性,针对不同阶段、不同知识点灵活运用不同的教学方法,激发学生的兴趣,调动学生参与教学的主动性。

在教学过程的初期主要采用引导式教学法,即通过形象化的成果引导学生去了解理论知识在实践中的应用,激发学生学习兴趣。例如,通过课堂讲授与课外专题讲座形式介绍学科发展前沿,开拓学生视野,激发学习兴趣;或者在开始讲授新的内容体系之前,通过多媒体等形式有针对性地介绍相应技术在数字信号处理领域的工程应用,以调动他们学习的积极性和主动性,以致提高教学效果。

在教学的中间过程主要采用启发式、讨论式教学方法。这是一种以学生为主体、教师为主导的课堂讨论式教学方法,鼓励学生积极投入到课堂教学的过程中,由被动接受知识向主动学习转变,改变单向灌输的教学模式。在课堂上,重视讨论和交流,教师根据授课内容设计一些思考题,在课堂上以设问的方式,引导学生积极思考和讨论,积极引导学生参与到教学过程中来,教师根据学生的分析思路和结果进行点评、纠正和总结,积极鼓励学生形成问题意识、进行批判思维。这种方法可以活跃课堂气氛,重点突出,学生比较容易把握教学重点。

在教学的后期主要采用研究式教学方法。研究式教学就是将科学领域的研究方法引入课堂,通过教师的激励、引导和帮助使学生去主动发现问题、分析问题、解决问题,并在探究过程中获取知识、训练技能、培养创新能力。在教学过程中,组织多名学生为一组,围绕课程中一些主题,独立搜集研究方向,在课外依循一定的步骤开展研究性学习,最终提供一份包含有课题题目、问题提出、程序、调试波形和结果说明的完整研究报告,引导学生运用数字信号处理的知识分析、解决问题,注重学生思维及创新能力的培养,在研究中加深对数字信号处理基础知识的理解,提高利用理论知识解决实际问题的能力。

三、教学手段改革

本课程的特点是大量使用了数学的方法来表示物理的过程,公式较多,计算繁复,学生不容易掌握,因此采用单一的教学手段很难提高教学效果,必须针对授课内容采用多种教学手段相结合的授课方式。其一,采用多媒体课件教学手段,使教案多媒体化、教学过程互动化。多媒体教学信息量大,可以拓展学生的知识面,精简课堂授课学时,激发学生学习兴趣,提高教学效果。例如,在对概念、公式和定理的物理含义阐述和定性分析中,利用声音、图像、视频、动画等多媒体教学手段,使抽象的内容形象化和可视化,令学生理解其物理含义或包含的思想。但是多媒体教学存在不足是授课速度比较快,因此对于基本原理和基本方法的推导和证明,宜配合板书的授课方式,放慢讲课速度,让学生跟上教师的思路和有足够时间领会。其二,通过建设网络教学资源,使教学资源共享化、教学方式多样化和教师答疑实时化。针对课后的复习、相关背景知识的学习以及课堂内容的扩展部分,充分利用网络,建立课程主页,提供相关资源和讨论空间,实现网络辅导、网上课程研讨、网上交付作业与实验报告和优秀作业展示等。

四、完善课程考核方式

成绩评定既是一个重要的教学环节,也是检验教学效果的重要手段,教学模式的改革要求课程考核方式应灵活多样,评价方法由“一考定全局”的传统终结性评价转向形成性评价与终结性评价相结合、课内教学与课外自主学习相结合的全程评价,从而体现教学评价的全面性、导向性、实效性、过程性和发展性特点。完善课程考核方式,对素质教育的实施和学生自主学习能力和创新能力的培养非常有利,使学生考试成绩更加具有层次性,更加体现学生的综合素质。教师要加强学生平时学习情况考查,采用笔试、口试和论文答辩等多样化的考核方式,多方面地测量学生的综合素质和能力。课程综合评定成绩主要包括期末考试成绩(50%)、课程论文(20%)、实验(15%)和平时成绩(15%)。期末考试主要考查学生对基本概念的掌握和知识的灵活运用能力,避免过多公式推导与演算。课程论文主要考查评估学生知识掌握程度、文献查阅调研能力、动手实践能力、论文撰写和表达能力。实践表明,这种多模式相结合的考试方式更能检查学生的真实能力,避免了对学生的评价一刀切,有利于学生对考核的认同和接受,促进学生的学习主动性和自觉性,激发学生的潜能和个性的发展。

五、结束语

针对“数字信号处理”课程的特点,结合我校的人才培养目标和学生的总体水平层次,对课程的教学内容体系、教学方法和手段、教学评价方式进行了改革,以提高学生的学习兴趣,激发学生的潜能和个性发展,注重学生思维及创新能力的培养。通过学生的评教及后续课程的评价表明课程的教学改革取得了很好的教学效果,调动了学生学习的积极性和主动性,学生的实际动手能力和综合素质明显提高。

参考文献:

[1]武玉红,刘强.关于研究式教学方法的思考[J].长春理工大学学报,

2010,(6):168-169.

[2]赵洪.研究性教学中的难点与实施重点[J] .中国高等教育,2006,

(19):45.

第4篇

【关键词】2PSK;MATALB;仿真

1.引言

数字调制解调技术的发展不断更新,如今在现实中应用的数字调制系统大部分都是经过改进的,性能较好的系统,但是,作为理论发展最成熟的调制解调方式,对ASK,FSK,PSK的研究仍然具有非常大的意义,而且这样可以更容易将其仿真结果与成熟的理论进行比较,从而验证仿真的合理性。PSK系统干扰性能优于ASK和FSK,而且频带利用率较高,故在中、高带数字通信中应用广泛。

因此,本论文主要研究二进制相移键控(2PSK)调制解调系统的实现,仿真完成对数字信号的调制及解调。

2.二进制相移键控(2PSK)原理

相移键控是利用载波的相位变化来传递数字信息。在2PSK中通常用初始相位0和π分别表示二进制“0”和“1”。这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制绝对相移方式。

因此,2PSK信号的时域表达式为:

(1)

是表示第n个符号的绝对相位。因此,式子(1)可以改写为:

(2)

2PSK信号的调制原理框图如图1所示。在2ASK中f(t)是单极性的,而在2PSK中f(t)是双极性的基带信号。2PSK信号的解调通常采用相干解调法。

图1 2PSK信号的调制原理图

3.2PSK调制解调的仿真分析

(1)2PSK信号的调制解调仿真

产生十个随机数作为信号源,如图2所示;将信号源与载波相乘,实现对信号源的2PSK调制;模拟加入一个高斯白噪声,得到通过高斯白噪声信道后的调制信号;然后对调制信号进行解调,经过相乘器、低通滤波器、抽样判决器,得到接收信号。

图2 二进制序列

图3 2PSK的解调过程

图4 误码率曲线

2PSK的解调过程如图3所示。

分析:通过调制信号的时域波形图,可知原信号经过2PSK调制,再经过解调后的信号与原信号大体一致,这与理论相符合。

(2)误码率仿真分析

我们假设同一幅度的信号,分别经过2ASK相干解调、2ASK非相干解调、2FSK相干解调、2FSK非相干解调、2PSK解调后,比较信噪比和误码率的关系,如图4所示。

分析:随着信噪比的增大,各种方式的误码率都会减少。在误码率相同的情况下,所需要的信噪比2ASK最高,2FSK其次,2PSK最小;反过来,若信噪比一定时,2PSK系统的误码率比2FSK的小,2FSK系统误码率比2PSK的小。

4.结束语

信号调制解调的仿真可以实现对现实中信号进行调制解调,本论文设计运用了MATLAB实现了2PSK调制解调过程的仿真,在调制解调过程中观察了各个环节时域和频域的波形,并对比了2ASK、2FSK、2PSK三种误码率情况。由于误码率与信道信噪比之间的关系可以反映出调制系统的调制性能,根据误码率的分析,可以很好的反映出调制系统的调制性能。仿真结果的分析说明该2PSK仿真模型是成功的、符合理论的。

参考文献

[1]刘飞.数字中频调制解调系统的设计与实现[J].现代电子技术,2011.

第5篇

关键词:《数字信号处理》;教学方法;Matlab;多媒体教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2013)37-0057-03

《数字信号处理》是电子信息类专业重要的专业基础课,它是将信号以数字方式表示并处理的理论和技术。它的任务是使学生获得数字信号处理方面的基础理论、基本算法和DSP软硬件开发的基本技能,培养学生分析问题和解决问题的能力。

《数字信号处理》一般是在大三的第一个学期或第二学期开课,它的先修课程是信号与系统,学生掌握了连续信号与系统的时域、频域及复频域分析方法,进一步掌握和了解数字信号与系统的分析方法,特别是数字滤波的设计以及在MATLAB中的实现。教师在教学过程中,需要把凝聚在课本上的知识、方法、技能深入浅出地传授给学生。同时,为了提高教学效果,教师需要善于抓重点,知识结构层次要分明,对不同的学生,要因材施教。针对这门课程的应用性、创新性、实践性等特点,以及数字信号处理本身的飞速发展,需要对教学大纲的内容进行修改和完善,在不动摇基本理论、基本概念、以及基本分析和设计方法的前提下,优化理论知识结构,加强实验操作技能训练,特别是诸如数字滤波器设计等综合能力的训练。

另外,利用多媒体教学手段和校园网络数字化平台的建设为教学提供新的活力,从而使课堂教学内容更加丰富,增加上课信息量的传递。在课时不断压缩的情况下,提高学生的主观积极性,从而使教学质量和教学效率得以提高。具体可从以下几个方面进行改进。

一、多种教学手段结合使用

1.《数字信号处理》是一门实践性和理论性都很强的专业课,在教学过程中,为提高学生学习的积极性,采取理论教学和实验实训教学相结合的教学方法,使学生真正做到学以致用。传统的理论教学,是以灌输式方法为主要方式进行教学的,为了赶学习进度,老师整堂课都是不断地讲解,这样使学生的积极性得不到充分发挥。为充分发挥学生的主观能动性,应采用启发式教学方式,即老师讲解只占课堂时间的40%,学生和老师的互动(如例题与习题的解答)占30%,课堂上现场实验操作与仿真占30%。通过对基本原理知识的讲解、习题的解答、以及实物仿真操作训练,使学生在掌握基本理论知识的基础上,学会分析和解决问题的方法、能力,同时也调动同学的主动参与意识,让学生亲自享受到自己的学习成果,真正发挥教学相长优势。

2.开展黑板板书、网络资源共享和多媒体课件教学相结合的多形式授课方式。对《数字信号处理》中一些基本定理和基本结论,如DFT的性质,FFT算法原理等,需要利用黑板板书进行推导和证明,让学生一步步沿着老师的思路得以理解和说明;而对于一些需要图示举例、演示、以及形象理解的知识点,如循环移位、循环卷积等,可通过多媒体(声音、图像、视频、动画等多种形式)形象生动的教学方式进行互动教学;而对于课后的习题、相关背景知识的介绍以及课堂内容的扩展部分,则充分利用校园网络教学平台,建立《数字信号处理》课程的主页,上传相关课程资源,建立答疑和讨论空间。

3.将数字信号处理、Matlab语言以及DSP技术有机地结合起来,使同学们在学习了有关信号处理的理论知识后,通过算法语言进行软件仿真,并在DSP硬件平台上得以实现。这样,学生在学习过程中能将所学的知识融会贯通,并将基础课、专业基础课和专业课有机地关联起来,使学生摆脱大学各课程独立性的错误观念,从而提高教学质量。

二、理论算法与工程实践紧密结合

1.实验教学是培养学生理论联系实际,提高自身基本操作技能的重要手段,是培养与就业结合的适用型人才不可缺少的重要部分。在完成了课堂的理论教学内容的学习后,要想真正做到学以致用,学生就必须进行实验学习和训练,把课本中学到的知识用到实际的设计和工程中。实验项目是以工程案例为背景,如:用FFT对信号作频谱分析、人体心电图信号的噪声处理、数字信号处理在双音多频拨号系统中的应用等,充分发挥学生的主观能动性。实验训练可加深学生对所学课本知识及原理的理解,同时也培养了学生独立分析问题能力,提高编程设计和调试的基本技能,增强学生的动手能力。

2.加强课程设计中数字信号处理与DSP技术的紧密结合。学生灵活运用所学的数字信号课程知识,通过对一个较小的数字信号处理去应用系统的设计与开发,如语音信号的滤波、语音信号频谱分析、电力系统的谐波分析等。在课程设计尾声阶段,教师现场检查学生设计的硬件和软件调试结果,根据学生完成课程设计任务的情况,以评分细则依据公平、客观地评价学生成绩。学生通过某个工程案例的设计、调试和撰写设计报告,掌握信号处理算法设计和DSP软硬件设计的完整过程,学会Matlab和DSP开发坏境的操作、程序编写与调试。对学生进行信号处理方面的工程综合训练,训练学生的综合设计能力、程序设计及调试能力和产品设计的创新能力,培养学生运用所学的理论知识独立地解决实际问题的能力。为学生发挥创造思维能力、解决实际问题提供了广阔的设计舞台。

3.着力培养学生创新实践能力。进行基于DSP处理器的信号处理系统软硬件设计培训,并与全国大学生电子设计竞赛结合,培养学生创新精神及工程设计实践能力。课程由教师讲授、学生课外自学、竞赛实战题目制作、论文写作、题目测试点评等环节组成。

三、现代教育技术的应用

1.让学生通过先进的网络技术学习国外著名大学的相关数字信号处理课程的一些相关知识,同时学习国外课程综合大作业的考核方式,鼓励同学利用业余时间选择合适的课题,利用所学的知识提出问题、分析问题并解决问题,最后写出综合报告,真正做到学以致用。

2.设置不同理论层次和不同知识模块的课程班。在基本要求不降低的条件下,把Matlab仿真语言引入课程中,使学生以一种生动形象的方式练习学到的理论知识,深刻领会基本概念和基本原理。实践课上,分别开设了软件实验项目(以Matlab语言仿真为主的软件实验)、硬件实验项目(以DSP开发为主的硬件实验)以及软硬结合的综合实验(Matlab语软件仿真和DSP硬件开发)等几个层次,保证不同基础的同学能有更好的选择。

四、改革课程的考核方式

改革课程考核方式中的单一性以及先教授再考核的传统方式,变笔试考核为理论考核和设计实践考核的结合,采取边教授边考核的办法。

《数字信号处理》课程教学内容多、时间短,除离散信号与系统的时域、频域、复频域分析外,还重点阐述了数字滤波器设计等综合性知识,这些都需要学生了解、掌握并能利用MATLAB进行仿真试验。要在课堂教学中完成教学大纲要求的基本知识点的训练和应用有一定难度,教学任务很重。如何在有限的教学时间内完成基本教学内容,又兼顾该门课程的专业性、综合性及工程实践性,同时又能考核学生对专业难点、横纵向知识点的逻辑掌握是核心关键的问题。为解决课程教学中的矛盾,在课程考核中,带领学生把部分课堂搬到具体的实际设计中,让学生亲历课程中的理论内容和实际的结合,由此轻松记忆教学中的难点和重点。再从学生“教”和“学”的过程中,解决教学中专业性、综合性及实践性的问题,同时亦可解决时间短、教学内容多的问题。《数字信号处理》是综合性和理论知识特别是数学知识很强的课程,该课程前小半部分的内容已在前修的《信号与系统》中涉及过。但《数字信号处理》是以时域离散信号为处理对象,与连续信号与系统中的计算方法大相径庭。例如,《信号与系统》中大量用到了积分,而在数字信号处理中就是迭分(累加求和),信号与系统中的微分,在数字信号处理中就变为差分等,很多学生很难一下子转变观念。此外,《数字信号处理》中的DFT、DTFT、FFT三者变换之间的联系和区别更是难中之难。

该课程传统的考核办法常常是先讲授所有的知识点再统一综合考核——闭卷考试。这种方法虽能在最后的考试成绩中反映学生对该课程某些难点和重点知识的掌握,却忽略了《数字信号处理》知识多样性的特点,特别是实际设计部分。因此,在考核时,只顾及所谓的“重点、难点”而舍弃“综合性、多样性”是不够完善的。我们应该每讲解一个独立知识点就进行及时的考核检验,这种边讲授边考核的方式既能更好地检验每位学生对小知识点掌握的深度,又不影响该知识点与整个课程的联系。

参考文献:

[1]张丽丽,贾亮.“数字信号处理”课程教学的改革与实践[J].中国电力教育,2012,(34):70-76.

[2]蓝会立,廖凤依,文家燕.“数字信号处理”课程教学改革与实践[J].中国电力教育,2012,(3):86-87.

第6篇

关键词:大班教学;形象化教学;学习共同体;数字信号处理

作者简介:卢迪(1971-),女,天津人,哈尔滨理工大学电气与电子工程学院,教授;兰朝凤(1981-),女,黑龙江哈尔滨人,哈尔滨理工大学电气与电子工程学院,讲师。(黑龙江 哈尔滨 150080)

基金项目:本文系黑龙江省新世纪高等教育教学改革工程项目(项目编号:66996)、哈尔滨理工大学教育教学研究项目(项目编号:C201200011)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)16-0086-02

自大学扩招以来,各高校普遍存在学生多教师少现象,因此本科生的公共课、专业课的讲授常采用大班额配课制度,学生数在百名左右。大班教学带来的问题主要有两个方面:一方面是大班教学对学生学习积极性的影响。在大班教学中,师生之间的交流较小班教学减少,学生的个性差异和独特性被忽视,学生往往学习动机较低、学习积极性较差、学习被动、注意力不集中,师生之间和生生之间互不认识、互动很少。[1-3]另一方面,从教师的角度来说,由于大班教学导致学生发言、表达自己的意见机会大大减少,课堂气氛比较沉闷,教师往往采用“一言堂”的教授模式,教学方法单一,而且由于课堂教学时间有限、学生数多,教师很难从学生那里得到有效反馈,不能全面了解学生对课程内容的接受、理解程度。

针对这些问题,越来越多的高校教师关注于大班教学方法的研究,从中国知网的统计来看,2010年发表的相关研究论文有123篇,2011年有203篇,2012年有155篇。这些论文中,80%左右的研究集中于大学英语等公共课程,而对专业课程的大班教学方法研究较少,因此本文针对“数字信号处理”这门专业课的大班教学方法进行了一些探讨。“数字信号处理”课程是通信工程、电子信息工程、信息工程、自动控制、测控仪器等专业的重要专业基础课。该课程理论性强、数学知识应用较多、物理意义不明显,公式推导多,是学生普遍认为较难学懂、理解的课程之一。本文针对大班教学环境特点,从激发学生学习主动性,构建学习共同体方面出发,通过改善课堂效果,提高课堂上的学习效率,达到提升“数字信号处理”课程大班教学质量的目的。

一、建立“学习共同体”教学模式

“学习共同体”是指由学习者及助学者(包括教师、专家、辅导员等)共同构成的团体。团体成员在学习过程中经常进行沟通、交流,并分享各种学习资源,共同完成一定学习任务,形成相互影响、相互促进的人际联系。学习是学习者主动构建内部心理表征的过程,学习过程需要与物和教材对话、与他人对话、与自己对话。为此,教师要在教学过程中给学生“自主学习的空间”,使学生针对任务或问题去思考、分析、理解、探究,和学生构建“学习共同体”,增进师生之间、学生之间的协作和互动,[4]将学习的主动权归还给学习者,激发学生内在学习动力,将传统课堂教学活动中教师负责“教”、学生负责“学”的单向活动回归到师生互教、互学的双向活动,师生关系不再是“管理者—被管理者”的关系,而是“民主平等”的关系。课堂上,教师不再是知识的主讲者,而应像主持人一样,是知识的介绍者和串联者,学生应作为知识的“主讲者”阐述其对知识的理解。只有理解“知识”,而不是死记硬背“知识”,才能应用“知识”。譬如在讲授傅里叶变换时,教师在课堂上可以先从周期信号的分解历史开始介绍,从18世纪Euler、Lagrange等科学家对弦振动的分析(此内容物理中有相应实验),19世纪Fourier给出了周期信号级数的展开和积分、Parseval关于时域和变域的能量守恒原理、Dirichlet给出的级数和积分条件、Gibbs阐述的吉布斯现象,到20世纪无线电的产生、Nyquist采样定理、Wiener功率谱、Cooley&Tukey给出的FFT算法等。通过对傅里叶变换演变历史的介绍,学生很容易接受将任意信号分解为三角函数或指数函数形式的必然性,进而理解傅里叶变换的重要意义,掌握信号从时域到频域的转换过程。鼓励学生利用强大的网络资源,对教师介绍的有关历史进行深一步的挖掘。在这个过程中,学生会对相关知识进行初步学习,当课堂上教师讲解到相关知识点时,学生可以进一步补充自己了解的内容和对该知识点的理解。

大学工科专业课所讲内容本质上是数学、物理、化学等基础知识在工程实践中的应用,如何将这些基础知识与工程实践相结合是工程类本科学生必须掌握的技能,而只有理解这些基础知识才能很好地应用它们。英国著名哲学家和物理学家波兰尼将人类的知识分为显性知识和默会知识,其中默会知识本质就是理解力,是一种领会进而把握经验、重组经验,从而达到对它的理解和控制能力。相同的教师给同一批学生授课,但是每个学生的理解程度不一样,这就是默会知识掌握程度不同。默会知识的获得是与特定的问题或任务情景联系在一起的,由于每个学生的理解方式都受其独特的生活和文化环境影响,因此对相同问题的理解也是不一样的。掌握默会知识的最好方法就是让学生置身于知识所在的日常实践情景和科学实践情景中,通过参与专家、同伴的思考和行动过程而获得那些不能明确表达的规范、准则等。

为加强“数字信号处理”这门课的实践性,尝试将学生分为Flash课件制作组、MATLAB课件制作组,DSP程序编写组等,让学生将比较抽象的数字信号理论知识用自己的方式形象化表达出来,以判断其对默会知识的掌握。通过小组合作,学生可以充分阐述自己的学术观点,在观点的碰撞中,触发灵感,加强批判性思维,提升对所学知识的理解程度。

二、课堂效果的掌控

“学习共同体”的建立是要激发学生内在的学习动力,调动学习主动性,而课堂学习效率的提高可以达到事半功倍的效果。首先要建立统一、规范的课堂秩序,如上课不迟到、不早退,上课时不准许使用手机、笔记本电脑等电子设备,不能无故大声喧哗,发言前要举手示意教师等基本行为准则。没有规矩不成方圆,在确保课堂教学秩序的前提下,才能保证教学效果,要使学生清楚了解、理解这些行为规范,并自觉遵守执行。其次,教师要利用语言表达能力和肢体语言吸引学生的注意力。教师的语言要简洁、准确、生动、富有逻辑性,可以通过声调的变化强调所讲知识点的重要性。由于采用多媒体教学,教师不用一直站在讲台上,可以到学生座位附近边走边讲,这样,不仅可以缩短师生之间的空间距离,还可以缩短师生之间的心理距离。当教师走到学生身边时,学生必定会将注意力转移到教师身上,提高了其听课的专注度。教师在教室内的走动,还有利于随时维护课堂秩序,并随时得到课堂信息的反馈。

课堂秩序的规范不是要求学生沉默地听,而是要保证正常的教学秩序,学生如果想要发表自己的见解,可以随时举手示意教师。教师鼓励学生之间进行讨论,而教师则处于一种裁判的地位,负责给出结论和维持课堂秩序。这样,在课堂教学中,教师不再始终处于主讲地位,而是将学习的主动权交给学生,激发学生主动学习的能力。

三、“数字信号处理”课程的形象化教学

在文献[5]、[6]中都提到了“数字信号处理”课程形象化教学方法,目的是更好地帮助学生建立起数学描述与物理概念、物理过程之间的联系。因此在课堂上,教师要鼓励学生将数学描述用图形的方式表达出来。譬如在学完DFT的定义后,可以启发学生将拉氏变换,连续时间信号傅里叶变换(FT)、序列傅里叶变换(DTFT)与离散傅里叶变换(DFT)在s平面、z平面上画出来。虽然教材上有相关图形,但是可以让学生将这几个图形及模拟滤波器的频率响应、数字滤波器的频率响应绘制在一张纸上,如图1所示。在图1(a)中,虚轴上的拉氏变换对应连续时间非周期信号的FT;当时间信号为非周期序列时,进行DTFT变换,那么z平面上(如图1(b)所示)的单位圆对应的是序列的FT,此时学生可以清晰地看出数字频率仍然是连续的,但是具有了周期性质,这种频率连续的信号仍然不能用数字处理芯片进行处理,因此要在单位圆上进一步将连续的进行离散,如图1(c)所示,将单位圆N等分,即,可清楚表明DFT的概念。在解释图1(d)(e)时,重点强调模拟滤波器的角频率范围是,而数字滤波器的数字角频率是周期性的,只研究这一个周期就可以。

在课堂讲授中,多媒体教学能将抽象、生涩的知识形象化、直观化,改变了传统教学中粉笔加黑板的单一、呆板的表现形式。在多媒体教学上,可以将PPT、flash和MATLAB综合在一起应用。例如,在讲解卷积、圆周卷积等概念时,由PPT给出相应概念与公式,用flash展现2个序列做卷积、圆周卷积的过程。将圆周卷积中的移动序列做成一条贪吃蛇的形状,学生们看了之后,对圆周卷积有了一种直观的认识,对其原理的理解也更透彻。此外,多媒体教学信息量大,可以提高课堂的教学效率。但是,对于“数字信号处理”这类理论较强的课程,单纯使用多媒体教学,效果往往不佳,譬如在推导一些定理、公式时,推导过程直接呈现在PPT上,学生一眼扫过,导致思路跟不上(或也不愿意思考),理解不透彻,此时还是传统的板书效果更佳。在授课中,将知识的重点、难点及重要公式的推导由板书的形式呈现出来,方便学生记笔记,有利于学生日后对资料的整理和复习工作。

四、小结

“数字信号处理”是一门理论强、公式多、难理解的课程,在大班教学环境学下,如果学生不积极参与到教学活动中,则教学效果不佳。通过推行“学习共同体”思想,激发学生学习的内在主动性,通过形象化教学,提高学生学习的外在兴趣点,以达到学好、学透“数字信号处理”这门课的目的。

参考文献:

[1]陈艳莲.高校大班教学存在的问题及教学方法的优化[J].教育与职业,2011,(12):164-165.

[2]刘晓利.“特朗普制”教学模式与大班课堂教学的控制[J].计算机教育,2011,(12):59-61.

[3]于化新,刘慧慧,谢鑫.大班教学问题与策略的探讨[J].当代教育论坛,2011,(6).

[4]薛焕玉.对学习共同体理论与实践的初探[J].中国地质大学学报(社会科学版),2007,(1).

第7篇

P键词音频信号;WM8731S;先入先出存储器

中图分类号TP3

文献标识码A

文章编号2095-6363(2017)04-0095-02

1.概述

1.1论文研究的目的及意义

目前用VHDL进行电路设计,可以经过综合与布局,烧录至FPGA上进行测试,是硬件集成电路设计验证的技术主流。在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件,是小批量系统提高系统集成度、可靠性的最佳选择之一。数字语音集成电路与嵌入式微处理器相结合,首先降低了产品研发成本,其次系统更小、耗电低,况且使设计更简单,电路扩展方便且体积小,应用前景更广,如无人驾驶、5G技术、消费电子产品、排队机、报警以及报站器等。

1.2系统总体设计方案

FPGA的开发相对于传统Pc、单片机的开发有很大不同,FPGA的逻辑是通过向内部静态存储单元加载编程数据来实现的,存储在存储器单元中的值决定了逻辑单元的逻辑功能以及各模块之间或模块与I/0间的联接方式,并最终决定了FPGA所能实现的功能,FPGA允许无限次的编程。FGPA芯片对WM8731进行控制,使得WM8731对音频信号进行滤波处理。随着百万门级FPGA的推出单片系统成为可能。为了支持SOPE的实现方便用户的开发与应用altera还提供了众多性能优良的宏模块、IP核以及系统集成等完整的解决方案。这些宏功能模块、IP核都经过了严格的测试使用这些模块将大大减少设计的风险缩短开发周期并且可使用户将更多的精力和时间放在改善和提高设计系统的性能上而不是重复开发已有的模块。

2.系统的处理

2.1本音频信号处理系统

本音频信号处理系统以WM8731芯片为处理平台,以FPGA芯为控制中心,控制音频解编码芯片WM8731对输入的音频信号进行滤波处理,以获得高品质的音频数字信号,再将高品质的音频数字信号输出到信号接收端。由音频编解码模块电路、控制器模块、时钟分频模块、I2c时序接口模块、I2c控制字配置模块、I2s时序接口及音频数据处理模块、FIFO先进先出存储器设计、带通数字滤波设计8部分构成。

2.2各部分电路原理

1)时钟分频模块由于要使WM8731工作,此主时钟频率依照该芯片工作的不同模式有12.288MHz、18.432MHz、11.2896MHz以及16.9344MHz这4中频率可选。

2)I2c时序接口模块。实现对I2c时序的模拟,控制SCLK(数据时钟)和SDAT(数据线)将存放在I2c_data中的24位控制字串行发送给W~8731,该模块例化于I2c控制字配置模块之中,以实现对该芯片的控制字写入。

3)I2c控制字配置模块。分别为:MODE、CSB、SDIN和SCLK。对应功能为控制接口选择线、片选或地址选择线、数据输入线和时钟输入线。它具有2线和3线两种模式。本文采用2线模式对WM8731进行控制。为MPU接口。选择MODE为0时为2线模式。

4)I2s时序接口及音频数据处理模块。将18.432MHz的主时钟分频,产生均为48kHz的数模转换和模数转换采样率时钟以及对应的数字音频时钟(BELK)。除此之外,在此模块中还调用了I2s串行数据转并行数据模块,并定义变量state作为串并变换的起始标志。

5)FIFO先进先出存储器,是一种非常基本,使用非常广泛的模块。

3.系统的软件设计及调试

软件分为控制器模块程序、时钟分频模块、I2c总线时序模块、12S时序接口及音频数据处理模块。本系统是基于FPGA的音频编解码芯片控制器,用以实现对语音芯片WM8731的控制。在整个系统中,用到了标准MIC、Line-in、Line-out接口、2个开关按键以及3个按钮式按键。FPGA器件主要通过12C总线给语音芯片WM8731经行控制字配置。初始化完成后,音频数据从MIC或LineIn输入,经过A/D转换后,数字信号再进入FIFO,再经过FIR数字滤波处理,之后成为串行的数字信号并由12S总线传入FPGA器件。经过串并变换等处理之后,再经过D/A转换由LineOut通过耳机输出。在调试过程中,始终选择主模式,DACSEL始终置为数字信号输出。在测试中,WM8731能够输出高品质的音频信号。

第8篇

关键词:数字信号处理;课程规范化建设;教学实践

中图分类号:G420 文献标志码:A 文章编号:1674-9324(2017)27-0134-02

一、引言

“数字信号处理”课程是测试计量技术及信息工程类的专业基础平台课程,同时也是许多相关专业硕士研究生的入学考试或后续课程,在高校理工培养计划中占有重要的地位。

课程中涉及的基本原理和公式推导较多,需要“高等数学”、“信号与系统”等多门先修课程的学习,内容比较抽象,教学难度相对较大,该课程成为学生普遍反映的“头疼课”,课题组教师多年来一直在寻找多种切实可行的教学方法及教学手段并开拓提高学生学习兴趣的方法,取得了一定的效果,在此基础上,借深化课程改革以及专业综合认证的契机,结合自己的教学实践,提出数字信号处理课程的规范化建设。

二、修订课程大纲

针对授课专业学生的知识体系和应用需要,进一步修订与完善课程大纲,重点体现为教学目标的明确化与具体化,课程的教学目标与相关毕业要求有对应关系,指明要使学生能够具备何种能力。教学过程围绕如何达到教学目标组织教学,课程的教学内容体现对教学目标的支撑,考核方式要验证对教学目标的达成。

三、教学模式改革

传统教学采用多媒体+板书的授课方式,由于课程内容抽象、公式烦琐,课堂教学具有一定难度,学生在学习过程中比较困难,一些定理、公式往往不能完全理解,加上学时压缩导致授课速度加快,对一些需要深入讨论的知识点不能一一详尽分析探讨。多媒体课件的辅助使用能对理解抽象概念起到一定作用,但由于缺乏自主训练,被动接受导致学生仍不能深层次的理解内容的本质,效果的改善不是特别明显。本次教学模式改革宗旨是避免传统、单一的课堂知识讲授,以“让学生动脑思考、动手训练,促进知识到能力转化”为目的,设计以能力培养为主的教学环节。

这一教学改革方向,具体从修订课程大纲、教学模式改革、课程考核方式改革和规范考核报告等几个方面制定教学改革建设的方案和措施:

1.针对授课专业学生的知识体系和应用需要,调整教学内容和方向,增加教学实践环节,完备数字信号处理课程体系,包括完善教学体系、修订教学大纲、实验大纲和授课日历等。

2.针对传统课程考核试卷成绩权重过高,容易造成学生平时不重视、考前突击的应试局面,提出多元化考核方式,改变以往以卷面考试为主要评测标准的做法,将学生在课程学习全过程中的表现均纳入考核范畴,建立注重过程和综合能力的课程考核机制。

3.规范课程考核报告,在完成传统成绩分析的基础上,考核报告围绕对课程目标的达成与毕业能力的达成来量化,并根据达成度结果提出持续改进措施,形成教学过程的闭环结构,不断改善教学效果和学生的学习效果。

4.深入开展教学方法研究与实践,撰写有关教学方法、教学改革等教学理论研究论文。

四、课程考核方式改革

我校“数字信号处理”总学时为40,其中理论36学时,实验4学时。传统考核方式为结课考试占80%,平时成绩20%。由于结课考试权重过高,容易造成学生平时不重视,通过考前突击应付考试的局面,陷入应试教育的误区。本次课程考核方式改革的思路是丰富考核形式,建立基于过程的综合考试方式,注重对知识应用能力、实践能力、解决问题能力和创新能力的考核。课程考核应全面检查教学内容完成情况,并且结合课程的教学目标,考查所要达成的毕业能力。图1给出了课程考核构成示意图。

1.结课考试。结课考试各考题对应相应的课程目标,包括概念理解、理论计算、工程问题分析与设计,全面考察学生掌握知识情况。

2.项目作业。项目作业是实现理论与实践相结合的重要环节,以团队方式实施,原则每组3―4人,学生团队自我组织和协调关系,通过分工合作、交流讨论的方式完成相应任务,每组提交研究报告一份。报告需针对各个问题的提出解决方案,包括查了哪些资料、做了哪些尝试、尝试的效果、遇到的问题、问题的解决方法、遗留的问题、遗留问题的原因分析、方法的改进创新等,不限于以上各点。项目作业将以答辩的形式进行验收,答辩结束后,学生需及r上交项目研究报告和PPT。报告内容的完整度与答辩过程分析问题的深入程度及解决问题方法的正确性、新颖性作为成绩评定的依据。

3.实验考核。根据学生的实验预习、实验纪律、实验动手能力及实验报告结果,进行综合评定。

4.平时成绩。平时成绩包括作业成绩和课堂表现和讨论课成绩。作业成绩依据作业的实际得分计算。课堂表现的量化依据是随堂回答问题和讨论课环节学生的参与度、对问题的思辨能力与拓展能力。讨论课成绩依据学生资料查阅、知识熟练运用及体会、PPT制作等综合评分。

考核方式的多元化改变了以往以卷面考试为主要评测标准的做法,将学生在课程学习全过程中的表现均纳入考核范畴,建立了注重过程和综合能力的课程考核机制。

五、课程考核报告规范化

此次课程改革的一个重要环节是考核分析报告的规范化,报告由总表和附表两部分组成。总表与传统的试卷分析类似,包括课程的基本信息,如开课学期、班级、任课教师等,以及考核各环节的比重和成绩分布情况。附表构成如表1。

其中,课程目标和毕业要求由教学大纲给出。考核报告围绕对课程目标的达成与毕业能力的达成来量化,并根据达成度结果提出持续改进措施,形成教学过程的闭环结构。

六、结语

本文针对“数字信号处理”的课程特点,提出了课程规范化建设方案。从大纲修订、教学模式与考核方式的改革、考核分析报告的完善等几个方面阐述了具体实施办法。通过教改使教师有意识的提高自己的知识水平、道德素养和业务能力,加强教师团队建设,本次改革已在本专业试用一学期,结果表明,该门课程的规范化建设激发了学生的学习d趣,提高了学生自主学习的能力,改变消极被动的学习习惯,变被动为主动,通过对考核分析报告中达成度的结果进行持续改进,必然会使教学质量得到进一步提高。

参考文献:

[1]胡广书.数字信号处理-理论算法与实现[M].北京:清华大学出版社,2003.

[2]谢平,王娜,林洪彬.信号处理原理及应用[M].北京:机械工业出版社,2009.

[3]刘永红,王娜.“数字信号处理”课程学习兴趣的培养[J].电气电子教学学报,2014,36(2):9-11.

第9篇

[论文摘要]对数字化变电站中光电互感器的工作原理、结构上的特点和优点进行简单分析,同时阐述光电互感器的应用对电能计量方面的影响。

数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。