时间:2023-03-17 18:00:53
导语:在英语论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
EE6442 Assignment 3
Fan Zhang
University of Limerick
MEng. Computer and Communication Systems
ID: 0526401
Abstract: I am a video game fan, but not an addict. Since this topic attracted me a lot, I decided to choose this one as my topic for the third assignment of Processor Architecture Module. I started to play video games since I was five. While I was playing games, I found the game console itself just like a mystery, how could they react our actions to the controller then reflects so amazing pictures on TV? Although I have read a lot about it in game magazines, I admit that I didn’t try to find the answer until I found this topic. This is a great chance for me to answer the question myself. At the same time, I want to present you this paper, which should be fun.
This paper concerns the differences of architecture between PC and PlayStation 2. Since the purposes of PC and PlayStation 2 are different (or maybe I should say the purposes of PC include that of PlayStation 2), the different objectives decide the different design orientation. I think PlayStation 2 is a good game console for the comparison. First, a lot of documentations about PlayStation 2’s Emotion Engine can be found in the Internet. Second, as far as I know, PlayStation 2’s design has straightforward purposes: 3D games and multimedia, which makes the game console is seemed to be born for these two reasons. Contrasts to PlayStation, current PCs do very well on these two aspects, but the cost is the unstoppable upgrade of hardware. PlayStation 2 is a product born 5 years ago. Today tens of millions of people are still enjoy PlayStation games at home. 5-year-old PCs have been washed out already.
Keywords: PC, processor, video card, system controller, bus, Emotion Engine, Vector Unit, Graphics Synthesize.
1. INTRODUCTION
1.1 The evolution of game performance
The computer technology has achieved rapid evolution this year. From Figure 1.1 to Figure 1.5 you can see, in almost twenty years, how great changes of game performance are, both PC and game consoles.
Figure 1.1: Final Fantasy I (FC) 1987 by SQUARE
Figure 1.2: Final Fantasy XII (PlayStation 2) 2006 by SQUARE ENIX
Figure 1.3: Prince of Persia (PC) 1989 by Broderbund
Figure 1.4 Prince of Persia: The Two Thrones (PC) 2006 by Ubisoft
The screenshots above are the evidences of technique developments. In these twenty years, computers are almost 10 times faster than in the 1980’s. The cost of buying a computer is decreasing simultaneously. However, the development orientations of both PC and game consoles didn’t change much during these 20 years. Here I want to say game consoles and PC are different, although they both can be classified to ‘computer’ class, although PC includes all game consoles’ functions (but the software are not compatible each other). The differences include many areas, the architecture, the media, the software producing and selling model, and the customers.
1.2 Why they are different?
I would rather to say it is because of the distinct purposes. Of course PC can play games, can do anything that game consoles do, and in the present, PlayStation 2, the most famous game console in the world, can connect to Internet, can print paper, even can run complete Linux operating system, but PC is general purpose, this means PC should care too much things, and be good at almost everything. For instance, PC should be good at text processing, games, printing, Internet connection, a huge amount of protocols are settled for it; PC also need to compatible with all components and software that are designed and implemented by current standards. But game consoles are different. They need only care about games, which mean most designs are flexible. At the same time, the standards which PC has to obey do not affect it at all. No extra cost, no burden, only focus on games.
Figure 1.5: Sony’s PlayStation 2
1.3 Multimedia
From later 20th century, multimedia has become one of the main purposes of PC. Corresponding new technology for enhancing the capability of multimedia processing on PC has been developed as well. However, the reality of transmission speed bottleneck hasn’t been changed much. Keith Diefendorff and Pradeep K. Dubey published an article named “How Multimedia workloads will change Processor Design” in 1996. They argued the dynamic media processing would be a big challenge for current processor architecture. They also thought it will force the fundamental changes in processor design.
Before Pentium 4, the processors shared the same character: their data cache memory was big, but instruction cache memory was relatively small. It was quite useful for most usage, for instance, word editor, e-business, stock information processing, and so on. However, Diefendorff did not think it is useful, or efficient enough for multimedia processing, for multimedia data come and forth constantly, no need to settle a huge bulk of storage space for holding the information that rarely has chance of reuse. Contrarily, multimedia processing requires more calculation than others. So, for multimedia calculation, the instruction cache memory should become larger, both caches require faster transmission speed as well. We shall see this prediction has realized much in both Pentium 4 and PlayStation 2.
1.4 The purpose and the brief layout of the article
This paper is mainly talk about the architectural differences between PC and PlayStation 2, which is the most famous game console in the world. The article will discuss several aspects, the whole architecture, the CPU, the motherboard, and the graphics. In the following section, the whole architectures are compared. Two processors, Intel’s Pentium 4 and PlayStation 2’s Emotion Engine are discussed and compared in the third section. The fourth section is about the bus and caching comparison. The fifth section mainly talks about PC and PlayStation 2’s graphic devices, Video card and Graphics Synthesizer. The conclusion will be made in the last section.
2. WHOLE ARCHITECTURE COMPARISON
2.1 PC architecture
The basis of PC could root back to 1940’s. John von Neumann (1903-57), who constructed a very basis structure of computer, stayed his name in the history forever. The architecture of modern PC is still based mainly on his architecture. Let’s see a diagram of PC architecture as our basis of illustrating how PC works for game performance in the future.
Figure 2.1: PC architecture--------------------------------->
Different regions in the diagram have different clock speed. We can see the system controller is the heart of whole PC system. It carries data between processor and other components in PC over bridge. The bridge is used to connect interfaces and buses. Two kinds of bridges exist in PC, North Bridge (the system controller) and south bridge (the bus bridge). The system controller provides an interface between the processor and external devices, both memory and I/O. The system controller works with the processor to perform bus cycles.
From the diagram we can see, the system controller makes the whole diagram to be complicated. This is because the system controller has to adjust the bus cycles between the processor and the external device that it wants to access. Briefly, the PC’s working procedure can be described as follow:
PC executes commandsèaccess data with the help of system controllerèreturns the execution resultèexecute commandsè…
System controller also possesses the function of controlling DMA (Direct Memory Access), which is the ability to transfer data between memory and I/O without processor intervention.
2.2 PlayStation 2 Overview
Let’s first see the architecture of PlayStation 2.
Figure 2.2: the architecture of PlayStation 2---------------->
PlayStation 2 is composed of a graphics synthesizer, the Emotion Engine, the I/O Processor (IOP), and a Sound Processor Unit (SPU). The IOP controls peripheral devices such as controller and disk drive and detect controller input, which is sent to the Emotional Engine. According to this signal, the Emotional Engine updates the internal virtual world of the game program within the video frame rate. Many physical equations need to be solved to determine the behavior of the character in the game world. After this is determined, the calculated object position is transformed according to the viewpoint, and a drawing command sequence (display list) is generated. When the graphics synthesizer receives the display list, it draws the primitive shape based on connected triangles on the frame buffer. The contents of the frame buffer are then converted from digital to analogue, and the video image appears on the TV. Finally, the Sound Processor is in charge of sound card thing, it outputs 3D digital sound using AC-3 and DTS. This is the overview of PlayStation 2 working procedure.
2.3 Comparison
Compare Figure 2.1 and Figure 2.2, we can see that the PC’s architecture is far more complex than that of PlayStation 2’s. There are many reasons. PC has more devices has to care. For instance, PlayStation’s I/O processor, which is act as the same role as the system controller bus in PC, the chief responsibility of this chip is to manage the different devices attached to the PS2. 2 PlayStation controller port, and MagicGate-compatible memory card interface, 2 USB ports, and a full-speed 400Mbps IEEE 1394 port, which are much less than PC. The other main reason is processor’s speed increased much faster than other devices; the devices themselves had uneven speed increments as well. In general, PlayStation 2 has simpler architecture and less components and devices.
3. ALL ABOUT PROCESSORS
3.1 Pentium 4 Processor
Pentium 4 adopts Intel’s 7th generation architecture. We can see in detail from the diagram below. Since the birthday of PlayStation 2 waiting for exploring was 4th March 2000, when Pentium 4 was not published yet. It is unfair to PlayStation 2. However, Pentium 4 is the most popular processor in the present, and PlayStation 2 is globally the most popular game console, whatever.
Figure 3.1: Pentium 4 processor architecture
Since the previous generation architecture (Pentium III) Intel began to use hybrid CISC/RISC architecture. The processor has to accept CISC instructions, because it has to be compatible with all current software (most software is written using CISC instructions). However, Pentium 4 processes RISC-like instructions, but its front-end accepts only CISC x86 instructions. A decoder is in charge of the translation. Intel doesn’t create the path for programs using pure RISC instructions.
CISC instructions are rather complex, decoding one may cost several clock cycles. In Pentium III era, once a CISC instruction needed to be processed several times (i.e. a small loop), the decoder had to decode the instruction again and again. In Pentium 4 this situation has been improved by replacing Pentium III’s L1 instruction cache to Trace Cache, which is placed behind the decoder. The trace cache ensures that the processor pipeline is continuously fed with instructions, decoupling the execution path from a possible stall-threat of the decoder units. After decoding stage, Intel introduces the Renamer/Allocator unit to change the name and contents of 32-bit CISC instructions of the registers used by the program into one of the 128 internal registers available, allowing the instruction to run at the same time of another instruction that uses the exact same standard register, or even out-of-order, i.e. this allows the second instruction to run before the first instruction even if they mess with the same register.
The other big advance of Pentium 4 is its SSE2 - The New Double Precision Streaming SIMD Extensions. 128-bit SIMD package offers 144 strong instructions. Intel prepares two SIMD instruction units for Pentium 4 (64-bit each), one for instructions, and the other for data. Let’s recall Section 1.3, Pentium 4’s 128-bit SIMD extension is Intel’s efforts for meeting the future requirements for multimedia implementations. Because of that, video, games implementation capability gained the drastic enforcement.
Pentium 4’s pipeline is the most disputable place. When it was announced, 20-stage pipeline surprised a lot of people. Intel did so because the more stage pipeline can increase the clock rate of processor. However, once the pipeline does not contain the information what processor need, the pipeline refill-time is going to be a long wait. In fact, Pentium 4 is only faster than Pentium III because it works at a higher clock rate. Under the same clock rate, a Pentium III CPU would be faster than a Pentium 4.
Figure 3.2: Pentium 4 Pipeline
The scheduler is a heart of out-of-order engine in Pentium 4. It organizes and dispatches all microinstructions (in other words, uops) into specialized order for execution engines.
Figure 3.3: Pentium 4 scheduler
Four kinds of schedulers deal with different kinds of microinstructions for keeping the processor busy all the time. The ports are Pentium 4’s dispatch ports. If you read the diagram carefully, you can see Port 1 and Port 0 each is assigned a floating-point microinstruction, Port 0 is assigned Simple FP Scheduler (contains simple Floating-point microinstructions) and Port 1 is assigned Slow / Floating Point Scheduler (contains complex floating-point microinstructions). Port 0 and Port 1 also accept the microinstructions came from Fast Scheduler. For the floating point microinstruction may run several clock cycles, Pentium 4’s scheduler monitor decides to transfer the microinstruction to Port 1 if Port 0 is busy, and vice versa. Port 2 is in charge of Load microinstructions and Port 3 deals with Store microinstructions.
3.2 PlayStation 2’s Emotion Engine
PlayStation 2’s designers focus deeply on the purpose of 3D games. At the same time, they had to ensure it was completely compatible with DVD video. For performing 3D games well, PlayStation 2 has to possess perfect vision and audio functions. Emotion Engine acts as the role of Geometry calculator (transforms, translations, etc), Behavior/World simulator (enemy AI, calculating the friction between two objects, calculating the height of a wave on a pond, etc). It also in charge of a secondary job of Misc. functions (program control, housekeeping, etc). In general, Emotion Engine is the combination of CPU and DSP processor.
Figure 3.4: The architecture of Emotion Engine
The basic architecture of Emotion Engine is show in Figure 14. The units are composed of
(1) MIPS III CPU core
(2) Vector Unit (two vector units, VU0 and VU1)
(3) Floating-Point Coprocessor (FPU)
(4) Image Processing Unit (IPU)
(5) 10-channel DMA controller
(6) Graphics Interface Unit (GIF)
(7) RDRAM interface and I/O interface.
Something interesting in the diagram you may have noticed. First, inside the Emotion Engine, there is a main bus connects all components for data communication. However, between MIP III core and FPU, VU0 and MIP III, VU1 and GIF, there are dedicate 128-bit buses connect them. Second, VU0 and VU1 have certain relationship shown in the diagram. This design extremely enhanced the flexibility of programming with Emotion Engine.
MIPS III Core connects with the FPU and VU0 directly with the dedicated buses. The pipeline of MIPS III is 6-stage. The MIPS III is the primary and controlling part, VU0 and the FPU are coprocessors to MIPS III. They compute the behavior and emotion of synthesis, physical calculations, etc For example, in a football game, the flying orbits of the ball, the wind effect, the friction between ball and the ground need to be calculated. At the same time, 21 player’s AI needs to be implemented (the last player is controlled by the user), the activity, the lineup, etc. After the calculation, MIPS III core sends out the display list to GIF.
VU1 has a dedicated 128-bit bus connected to GIF, which is the interface between GS (Graphics Synthesizer) and EE (Emotion Engine). VU1 can independently generate display list and send to GIF via its dedicated bus. Both of these relationships forms a kind of dedicate and flexible structure. The final goal of EE is generating display list and send to GS. The programmer can choose either programming two groups (MIPSIII + FPU + VU0 and VU1 + GIF) separately, send their display list in parallel, or programming purposely, making MIPS III + FPU + VU0 group as the “coprocessor” of VU1, for instance, generate physical and AI information then send to VU1, VU1 then produces corresponding display list. The diagram below shows the two programming methods.
(a) (b)
Figure 3.5: Two programming methods of Emotion Engine
MIPS ISA is an industry standard RISC ISA that found in applications almost everywhere. Sony’s MIPS III implementation is a 2-issue design that supports multimedia instruction set enhancements. It has
(1) 32, 128-bit general purpose registers
(2) 2, 64-bit integer ALUs
(3) 1 Branch Execution Unit
(4) 1 FPU coprocessor (COP1)
(5) 1 vector coprocessor (COP2)
What I really want to cover are two vector processors, VU0 and VU1. This is the main reason why PlayStation 2 is powerful.
VU0 is a 128-bit SIMD/VLIW design. The main job of VU0 is acting as the coprocessor of MIPS III. It is a powerful Floating-point co-processor; deal with the complex computation of emotion synthesis and physical calculation.
The instruction set of VU0 is just 32-bit MIPS COP instructions. But it is mixed with integer, FPU, and branch instructions. VIF is in charge of unpacking the floating-point data in the main bus to 4 * 32 words (w, x, y, z) for processing by FMAC. VU0 also possesses 32 128-bit floating-point registers and 16 16-bit integers.
VU0 is pretty strong. It is equipped with 4 FMACs, 1 FDIV, 1 LSU, 1 ALU and 1 random number generator. FMAC can do the Floating-Point Multiply Accumulate calculation and Minimum / Maximum in 1 cycle; FDIV can do the Floating-Point Divide in 7 cycles, Square Root in 7 cycles, and Inverse Square Root in 13 cycles. In fact, as the coprocessor of MIPS III, VU0 only uses its four FMACs. However, VU0 doesn’t have to stay in coprocessor mode all the time. It can operate in VLIW mode (as a MIPS III coprocessor, VU0 only takes 32-bit instructions. In VILW mode, the instruction can be extended to 64-bit long). By calling a micro-subroutine of VLIW code. In this case, it splits the 64-bit instruction it takes into two 32-bit MIPS COP2 instructions, and executes them in parallel, just like VU1.
VU1 has very similar architecture than VU0. The diagram below is the architecture of VU1 possesses all function that VU0 has, plus some enhancement. First, VU1 is a fully independent SIMD/VLIW processor and deal with geometry processing. Second, VU1 has stronger capability than VU0: it has a 16K bytes’ instruction memory and a 16K bytes’ data memory, which VU0 only has 4K bytes each. VU1 acts as the role of geometry processor; it burdens more instructions and data to be computed. Third, VU1 has three different paths to lead its way to GIF. It can transmit the display list from 128-bit main bus, just as VU0 + CPU + FPU do; or it can transmit via the direct 128-bit bus between its VIF and GIF; the last one is quite interesting, the path comes out from the lower execution unit (which I will talk about later) and goes directly to GIF. Three individual paths ensure two main problems of PC 3D game programming will not happen: first, the bottleneck of bus bandwidth; second, the simplex way of programming.
Figure 3.6: The architecture of VU1
VU1’s VIF does much more than that of VU0 does. The VIF takes and parses in which Sony called 3D display list. The 3D display list constructs of two types of data: the VU1 programming instructions (which goes to Instruction memory) and the data that the instruction deal with (which goes to Data memory). The instruction itself can be divided into two units, Upper instruction and Lower Instruction, which directly operate on two different execution units, Upper execution unit and Lower execution unit. The 64-bit VLIW instruction can be used to deal with two operations in parallel. Recall that VU0 possesses the same function but most of time it acts only as the coprocessor of MIPS III, this mode can only operate 32-bit SIMD instructions. Programmers also rarely ask VU0 to do the same thing what VU1 is good at.
3.3 Comparison
I strongly agree if you think Emotion Engine is more flexible than Pentium 4. The design of Emotion Engine is completely around the performance of 3D games. Two vector units, VU0 and VU1, contribute a lot for the game performance. Pentium 4 architecture is straight, you can trace the path of data from the very beginning, and soon you will be able to know how Pentium 4 works easily. For Emotion Engine, except you are the game designer, you will never know exactly.
I did not put too much digits in this section, the comparison of digits does not make sense at all. The comparison between two PC processors depends on digits, because they are the same kind and work in the same situation. For game consoles, without the burden of compatibility, the designers think a lot for the perfect cooperation. This would results in better performance, plus less cost. Unfortunately the programmers don’t think it is a good idea, it cost them quite a lot of time to investigate the processor to figure how it works.
4. BUSES AND CACHEING
4.1 PC Motherboard
While multimedia processing requires massive quantities of data to move rapidly throughout the system, the speed difference between processor and external devices is the main bottleneck of PC. Processor companies like Intel have put a lot of energy into getting the rest of the system components to run faster, even if other vendors provide these components. Improving the performance of motherboard is a good idea. Figure 4.1 is the main structure diagram of GIGABYTE GA-8TRX330-L Pentium 4 Motherboard. The bandwidth between Processor and system controller, main memory and system controller has reached to equally incredible 6.4GB/S. However, the latency of memory is still impossible to remove. Here I want to talk something about the processor caching mechanism.
In the present, motherboard’s FSB (Front Side Bus) frequency has over 800 megahertz. However, it is slower than that of Pentium 4, which is over 3 gigahertz. Processor runs at a multiple of the motherboard clock speed, and is closely coupled to a local SRAM cache (L1 cache). If processor requires data it will fist look at L1 cache. If it is in L1 cache, the processor read the data at a high speed and no need to do the further search. If it is not, sadly processor has to slow down to the motherboard clock speed (what a drastic brake!) and contact to system controller. System controller will check if L2 cache has the required data. If has, the data is passed to processor. If not, processor has to access the DRAM, which is a relatively slow transfer.
4.2 About PlayStation 2’s buses and caching.
Recall Figure 2.2, we can see 32-bit interfaces between processor and I/O Processor, main memory and I/O Processor, which can achieve 3.2GB/S bus speed. Although slower than Pentium 4, Emotion Engine itself is relatively slow as well, 300MHz MIPS III processor. However, PlayStation 2’s 32-bit interface, 10-channel DMAC, 128-bit internal bus, and small cache memory group to an incredible caching condition. Any data necessary can be store or download in time. This strategy takes 90% of DMA capability. It makes the latency which main memory generates is acceptable for Emotion Engine.
4.3 Comparison
This time we can talk about digits some more. Let’s see a Pentium 4’s cache memory
L1 trace cache: 150K
L1 data memory: 16K
L2 memory: 256K ~ 2MB total: 422~2204K
Let’s see PlayStation 2 next
VU0 data memory: 4K
VU0 instruction memory 4K
VU1 data memory 16K
VU1 instruction memory 16K
MIPS III data memory: 2-way 8K
MIPS III instruction memory: 2-way 16K total: 64K
Contrast to Pentium 4, the cache memory of PlayStation 2 is too small. Its capability is indeed ‘weak’ in the present. Pentium 4 is able to hold more data and does more computations in parallel. However, PC architecture hasn’t been improved along with the processor. No matter how Pentium 4 fast is, present bus architecture is never going to perform Pentium 4 100% capability. PlayStation 2 achieves a nearly perfect structure and mechanism, which helps it exert as much as it can (or maybe I should say because Pentium 4 is too fast, the memory speed is relatively too slow). Besides, it remarkably low down the cost, you can afford a PlayStation 2 plus a controller with the same price of a single Pentium 4 chip.
5. VIDEO PERFORMANCE
5.1 Comparison of performance between PC and PlayStation 2
Figure 5.1 Need for Speed Most Wanted (PlayStation 2) 2006 by EA GAMES
PlayStation 2 Graphics Synthesizer (GS)
· 150 MHz (147.456 MHz)
· 16 Pixel Pipelines
· 2.4 Gigapixels per Second (no texture)
· 1.2 Gigatexels per Second
· Point, Bilinear, Trilinear, Anisotropic Mip-Map Filtering
· Perspective-Correct Texture Mapping
· Bump Mapping
· Environment Mapping
· 32-bit Color (RGBA)
· 32-bit Z Buffer
· 4MB Multiported Embedded DRAM
· 38.4 Gigabytes per Second eDRAM Bandwidth (19.2 GB/s in each direction)
· 9.6 Gigabytes per Second eDRAM Texture Bandwidth
· 150 Million Particles per Second
· Polygon Drawing Rate:
· 75 Million Polygons per Second (small polygon)
· 50 Million Polygons per Second (48-pixel quad with Z and Alpha)
· 30 Million Polygons per Second (50-pixel triangle with Z and Alpha)
· 25 Million Polygons per Second (48-pixel quad with Z, Alpha, and Texture)
· 18.75 Million Sprites per Second (8 x 8 pixel sprites)
Figure 5.2 Needs for Speed Most Wanted (PC) 2006 by EA GAMES
PC Graphics Chip RADEON X300 SE PCI Express
· Bus type PCI Express (x16 lanes)
· Maximum vertical refresh rate 85 Hz
· Display support Integrated 400 MHz RAMDAC
· Display max resolution 2048 x 1536
· Board configuration
· 64 MB frame buffer
· Graphics Chip RADEON X300 SE PCI Express
· Core clock 325 MHz
· Memory clock 200 MHz
· Frame buffer 64 MB DDR
· Memory I/O 64 bit
· Memory Configuration 4 pieces 8Mx16 DDR
· Board configuration
· 128 MB frame buffer
· Specification Description
· Graphics Chip RADEON X300 SE PCI Express
· Core clock 325 MHz
· Memory clock 200 MHz
· Frame buffer 128 MB DDR
· Memory I/O 64 bit
· Memory Configuration 4 pieces 16M x 16 DDR
· Memory type DDR1
· Memory 128 MB
· Operating systems support Windows? 2000, Windows XP, Linux XFree86 and X.Org.
· Core power 16 W (Max board power)
From the data we can see. GS is too weak, contrast to low-level video card of PC. However, the performance of PlayStation is not too that bad. I don’t want to analyze data here. What I am interested to discuss is about the performance itself.
Let’s see Figure 5.2 in detail. Texture is very clear and exquisite. This is what big video memory offers. The tree leaves in distance need a lot of polygons to build. The video card itself is low-level; possess no special effect for the game rendering. No refection and other sparking place can be found. In general, the game performance is only ok.
Figure 5.3 PC game rendering related architecture
Now let’s see PlayStation 2’s performance, which is in Figure 5.1. We see a good image. If you look the image in detail, you may found the mountain beside the road is weird: the shape of mountain is not that nature, like some spectrum graphics. This is done by VU1, which draws the Bezile, build 3D graphic based on the curve. Although not good enough, how many people will actually notice that when dashing at over 200km/h with his virtual car? VU1 does a lot of job like that and it could generate a lot of shapes without too many polygons to build. Now let’s see the car, the refection of cars is true reflection (which means it is not fake texture pretended to be the reflection), we can distinguish the mountains behind, however very blur. The whole image is not as clear as Figure 5.2 because the limitation of GS’s video memory (4M). However, this image is good enough for most PlayStation 2 players.
5.2 Some more about the video performance
Although Pentium 4 has enough capability to process image real time, the way of implementing games is still no change. The video card read the content of texture into its local memory card, the processor only deal with the data and instructions. After the calculation, the processor stores the display list (a list, recorded with the details of all elements, for instance, one single polygon’s position and texture code) back to the main memory. Video card then access the lists and process them, generate picture, transfer to analogue signal and output. Most special effects depend on the video card. So, no good card, no good performance.
Let’s see figure 2.2, we will see there is no direct connection between GS and main memory. At the PC’s point of view, 4MB video-memory is not enough to show a single frame with 1024*768 pixels. How is PlayStation 2 able to perform like that? The answer is bus. So we come back to section 4 again. The specialized display list (which Sony called 3D display list) is directly sent to GS, along with the required texture. GS has a huge bandwidth (3.8GB/S), its local memory can work as fast as it is (maybe it is more suitable if we call the memory as cache). GS itself supports only a few special effects. However, this situation can be improved by the simulation calculations finished by Emotion Engine… Again, PlayStation 2’s elegant design makes its all components work as a whole.
6. CONCLUSION
Hopefully you have got the idea of how PlayStation 2 and PC architecture differ. Let’s go through it again.
General architecture. PCs are more complex to read, but easier to implement. The system bus directly manages all devices inter-communications. PlayStation 2’s is easy to read, but much harder to implement. The communication between each other is convenient.
Processor architecture. The trend of processor architecture design is meeting the requirement of multimedia. Both PC’s Pentium 4 and PlayStation 2’s Emotion Engine are qualified to run multimedia applications efficiently. Pentium 4 is much stronger than Emotion Engine, but the architecture is very ‘straight’ and has to do extra jobs of translating instructions to be compatible with current applications. Emotion Engine has no this burden, the specialized 3D game performance design make it easy to handle complex calculation jobs with relatively low clock rate.
Buses and Caching. PC has classic bottlenecks and there is no way to overcome it. Current PC buses and cache has improved a lot by increasing the bandwidth and cache volumes, but the latency of main memory cannot be solved. PlayStation 2 works on nearly full load; perfect coordination between components is almost achieved.
Video. Although Pentium 4 can run perfectly on multimedia applications, the PC game developers don’t think so. They still stick to push the texture and other data into the video memory for one time. The awkward situation is, when you want to update your PC for high requirement games, the first component came into your mind must be the video card but processor. It is impossible to ask PlayStation 2 players to update. Emotion Engine is in charge of many jobs what PC’s video card does. The good condition of data transmission makes it is possible to implement ‘true’ multimedia processing in games, that is treating game image as media streams, no need to supply huge data storage to hold that.
Purpose: PC’s general—purpose VS PlayStation 2’s 3D game rendering purpose.
PlayStation 2 is 6 years old now. According to the principle of game console life expectance, it is time to hand the baton to its offspring, PlayStation 3. It is a successful game console of Sony. Contrast to PC, it is too weird, but all its weird compositions seemed so reasonable as well. PC’s architecture is classical; all components have its space for upgrade. Maybe it is too early to say the architecture should evolve. However, PlayStation 2’s architecture gave us a good lesson. If you only were interested in games, you should buy a PlayStation series, not a PC. At least, you need not worry about upgrading your components for the next game. Special architecture can make it becomes the best in specialized region.
7. REFERENCE
[1] William Buchanan and Austin Wilson, “Advanced PC Architecture”, ISBN: 0 201 39858 3
[2] John L. Hennessy and David A. Patterson, “Computer Architecture—A Quantitative Approach”, ISBN: 1 55890 724 2
[3] Keith Diefendorff and Pradeep K. Dubey, "How Multimedia Workloads Will Change Processor Design." Computer, September 1997
[4] Jon "Hannibal" Stokes Sound and Vision: A Technical Overview of the Emotion Engine Wednesday, February 16, 2000
[5] K. Kutaragi et al "A Micro Processor with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point Dividers, and an MPEG2 Decoder," ISSCC (Int’l Solid-State Circuits Conf.) Digest of Tech. Papers,Feb. 1999, pp. 256-257.
[6] Jon "Hannibal" Stokes “SIMD architectures”
arstechnica.com/articles/paedia/cpu/simd.ars
[7] “Graphics Synthesizer – Features and General Specifications”
arstechnica.com/cpu/1q99/playstation2-gfx.html
[8] “The Technology behind PlayStation 2”
ieee.org.uk/docs/sony.pdf
[9] Michael Karbo,“PC Architecture“
karbosguide.com/books/pcarchitecture/start.htm
[10] Gabriel Torres, “Inside Pentium 4 Architecture”
hardwaresecrets.com/article/235/1
[11] Thomas Pabst, “Intel’s new Pentium 4 Architecture”
tomshardware.co.uk/2000/11/20/intel/
[12] KuaiLeDaYuShu, “Video Card Parameters Analysis”
blog.yesky.com/Blog/joyelm/archive/2005/07/30/253803.html
[13]Howstuffworks “How PlayStation 2 Works”
entertainment.howstuffworks.com/ps21.htm
[14] Craig Steffen “Scientific Computation on PlayStation 2 home page”
国外专家对学生学习成功的因素通过调查得出了如下结论:在学生学习成功的因素中,良好的学习习惯占30%,兴趣占25%,智力占15%,家庭占5%,其他因素占25%。高效英语复习课堂教学所要求的核心价值取向就是变学生被动学习为自主学习,因为只有自我谋划,自我激励,自我探究,才可能有高效。要想高度自主复习必须要成良好的学习习惯。总复习阶段依然要强化下列学习习惯:课前预习和准备习惯;上课的习惯;复习的习惯;作业的习惯;听、说、读和写的习惯。课外自主学习的习惯。教师要严格要求、反复强化,让学生不断实践,采用良好的学习方法和策略,让良好的复习习惯像鸟的翅膀一样帮助学生高效地自主复习好英语。
二、依纲扣本,中考采用三阶段四板块循环滚动的复习模式
根据《英语课程标准》和《英语中考指南》,三阶段指复习时间分为三个阶段,四板块指单元梳理板块、专项训练板块、综合训练板块和听、说、读、写能力训练板块,它们互相融合互相促进,使知识和能力水平不断循环提升。第一阶段单元梳理板块主要是梳理初中阶段所学的全部的语言知识。牛津英语教材按照话题———结构———功能———情景———任务体系以单元形式编排,所以梳理语言知识以单元作板块来整体复习较合理。按教材顺序以话题和任务为主线,以及他们和功能、语法项目的关系提前分门别类的梳理,归纳四会单词、重点词组、重点句型、语法和课本对话等知识,汇编成讲义发给学生,使学生脑子中有清晰知识体系网络图。第二阶段专项训练复习是对针对名词、冠词、非谓语动词、并列句和复合句等作专项的训练。此阶段的任务主要通过语法线来巩固、深化课本英语知识。第三阶段综合训练板块任务主要是通过专项题型和模拟测试来全面培养学生综合应试能力水平。综合训练也可从英语总复习一开始时就要有计划安排,如一个星期做一套完整的综合试卷或专项题,以便培养整体复习英语的意识。听、说、读、写能力训练板块始终贯穿在整个三个阶段里,要反复有层次地训练,每周要固定时间,保证训练次数和质量,同时做好点拨和评析,传授各种方法和技巧,使知识和能力形成互补,提高复习效率。
三、分层指导,在统一练习同时重视分层的作业布置
英语总复习阶段学生的英语水平已经参差不齐,根据知识掌握程度和学习品质可以分成优秀生,中等生和后进生,其中后进生的英语水平还不如七年级学生的英语水平。那么教师既不能放弃某些学生,也不能一个层次要求所有的学生。只有根据学生个体的学情分层指导和要求才为上策。首先英语语言知识点分层要求可从教材自身出发,对于每个单元,细到梳理知识点,在此基础上进行“淘金”活动,将知识点梳理成金字塔形,将不同的知识点对应于不同层次的学生,分层次分解知识点,对相应层次的学生提出相应的需求。其次要引进竞争机制来分层次优化,根据每位学生的能力,制订标准分,进行奖励,使他们个个有对手,人人有复习目标,人人有危机感,把学习积极性最大限度地调动起来。最后对于后进生特别要多进行情感关怀,根据学生不同情况帮助他们找出名自的薄弱环节,采取人盯人办法,一方面进行面对面辅导;另一方面认真面批他们的练习和试卷,分析他们的错误原因,帮助他们写出正确答案。这样每个层次的学生都相应到达应有的复习水平,提高了复习效率。
四、重视复习反馈、培养自主复习评价能力
关键词:科技英语论文写作;定义;叙述
中图分类号:H315 文献标识码:A
文章的主体是科技论文的核心部分,是主题思想的展开和论述。作者可根据需要在文章中加小标题,将主体内容分为几个部分进行论述。科技论文的英文写作通常把每段的主体句(Topic Sentence)放在段落的第一句,全段围绕主体句论述,定义与叙述是科技论文写作中又一种常用的写作方法。
一、定义(Definition)
(一)Introduction
When making a hypothesis(假说)or other statement, scientists must make sure that they will beunderstood by other researchers. Misunderstandings occur when there are different concepts of what is being discussed.
A definition answers the question, “What is it?” Sometimes a definition is necessary because a word or concept has more than one meaning. For example, whether carbon is a metal or nonmetal depends on how you define carbon. At other times, a definition is required because a term is being used in a special way. For example, physicists use the terms work and energy in ways that are more specific than their common meanings. A definition should be complete enough to include all the items in the category yet narrow enough to eliminate items that do not belong. The Greek philosopher Plato once defined man as a two-legged creature that has no feathers. The problem with Plato's definition was that it did not distinguish a man from other two-legged creatures without feathers. Communication between researchers is dependent on precise definitions of substances, concepts, processes, and ideas.
Greek philosopher Plato 希腊哲学家帕拉图
(二)Sentence patterns
Sentence pattern 1:
An astronomer is a scientist whostudies the universe.
A barometeris an instrumentthat measures air pressure.
Conductionis a process by which heat is transferred.
A laboratoryis a place whereexperiments are performed.
Physicsis the study ofmatter and energy.
A volt is a unitfor measuring electrical pressure.
Sentence pattern 2:
Mercuryisa liquidmetal.
Asbestosis a fire-resistantmineral.
A dinosaurisa prehistoric reptile.
A monkeyis a small, long -tailedprimate.
(三)Application Examples
be 是
mean 意思是,意味着,意指
denote 表示,指
imply 意思是,意味着
be named 命名为,被称为
Examples:
1. Printers are output devices.
打印机是输出设备。
2. Multiprogramming means the existence of many programs in different parts of main memory at the same time.
多道程序意味着在主存储器的不同部分同时存在着多个程序。
3. Data denotes a collection of facts that can serve as operands to computer program.
数据是指可作为计算机程序操作对象的集合。
4. A “system” implies a good mixture of integrated parts working together to form useful whole.
“系统”意指将协同工作各部分适当地综合而成的一个有效的整体。
5. The first digital computer built in 1946 at the University of Pennsylvania was named ENIAC.
第一台计算机是1946年在宾夕法尼亚大学建造的,命名为ENIAC。
二、叙述(Describing)
(一)Introduction
A description serves to introduce a scientist's view of the world. It may describe conditions, results of an experiment, chemical changes, physical movements, or what is seen through a telescope or microscope. A description may also tell the characteristics or distinctive features of an object―how it look, sounds, tastes, smells, works, or is produced.
The nature of something can be explained by describing it. For example, the concept of an atom is difficult to grasp from a definition alone, but a description of its appearance, detailing its structure and function, makes it easier to visualize.
(二)Sentence patterns
The Nile River is 4,145 miles long.
Mount Everest is 8,848 meters high.
The Dead Sea is 11 miles wide.
The Nile River has a length 4,145 miles.
The Sun has a surface temperature of 11,000°F.
The Grand Canyon has a depth of 5,500 feet.
The color of iodine is purplish black.
The texture of sand is rough and granular.
The orbits of planets are elliptical.
Pluto is relatively small.
Blue stars are extremely hot.
Copper salts are slightly blue in aqueous solutions.
(三)Application Examples
be是
be considered (to be) 被认为是,被看作
be known as 被称为是,被认为是,即
be referred to as 称为,叫做
be thought of as 被认为是
be regarded as 被认为是
Examples:
1.This ability to allow interrupts to interrupt previous interrupts service routines safely are referred to as nested interrupts.
允许某些中断去中断先前的中断服务程序,并能正确运行的能力称为嵌套中断。
2.One of the most important characteristics of a computer is its capability of storing information in its memory long enough to process it.
计算机最重要的特性之一就是具有这样一种能力,即在它的存储器中保存信息时间长到足以对这些信息进行处理。
3.In the majority of applications the computer's capability to store and access large amounts of information plays the dominant part and is considered to be its primary characteristic.
在大部分的应用中,计算机能够存储和访问大量的信息这一特性,起了关键的作用,并被看成是计算机的主要特点。
除了定义 (Definition) 与叙述(Describing)的写作方法以外,科技英语论文常用的写作方法还有:比较(Comparing)、因果(Cause and Effect)、假设(Hypothesizing)、证明(Giving Evidence)、实验(Experiment)、计算(Calculating)、报告(Reporting)、预测(Predicting)等。
1、提高中国文化素养符合多元化的人才需求
当今的就业市场需要多元化的外语人才,对于英语相关专业而言,社会上普遍需求的是英语与其他专业紧密结合的复合应用型人才,商务英语专业在此应运而生,培养能用英语进行诸如商务、旅游、物流、外贸、文秘、会展等商贸活动的复合型人才。在两种文化交流的过程中,决定沟通质量的是代表中国形象的学生的中国文化素养和自身的英语水平。
2、谙熟中国文化可以助力学生的英语学习
在英语业已成为世界语的今天,商务英语专业作为英语专业的一个分支,长期以来英语学习过程中都强调英语语言知识的输入,强调英语与商务的结合,注重发音标准、表达流利、语法运用得体等,其重视程度甚至远远胜于对中国文化涵养的关注。而语言内在的思想性被忽略甚至被淹没,因此外语学习过程中母语的正迁移作用很难发挥出来。换言之,倘若学生凭借自己较高的中国文化涵养来进行英语学习,听说读写的学习障碍将会大大降低,英汉双语的相互切换也会迎刃而解。
3、熟悉中国文化有利于传播优秀的中国文化
英语学习的终极目标不仅是实现成功的跨文化交际,更应该是把优秀的母语文化即中国文化传播到世界。承载着几千年文明的中国,其优秀精华的文化应该在英语学习过程中与英语这门语言站在文化对等的位置上对话。在对外汉语教学日益盛行的今天,高校商务英语专业的学生也应该尽己之力通晓中国文化及其英文讲解方法思路,在商务活动中使世界通过我们更加了解中国璀璨文化。
二、商务英语专业中国文化教学现状
1、课程设置对于中国文化的缺失
2000年南京大学的从丛教授在《“中国文化失语”:我国英语教育的缺陷》中提到“许多中国青年学者虽然具有相当程度的英语水平,但是在与西方人交往的过程中,始终显示不出来自古文化大国的学者所应具有的深厚文化素养和独立的文化人格……有些博士生有较高的基础英语水平,也有较高的中国文化修养,但是一旦进入英语交流语境,便会立即呈现出‘中国文化失语症’”。商务英语专业学生用英语表达母语文化中出现“失语”现象,是因为在英语教学中获得用英语准确表达中国文化知识的不足。例如,介绍鲁迅先生故居的一段话中很多学生把“故居”一词翻译成“oldhouse”,几乎没有学生知道地道的说法是“formerresidence”。同时,很多高校的商务英语专业课程设置上注重实用性,讲求英语语言知识与商务知识的结合。作为只有36学时的选修课,课时有限,任务紧张,很多学生为完成任务而完成任务,没有真正重视中国文化的学习与提高。
2、日常教学频频出现中国文化缺失
过度重视英语及英语文化而忽视中国文化导致英语文化的内化在商务英语专业学生中越来越深入,许多学生成为英语通、西方文化通,俚语通,而中国传统文化成为许多学生的认知荒漠:课堂上问及学生“杞人忧天”、“门泊东吴万里船”等词句无法用英语解释出来。今天的四六级考试中增加了段落翻译项目,而且频频涉及到中国传统文化与当今中国经济社会发展。但是学生对于中国文化的重视程度依然不够。不要说“四合院”“、茶马古道”“、敦煌石窟”、就是“少林功夫”、“吉祥文化”、“筷子”等很多中国文化常见语的译法学生都闻所未闻、瞠目结舌。比如,在介绍孔子的一段话的翻译中,很多学生根本不知道孔子(Confucius)、儒学(theRuSchool)、孔圣人(MasterKung)。学生英语水平虽然大幅提高,母语文化却丢之脑后,这不得不说是失衡的英语教育造就的悲哀。
3、学生测评体系对中国文化的忽视
目前高校商务英语专业对学生的测验评价体系依然比较传统地注重学生的听、说、读、写、译等能力。听力考试材料来源基本上是BEC、BBC、VOA、CNN,文化背景都是清一色的西方英语国家日常生活与商务活动,很少涉及中国文化;口语考试依然一如既往地关注发音标准、表达流利、地道清晰、商务术语准确等因素;阅读、写作、翻译考试也多是传统的名词解释、简答题、论述题、案例分析、计算题等,中国文化元素依然难得一见。
三、商务英语专业中国文化教学强化对策
全世界早已掀起了“汉语热”:孔子学院的设立、汉语等级考试的兴起、对外汉语教学人才的稀缺都足以为证。商务英语专业作为以英语语言为桥梁、深化英语与商务专业知识相衔接的专业,学生内在的中国文化素养亟待提高。可以从以下几个方面着手:
1、课程设置对于中国文化可以有所倾斜
商务英语专业在课程设置方面除了大一全校开设的大学语文之外,可以考虑自己开设现代汉语及汉语语言学等课程。毕竟商务英语专业的学生在学习英语语言学的过程中一定会不自觉地发问:为什么多年的学习生涯中学校从未开设过汉语语言学呢?很多学生会盲目认为英语语言学在重要性上一定胜过汉语语言学,因此造成了学生语言学习过程中的顾此而失彼。条件允许的话,高校的商务英语专业还可以鼓励专业教师开设与中国相关的公共选修课:英文讲解的人类学、社会学、心理学、中国历史、中国文化通史、古代诗词及名著赏析、对外汉语教学等课程,应体现哲学、历史、宗教、社会、教育、文化、艺术等中国文化内容,从而提高学生的中国文化素养和母语人文涵养,给学生创造良好的中国文化学习氛围。通过这些课程,开阔学生视野,使学生更加熟悉中国文化。
2、日常教学将中国文化贯穿始终
商务英语专业教师应该自觉提高自身中国文化修养,深入学习中国文化尤其是中国传统文化,并在日常教学中成功实现中国文化的汉英切换,注重中西文化对比、中国文化知识的传播和对外汉语宣传能力的提升。例如,教师在课堂上讲授美国文化的五大象征时,可以启发学生用英语讨论中国文化的象征,学生热烈讨论中会涉及长城、孔子、筷子、菜系、丝绸之路、天安门广场、故宫等许多中华文化象征,启发学生尽可能详尽地用英语表述中国元素。同时,教师在备课过程中应尽可能多地熟悉中国特有文化的英文译法,多多积累中国文化各种英文介绍,例如,可以参考作品中涉及大量中国文化元素的林语堂、钱钟书和赛珍珠的作品及英文版的《中国文化》等书籍。
3、完善学生测评体系,强调中国文化
商务英语专业的学生测评不仅应该单独设置中国文化课程的考核,还应在综合英语、精读等课程的测试中体现中国元素,加入相关检测试题,学生在备考过程中系统复习,不断强化,中国文化素养必然会得到提高。在学生的听、说、读、写、译等能力的考试中尽可能选取与中国文化相关的资料。在学生的各类测试中增加中西文化比较,根据主题与作者观点,适当进行广泛的跨文化对比分析,使学生对中西方文化的特点有清楚的认识,能够深刻地意识到祖国传统文化的价值,通过系统教学、讲解、反复训练、复习、检测等环节实现学生熟练用英文较准确表达中国文化相关内容。
四、结语
按教学大纲要求,初中英语需要加强听力训练,但在我国初中英语教学中,存在了几个重要的误区,其主要表现为以下几个方面:第一,进行教学时,许多老师采用集体中突击的形式进行教学,没有重视到日常教学中的积累。注重集中训练,忽视长期积累。第二,发现学生在学习中存在的问题,没有进行及时给予纠正。第三,听力教学过程中,方法不正确,简单的把听力训练当作听力测试。第四,没有重点的把学习英语的几大关键进行结合,把听、读、说、写进行了分离式教学。这些错误的教学形式很大程度上,影响到了学生在进行听力训练的进度与质量。如何解决这些存在的问题,成为了目前教学的关键。
笔者认为,可以针对本校学生学习的状况进行调整,以达到解决这些错误教学方式的目的。首先,作为英语听力训练,它是和日常教学过程中的英语听力相辅相成的,是一个需要长期积累的过程,这就需要英语老师在进行教学时,用英语进行教学,这是一个非常行之有效的提升学生听力的教学方式;其次,在教材中有相关的配套听力题,需要根据教学进度同时进行,然后随着进度的开展进行多样的听力专项训练;再次,进行英语教学时,一定要遵循先听后说、先说后读、先读后写的基本教学原则,这样可以非常有效地把教学与听力训练相结合,达到听力训练的长期积累的目的。通过这些解决的措施,可以解决目前初中英语听力训练的错误形式。
二、初中英语听力训练需多样化
在教学过程中,如果只是采用单一形式对学生进行听力训练,会让许多学生产生厌学情绪,这时就需要老师采用多样化的教学形式进行学生的英语听力训练,如听英文歌曲带动学生听词猜词的兴趣,或者以英语猜迷的形式提升学生的参与积极性等方式进行训练。目的在于提升学生对英语的兴趣,解除他们心中对英语听力的恐惧心理,有效地激发出学生的参与性。例如,可以设定一个情景,也就是通常所说的情景式教学,然后通过互动交流,提升学生对听力的兴趣,通过以下的对话形式,既简单又能让学生有很大的参与感,让学生容易地去完成任务,提升他们对听力训练的信心,又能很直观地引导学生对问题的思考。
三、运用技巧进行教学,提升学生听力
(一)引导学生进行推理想要学好英语,就需要更好地去理解所听到的英语的内容,这个过程就需要学生进行合理地听到内容进行推理与判断。这种形式,不仅能提升学生的主观能动性,还能大大增强学生对问题的推理,拓展学生的思维与判断能力。例如,当训练听力时,学生在听录音前,需要先对习题进行浏览,大概了解整个对话的情景、人物包括这段习题中对话的大概意思,当开始听录音时,对之前所浏览习题后得到的信息进行对比,非常有效地提高了判断的准确度。
(二)好记性不如烂笔头,抓住重点跳过难点在进行听力训练过程中,学生们都是处于一个高度紧张的状态,那么可以在边听的过程中,从听力材料中提取出关键信息,把一些相关的数学、人物、情景做上笔记,可以用自己所习惯的方式进行关键信息的记录,抓住重点,这些关键信息用代号或者是缩写的形式记录下来,有效地提高了对习题的判断。在进行听力训练过程中,肯定会出现一些生词。可以简单做一下记录后,直接跳过这些难点,不要在这些生词上进行过多的思考,以免遗漏更多的有价值的信息,通过这样长期的训练,可以有效地避免学生的心理压力,加强学生对听力的处理技巧。
Guangdong Province is China's largest province in terms of population and economy, with the province’s gdp ranking first in the country all year round and maintaining steady growth. Although Guangdong's economic development is booming, however, the development of various parts of the province is somewhat uneven, and this imbalance also shows a trend of continuous expansion. Even in the Pearl River Delta region, which has the best economic development, development varies from city to city.
We expect to make a detailed study and scientific evaluation to the unbalanced development of nine cities in the Pearl River Delta by means of scientific statistical analysis, to understand the disparity in development, and seek to propose a solution to the unbalanced regional economic development in the province.
Contents of Research (including specific scope, purpose, and expected results):
We intend to use multivariate statistical analysis methods including cluster analysis and principal component analysis to analyze several economic indicators, from GDP to population and employment rate, of nine cities in the Pearl River Delta region, and to classify and draw conclusions about the development levels of the nine cities based on the results of the analysis. We expect to be able to classify the nine cities into two or three categories according to their different levels of development, and find out the reasons for the uneven development of the cities from the analysis of the economic indicators.
Research(design) Plan(including methodology, technologies, relevant theories, calculations, laboratory procedures and feasibility, and expected technical problems and solutions):
We plan to analyze economic indicators data using classical multivariate statistical analysis methods such as cluster analysis, principal component analysis, and factor analysis, and apply analytical theory to draw conclusions.
(1)目标需求与学习需求相结合的原则;
(2)学生、学校与社会需求兼顾的原则;
(3)大纲制定、教材选择及教学实施要体现各种需求的原则。徐新宇提出对商务英语的需求分析要注意以下几个方面即对将来工作环境的分析、对学生的分析、对商务英语语言的分析及对授课环境的分析等。自2009年以后有不少论文从需求分析的角度来分析商务英语专业课程设置的合理性,但主要是研究高职院校的商务英语专业。阮绩智建议商务英语课程设置应遵循目的导向原则、需求分析原则、科学系统原则以及发展原则。从研究现状来看,关于需要分析理论研究方面的文章较多,但从需求分析理论的角度对新设本科商务英语专业的课程设置进行研究的很少。因此,本文拟从需求分析理论入手,通过走访用人单位调查企业对商务英语专业毕业生的能力要求,并根据社会需求分析的结果提出商务英语专业课程设置的改进建议。
二、社会需求分析的结果与讨论
(一)用人单位招聘广告分析作者通过走访人才市场、深入企业等方式收集到一些典型企业的招聘广告,笔者主要对广告中的英语能力要求,跨文化交际能力要求和综合素质要求进行分析。
1.英语能力要求通过对企业招聘广告中的分析,笔者发现企业对商务英语专业学生的英语能力要求主要包括英语水平整体要求和英语技能要求。对于英语水平整体要求,多数企业都要求英语良好,通过大学英语4级考试;也有不少企业要求英语流利,通过大学英语6级考试。在调查分析中还发现,尽管商务英语专业的本科生都会参加英语专业四级和八级的考试,学生基本上都能通过专业四级考试,而且也有不少学生通过专业八级考试,但是企业招聘广告中对专业四级和八级的要求很少。另外,在英语能力要求中出现频率较高的两项是口语及写作能力。可见,用人单位更加注重英语的实际运用能力。
2.跨文化交际能力要求目前,越来越多的知名的外资企业、国有企业以及一些民营企业在招聘广告上都明确写道“有海外留学或工作经历者优先”。这其实就是对员工跨文化交际能力的一种要求。在海外留学或工作过的人由于在不同文化背景过得到过锻炼,往往被用人单位认为可能外语能力会高一些,关键是他们的海外经历培养了他们的国际化视野,应该比没有这个经历的人在对外交往中思维更灵活,沟通交际能力更强。随着经济全球化程度的不断加深,社会更需要较强跨文化交际能力的人才。这种对跨文化交际能力的社会要求应当体现在具体的课程设置上,通过专业课程的学习培养学生在提供英语能力的同时提高文化差异的敏感性,掌握灵活处理不同文化之间的交流和人际沟通的能力。
3.综合素质要求对于招聘广告中提到的“对待工作认真、负责、积极热情”可将其视为工作态度,此外还提出了开拓能力,创新能力,研究能力,沟通能力,人际交往能力,团队合作精神,适应能力,以及在较强压力下工作的能力等要求,可以将上述要求归纳为综合素质要求。通过对招聘广告中对综合素质要求的调查显示工作态度是用人单位最关注的事项之一。对于工作态度的引导虽然很难设置成一门课程,但是学校可以通过课程设置来体现和强化认真严谨的精神及学习态度,以便于学生在将来能将此种态度有效地延伸到工作岗位中。其次良好的沟通能力也是用人单位比较注重的。在实际工作中这种通过语言协商讨论并达成共识的能力较为重要,因此商务英语专业可以通过开设跨文化交际和商务沟通等课程中以培养和锻炼学生的沟通能力。
(二)用人单位访谈记录分析通过走访一些企业,与用人单位的相关人员进行面对面访谈,将访谈记录整理分析后,得出用人单位对商务英语专业毕业生的要求可以总结为如下三点:
1.能够有效地交流能够与客户尤其是外国客户有效交流是企业发展的必要条件以及成功的基础。很多情况下,尽管做了充足的准备,但由于在传达产品信息或进行项目策划时没有做到有效的交流,或交际技能的欠缺而无法取得预期的效果。一些用人单位指出在这种跨文化的商务交际中,为了避免造成误解,语言的恰当使用及对双方文化差异的深刻理解是极其重要的,具备跨文化交际能力的人不仅能够胜任与外国人的交流,还能够克服文化优越感和文化偏见,能够和来自异国文化背景的人互相达成妥协与理解,达到互惠双赢的结果。
2.能够熟练运用商务英语语言技能很多企业负责人在访谈的时候都强调英语口语在对外工作中的重要性,希望学校能加强学生在商务交际中口语能力的培养。大部分毕业生在跨文化交际中不能使用较地道的英语进行交流,即便再擅长交际策略及技巧,也不能出色地完成任务。此外,在具有的商务交流中商务专业术语的正确使用也是非常重要的,这就需要学生平时多积累。对商务英语阅读和写作的要求如下:熟悉各种体裁的商务文件(如合同、报告、信函、备忘录等),并能用准确的商务术语和恰当的语言进行撰写,能够快速阅读并找到特定信息。一些用人单位指出大部分商务英语专业毕业生普通英语的阅读和写作能力较好,但在商务背景下的英语语言技能就需要加强。
3.能够较全面且正确地掌握商务知识和商务操作流程具备一定的商务专业知识是商务英语专业学生与英语专业学生的一个重要区别。大部分用人单位认为学校和学生双方往往重视英语语言能力的提高,对于商务知识有所忽略。一些企业招聘人员在访谈中提到对于像经济学、管理学、国际金融、国际贸易这些商务知识在商务实践中使用很多,应加以重视,希望学校能系统开始这些课程。此外,一部分用人单位抱怨学生的实践经验太少,招聘的毕业生刚开始无法独立工作,必须培训3到6个月才能掌握商务操作流程,较耗费时间和资源。有的企业建议学校增加学生进企业实习的机会,让学生多到实际工作环境中去体验和学习。通过用人单位访谈记录和招聘广告的分析,可以得出用人单位对商务英语专业毕业生的整体需求有以下几方面:(1)能够在商务背景下正确地运用英语的语言能力;(2)熟悉基本的商务知识;(3)熟练掌握商务操作技能;(4)擅于运用交际策略的能力;(5)熟悉国际商务文化,具备跨文化交际的意识及能力;(6)具备较高的综合素质。
三、对高校商务英语专业课程设置的改进建议
通过前面的需求分析研究,商务英语专业毕业生不但要具备以下能力:(1)外语应用与跨文化沟通能力即具备较强的听、说、读、写、译能力和运用英语进行跨文化沟通能力;(2)专业实践与创新能力即具有国际视野,能按国际惯例从事商务活动,处理各种关系的专业实践能力;了解国际商务发展动态和行业需求,在外经、外贸、外事、管理、金融等领域具有一定的创新能力;(3)综合素质与职业发展能力即具有良好的职业道德和人文素养,具备较强的自主学习能力、独立工作和团队协作能力以及基本的第二外语应用能力。与普通英语相比,商务英语课程设置中的需求分析尤为重要。有效合理的课程设置应该考虑到学习者和社会双方的需求,并以市场为导向。从市场经济学的角度来看,我们可以将学校培养的学生视为面向市场的“商品”,将用人单位视为“消费者”。消费者是否会选择商品取决于其自身的需要,因此,学校在设置课程之前要对用人单位的需求有明确的认识。此外,课程设计者如果对学生选择商务英语专业的动机及其主观需求有所了解,那么教学内容和教学方法的选择也会有相应的改进。
不可质疑的是科技英语的翻译对于一个国家来说是至关重要的。随着加入WTO,中国比起以前来说更加开放了,并且也紧追世界科技发展的脚步。如此,科技英语的翻译就成为中国的科学技术发展的及其重要的推动力。好的科技英语翻译需要翻译者对英,汉两种语言都要有良好的了解,能够自如的将同样的深层意思用符合不同语言特点的表层结构表达出来;同样也需要译者对所涉及学科有基本的了解,而且在日常翻译实践中要善于积累有关科技词汇,尽量使译文准确,通畅。
二、科技英语的特点
(一)词汇特点科技英语的词汇主要分为三大类:普通词汇,半科技词汇以及术语和高度技术性的词汇。普通词汇在科技英语的行文中还是占绝大多数。现今,半科技词汇也被认为是普通词汇,因为其在现代社会中应用也相当广泛。句法特点
1.长句科技英语的主要特点之一就是长句。因为长句更能将信息表达的更加细致和准确。如果句子太长又会引起读者的反感,所以大多数科技英语的长句通常会由逗号隔开。例如:Thestressescontinuedtobuildinthisareaoftheship,①wheretherewerelargeopeningsforamainaccess,②themachinerycasingfortheReciprocatingEngineRoom,③theuptakesandintakesfortheboilers,④theashpitdooronportsideofBoilerRoomNo.1,5andtheturbineenginecasing.
2.被动语态科技英语习惯用被动语态表达目的和精确的科技事实。例如:ThemysteryaroseagainwhenthewreckoftheTitanicwasdiscoveredin1985andthehullwasfoundintwopieces.
(二)文体特征科技英语的作者都试图将语言表达得更加准确、精炼。科技英语的行文朴素,目的就是告诉人们事实,文章结构紧凑严密,表达清晰准确,强调客观性。
三、科技英语翻译技巧
(一)名词化在汉语中,名词通常就只作为名词使用。而在英语,尤其是科技英语中,名词可能会指示特性,动作,或是抽象的感受,例如:kindness,movement等。在翻译这些名词时,可将其译成形容词或动词。例如:原文:Thestudyprovidedtheloadinginformationneededtotake“snapshots”oftheship’sstateofstressduringthesinkingprocess.译文:此次研究为能迅速了解船在沉没过程中的压力状况提供了必要的荷载数据。
增减词汇为了翻译的更加通顺,符合汉语的行文习惯。在科技英语汉译时可适当增减词汇。例如:原文:Foursurvivorswithfirsthandknowledge,rememberingprobablythemostimportant–certainlythemosttraumatic–eventintheirlives,disagreedononemajorpoint,译文:四个拥有第一手资料的生还者,记得可能是最重要的—也一定是最为痛苦的—发生在他们生命中的大事,他们对于一个主要问题持有不同意见。
(二)定语从句的翻译
1.将定语从句翻译成定语修饰词,直接放在关键词前。通过对比中英两种语言的句子结构,我们可以看出英语中的定语从句可以放在句子中的任何位置。但是在中文中,通常放在关键词前面。所以大部分的定语从句翻译都可以采用该原则。例如:原文:Theinitialmodelingeffortfocusedonthedeterminationofthelocationandmagnitudeofhigh-stressregionsthatdevelopedinthehullwhilesheremainedonthesurface.译文:最初的模型着重于在船身还停留在海面上时的高压区的位置,和在船身上产生的高压区的重要性的检测。
2.将定语从句译为状语从句。原文:Theextentofthedamageevidentinthesternwreckimpliesthatthebowsectionmayhavepulledthesternsectionquicklybelowthewater’ssurface,resultinginstructuralimplosionsthatcausedsignificantdamage.译文:船尾部分损毁的面积表明船头可能将船尾迅速地拉入水中,造成结构上的突然压缩,这才导致了重大的事故发生。
四、状语从句的翻译
(一)时间状语从句翻译时,放在主句之前。例如:原文:e.gJustthreehoursafteritcollidedwithaniceberg,themajesticTitanicvanishedbeneaththecoldwatersoftheNorthAtlantic.译文:在撞击到冰山的三个小时之后,雄伟的泰坦尼克号消失在了冰冷的北大西洋中。
(二)地点状语从句翻译时放在主句之前或之后。例如:原文:e.gThedepthswheretheseeventsoccurredcannotbeestimatedwithanyprecision译文:这一事件发生的深度不能精确的被测量。
(三)目的状语从句翻译时在主句前增加“为了”。例如:原文:Tohelpsolvethismystery,theDiscoveryChannel,indevelopingitsaward-winning“Titanic:AnatomyofaDisaster”televisiondocumentary,approachedGibbs&Cox,Inc.,oneoftheoldestnavalarchitectureandmarineengineeringfirmsintheworld.译文:为了帮助解开这一谜团,发现频道在它的获奖作品“泰坦尼克号:解剖灾难”这一电视纪录片中,连同吉伯斯•考克斯,一家全球历史最为悠久之一的造船与海洋工程公司共同合作。
(四)比较状语从句原文:Itisbelievedthatthiscompressionofthehullgirderbroughtaboutthefailureofthesideshellplates,andalsofreedequipmentinsidetheship,suchastheboilersinBoilerRoomNo.1,fromitsfoundations.译文:人们相信船体大梁的压缩引起了侧框架金属般的失灵,同时使设备在船内释放,好像锅炉在一号锅炉房内从它的根基释放一样。
五、结语
1.金融英语词汇的特征及翻译
2.金融英语翻译中的语序转换
3.浅论金融英语文本词汇的英汉理解与翻译——以翻译美联储2005年货币政策报告为例
4.金融英语翻译方法和技巧
5.金融英语翻译中的社交语境功能
6.关于强化金融英语课程建设的思考
7.金融英语的翻译策略探究
8.金融英语的语言特点及翻译
9.依托金融行业探索高职金融英语教学改革
10.浅析金融英语翻译
11.应用型人才需求下的金融英语教学探讨
12.金融英语长句翻译探讨
13.论ESP金融英语的词汇教学
14.金融英语术语的特征及其翻译
15.金融英语课程教学质量学生满意度实证分析——以哈尔滨金融学院为例
16.浅谈金融英语翻译基本特点
17.浅析微课在金融英语口语教学中的应用
18.金融英语翻译中的关联原则
19.高职院校“金融英语”课程教学改革初探
20.论应用能力培养导向的独立学院金融英语教学模式
21.金融英语的语言特点及翻译策略
22.金融英语课程教学模式的设计与应用
23.语域理论指导下的金融英语翻译(英文)
24.对高校金融英语课程教学对策的思考
25.基于职业能力导向的金融英语专业教学模式刍议
26.基于ESP理论的金融英语教学改革初探
27.谈建构主义理论观照下的金融英语教学改革
28.高职金融英语分步分层教学模式的研究与探索
29.金融英语教学与学科建设
30.金融英语词汇的特点及其翻译
31.应用型人才培养视角下的金融英语教学改革
32.金融英语词汇的翻译策略探索
33.以培养应用型人才为导向的金融英语教材建设
34.金融英语课堂教学工作坊:研讨型课堂教学改革与实践
35.浅析金融英语在实际中的应用——以金融文秘英语为例
36.提升能力需求视阈下的金融英语教学策略设计
37.语境在金融英语词汇教学中的应用探析
38.从语域理论解析金融英语翻译的对等原则——以翻译国际货币基金组织对美国的FSSA报告为例
39.刍议应用型本科院校金融英语教学改革研究
40.金融英语的语言经济学分析
41.金融英语的语言特征及其翻译
42.金融英语教学的现状和存在的问题分析
43.基于课程设置的金融英语教学探究
44.以英文电影丰富《金融英语》课堂教学的探讨
45.国际化就业环境下的金融英语应用模式研究
46.改进金融英语教学的基本构想
47.平行文本在金融英语汉译中的应用
48.项目化教学法视角下的高职金融英语教学改革
49.浅析金融英语的特点及其翻译
50.金融英语的词性转换研究
51.金融英语的几种教学方法
52.金融英语教学策略创新与金融双语教学共生性研究
53.基于应用型人才培养的金融英语教学改革研究
54.金融英语教学法初探
55.高校专门用途英语教学路径探讨——以金融英语教学为例
56.高职院校金融英语教学现状分析及对策研究
57.独立学院《金融英语》教学目标定位探析
58.金融英语翻译中的社交语境功能
59.金融英语词汇的语义变迁探析
60.培养大学生学习兴趣 改善金融英语课程教学效果
61.成人金融英语教学的特色与策略
62.金融英语课程教学改革探析
63.关于强化民办高校金融英语教学的思考
64.金融英语信函的体裁特点与撰写原则
65.建构特色金融英语课程体系 服务龙江经济发展
66.论金融英语热点词汇的翻译
67.从图式理论的角度探讨金融英语词汇教学
68.基于项目教学法的金融英语教学改革探索
69.基于能力本位的金融英语教学改革
70.学习金融英语如何“难”中求“易”
71.金融英语技能竞赛与复合型、应用型金融人才培养
72.开展金融英语技能大赛的必要性研究
73.人际功能与慕课时代金融英语对复合型人才培养的探究
74.高职院校EOP课程需求分析纲论——以金融英语课程为例
75.试论上海二本院校金融英语专业词汇教学
76.满足应用型人才需求,改革金融英语教学
77.金融专业学生在金融英语阅读方面存在的障碍及对策分析
78.浅析以多模态理论为基础的金融英语教学
79.金融英语教材建设刍议
80.高职高专金融英语教学改革初探
81.金融英语术语的特点及其翻译
82.多媒体网络环境下金融英语教学模式探析
83.关于金融英语翻译教学的调查与研究
84.专业人才培养视阈下的金融英语教学探究
85.图式理论在金融英语教学中的运用策略
86.基于时事新闻的金融英语教学探讨
87.基于平行双语语料库金融英语翻译课程教学模式探索
89.Grice方式准则在金融英语翻译中的应用
90.金融英语词汇中的缩略语现象
91.基于金融英语能力的复合型金融人才培养研究
92.金融英语技能竞赛设计
93.浅谈高职高专“金融英语”课程中的实践教学
94.高职金融英语教学的研究与实践
95.浅谈国际化就业环境下的金融英语应用
96.当前金融英语热点词汇分析
97.金融英语与金融全球化竞争
98.语用学在金融英语教学中的作用
99.浅谈微课在金融英语口语教学中的应用
100.“学习者为中心”教学理念下金融英语教学探讨
101.主位结构理论在金融英语教学中的应用
102.金融英语培训中语用能力的培养
103.基于福建绿色经济的发展研发金融英语校本课程探究
104.金融英语证书综合考试备考策略
105.高职高专金融英语教学现状及对策探究
106.图式理论与金融英语阅读模式构建及教学启示
107.从翻译生态环境视角浅析金融英语新闻的汉译
108.高职高专《金融英语》教学改革初探
109.基于沟通目的的金融英语培训模式初探
110.高职院校金融英语教学现状及对策
111.浅谈高职金融英语教材与教学
112.谈谈多媒体金融英语计算机辅助教学的发展
113.高职高专金融英语课程改革中的几点经验
114.对等理论观照下金融英语隐喻翻译的喻体形象取舍策略
115.金融英语的词汇特点及翻译探讨
116.概念整合理论视角下的金融英语词汇学习—以金融术语为例
117.金融专业英语听力理解与技能刍议
118.元认知策略在金融英语阅读教学中的运用
119.“学习者为中心”教学理念下金融英语教学探讨
120.金融英语的词汇拟人修辞手段
121.大学英语拓展课程金融英语听说研究型课堂教学范式创新
122.金融专业英语词汇的学习与掌握