HI,欢迎来到好期刊网!

软交换技术论文

时间:2023-03-20 16:14:29

导语:在软交换技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

软交换技术论文

第1篇

软交换技术实际上就是把呼叫控制从媒体中逐渐分离出来,利用软件实现一定的呼叫控制功能,从而可以有效地分离呼叫控制和呼叫传输。建立一个交换、软件可编程和控制的平面。软交换技术作为一种新型技术应该具备以下方面:一是,呼叫控制功能。是最主要的功能之一;二是,媒体网关接入功能。是属于一种适配功能,可以连接一定的媒体网关。三是,互通互联功能。SIP协议标准和H.232标准是不可以进行兼容的结构,软交换技术可以支持很多种协议,对于上述两种也有效。四是,提供业务功能,对网络提供一定的智能业务。软交换技术实际上是功能实体,为以后网络的发展提供依据和保证,可以控制下一代网络控制和呼叫。

2软交换技术在第三代移动通信中的应用

在第三代移动通信体系中,不仅仅拥有语音业务,还具有一定的数据业务、多媒体业务、电子贸易、互联网服务以及电子商务等服务信息,由于不断扩充新网络,对于网络通信系统的使用互联网资源和数据信息的交换提出了更高的安全需求,使用软交换技术可以适当的降低交换机设备的负担,从而整个通信系统都可以实现资源的合理配置,具有十分明显的优势和特点。依据主被叫会处于不同的数据通信位置可以分为两类:包括TMSCSERVER之lhJ的呼叫以及TMSCSERVER局内的呼叫。

2.1网内通信的应用

软交换技术可以很好的支持中国移动混接组合方式的介入模式,也就是可以支持同一TMG从而形成不同的中继端口进行TDM之间的交换呼叫功能,主要包含跨区域以及本区域之间两个TDM交换机中的呼叫功能,利用软交换技术来处理呼叫的时候,在进行选择路由和分析号码之后,需要执行一定的TMG流程。找到入局局向TMG和出局局向的TMG处于同一个TMG上的时候,利用H.248直接进行命令,在入局和出局的不同TDM终端分配,合理的连接出局和入局之间的TDM端点,形成交换机之间的TDM呼叫。

2.2网间通信的应用

利用交换机处理网间通信的时候,选择路由和分析号码之后,需要执行一定的TMG流程。找到入局局向TMG和出局局向TMG之间的承载IP,利用H.248信号来通知入局TMG在网络上的局向分配情况,把IP端点分配在出局局向上,制定承载IP的语言编码类型,然后进行长时间打包参数,合理的连接端点IP和端点TDM,以此作为话路,没有得到出局方向上的端点TP的实际地址。在入局局向上分配出局TMG的端点IP,制定与入局TMG相符合的语言编码类型以及打包时长等一些参数,端点TDM在出局方向进行分配,连接端点和端点TDM做为话路,从而可以知道入局方向的端点IP地址和TMG。交换机利用H.248来把出局方向上TMG端点IP地址输入到入局TMG中,以便于可以顺利完成交换机的IP承载连续呼叫。

2.3优化软交换的应用

华为软交换系统可以有效解决网络过大负载以及网络流量过大的问题,但是如果系统处于主干线设备主要地位上的时候,一旦某点出现故障的时候,可以通过设置网络数据来把MSC中的软交换长途话务传送TDM传统交换结点上,但是没有办法转换外省的话务,利用软交换技术来传送到本省的TMG话务中,从而在一定程度上影响着长途话务,所以需要我们不断优化软交换技术和软交换系统。由于在完善了软交换汇接网络之后,可以适当的顺通省际之间的话务业务,从而完全发挥了两种网的特点和优势,通过两种网的互补,在两种网上适当建立直接能够进行联系的话务,以此当做备用。对于一些GMSC/MSC的呼叫业务来说,一旦出现TDM或者软交换网络溢出的问题,就会利用自动功能进行话务的倒换,保证在另外一种网上接受更多的长途话务,也可以适当的把溢出处的话务设置到路由上,从而输送到TDM汇接网。如果软交换出现单点故障的时候,可以利用GMSC/MSC的备用路由来进行各省的去话,合理的倒入到TDM汇接网上;对于大部分省际通话来说,利用两个区域之间的BISS消息进行一定互换,被叫SS出现的TMG会适当的输送到起点SS中,释放一定数据信息,利用起点受到的SS数据合理分析释放的消息,对于一些出现失败的被叫来说应该适当的增加相应的呼叫字冠,合理输送到TDM网络上,进行一定疏通。这种优化交换机的方案具有很多优点,工程建设量相对比较小、可以充分利用资源,从而最大程度完成软交换技术在第三代移动通信网络中应用。

3结束语

第2篇

关键词:软交换技术电力通讯系统应用

中图分类号:F407文献标识码: A

前言:软交换指的是从媒体网关中将呼叫控制这一主要功能分离出来,借由相关的系统/软件,从而达到呼叫控制的目的,由此分离呼叫控制以及呼叫传输的功能,提高管理工作与控制工作的便利性。另外,软交换又称为呼叫服务器、呼叫等,在通讯传输的网络中独立存在,可为用户提供相关的业务,软交换的协议是依附着IP而生,相比起之前更加的灵活,开发性也较强,结构简单化,对掌握上、控制上可起到帮助,

一、软交换技术的核心特点

软交换技术的核心是实现控制层与承载层的分离,以及采用分组网实现媒体流承载,它具有以下优势:

(1)软交换网络的控制和承载分离,导致组网灵活性大大增加,可以采用平面组网结构,也可以采用分级结构,比传统电路交换网更为扁平。

(2)控制和承载的分离,以及分组交换技术的应用,导致软交换机的设备体积更小,能耗和占用空间均小于TDM交换机。

(3)控制承载分离后,媒体流的传送交给承载网去实现,软交换机只负责呼叫的接续和控制,因此软交换机对呼叫的处理能力高于TDM交换机,设备容量可以做得更大。

(4)控制与承载分离使得各种设备的功能模块化,接口标准化,有利于运营商选择设备和组网。

(5)软交换支持SIP协议,也可以通过应用服务器(AS)向第三方开放业务接口,这些都使得软交换网络的业务能力较传统电路交换网大为加强。

(6)基于分组交换更有利于开展包括语音、视频、数据在内的多媒体业务。软交换作为下一代网络的发展方向,不但实现了网络的融合,更重要的是实现了业务的融合,能够在统一的技术平台上为用户提供语音、数据、视频以及其他增值业务。出于竞争态势严峻以及降低运营维护成本等需要,各大电信运营商纷纷组建软交换实验网,并先后步入商用阶段,为企业转型做好准备.

二、软交换技术在电力通讯系统需求

电力通信网是为满足电力系统内部生产指挥调度及管理等特殊通信需求而建设的专用网络,从网络的角度看,它呈现出与公共通信网相差不多的技术特征。虽然它没有运营商面临的生存问题,但是受到业务需求、技术发展等方面的推动:一方面目前正在运行的各种业务系统均独立组网,如电话交换系统、图像监控系统等,形成一个个封闭式系统,不但造成占用的带宽不能共享、严重浪费带宽资源,还造成综合业务提供能力差、用户使用不方便,同时各个网络运行维护成本较高、管理配置复杂。另一方面,随着电网的发展和电力体制改革的深入,电力通信不仅要满足电力生产类业务需求,更多的是要满足各种新兴的经营、管理类业务需求,这类需求不是停留在简单的语音服务或者接入服务上,而是需要相应的解决方案。而电力通信旧的技术体系已经不适应各种新业务的开展,尤其在业务融合方面显示出较差的适应性,需要构建新的技术体系来满足用户的各种需求。

从技术发展上看,存在多年的电路交换技术正在被淘汰,而以1P为核心的分组交换技术成为主流。目前,多数设备厂商停止了对TDM领域的投资和研发,而转向1P技术的研发。作为用户来说,无论新站点设备的增加还是老站点设备的更换,继续选用原来的设备将面临的技术支持和售后服务不能持久的风险。

三、软交换技术电力通信网应用

软交换技术区别于传统电信网的电路“硬”交换,是基于分组交换网络、以软件来实现交换与呼叫控制管理的一门新的电信网络技术,它是NGN(NextGe“er“tionNetwork,即下一代网络)的核心。

3.1.在电力通信网中引入软交换的必要性

3.1.1.目前,电力系统在应用与行政管理及电力调度管理的IP数据网络方面不断地在加大投资力度,而原有的基于电路交换的传统交换设备表现出了网络投资大,新业务提供周期长等缺点,鉴于前面所述的软交换设备的功能及特点,可以看出,软交换设备是目前解决上述问题的较理想的设备。

3.1.2传统的电路交换技术是以恒定的对称的话路为中心,为每一种业务指定固定带宽,呼叫控制及业务提供均集中在一个交换系统中,这大大限制了业务的灵活开发和基于分组的业

务的灵活应用,对于电力系统中很多以突发的、非对称的数据为主的业务而言,传输和交换的效率很低。

3.1.3如果继续沿用传统的电路交换模式,随着各类业务的增长,现有网络将日趋复杂,语音、数据、视频三网融合难以实现,提供业务的同时,必须考虑承载业务的网络方式,新业务的生成受到原有网络接口的各种限制。

3.3.4各种业务独立组网,不能动态分配带宽,因此造成资源的严重浪费。

3.2.在电力通信网中引入软交换的可行性

3.2.1电力通信网的业务范围包括了话音、数据、图像和多媒体业务,除电力专有业务外,今后的网络需求,正在由基于话音通信为主逐步转变为基于数据通信。在各种数据业务中,1P协议占据了主导地位,如电力市场数据、企业管理信息数据、Web浏览、电子邮件和文件传输等均采用TCP/IP协议。一些传统的业务,如调度自动化、会议电视等,也正在逐步摒弃沿用多年的专用规约,而改为采用IP协议或建立在IP协议基础上的国际标准规约。通过引入软交换技术,可以将上述电力系统中所有的通信应用都集中在一个纯1P底层的网络上,既能与电力

系统现有的基于TDM制式的交换网络互通,又可以实现与工nternet、PSTN等外部通信网的互通。

3.2.2软交换的承载网是以1P协议为主的分组交换数据网,电力系统目前建成的光传输网络带宽普遍较高,有的完成了多业务传输平台(MSTP)建设,为软交换承载网的建设提供了良好的基础,从而使软交换网能够方便的部署。

3.2.3电力系统出现许多新兴业务,在当前的电路交换技术体系下难以实现。由于软交换网络采用了业务与控制相分离的思想,而软交换应用层的作用就是利用各种应用服务器(AS)为整个软交换网络提供业务上的支持,因此软交换网络基于API的应用开发技术,借助中间件就能很快实现异构系统的统一维护和管理,使得电力企业根据自身业务和管理的需求可以非常方便地开发新业务,例如建设多媒体信息查询服务系统等。

3.2.5技术成熟可靠是电力系统通信选择通信技术的基本标准之一。从技术发展趋势来看,软交换技术逐步取代电路交换技术已成为必然趋势,而运营商对软交换技术的应用实践证明,软交换体系在技术上已经成熟,经济分析可行。

因此:鉴于软交换网络商用产品已经基本成熟,为了及时把握这一重要技术发展趋势,提升电力行业的新业务提供能力,增强电力通信网可持续发展能力,软交换建设将成为未来几年电力通信发展和建设的重要方向。

参考文献:

【1】叶大革,电力通信转型探析,电力系统通信,2006年12月

第3篇

[论文摘要]本论文讨论计算机网络数据交换技术的发展历程,阐述数据交换每个发展阶段的技术特点。着重对分组交换技术进行分析论述。

交换设备是人类信息交互中的重要实施,在相互通信中起着立交桥的作用。交换技术的发展总是依赖于人类的信息需求、传送信息的格式和技术,以及控制技术的发展而螺旋型发展。从电话交换一直到当今数据交换、综合业务数字交换,交换技术经历了人工交换到自动交换的过程。人们对可视电话、可视图文、图象通信和多媒体等宽带业务的需求,也将大大地推动异步传输技术(ATM)和同步数字系列技术(SDH)及宽带用户接入网技术的不断进步和广泛应用。

从交换技术的发展历史看,数据交换经历了电路交换、报文交换、分组交换和综合业务数字交换的发展过程。

一、电路交换

自1876年美国贝尔发明电话以来,随着社会需求的增长和通信技术水平的不断发展,电路交换技术从最初的人工接续方式,经历了机电与电子式自动交换、存储程序控制的模拟和数字交换、第三方可编程交换等技术的变革,当前正在发展中的融合多媒体格式相互通信的软交换技术。

随着电子技术,尤其是半导体技术的迅速发展,人们在交换机内引入电子技术,这类交换机称作电子交换机。最初是在交换机的控制部分引入电子技术,话路部分仍采用机械接点,出现了“半电子交换机”、“准电子交换机”。只有在微电子技术和数字技术的进一步发展以后,才开始了全电子交换机的迅速发展。

1946年第一台电子计算机的诞生,对交换技术的发展起了巨大的影响。在20世纪60年代后期,脉冲编码调制(PCM)技术成功地应用在通信传输系统中,对通话质量和节约线路设备成本都产生了很大好处。随着数字通信与PCM技术的迅速发展和广泛应用,于是产生了将PCM信息直接交换的思想,各国开始研制程控数字交换机。1970年法国首先在拉尼翁(Lanion)成功地开通了世界上第一台程控数字交换系统,标志着交换技术从传统的模拟交换进入到了数字交换时代。程控数字交换技术采用PCM数字传输和数字交换,非常适合信息数字化应用,除应用于普通电话通信以外,并且为开通用户电报、数据传送等非话业务提供了有利条件。目前在电信网中使用的电路交换机全部为程控数字交换机,可向用户提供电路方式的固定电话业务、移动电话业务和窄带ISDN业务。

二、报文交换

报文交换方式的数据传输单位是报文,报文就是站点一次性要发送的数据块,其长度不限且可变。当一个站要发送报文时,它将一个目的地址附加到报文上,网络节点根据报文上的目的地址信息,把报文发送到下一个节点,一直逐个节点地转送到目的节点。

每个节点在收到整个报文并检查无误后,就暂存这个报文,然后利用路由信息找出下一个节点的地址,再把整个报文传送给下一个节点。因此,端与端之间无需先通过呼叫建立连接。报文在每个节点的延迟时间,等于接收报文所需的时间加上向下一个节点转发所需的排队延迟时间之和。

三、分组交换

分组交换是交换技术发展的重要成果,代表着网络未来演进的方向。分组交换方式兼有报文交换和线路交换的优点。分组交换技术使用统计复用,与电路交换相比大大提高了带宽利用率。这要求在交换节点使用存储转发,从而导致掉队现象的发生。因此,分组交换全引入不固定的延迟的概念。分组交换网络主要有面向连接和无连接两种方式.分组网络包含3个功能面,分别是数据面、控制面和管理面。数据面负责分组转发,因此需要高性能的实现。目前主要的分组交换网包括面向连接的X.25、帧中继、ATM、MPLS以及无连接的以太网、CP/IP网络。

分组交换网有两种主要的形式:面向连接和无连接。对于分组交换技术来说,面向连接的网络与电路交换类似,也需要通过连接建立过程在交换机中分配资源;但由于它采用统计复用,所分配的资源是用逻辑标号来表示的。自分组交换技术出现以来,已经有多种分组交换网投人运行。电信领域最早提出的是X.25网络,但由于它协议复杂,速度有限,逐渐被性能更好的网络如帧中继代替。帧中继网络可以认为是X.25的改进版本,它简化了协议以提高处理效率。

计算机领域的一个侧重点是局域网,即小范围、小规模的网络,用于互连办公室内的计算机。目前以太网已成为占统治地位的局域网技术。

在20世纪90年代中后期,因特网获得较大发展,规模持续扩大,对核心路由器吞吐量的要求也越来越高。由于路由器对IP分组进行转发时路由表的查找比较复杂,转发速度受到很大限制。前面指出,面向连接网络使用逻辑子信道标号进行转发表查找,速度是很快的。人们结合ATM技术在这方面的优点,提出将核心网络改为使用类似于ATM的交换机,而只在边缘网络使用路由器的IP交换技术,最终发展为多协议标记交换(MPlS)。然而,在随后的几年中,提出了多种实用的高速路由查找方法,使其不再成为瓶颈。此时,MPLS最大的优点就是流量工程(TramcEn小needng)能力,即人为控制分组流向。但是由于目前高速路由器还能够很好地工作,MPLS技术并没有被广泛使用。

四、综合业务数字交换

综合业务数字网是集语音、数据、图文传真、可视电话等各种业务为一体的网络,适用于不同的带宽要求和多样的业务要求。异步传输模式ATM(AsynchronousTransferMode)就是用于宽带综合业务数字网的一种交换技术。ATM是在分组交换基础上发展起来的。它使用固定长度分组,并使用空闲信元来填充信道,从而使信道被等长的时间小段。由于光纤通信提供了低误码率的传输通道,因而流量控制和差错控制便可移到用户终端,网络只负责信息的交换和传送,从而使传输时延减小。所以ATM适用于高速数据交换业务。

随着通信技术和通信业务需求的发展,迫使电信网络必须向宽带综合业务数字网(B—ISDN)方向发展。这要求通信网络和交换设备既要容纳非实时的数据业务,又要容纳实时性的电话和电视信号业务,还要考虑到满足突发性强、瞬时业务量大的要求,提高通信效率和经济性。在这样的通信业务条件下,传统的电路交换和分组交换都不能够胜任。电路交换的主要缺点是信道带宽(速率)分配缺乏灵活性,以及在处理突发业务情况下效率低。而分组交换则由于处理操作带来的时延而不适宜于实时通信。因此,在研究新的传送模式时需要找出两全的办法,既能达到网络资源的充分利用,又能使各种通信业务获得高质量的传送水平。这种新的传送模式就是后来出现的“异步转移模式”(ATM)。

ATM是在光纤大容量传输媒体的环境中分组交换技术的新发展。在大量使用光缆之前,数字通信网中的中继线路是最紧张也是质量最差的资源,提高线路利用率和减少误码是最着重考虑的事情。光缆的大量使用不仅大大增加了通信能力,而且也大大提高了传输质量。这使得人们逐渐倾向于宁可牺牲部分线路利用率来减少节点的处理负担。

与此同时,人类对于通信带宽的需求日益增加。特别是传送图像信息和海量数据,已经使人们对于数据通信的速率由过去的几千比特/秒增加到几兆比特/秒。这样,节点的处理能力成了数据通信网中的“瓶颈”。ATM对于节点处理能力的要求远低于分组转送方式,更能适应现代的这种环境。

ATM方式中,采用了分组交换中的虚电路形式,同时在呼叫建立过程中向网络提出传输所希望使用的资源,网络根据当前的状态决定是否接受这个呼叫。可以说,ATM方式既兼顾了网络运营效率,又能够满足接入网络的连接进行快速数据传送的需要。

五、计算机网络数据交换技术发展的展望

近年来。以Internet为代表的新技术革命正在深刻地改变着传统的电信观念和体系架构,并且随着信息社会的到来,人们的日常生活、学习工作已经离不开网络,这导致了人类社会对网络业务需求急剧增长,并且对网络也提出了更高的要求,不仅要提供话音、数据、视频业务,也要同时支持实时多媒体流的传送,并且要求网络具有更高的安全性、可靠性和高性能。下一代网络应是—个能够屏蔽底层通信基础设施多样性,并能提供一个统一开放的、可伸缩的、安全稳定和高性能的融合服务平台,能够支持快速灵活地开发、集成、定制和部署新的网络业务。

下一代网络将是—一个以软交换为核心、光网络为基础、分组型传送技术的开放式的融合网。软交换的出现,可通过一个融合的网络为用户同时提供话音、数据和多媒体业务,实现国际电联提出的“通过互联互通的电信网、计算机网和电视网等网路资源的无缝融合,构成一个具有统一接入和应用界面的高效率网路,使人类能在任何时间和地点,以一种可以接受的费用和质量,安全的享受多种方式的信息应用”的目标。

参考文献:

[1]金惠文陈建亚纪红冯春燕:现代交换原理.北京:电子工业出版社,2005

第4篇

【关键词】 NGN 软交换 容灾

一、概述

NGN是指一个统一的、多业务的、以数据网络为中心的、在开放的业务平台上提供不同服务质量业务的下一代网络。NGN的关键技术是软交换技术。软交换又称为媒体网关控制器、呼叫,其基本思想是硬件软件化,通过服务器或者网络上的软件实现呼叫选路、连接控制、管理控制、信令胡同等基本呼叫控制功能。本文介绍的NGN容灾技术采用双归属机制。

二、容灾技术分析

NGN系统的容灾是指当某一地方发生灾难,造成该地软交换功能失效时,该控制域内的网关设备(包含IAD设备、AG、TG、SG等)能够切换到异地正常运行的容灾软交换设备上。

为了确保NGN系统可靠性、安全性,降低单汇接局运行的风险,软交换设备成对建立、两套软交换设备间采用异地容灾,而TG/SG设备均支持双归属,当一个软交换设备出现故障时,其下属的TG/SG可以切换到另外一个地方的软交换设备继续为用户提供正常的业务,更好的提高了网络的安全性和容灾性。SS容灾组网方案如图1:

正常情况下,两个软交换分担控制两个域的用户群以及相关的网关设备(TG、SG、AG等)。对于一个软交换控制域内的一个网元设备而言,只受该域的软交换控制。

当某一节点发生故障后,受该域控制的各种网关设备重新向备分的软交换节点注册,使得该域的业务还能正常进行。如图1,SS1控制“网络1”的IAD、TG、SG、AG等设备,SS2 控制“网络2”的IAD、TG、SG、AG等设备。当SS1设备发生故障后,域内的设备如IAD、TG设备等设备可以“主动感知”SS1的故障后向SS2重新注册,保障原有业务。另外SS1也可以主动向本域内的设备发出“向SS2重新注册的命令”。被控制的网元收到这类“切换命令”后,执行“重新注册命令”将业务切换到新的SS中。

NGN系统实现的软交换双归属功能中,网关具有故障检测功能,在判定故障的情况下网关设备可以切换到另一个软交换设备。

2.1 软交换间的心跳信息

软交换目前支持的心跳信息包括软交换间的SIP心跳信息、数据同步链路的心跳信息以及软交换与网关间的心跳信息。根据这些心跳信息,软交换确定当前各网元的状态,作为呼叫路由和切换过程等的依据。

软交换间的心跳信息目前有两种:(1)软交换间通过SIP协议的OPTION消息实现的,在一定时间间隔内(可配置),多次(可配置)发送OPTION消息,若收不到对方的200响应消息,则认为对方不在线。该心跳信息不局限于互为异地容灾的两个软交换,可以应用于所有与软交换通过SIP协议互通的网元。其作用主要有:软交换在收到手动切换命令或者切回命令时,会判断对端软交换的在线状态,若此时对端软交换不在线,则不向网关发送切换命令。作为第三方软交换,会将互为异地容灾的一对软交换配置为直达和迂回路由。在选路时,会判断软交换的在线状态,若直达路由的软交换不在线,则将呼叫迂回路由到另一软交换。(2)软交换间基于TCP连接的数据同步链路上的心跳消息,该心跳是软交换间的数据同步模块间的心跳消息,若在配置的时间间隔内收不到对端的心跳消息,则认为数据链路中断。在进行软交换间的数据同步时,会据此判断对端软交换的数据同步模块是否可用,在可用的情况下实时同步数据,否则继续尝试心跳消息。

2.2 软交换与网关的心跳信息

软交换下发的和中继网关、接入网关等之间的心跳消息是H248协议的Audit消息,根据配置的最大重传次数,重传定时器,和最大的断路次数进行网关状态的判断。每一个事务如果没有收到应答,在定时器到的时候就会重传,达到了重传的最大次数后,就会认为是一次断路次数;如果达到了最大的断路次数,就会拆除此时网关上的呼叫,置网关为退出服务状态。如果在此之后还有消息发送过来,软交换会要求网关再次重新注册。

软交换根据链路检测消息确定网关的状态,作为呼叫路由的依据,在软交换双归属实现中其作用包括:(1)当发现本地网关不在线,并且无迂回路由可用时,若此时互为异地容灾的软交换在线,则会将呼叫路由到互为异地容灾的软交换上。(2)同样对于需要路由到异地容灾软交换的呼叫,软交换首先也会判断异地网关在本地的状态是否为在线,若在线则在本地接续,否则按原路由到异地软交换。(3)网关发送的心跳消息为空的ServiceChange命令或者Notify命令,并根据心跳信息判断当前注册的软交换是否发生故障,当通过心跳检测发现软交换出现故障时,自动向软交换列表中的下一个软交换进行注册。

2.3 切换和切回过程

双归属方案实际上有两种动作,一种是当故障发生时,发生故障软交换下的用户需要注册到归属软交换,此过程称为切换规程;当发生故障的软交换恢复正常时,其所属用户需要切回到本软交换,此过程称为切回过程。

软交换目前支持切换方式包括:(1)自动切换;(2)手动切换;(3)自动切回;(4)手动切回;

软交换支持切换的策略控制和配置。软交换可以配置策略,在容灾软交换之间心跳检测正常的情况下,选择不允许或允许某网关设备的切换。(1)业务切换机制:网关故障检测自动切换及软交换人工命令的方式。自动实现方式:网关自动检测到当前注册的软交换出现故障,自动向软交换列表中的下一个软交换注册。人工实现方式:根据需要,通过人机命令方式,由软交换主动向网关发送Service Change命令,强制其向另一个软交换注册。(2)业务切回机制:异地的软交换恢复正常后,可以在备用软交换采取人工命令或者定时启动的方法命令其所属网关等设备切回,在此之前先判断软交换之间的心跳是否正常。切回的人工方式:通过人工命令的方式,即维护人员通过人机命令,向在本地注册的异地网关发送向另一个软交换注册的命令。切回的自动方式:可以设定定时方式或在某个时刻,系统向在本地注册的异地网关发送向另一个软交换注册的命令。

三、结语

民航福建空管分局拟建设的NGN系统是为整个长乐机场提供语音网服务的,因此其重要性不言而喻。作为设备维护保障人员,只有对系统容灾技术有了深刻的理解,才能使NGN系统运行更加可靠、稳定,从而使用户得到更加优质的服务。

参 考 文 献

[1] 陈建亚,余浩. 软交换与下一代网络. 北京邮电大学出版社. 2003.第一版

第5篇

关键词:SIP;软交换;群呼;呼叫控制

中图分类号:TP212 文献标识码:A DoI: 10.3969/j.issn.1003-6970.2012.03.013

The Implementation of Group-calling in SIP Soft-switching system

YANG Lei, LIN Hai-quan, ZHU Jian-feng

(School of Electronics and Information Engineering, Qiongzhou University, Sanya 572022, China)

【Abstract】SIP (Session Initiation Protocol) is a multimedia communication Protocol put forward by the IETF on IP network. It is the control Protocol of the application layer based on the text, which is independent from the underlying Protocol, being used to establish, maintain, and terminate the multimedia conversation and calls. As the core technology of the Next Generation Network(NGN),soft-switching technology provides call and connection control for the business that calls for the instantaneity. Through analyzing the current situation and the future trend based on the application of the SIP voice service business and researching on the related major agreements and key technology, the soft-switching system based on SIP is put forward and the group-calling function has been implemented.

【Key words】SIP; Soft-switching; Groupcalling; Call control

0 引 言

随着电信网络的演进和新业务的发展,人们对网络及终端通信性能的要求越来越高。网络技术也正从基于电路交换向分组交换演进,数据和信令都可以选择分组网来承载,控制由软交换实体来完成,业务提供也正从简单的语音业务和低速数据业务向高速的多媒体业务演进。软交换技术使得多种网络上基于多种协议的实时呼叫的统一控制成为可能,SIP的应用适应了融合多种网络的发展。SIP协议基于文本编码,大量借鉴了成熟的HTTP协议,并且具有易扩展,易实现等特点,因此非常适合用来实现基于因特网的多媒体通信系统。基于SIP的这些优点,论文主要对软交换系统中的群呼业务实现进行探究。系统采用Web界面和数据库相结合方式对系统的群呼业务进行管理和维护。Web界面的应用方便了管理员使用和操作此软交换系统,数据库的应用降低了系统对物理内存的消耗,这些优点有利于系统中功能的充分发挥,因此系统适用于大规模的应用。

1 SIP软交换系统架构

系统中的呼叫过程主要由IP-PBX模块控制。IP-PBX网络系统内各电话终端采用IP方式进行数据通信,不仅能进行通话,还能实现文本、数据、图像的传输。此系统将电话网和计算机网融合成一个整体,实现局域网内的电子办公。特别是在远距离协作商务、电子办公中将会充分发挥其强大的资源优势,为商业合作、工作重组带来便捷。IP-PBX局域网内的控制中心可根据局内外的具体情况,对计算机网络、电话网络进行有效地管理,达到资源共享。模块中含有SIP 服务器和呼叫控制单元:SIP 服务器分为器(Proxy Server)、重定向服务器(Redirected Server)、注册服务器(Register Server);呼叫控制单元主要由Web服务器和数据库构成。IP-PBX模块如图1所示。

SIP协议在呼叫过程中主要负责会话的建立、维护和终结。用户信息(用户ID、用户名、用户密码)首先通过Web发起进行注册,建立呼叫前,用户需要先向服务器发起认证,通过认证后,用户终端的IP地址将被录入到服务器,并将这些信息保存到数据库;当其它用户呼叫该用户的时候,可以从数据库中调出被叫用户注册信息中的IP地址。

2 呼叫基本过程

呼叫过程由主叫侧A发起,经由SIP服务器,再发送SIP报文到被叫侧B。SIP服务器负责SIP报文的路由寻径和转发,因此许多服务功能都必须依靠它完成。如图2所示。

1:主叫A发起会话请求INVITE,并提交给服务器。

2:请求发往服务器之后,服务器向主叫侧A返回状态码100(TRYING)的临时响应消息,表明请求已接受并正在处理中。

3:服务器将INVITE请求发送到被叫侧B。

4:被叫侧B得知有用户邀请他加入会话,生成一个状态码100(TRYING)的临时响应消息返回给服务器。

5:被叫侧B启动振铃,并生成状态码180(RINGING)发给服务器。

6:服务器收到180响应后,将响应继续返回给主叫侧A。

7:被叫侧B提起话筒接受呼叫,并产生状态码为200(OK)响应发送给服务器, 表明被叫侧B接受会话邀请。

8:服务器收到200响应后,将响应继续转送到主叫侧A。

9:主叫侧收到200的响应后,直接向服务器发送ACK确认消息。

10:服务器收到主叫侧发送的ACK确认消息后,将确认消息转发给被叫侧B。

11:主叫侧A和被叫侧B确认消息完毕后,会话建立,双方进行多媒体会话。

12:当会话中的任何一方想终结会话(以A为例),此时A向服务器发送BYE的请求。

13:服务器收到主叫A的请求BYE消息后,然后向被叫侧B转发BYE的请求。

14:被叫侧B收到BYE的请求后,发起200(OK)发送到服务器。

15:服务器收到被叫侧200响应消息后,将此消息转发给主叫侧A,A和B会话过程结束。

3 群呼的实现

3.1 群呼数据表

群呼过程中,要根据数据库中表与表之间的数据及其关系建立呼叫,关系图如下图3所示。

t_tenant表:tenant_id(主键)字段是用户管理员的ID;

t_extension表:tenant_id(外键)&extension(两个字段作为主键),其中extension是内线号以及其所属的目标组号destination_group_id,data_updated是内线中数据更新日期;

t_destination_group表:tenant_id(外键)& destination_ group_id(两个字段作为主键),destination_group_id是目标组的ID,data_updated是目标组中数据更新日期。

3.2 群呼的实现

数据入录时, 记录开始建立通话的时间,以及释放通话的时间,从而记录通话的总时间(便于查询通话时间和运营商计时收费)。群呼时,在数据库表里查找群组内的所有成员,然后将成员信息调进服务器内存,根据内存里群组成员的状态执行呼叫过程。群呼类图如下图4所示。

各类的作用:

BasePeer为抽象类,生成具有功能相同的peer终端列表,它是SipPhoneGroupFunctionPeer、DestinationGroupPeer、BaseSipPhoneGroupFunction的父类。

SipPhoneGroupFunctionPeer类对数据库表sip_phone_ group_function进行操作,它是SipPhoneGroupFunction的父类。

BaseSipPhoneGroupFunction在呼叫控制中产生对象模型并设置对象的属性sipPhoneGroupId、sipPhoneFunctionId及其构造方法。

DestinationGroupPeer类更新数据库表t_destination_ group中的字段。

SipPhoneGroupFunction是对象类并设置对象的属性grouupName及其构造方法。

群呼序列图如下图5所示。

系统分别采用循环振铃和共同振铃的方式解决了现实通信业务中群呼单一的问题。通过应用服务器执行信令控制,将不同的用户加入指定的组中,当主叫方呼叫此组ID时,能够发起对组内的所有用户呼叫,此时被叫用户群组能够循环振铃或者同时振铃(根据呼叫方法设定),任一被叫用户只要摘机,就可以与主叫用户通话,同时释放其它未摘机的被叫用户。呼叫过程时序图如图7所示。

4 结论

本文对SIP协议进行简要分析后,给出了一种基于SIP软交换系统的群呼业务的建立和控制的具体方案,在实现的过程中充分体现了SIP 协议简单及易于扩展的特性,进行简单的改进即可满足不同层次的需求,推进并加速了发展下一代互联网和新一代移动通信的步伐,加快了网络升级换代。通过网关可以充分利用现有的计算机互联网(IP)资源、及公共服务电话网(PSTN)资源进行异构终端间的信息交换,对社会资源有效再利用、节约通信成本、保护生态环境等方面,具有积极的作用。

参考文献

[1] 朱剑锋,李壮,马玉春. 基于SIP的IP-PBX呼叫保留功能的实现[J]. 信息与电脑(理论版), 2009年12期.

[2] 杨震,马华. 一个基于SIP的P2P视频会议系统[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C], 2005年.

第6篇

【关键词】移动核心网 IMS EPC

移动核心网络的发展目标将是基于IMS技术的网络。IP化和融合化成为移动核心网发展的主要特征。基于IP化的核心网网络结构,不仅可以显著降低网络成本,实现简单而高效的网络运营,并能快速部署新型业务。LTE引入后分组域也将在网络演进中起重要作用。随着运营商全业务经营的逐步开展,可控制的IP多媒体业务越来越引人关注。

1 移动TDM电路交换退出历史舞台

由于传统的移动TDM交换机面临容量小、节点数量多、部分设备老化、运维成本增加,并且部分厂家不再提供设备维保等问题,全球运营商普遍启动了核心网的IP化战略。

在长途和省级层面移动TDM交换机加速退网,实现固定、移动网的融合,退网后以移动软交换为主进行网络演进。同时,运营商根据业务需求驱动,引入IMS系统,提供多媒体业务,形成软交换与IMS并存的网络结构。这种思路的主要特点是固定、移动软交换技术成熟,全球已经进行了大规模的部署,运营商可以快速实施网络的IP化演进。

2宽带分组域将在网络演进中扮演重要角色

引入LTE后,无论在移动互联网的业务支撑还是在IP承载网络的演进方面,宽带分组域都将起到重要作用。分组域将主要完成IP承载控制的功能和IP传送功能。

LTE R8版本中20MHz频谱带宽无线侧下行速度高达100Mbps,后期可演进到1Gbps。为适应无线侧的速度增长,对核心网构架进行进一步的演进就成为3GPP组织研究的一个重点课题,这就是我们现在常常谈到的“系统构架演进”即SAE项目的重要内容,也是更名后我们通常把它称为“演进的分组核心网”即EPC。经过5年多的努力设备商与运营商,基本完成了LTE/EPC的标准工作。

设备商在这个领域的投入不断加大,芯片厂商也积极跟进。在MSF论坛推动下,业界LTE/EPC设备的IOT测试于2009年3月开始。

EPS是未来移动网络演进的方向,主要特征包括:全面分组化,提供真正意义上的纯分组接入;支持多接入技术,除支持现有3GPP系统接入外,同时支持非3GPP网络(如CDMA、WLAN)的接入,并支持在3GPP网络和非3GPP网络之间的漫游和切换;支持端到端的QoS保证,增加了对实时业务的支持,通过简化网络架构和信令流程,降低业务连接的时延,使之小于200ms;网络层次扁平化,在用户面进行节点压缩,取消了RNC,核心网用户面节点在非漫游时可合并为一个。

EPS的这些特征不仅满足了下一代移动网的需求,也为网络融合提供一个新的平台,受到业界广泛关注。

EPS标准从2004年启动R8版本,该版本制定了EPS的主要功能,目前已冻结。R9版本针对一些增强功能进行研究,功能也基本冻结,3GPP目前正在制定R10版本的需求和功能。

EPS系统包括无线网接入网(可以是LTE、CDMA、WLAN等)和核心网EPC。其中EPC核心网的架构如图1所示:

该架构中,EPC系统同时支持3GPP接入(如LTE)、信任的非3GPP网络接入(如CDMA)和非信任非3GPP IP网络接入(如WLAN等)。其中,PDN GW作为接入的核心设备,不同接入网络的接入网关(LTE无线网对应SGW,CDMA无线网对应HSGW,WLAN无线网对应ePDG)分别接入PGW实现异质网络的接入。HSS作为EPC网络鉴权认证的核心,除支持LTE网络认证外,对于CDMA和WLAN的网络认证,则先通过3GPP AAA服务器统一处理后,也在HSS实现最终的接入认证和鉴权。

EPC作为IMS网络和业务的接入承载网络,通过PDN GW实现与IMS业务互通。为了增强用户的计费策略和实现端到端的QoS,EPC系统支持PCC架构。通过PCC的控制,EPC网络可为用户或业务配置相应的QoS资源和执行相应的计费策略。

在LTE接入场景下,EPC的核心网元包括MME、SGW、PGW和HSS。

EPC网络的主要特征包括:

(1)QoS机制进一步完善,能够支持端到端的QoS保证。EPC系统因为引入了PCC架构,计费和QoS策略管理得到进一步的加强,更加灵活。

(2)全面IP化,提供真正意义上的纯分组接入,将不再提供电路域业务,实现全IP的核心网。

(3)支持多接入技术,既支持和现有3GPP系统的互通,同时也能支持非3GPP网络(如:WLAN、WiMAX)的接入,并支持用户在3GPP网络和非3GPP网络之间的漫游和切换。

(4)增加对实时业务的支持。简化网络架构,简化用户业务连接建立信令流程,降低业务连接的时延,连接建立的时间要求小于200ms。

(5)网络层次扁平化。用户面节点尽量压缩,接入网取消RNC,核心网用户面节点在非漫游时合并为一个。

EPC的目标与LTE是一致的:一是性能提高,减少时延,提供更高的用户数据速率,提高系统容量和覆盖率,减少运营成本;二是可以实现一个基于IP网络的现有或者新的接入技术的移动性的灵活配置和实施;三是优化IP传输网络。不同于LTE,EPC更多地是从系统整体角度考虑未来移动通信的发展趋势和特征,从网络架构方面确定将来移动通信的发展方向:在无线侧呈现出多样化、同质化的特征,在网络侧控制面与用户面的分离以及用户面的扁平化,满足未来发展趋势的网络架构将使运营商在未来更有竞争力,而用户不断变化的业务需求也将得到较好的满足。

IP技术逐渐成为了移动通信网络的主角,全网IP化已经成为一种趋势,为了实现并优化IP业务,需要对现有的移动核心网进行必要的改进和优化,逐步过渡到全IP的核心网,EPC标准的目标就是取消电路域,电路域业务在分组域(PS)实现,这就意味着支持E-UTRAN的是一个全IP的核心网。

EPC网络实现了核心网的融合,支持各种3GPP接入方式和non-3GPP网络的共接入,并支持多模终端用户的无缝移动性。全业务运营的发展趋势,使得运营商开始面对运营多种制式网络。支持多种网络共接入的EPC网络,实现了核心网的融合,使得网络结构更加简单,降低了网络运营成本。同时EPC网络支持各种接入方式之间的无缝移动性,提高LTE用户在LTE部署初期局部覆盖时的使用感受。

EPC网络控制面与用户面的分离以及用户面的扁平化的趋势,也是应对网络流量激增的必然选择。单用户的数据流量和高速接入用户数的双边增长,使用户面吞吐能力逐渐成为移动分组网络设备的主要瓶颈,同时也导致分组核心网的投资飞速增长。对分组核心网进行控制面与用户面分离,使得分组核心网只对网关节点提供用户面处理,不仅大大节省了其他网络节点如SGSN/MME的用户面投资以及承载网的投资的快速增长,同时优化了用户面的性能。

宽带分组域各网元的引入将对IP承载网络的架构有一定的影响,根据业务流量的不同,网络配置也会发生相应的变化。应结合网络现状和IMS业务网络的能力配置,认真研究EPC的演进策略。

3 IMS是未来融合网的业务控制层

国际标准化组织早就将IMS定义为未来的核心控制架构,包括3GPP、TISPAN、3GPP2、ITU-T等。国际各大主流运营商的业务重点,正在或已经从语音业务向融合业务和多媒体业务转移,视频能力更是各运营商战略发展的重点。在中国,随着3G牌照的发放,视频通信等多媒体业务的需求也豁然显现。此外,全业务运营使得融合业务成为运营商赢得竞争的关键。IMS具有开放式标准架构、支持固网/移动统一的接入网络控制架构、灵活的业务提供和业务触发能力,以及对多媒体业务的管控能力和运营能力等特点,是运营商提供会话型多媒体业务和网络融合的主流技术。

KDDI、NTT DoCoMo和Verizon都一致认为,从长远的发展看,IMS将是固定网络和移动网络共同的核心业务控制层;特别是在LTE的引入阶段,全IP的分组化网络使IMS控制各种业务的核心地位更加凸显。此外,国内外一些运营商正在尝试将IMS的业务能力与IP互联网应用相结合,如将IMS的语音和即时消息等通信能力,与Facebook等SNS网站及网络游戏结合;将IMS的通信能力与IPTV结合。同时,运营商也准备将IMS的业务能力给多个业务系统调用,如将IMS网络的通信录的业务能力,给移动手机终端、PC软终端共用,为用户提供统一的业务体验。

IMS发展的一个关键问题是业务能力平台是否能够开放,聚合用户、CP/SP/AP,发挥电信与合作伙伴的整体优势。业务能力是各种业务系统的可重用业务单元,业务能力总体发展策略是整合、增强、共享和开放。通过开放,让用户参与业务提供,直接降低业务成本,缩小业务提供周期。电信能力需要与第三方或者其他系统服务能力组合和集成(众多客户特别是政企客户的业务系统需要灵活的嵌入网络/业务平台能力);通过能力开放,电信能力才可以更好地嵌入客户业务流程以及与其他能力服务集成,提供融合业务,满足客户的业务融合需求。

目前业务能力API,Parlay API和Parlay X定义的接口有限,运营商需要拓展API接口定义范围;向第三方提供SDK开发工具包,现在越来越多的人使用REST和SOAP类型的开放接口降低业务开发门槛。让越来越广泛的开发者参与到业务创新中来,是增强能动性的重要途径。目前开放的方式有很多,例如,通过Web Service接口将业务能力开放出去,供第三方调用。 Web Service属于常见接口,IT开发者易掌握,门槛较低;再如将SIP能力封装成终端控件,提供给第三方调用,提供API文档,可实现较复杂逻辑,但开发范围受到终端封装范围控制。

4 RCS的进展与思考

RCS(Rich Communication System)是指除了语音通信外,还可以向客户提供提供包括图片、Flash、视频、文本(IM、Presence)在内的更多的交互和呈现手段,以创造丰富的沟通环境和体验。

我们对理解的RCS,不仅仅是一项业务,而是网络能力,我们更关注的是如何借鉴和提升电信网络优势,提升更丰富和优质通信能力。初期可以IMS网络技术为切入点,提供丰富的高质量的VoIP服务、多媒体通信服务,同时将电信基础业务能力有控制地向互联网业务渗透。

GSMA于2008年7月成立RCS(Rich Communication Suite,增强型通信业务组件)工作组。目前有60多家运营商和厂商参与,包括Orange、中国移动、Vodafone、NTT DoCoMo等。

RCS目标是为用户提供可定制的基于IP的增强型整合式服务,包括:增强型通讯簿、Rich Call、Rich messaging等。RCS手机的目标是要达到原厂预先安装,RCS平台是要达到与原厂手机的兼容;核心组件基于IMS网络实现,不是建立新的标准,而是根据现有标准制定出可实施互通、基于IMS通讯的核心业务集。

RCS具有的商业价值包括:它可以增加运营商的业务吸引力,提供集成呈现能力的新业务;它的消息业务基于电话号码,通过手机地址簿易于使用,将来可以与MSN-Messenger、Skype等用户互通;它可以增强运营商对客户个性化业务需求的响应,基于同样的价格提供更好的服务,可以保持ARPU值和用户的忠诚度等。

到目前为止,RCS已经了三个版本:

RCS1.0:于2008年12月。在RCS1.0中,包含了RCS最核心的业务集,即前文介绍的增强型地址薄、增强型呼叫、增强型融合消息。但是,RCS1.0只支持移动设备。

RCS2.0:于2009年6月,Q3进行IOT测试。RCS2.0中,用户体验向宽带和多设备环境延伸。其主要特点包括:

(1)多设备环境:可以任意终端通信。

(2)宽带PC接入RCS服务方面:客户端支持网络侧、终端侧接口;分组域PC客户端的语音通话;基于会话的消息聊天;分组域呼叫的视频共享;分组域呼叫的图像共享;基于SIM卡的认证;文件传输;社交状态呈现。

(3)业务部署方面:基于OMA DM;RCS设置锁定;RCS自动配置。

(4)网络地址薄:基于SyncML的同步机制;备份、恢复及提取功能;多设备同步。

(5)增强的消息通信:发往所有注册设备的初始对话。

(6)PC可以发短信/彩信。

RCS3.0:于2009年12月,拟于2010年进行Q1 IOT测试。RCS3.0在1.0和2.0的基础上,又进行了相应的功能扩展和完善。其主要特点包括:

(1)宽带PC接入RCS服务方面:PC客户端与手机或其它PC客户端的视频通话。

(2)服务推荐。

(3)内容共享扩展:不带语音呼叫的点到多点内容共享;不带语音呼叫的点到点内容共享。

(4)增强的社交信息呈现:包括位置信息、个性化邀请、URL标签。

(5)增强的消息通信:闪烁、表情符、组列表。

(6)PC上增强的短信/彩信体验。

(7)融合消息:IM SIP simple/SMS/MMS interworking(候选)。

网络与业务的发展为RCS的引入奠定了基础,第一,互联网的发展,需要与通信基础能力相结合:如SNS社交网站、电子商务网站、其他Web 2.0应用等;第二,信息服务的需求,信息服务需要与通信基础能力相结合:如行业应用、个人应用、物联网应用等,需要通信基础能力更好地发挥调度的作用;第三,LTE等无线超宽带技术的发展,需要提升基础通信能力,提供端到端全IP化的语音和多媒体通信服务。

综上所述,随着IP技术以及LTE等无线超宽带技术的发展,网络宽带化趋势愈加明显,为RCS的推出奠定了网络基础,可以说,RCS在传统电信能力与互联网应用中搭建了一座桥梁。

IMS的发展和产业链成熟性密切相关,RCS工作组目前成为推进IMS的成熟和商用的一个热点组织。RCS(Rich Communication Suite)工作组主要致力于推动IMS实现商用,推动IMS产业链快速成熟,快速应用移动新业务,为用户提供可互通的、融合、丰富的通讯体验。RCS工作组主要基于已有的标准(包括3GPP、ETSI、OMA、GSMA)制定出一个可实施、可互通、基于IMS的核心业务集,提出RCS的实现标准并测试业务需求的满足度、业务成熟度和业务互通性,推动IMS业务快速实现商用。我们在推动融合业务的同时也要重视IMS终端的开发,包括硬终端和软终端的应用,在软终端的设计方面要有良好的用户体验。

参考文献

[1]3GPP TS 23.401. GPRS Enhancements for E-UTRAN Access[S].

[2] 3GPP TS 23.402. Architecture enhancements for non-3GPP accesses[S].

[3]3GPP2 X.S0057-0 v1.0 .E-UTRAN-eHRPD Interworking[S].

[4] GSMA RCS.rcs_gen_doc_006_rcs_initiative_ white_paper_ic_274457[S].

【作者简介】

赵慧玲:教授级高工,博士生导师,任中国通信学会信息通信网络技术专业委员会副主任委员、中国通信学会北京通信学会副理事长、中国通信标准协会网络与交换技术工作委员会主席。主要从事于宽带网络和下一代网络的技术研究以及通信网络发展战略研究,主持了我国网络标准的研究和制定工作,多次获国家和部级科技奖,发表文章近百篇,出版技术专著12部。

第7篇

针对当前地方性院校通信工程专业实践教育模式的不足进行反思,该文从适应行业需求的人才培养目标出发,明确分析了现有实践教学体系的缺陷。在此基础上,结合校企合作共建通信工程创新实践基地的探索经验,提出了项目驱动型通信工程实践教学体系的构建方案,逐一分析了该实践教学体系的各个重要环节及其相应的教学实施方法,为创立“联动式”通信工程师培养模式进行了有效尝试。实践表明,该方案可切实满足通信运营企业对应用型工程技术人才的需求。

关键词

通信工程;项目驱动;实践教学;校企合作;电信运营

提高教育水平、培养高质量应用型人才必须走产学结合的道路,通过校企合作共建实验实践教学基地,以该基地为依托开展内容丰富的工程实践教学活动,能够有效压缩本科毕业生适应通信运营企业的时间,对于提升学生的专业素质有很大的促进作用[1-2]。结合近3年的实践教学经历,对构建基于项目驱动型的通信工程实践教学体系进行了有效尝试。教学实践效果表明,该体系可有效提高学生的学习积极性、激发学生主动学习的热情、强化学生的工程实践技能锻炼,在提高学生就业率方面收到了良好的效果。本文以构建项目驱动型通信工程实践教学基地为主线,分析了当前通信工程实践教学环节中存在的问题,以通信运营企业实际需求为中心,提出了一种通信工程专业课程实践教学体系新构建模式。

1现有实践教学体系的缺陷

通信工程学科知识覆盖面广,汇集了当今诸多信息处理的最新技术。这一学科不仅与电子科学技术的基础知识、电子技术的最新发展有十分紧密的联系;同时在计算机科学及网络通信技术的综合应用方面对学科教学提出了更接近生产实际的要求。该专业从理论课程到实践教学,每一环节都能够体现其鲜明的工程专业特色[3-4]。要求学校所培养的通信工程专业学生既有扎实的理论功底又有较强的实践操作能力,只有如此才能满足企业的需求。然而,受到资金不足和物质条件的制约,大多数学校难以快速地把产业最新技术引入实践教学环节。汇集通信工程最新技术的实践教学基地建设则需要投入大量的财力、物力。而目前多数地方院校的相关实验过程中最常使用的是一些分散、相对孤立的实验箱,这种教学活动侧重于通信信号的处理分析,难以从通信网综合层面向学生传授通信网络结构、工程应用相关的专业知识,学生得不到系统的工程训练,难以形成适应企业需求的有效对接。究其原因有如下两点。

1.1考评机制对实践教学不够重视

在当前的高校教育体系大背景下,教师职称的评价体制还缺乏突出实践教学重要性的考核指标。评价机制的导向性政策倾向造成了专业教师对实践教学严重投入不足,进而影响到实践教学的质量。如果能从职称评定的考核机制上切入改革,将实践教学与教师职称挂钩,必将能引导教师重新重视实践教学,从而不断探索实践教学的创新方法和机制。企业用人单位对职业技能的要求越来越高,国家对职业技能中心和高校本科工程研究中心越来越重视,足以表明实践教学是一项重要的教学工作。只有妥善协调考评机制与行业需要之间的矛盾,就一定能为通信工程实践教育指明一条正确的道路。

1.2实践教学与企业需求不够协调

由于高校受自身基础条件不同和经费的限制,再加上新技术、新设备在通信工程中不断涌现,使得实践教学条件与实际工程环境的对比差异很大。目前多数高校通信工程专业实践课设置方式较单一,只有部分实验课程和课程设计,缺乏面向企业需求的实践环境。部分高校通信工程专业的实践教学课程以验证性和演示性为主,缺乏创新性,不能适应通信技术的发展。部分高校培养学生的实践能力与实际工作能力严重脱节,单纯从实践技术能力来比较,部分地方院校所培养学生甚至还不如职业学院培训出来的与业技术人才。从人才需求分析,多数通信运营企业更加青睐有大型通信设备的实践操作经验的毕业生,而目前主要通过学生进入企业后的新员工专业技术培训来丰富其经验,这就使得毕业生与熟练员工之间有一道明显的“鸿沟”[5]。突破这一道“鸿沟”就要培养学生的工程师素质,提高学生的实践能力。本文从地方院校解决通信工程教学环节中的专业技能培养问题出发,提出了通过“校企结合、项目驱动”方式构建通信工程专业课程实践教学体系的设想。通过“校企共建”缩小产、学之间的距离,增强了学生对企业、新技术的适应能力。在教学环节引入“项目驱动”的教学方式可有效提高学生的学习积极性、激发学生主动学习的热情。

2构建项目驱动型工程实践教学体系

项目驱动型工程实践教学体系将学科体系中的知识内容转化为多个实践教学项目,使学生能够直接参与实践项目实施全过程[6]。依据通信工程专业特色,笔者认为要构建基于项目驱动的实践教学体系,首先需要企业与学校的共同参与,合作建设一个真正面向企业需求的通信工程实践基地;其次,需要专业教师与企业专业工程师的协作分工,规划出适应企业发展、符合通信技术演进方向的实践项目内容;最后,需要学生与实践项目指导师的互动参与开展实践教学,并建立和完善实践教学体系的反馈、评估机制,以形成对实践技能培养的正确引导。

2.1构建面向企业需求的工程实践基地

通信工程实践教学体系的构建首先要在原有的验证性、演示性实验基础上引入更多的通信企业一线运营设备,完成相关实验设备的硬件更新;其次要充分结合通信工程学科发展特点,在实践教学环节注重通信技术应用技能的培养,拓宽学生的就业范围适应能力[7-8];最后,要强化学校与一线企业的联系,引入企业级的人才培训软环境,使得学生能接触到最新的通信技术并很好地掌握这些新技术[9]。要完成这方面的工作,需要投入大量的人力与财力,可能使多数地方性院校畏而却步。为破解这一难题,温州大学联合当地的主流通信运营企业———温州电信展开全方位合作。以温州大学主建,辅之以温州电信公司向学校赠送VOIP语音交换设备、数据通信及接入网传输系统(包括通信技术实训设备以及必要的辅助材料、工具等)。通过前期的合作建设,网络具备了如图1所示的规模。该实践基地不仅可为课内实验实践教学服务,作为相关专业学生的校内实习基地,还能够以开放实验项目等形式为学生课外实践教学提供平台,促进学生相关实践技能特别是关于广域网、接入网设计、维护和管理方面的实践能力培养,使学生能更好地接轨实际工作岗位,满足通信行业岗位需求。以该实践基地为载体,通过聘请浙江移动、温州电信、浙江华信设计院等通信产业相关企业的资深工程师为校外专家指导师,定期开展网络与通信工程方面的专题报告,对于提升学生的技能素质、增进学生对本专业技能的理解有很大的促进作用。

2.2规划面向企业需求的实践内容

上述工程实践创新基地为通信工程教学过程提供了实物硬件基础。如果说实物硬件条件是建设项目驱动型工程实践教学体系的前提,那么规划出合理的通信工程实践内容则是该实践教学体系建设的核心[10]。为完善这一核心内容的建设,需要联合通信产业链上设备制造、网络运营与综合应用3个环节的技术工程师对学校教育中工程实践的体验,充分考虑通信网络结构特点及学校对行业需求人才的培养要求,从行业“云、管、端”的整体产业发展角度实现学生职业能力及实际动手能力的培养[11-12]。通信工程实践内容设计过程中通过在接入层、传输层、交换层、业务层等网络结构中各个模块的灵活组合、分批分步建设、平台互联互通性制定等建设方式,可实现在校园网环境下模拟完整的电信运营商环境,实现商业运营环境中各项业务需求的在校实践的教学目标。

2.2.1综合接入层

以行业应用最为广泛的ADSL/LAN宽带接入相关实践为主要设计内容,同时涵盖了最新接入网技术发展的XPON光接入相关实践内容,并把已成为通信行业发展热点的3G无线通信接入实践内容作为重要补充。

2.2.2传输网络层

以行业大规模部署的SDH光传输技术相关的实践内容和解决大量数据回传的PTN分组传输技术方案为主,同时包括了为解决核心层、骨干层的智能业务部署为目标的ASON光传输实践内容。

2.2.3交换网络层

以传统交换技术的程控交换和NGN软交换实践内容为主,同时兼顾基于IP语音交换解决方案的VOIP实践内容。

2.2.4业务应用层

以部署各种业务的电信业务开发为主要内容的实践项目,涵盖了能反映最新行业发展动向的物联网实验实践项目、4G手机终端开发实验实践项目,同时也部分包括了对无线网络进行综合测试分析的网络规划网络优化实践项目。上述4个层面可形成面向通信工程及应用的实践教学体系内容架构。这4个层面相互依赖,互为补充,每个层面的实践内容联系紧密,环环相扣,对于学生全面掌握通信工程相关技术有实际价值。经过通信设备制造企业、通信运营企业技术工程师及学校专业教师的精心规划,我们设定了语音交换、数据通信与宽带接入、光传输技术3个大的实践项目组,每个项目组下又涵盖了认知性实验、综合设计性实验、课程设计性实验及创新设计性实验4种不同难易程度的若干个小项目,形成了不同难易程度互补的实践操作内容,对于学生全面掌握相关的通信工程技能有很强的实战锻炼效果。通过上述项目的实践锻炼,学生对于一般的通信运营企业传输网络管理技能岗位有了深入的了解,可以直接胜任该岗位的一般性日常事务的处理。通过这类实践内容的锻炼,对于培养符合通信运营企业需求的合格人才有很大的促进作用[13],丰富了实践内容的通信工程实践教学体系能够提供完整的通信工整网解决方案,学生通过在此环境下认识整网的运行环境,并且可以进行各种设备调试、业务模拟、故障分析、课题设计等,实现各平台环境下的业务需求,达到实践能力的全面提高,提升了学生的职业能力和就业能力。这为应用型通信工程专业人才培养提供了可靠的实践基础,为学生综合能力的提高和专业就业率的增长提供有力支撑。

2.3开展项目驱动型实践教学活动

项目驱动型教学,是通过实施一个完整的项目而进行的教学活动,其目的是在教学过程中把理论与实践教学有机结合起来,充分发掘学生的创造潜能,提高学生解决实际问题的综合能力。项目教学法可追溯到16世纪末在意大利兴起的建筑和工程运动,在18世纪欧洲的工读教育和19世纪美国的合作教育中得到推广。经过多年的发展,项目教学法在专业技能教学领域已形成了完整的教法体系[6]。在项目驱动型教学主线基础上,可以围绕所设定实验实践项目开展教学。首先,通过教师演示实验和实践指导,以学生认识实验现象为导向,对相应的知识点形成一个感性了解,形成学习知识内容前的思维准备;然后,启发学生带着问题进行知识点与实践操作要领的讲解与教学,通过学习与认知过程形成对知识点的理性认识;最后,在理性认识的指导下回到实践项目,这时学生已经能把所获得的知识技能融会贯通地应用于实验操作过程,实现从理性回到感性的认知升华。要完成项目驱动型实践教学过程,关键在于合理设置实践项目,介入实验项目要体现出吸引力,又能衬托出相关理论知识的连贯性;实验项目的总结是个画龙点睛的过程,需要在工程实践内容的软条件支持下,构建以项目为载体、教师为指导、学生为主体的实践教学环节,该环节决定这一教学方法的现实可操作性。为了能更高质量地完成实践教育环节,丰富学生实操技能,我们将教学环节的最后一站部署在一批稳定的校外实习基地上。先后与市气象局、城投集团、移动公司、电信公司等单位建立了长期友好的合作关系,以专业见习或毕业实习的方式开展教学活动。从中聘请有丰富工程经验及特长的专家、技术骨干为学生做讲座、指导实践环节,拉近了学校与企业的距离。这些技术人员也可以将先进的仪器仪表带进校园,讲解仪表原理、使用并演示,由于这些仪表价格昂贵,学校实验室受资金的限制无法配备,而在实际工作中会经常用到,通过这种形式很好地弥补了学校仪器仪表的不足。安排学生到这些单位参观和顶岗实习,给学生提供机会进行职业素质的训练,增进了学生对企业文化的感受,增强了工程应用能力和岗位适应能力。

3实践效果分析

经过上述项目驱动型通信工程实践教学环节的设计与实施,并在我校通信专业尝试推广,为有兴趣的通信专业学生提供必要的面向企业的真实生产环境条件,帮助其在轻松和谐的实践中逐步提升自己的创新能力。通过3年的摸索,结合我校率先开展的“卓越计划”的试点工作,逐步形成了“联动式”通信工程———卓越工程师培养模式。在这一培养模式下,项目驱动型通信工程实践教学体系取得了显著的成效,突出表现在:所搭建的实践平台为学生营造了一个以通信企业工程应用为背景的学习环境,提高了学生的实践操作能力;所设计的实践环节以学生学习兴趣为引导,激发了学生的探索精神和求知欲,促进了以创新为先导的工程意识的培育;所规划的实践内容培养了学生的实践动手能力,拓宽了学生通信工程的知识面;实践过程提高了学生的沟通协作和相互学习能力,强化了学生团队合作的工程素质培养。通过实践平台的建设与实践项目的运作,学生适应通信工程类企业的实践技能得到了实实在在的培养,缩小了高校教育与就业需求之间的差距。调查数据表明我们开展“项目驱动型实践教学”已逐步取得了实质性效果。3年来,用人单位对毕业生的认可度逐年提高,即使在就业压力日益加剧的大背景下,近3年本专业学生的就业率仍能保持一个稳中略升的势态。根据麦可思年度《中国大学生就业报告》蓝皮书调查结果,近3年通信工程在全校各专业排名中能够一直稳定保持占据前3位的优势。第三方调查的客观数据表明,在地方性高校的通信工程专业开展基于校企共建实践基地的项目驱动型实践教学是能够取得实质效果的。

4结束语

构建通信工程实践教学体系离不开上述3个环节。校企共建工程实践基地是物质基础,实践项目内容是核心,项目驱动开展师生互动实践教学活动是载体,三者缺一不可,构成了一个统一的实践教学有机体。通过项目驱动的形式引导学生主动学习,使得学生能够准确把握通信工程实践操作各个环节的要领,构建统一的工程实践技能认知体系,对于培养符合企业需求的复合型、应用型人才有着重要的现实意义。项目驱动型实践教学体系理顺了通信工程实践教学的各个环节的层次关系,突出了专业实践教学活动中必不可少的诸多要素,这对于建设地方特色的工程专业学科体系有很强的实践指导意义。

作者:李昌 万毅 阮秀凯 单位:温州大学物理与电子信息工程学院

参考文献

[1]田夫,孙涛,谢蓉,等.工科院校生产实习工作的问题及建议[J].实验技术与管理,2012,29(12):179-182.

[2]李志辉,张国栋,李婷,等.卓越工程师培养与实习基地建设的研究[J].实验技术与管理,2013,30(3):169-170.

[3]石桂名,刘畅,赵树源.应用型通信工程专业实践教学改革研究[J].中国科教创新导刊,2014(2):191.

[4]陈建军,韩庆文,蒋阳.通信工程专业的实践教学研究[J].现代教育技术,2012,22(4):110-113.

[5]郑玉甫,蒋占军,杨桂芹,等.通信工程专业”三维一体”教学法的研究与实践[J].现代教育技术,2009,20(12):84-86.

[6]罗运虎,邢丽冬,王勤.基于项目教学法的课程设计改革[J].电气电子教学学报,2009,31(6):14-15.

[7]李加旺,黄依珍.构建具有创新教育的电子专业实践教学体系[J].装备制造技术,2011(3):198-200.

[8]郭爱煌,宋春林.面向未来的电子信息与通信工程专业卓越人才培养[C]//中国电子教育学会高教分会2014年年会论文集.北京:中国电子教育学会,2014:8-11.

[9]张科,马立香,雷维礼,等.《接入网技术》实验教学研究与探索[J].计算机实验与实践教学研讨会,2011(S1):227-229.

[10]郭爱煌,胡宗福,宋春林等.通信工程专业卓越工程师教育培养核心课程教学团队建设[C]//中国电子教育学会高教分会2012年学术年会暨全国高等学校电子信息类学科教学改革交流研讨会论文集.大连:中国电子教育学会,2012:20-22.

[11]张燕,董昕.通信工程应用型本科培养体系改革研究与实践[C]//四川省通信学会2011年学术年会论文集.成都:四川省通信学会,2011:253-256.

精品推荐
相关期刊