时间:2022-05-21 01:44:41
导语:在电子论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
一个专业如果培养目标不明确,培养方向不准确,将无法科学地制定本专业的培养模式和课程体系,也无法高效地进行专业课程改革和教学管理。确定专业培养目标首先要进行充分的市场调研,确定本专业的就业岗位和典型工作任务,根据典型工作任务对知识、能力和素质的要求,确定人才培养目标和培养模式。苏州工业职业技术学院应用电子技术专业在苏州市电子信息行业协会的指导下,通过走访企业、召开专业指导委员会等形式,对苏州市电子类人才的需求进行调研,确定了本专业的主要工作任务是电子产品组装调试维修、PCB板的焊接与维修、电子产品辅助设计、电子产品品质保证和电子产品销售采购技术支持,职业核心能力是电子产品组装调试维修能力、PCB板的焊接与维修能力、电子产品辅助设计能力、电子产品品质保证能力和电子产品营销技术支持能力。通过岗位任务的分析,制订了本专业的人才培养目标是:培养具备扎实的科学文化基础知识,具备良好的职业素质、团队精神和创新意识,掌握电子产品检测技术、电子电路设计技术、单片机应用技术,具有电子产品生产过程管理、电子产品销售与采购及设备维护能力的高素质技能型人才,使其可胜任电子生产企业中电子产品设计、生产、维修、管理、销售、采购、技术服务等岗位要求。形成“行会协同指导,校企共同育人”的工学结合人才培养模式。[1]
二、实施教师“三化”工程,打造高素质“双师”教学团队
发展高等职业教育的重中之重是教师队伍建设。要以师德建设为引领,将提升教师素质、优化双师结构、聘任企业专家作为师资队伍建设的重点。在不断提高专任教师教学能力的同时,提升教师的工程实践能力,拓展国际化视野,让骨干教师参加企业新技术新工艺培训,参与专业建设,承担课程改革建设,指导毕业设计、学生竞赛、技术培训,主持教科研课题。要定期安排骨干教师出国培训。“要给学生一碗水,教师自己要有一桶水”,这一桶水必须是活水,流动的水,是知识不断更新的水。本专业通过提升教师学历,教师到企业做访问工程师,与企业技术人员共同进行产品开发和科技攻关,共同申报科研课题,为企业开发产品、解决技术难题等,使教师的工程实践能力有了一个质的变化。
三、搞好课程改革,推进素质教育
通过市场调研和职业岗位能力需求分析,确定应用电子技术专业毕业生的主要就业岗位和次岗及迁移岗位。[2]按照项目化课程教学理念,以学生岗位能力和职业素质培养为目标,在教学内容、教学方法、评价方法等方面进行改革,与职业岗位能力要求相对接,加强校企合作,与企业共同编写具有职业特色的项目化教材。多课程重新整合,实施课证融合。将考证内容穿插在实践教学中,实施理实一体化,既节约了考证时间,又提高了学生学习的效率,进一步完善了“能力核心、项目构架”的课程体系。如将“模拟电路技术”、“数字电路技术”与“电子元器件检验”相结合;“电子测量技术”课程的教学与“音视频设备检验员”、“无线电调试中级工”相结合。为了全面评价学生,摒弃一卷制的考核方法,构建多元评价机制,采取项目实施过程考核和课程终结性考核相结合,自评、互评、师评相结合的评价方式。根据课程的培养目标,制定评价标准,使课程尤其是基本技能训练类课程考核内容与职业岗位的要求相吻合。
四、以提高学生专业应用能力为目的,建设实践教学环境
以提高学生专业应用能力为目的,结合职业岗位的实际工作过程,重新设计应用电子技术专业综合实训课程的教学内容,以实现学生校内学习课程内容与实际工作流程的一致性。[3]实验、实训室建设以高技能人才培养为目标,加强实践教学师资队伍建设,实施一体化的教学方法,进行模块化的技能培训,以提高学生的技能水平,增强其就业竞争力,最大限度地满足学生求知、求技、求职的需要,满足社会对高职教育多样化的需求。与此同时,与行业、企业合作,建校外实训基地,形成多形式的校外实践教学基地,切实推动实践教学改革。充分利用企业先进设备、技术专家和企业文化等资源,在生产现场进行“电子元器件的焊接工艺”、“电子产品品质管理”等专业课程的教学活动。利用现代科技手段,建立校企数字传输课堂,将企业生产过程实时传送到课堂,通过企业工程师直接开展专业教学,真正实现校企联合教学。全过程注重学生“5S”规范、认真负责、效率观念、静电防护等职业素养的培养。
五、将综合职业素质教育贯穿于专业教育全过程
预计在未来10到20年,微电子器件抗辐射加固的重点发展技术是:抗辐射加固新技术和新方法研究;新材料和先进器件结构辐射效应;多器件相互作用模型和模拟研究;理解和研究复杂3-D结构、系统封装的抗辐射加固;开发能够降低测试要求的先进模拟技术;开发应用加固设计的各种技术。本文分析研究了微电子器件抗辐射加固设计技术和工艺制造技术的发展态势。
2辐射效应和损伤机理研究
微电子器件中的数字和模拟集成电路的辐射效应一般分为总剂量效应(TID)、单粒子效应(SEE)和剂量率(DoesRate)效应。总剂量效应源于由γ光子、质子和中子照射所引发的氧化层电荷陷阱或位移破坏,包括漏电流增加、MOSFET阈值漂移,以及双极晶体管的增益衰减。SEE是由辐射环境中的高能粒子(质子、中子、α粒子和其他重离子)轰击微电子电路的敏感区引发的。在p-n结两端产生电荷的单粒子效应,可引发软误差、电路闭锁或元件烧毁。SEE中的单粒子翻转(SEU)会导致电路节点的逻辑状态发生翻转。剂量率效应是由甚高速率的γ或X射线,在极短时间内作用于电路,并在整个电路内产生光电流引发的,可导致闭锁、烧毁和轨电压坍塌等破坏[1]。辐射效应和损伤机理研究是抗辐射加固技术的基础,航空航天应用的SiGe,InP,集成光电子等高速高性能新型器件的辐射效应和损伤机理是研究重点。研究新型器件的辐射效应和损伤机理的重要作用是:1)对新的微电子技术和光电子技术进行分析评价,推动其应用到航空航天等任务中;2)研究辐射环境应用技术的指导方法学;3)研究抗辐射保证问题,以增加系统可靠性,减少成本,简化供应渠道。研究的目的是保证带宽/速度不断提升的微电子和光(如光纤数据链接)电子电路在辐射环境中可靠地工作。图1所示为辐射效应和损伤机理的重点研究对象。研究领域可分为:1)新微电子器件辐射效应和损伤机理;2)先进微电子技术辐射评估;3)航空航天抗辐射保障;4)光电子器件的辐射效应和损伤机理;5)辐射测试、放射量测定及相关问题;6)飞行工程和异常数据分析;7)提供及时的前期工程支持;8)航空辐射效应评估;9)辐射数据维护和传送。
3抗辐射加固设计技术
3.1抗辐射加固系统设计方法
开展抗辐射加固设计需要一个完整的设计和验证体系,包括技术支持开发、建立空间环境模型及环境监视系统、具备系统设计概念和在轨实验的数据库等。图2所示为空间抗辐射加固设计的验证体系。本文讨论的设计技术范围主要是关于系统、结构、电路、器件级的设计技术。可以通过图2所示设计体系进行抗辐射加固设计:1)采用多级别冗余的方法减轻辐射破坏,这些级别分为元件级、板级、系统级和飞行器级。2)采用冗余或加倍结构元件(如三模块冗余)的逻辑电路设计方法,即投票电路根据最少两位的投票确定输出逻辑。3)采用电路设计和版图设计以减轻电离辐射破坏的方法。即采用隔离、补偿或校正、去耦等电路技术,以及掺杂阱和隔离槽芯片布局设计;4)加入误差检测和校正电路,或者自修复和自重构功能;5)器件间距和去耦。这些加固设计器件可以采用专用工艺,也可采用标准工艺制造。
3.2加固模拟/混合信号IP技术
最近的发展趋势表明,为了提高卫星的智能水平和降低成本,推动了模拟和混合信号IP需求不断增加[2]。抗辐射加固模拟IP的数量也不断增加。其混合信号IP也是相似的,在高、低压中均有应用,只是需在不同的代工厂加工。比利时IMEC,ICsense等公司在设计抗辐射加固方案中提供了大量的模拟IP内容。模拟IP包括抗辐射加固的PLL和A/D转换器模块,正逐步向软件控制型混合信号SoCASIC方向发展。该抗辐射加固库基于XFab公司180nm工艺,与台积电180nm设计加固IP库参数相当。TID加固水平可以达到1kGy,并且对单粒子闭锁和漏电流增加都可以进行有效加固。
3.3SiGe加固设计技术
SiGeHBT晶体管在空间应用并作模拟器件时,对总剂量辐射效应具有较为充分和固有的鲁棒性,具备大部分空间应用(如卫星)所要求的总剂量和位移效应的耐受能力[3]。目前,SiGeBiCMOS设计加固的热点主要集中在数字逻辑电路上。SEE/SEU会对SiGeHBT数字逻辑电路造成较大破坏。因此,这方面的抗加设计技术发展较快。对先进SiGeBiCMOS工艺的逻辑电路进行SEE/SEU加固时,在器件级,可采用特殊的C-B-ESiGeHBT器件、反模级联结构器件、适当的版图结构设计等来进行SEE/SEU加固。在电路级,可使用双交替、栅反馈和三模冗余等方法进行加固设计。三模冗余法除了在电路级上应用外,还可作为一种系统级加固方法使用。各种抗辐射设计获得的加固效果各不相同。例如,移相器使用器件级和电路级并用的加固设计方案,经过LET值为75MeV•cm2/mg的重粒子试验和标准位误差试验后,结果显示,该移相器整体抗SEU能力得到有效提高,对SEU具有明显的免疫力。
4抗辐射加固工艺技术
目前,加固专用工艺线仍然是战略级加固的强有力工具,将来会越来越多地与加固设计结合使用。因为抗辐射加固工艺技术具有非常高的专业化属性和高复杂性,因此只有少数几个厂家能够掌握该项技术。例如,单粒子加固的SOI工艺和SOS工艺,总剂量加固的小几何尺寸CMOS工艺,IBM的45nmSOI工艺,Honeywe1l的50nm工艺,以及BAE外延CMOS工艺等。主要的抗辐射加固产品供应商之一Atmel于2006年左右达到0.18μm技术节点,上一期的工艺节点为3μm。Atmel的RTCMOS,RTPCMOS,RHCMOS抗辐射加固专用工艺不需改变设计和版图,只用工艺加固即可制造出满足抗辐射要求的军用集成电路。0.18μm是Atmel当前主要的抗辐射加固工艺,目前正在开发0.15μm技术,下一步将发展90nm和65nm工艺。Atmel采用0.18μm专用工艺制造的IC有加固ASIC、加固通信IC、加固FPGA、加固存储器、加固处理器等,如图3所示。
5重点发展技术态势
5.1美国的抗辐射加固技术
5.1.1加固设计重点技术
美国商务部2009年国防工业评估报告《美国集成电路设计和制造能力》,详细地研究了美国抗辐射加固设计和制造能力[4]。拥有抗辐射加固制造能力的美国厂商同时拥有抗单粒子效应、辐射容错、抗辐射加固和中子加固的设计能力。其中,拥有抗单粒子效应能力的18家、辐射容错14家、辐射加固10家,中子加固9家。IDM公司是抗辐射加固设计的主力军,2006年就已达到从10μm到65nm的15个技术节点的产品设计能力。15家公司具备10μm~1μm的设计能力,22家公司具备1μm~250nm的设计能力,24家公司具备250nm~65nm设计能力,7家公司的技术节点在65nm以下,如图5所示。纯设计公司的抗辐射加固设计能力较弱。美国IDM在设计抗辐射产品时所用的材料包括体硅、SOI,SiGe等Si标准材料,和蓝宝石上硅、SiC,GaN,GaAs,InP,锑化物、非结晶硅等非标准材料两大类。标准材料中使用体硅的有23家,使用SOI的有13家,使用SiGe的有10家。使用非标准材料的公司数量在明显下降。非标材料中,GaN是热点,有7家公司(4个小规模公司和3个中等规模公司)在开发。SiC则最弱,只有两家中小公司在研发。没有大制造公司从事非标材料的开发。
5.1.2重点工艺和制造能力
美国有51家公司从事辐射容错、辐射加固、中子加固、单粒子瞬态加固IC产品研制。其中抗单粒子效应16家,辐射容错15家,抗辐射加固12家,中子加固8家。制造公司加固IC工艺节点从10μm到32nm。使用的材料有标准Si材料和非标准两大类。前一类有体硅、SOI和SiGe,非标准材料则包括蓝宝石上硅,SiC,GaN,GaAs,InP,锑化物和非晶硅(amorphous)。晶圆的尺寸有50,100,150,200,300mm这几类。抗辐射加固产品制造可分为专用集成电路(ASIC)、栅阵列、存储器和其他产品。ASIC制造能力最为强大,定制ASIC的厂商达到21家,标准ASIC达到13家,结构化ASIC有12家。栅阵列有:现场可编程阵列(FPGA)、掩膜现场可编程阵列(MPGA)、一次性现场可编程阵列(EPGA),共19家。RF/模拟/混合信号IC制造商达到18家,制造处理器/协处理器有11家。5.1.3RF和混合信号SiGeBiCMOS据美国航空航天局(NASA),SiGe技术发展的下一目标是深空极端环境应用的技术和产品,例如月球表面应用。这主要包括抗多种辐射和辐射免疫能力。例如,器件在+120℃~-180℃温度范围内正常工作的能力。具有更多的SiGe模拟/混合信号产品,微波/毫米波混合信号集成电路。系统能够取消各种屏蔽和专用电缆,以减小重量和体积。德国IHP公司为空间应用提供高性能的250nmSiGeBiCMOS工艺SGB25RH[5],其工作频率达到20GHz。包括专用抗辐射加固库辐射试验、ASIC开发和可用IP。采用SGB13RH加固的130nmSiGeBiCMOS工艺可达到250GHz/300GHz的ft/fmax。采用该技术,可实现SiGeBiCMOS抗辐射加固库。
5.2混合信号的抗辐射加固设计技术
如果半导体发展趋势不发生变化,则当IC特征尺寸向90nm及更小尺寸发展时,混合信号加固设计技术的重要性就会增加[6]。设计加固可以使用商用工艺,与特征尺寸落后于商用工艺的专用工艺相比,能够在更小的芯片面积上提高IC速度和优化IC性能。此外,设计加固能够帮助设计者扩大减小单粒子效应的可选技术范围。在20~30年长的时期内,加固设计方法学的未来并不十分清晰。最终数字元件将缩小到分子或原子的尺度。单个的质子、中子或粒子碰撞导致的后果可能不是退化,而是整个晶体管或子电路毁坏。除了引入新的屏蔽和/或封装技术,一些复杂数字电路还需要具备一些动态的自修复和自重构功能。此外,提高产量和防止工作失效的力量或许会推动商用制造商在解决这些问题方面起到引领的作用。当前,没有迹象表明模拟和RF电路会最终使用与数字电路相同的元件和工艺。因此,加固混合信号电路设计者需要在模拟和数字两个完全不同的方向开展工作,即需要同时使用两种基本不同的IC技术,并应用两种基本不同的加固设计方法。
6结束语
先在汽车转向盘上安一个合适尺寸的齿轮,由传送带将该齿轮和位移传感器相连接。然后在角位移传感器上面也安装一个相同型号的齿轮,从而使得由转动方向盘带来的转过角度与角位移传感器转过的角度是相同的。再通过电路主板向角位移传感器上加5V左右的电压。角位移传感器上的电阻值可以通过转动汽车方向盘带动角位移齿轮转动来改变。这种阻值的变化会导致输出电压的改变,从而可以将转过的角度信号转换为受控电压信号。将受控电压信号送入PIC单片机中的转换电路进行处理。我们预先将PIC单片机中的程序预设为左极限值(左转向最大角度时产生的电压),右极限值(右转向最大角度时产生的电压),中间值(无转向时的转角为0),通过分析和计算这些转向值,我们可以得到汽车实际转向导致偏离直线的幅度。最后将得到的转向值输出到PIC单片机的电路上,并将其显示在在仪表盘上,学员或司机可以十分清楚地了解自己转方向盘后给汽车带来实际转幅。
2汽车转向电子显示仪的工作原理
汽车转向电子显示仪的显示仪器是数码管和LED指示灯的组合。将左极限值和中间值之间的转向角度100等分,当汽车左转向时,该电子显示仪就能在数码管上显示汽车左转导致偏离中线位置的百分比。同理右转的工作原理。此外,当汽车左转时,左边的三个呈三角状的LED灯闪烁,右转时,相应的右边三个呈三角状的LED灯闪烁。这些LED灯的闪烁是为了对左右转向进行提示,从而使得驾驶员对左右转向有一个初步的了解。本电路系统的硬件电路部分由电源模块,按键模块,传感器模块,显示仪模块和导入电路模块等组成。我们知道,汽车内部本身自带有12V的车载电源,而本系统的PIC单片机需要5V电源。因此需要将车载的12V电源转换呈5V电压,我们这里的转换芯片稳压电路和采用7805。电子显示仪采用三位共阳数码管来显示输出电压的大小。由于PIC16F873自带有六路的数模转换模块,因此无需再使用额外的数模转换芯片。输入的模拟信号经过RA0传入PIC单片机中。RB0~RB7作为数码管的段控制端口。RC0~RC2作数码管的位控制端口。RA1~RA5作按键信号的采集端口。RC3~RC7作为LED指示灯的显示端口。
3结论
西安交通大学王兆安和王进军教授主编的,由机械工业出版社出版的电力电子技术(第5版)第八章8.3.4节中的零转换PWM电路为软开关技术中的教学难点[3],教材中仅仅对其工作原理做了简单阐述,但是相对于其复杂的工作电路和工作波形,课堂上不但教师难以用最简单的讲解使学生明白,而且学生几乎没有什么兴趣去学习,更谈不上很好地掌握并与实际相结合。笔者经过多年的课堂教学,以教材为主,结合参考书和相关的文献资料,对教材上这部分知识进行了适当的改造,在课堂上将其工作原理的文字部分通过图解或者表格的形式展现在学生面前,让学生理解其基本工作原理,然后将计算机仿真软件引入到课堂教学中,通过课堂理论知识的具体应用,激发学生的学习兴趣,从而突破教学难点。下面将完全的课堂教学演算呈现出来。
1.1升压型零电压转换PWM电路的工作原理教材193页8.3.4节中对零电压转换PWM电路常用的软开关电路—升压型零电压转换PWM电路的工作原理做了简单的叙述,相对于其实际的电路的复杂性,简单的几句话不足以使学生理解并掌握其工作原理。现在笔者将升压型零电压转换PWM电路分为两个教学过程,第一个是工作原理的详细介绍;第二个是课堂知识的具体应用。零电压转换PWM电路如图1所示[3],相对于传统的升压型变换电路—Boost变换电路[4](在教材第五章直流-直流变流电路的第123页有详细介绍),升压型零电压转换电路在Boost变换电路的基础上增加了一个辅助网络,该网络由辅助开关QZVT、谐振电感Lr、谐振电容Cr及二极管D2和D3组成。电路工作时,辅助开关QZVT先于主开关QMAIN开通,使ZVT谐振网络工作,电容Cr上电压(即主开关QMAIN两端电压)下降到零,创造主开QMAIN零电压开通条件。下面结合其工作波形图详细介绍其工作原理。
设输入电感足够大,可以用恒流源IIN代替,而输出滤波电容足够大,输出端可用恒压源V0代替。设T<T0时,QMAIN和QZVT均关断,D1导通,一个工作周期可分为七个工作模式[3],其中每个工作模式可以等效一个电路。图2为BoostZVT-PWM变换器工作波形图。下面是一个周期内Boost型ZVT-PWM变换器各个阶段的运行模式分析,一周期内7个运行模式的等效电路如图3所示。
(1)T0~T1Lr电流线形上升阶段。t=T0,辅助开关Tr1开通,谐振电感电流iLr线形上升,t=T1时达Is,二极管D的电流ID则由Is线形下降,t=T1时降到零电流下关断,等效电路如图3(a)所示。
(2)T1~T2谐振阶段。LrCr谐振,电流iLr谐振上升,而电压Vds由V0谐振下降。T=T2时,Vds=0,Tr的反并联二极管导通。等效电路如图3(b)所示。
(3)T2~T3主开关Tr开通。由于Tr的体二极管已导通,创造了ZVS条件,因此应当利用这个机会,在t=T3时给Tr加驱动信号,使Tr在零电压下导通,等效电路如图3(c)所示。
(4)T3~T4iLr线形下降阶段。t=T3,Tr1关断,由于D1导通,Tr1的电压被钳在V0值,Lr的储能释放给负载,其电流线形下降,等效电路图如图3(d)所示。
(5)T4~T5ids恒流阶段。t=T4,D1关断,这时Boost型ZVT-PWM变换器如同普通Boost型变换器的开关管导通的情况一样,等效电路如图3(e)所示。
(6)T5~T6Cr线形充电阶段。t=T5,Tr关断,恒流源Is对Cr线形充电,直至t=T6时,Vcr=Vo。等效电路图如3(f)所示。
型变换器开关管关断的情况一样,处于续流状态,直到t=T0,下一周期开始,等效电路图如图3(g)所示。刚才图3所示的七个工作原理可以用七个运行从上面的分析可以看出,经过教师的巧妙处理,将教材193页上复杂的升压型零电压转换PWM电路的工作原理通过图解结合文字解说的方式,进行详细的阐述,经过这样的处理,学生都能掌握和理解。接下来笔者将所学课堂理论知识与实际应用相结合,达到加深学生印象和突破难点的效果。
1.2课堂理论知识的具体应用上面对升压型零电压转换PWM电路的工作原理进行了阐述,学生对其工作原理有了一定的理解,但是他们可能疑惑,学了这个知识难点,到底它具体应用在哪些地方呢?逆变电路在教材第五章123页对升压变换电路的作用一个是电压抬升,另外一个是是功率因数校正,这两个知识点我们已经掌握,那针对这次学的升压型零电压转换PWM电路,跟普通升压型电路作用没什么差别。于是笔者就将升压型零电路应用于功率因数校正电路中,一个是验证软开关理论,另一个就是验证其功率因数校正功能。图4所示为升压型零电压转换PWM电路在功率因数校正电路中的具体应用,其整个系统的工作原理首先是市电220V交流输入,通过不控整流变成直流电,但是由于采用二极管整流以及大电感电容滤波,因此系统功率因数比较低,而且含有大量的高次谐波。关于功率谐波的危害在本教材69页第三章整流电路中的3.5.1节中有详细的阐述[6],在这里不做具体叙述。由此可见,在不控整流电路中引入升压型零电压转换PWM电路的主要目的就是提高系统的功率因数,另外一方面,由于引入了新的电路,因此系统的效率会降低,由此需要采用软开关技术来提升系统效率,这也是本节的软开关技术应用的一个具体体现。根据电路理论和模拟电子技术的知识可以算出系统的元器件参数:输入电压Vin为单相220V,升压电感L为470μH,谐振电感Lr为8.3μH,谐振电感Cr为958pF,输出滤波电容Co为2200μF,开关频率f为100kHz。然后在仿真软件Pspice中搭建仿真模型并进行仿真。图中显示了主开关管Tr是在辅助开关管Tr1关断后才开通的,而且辅助开关管导通时间很短,显著地减少了开关管Tr的损耗。图7为主开关管Tr驱动波形Vgs,漏源电流波形Ids以及漏源电压Vds的仿真波形图。图中我们可以看到主开关管在开通前先有电流反向流过其体内二极管,使漏极电压箝位到零,再加驱动脉冲从而实现零电压开通。当驱动脉冲变为零时,由于主开关管Tr漏源极两端并联着谐振电容,使得主开关管Tr漏源两端的电压缓慢上升,从而实现零电压关断,在这里笔者要特别强调这就是这节课学习难点的软开关的工作原理。图8为输入交流电压和电流波形图,从图中我们清楚地看到输入电流很好跟随交流输入电压,实现了功率因数校正的目的。因此通过零转换PWM电路的课堂教学示范,可以得出以下结论:
1)学生可掌握升压型零电压转换PWM电路的基本工作原理;
2)学生复习了功率因数校正的概念;
3)学生通过课堂所学理论知识的应用将前面所学章节和本节课知识联系起来,达到了融会贯通的效果。
4)最重要的是激发了学生的学习兴趣,帮助他们更加容易地掌握课堂教学难点。
2结论
随着科学技术的迅猛发展,汽车盗窃技术与日俱增,已成为全世界汽车领域包括我国在内的重要问题。所以,汽车防盗设计研究不管是对汽车生产商来说,还是对社会保险业以及个人来说都具有非常重要的意义与价值,怎样研制出更为安全、有效以及可靠性极高的汽车防盗设备,最大程度地降低车主的财产损失是当前汽车领域应该加以解决的迫切问题。针对当前世界性的汽车盗窃发展趋势,所有的汽车生产商都在努力研发、改进汽车防盗技术,特别是微电子技术的大踏步前进,更是推动着汽车防盗技术的自动化与智能化发展。截至目前,汽车防盗设备从最初的机械控制,发展到现在运用电子密码、使用遥控呼救、利用信息报警,早期阶段的防盗设备主要是应用在门锁、窗户、启动器、供油、制动器等联锁器件的控制,同时还有专为预防盗窃而设计出的专用型套筒扳手。伴随着科学技术的发展,汽车防盗设备可以说是日益进步与完善,最主要功能就是防护车辆,并持续推出全新的产品。现代化高科技的快速发展促使产品的各个功能不断强大,产品的设计过程与生产过程也更为复杂,这就促使产品的专业性更为重要,汽车电子防盗报警器当然也包含在内。另外,产品的可靠性已经成为当前测量产品性能及质量的核心标准之一,这主要是由于可靠性不但是产品质量的反映,更是产品安全性与维护性等多种性能的代表,因此提升汽车电子防盗报警器可靠性是增强产品市场竞争力与扩大产品市场占有率的重要手段与途径。
二、汽车电子防盗报警器电路可靠性设计的必要性
汽车电子防盗报警器对于保护汽车安全起着至关重要的作用,其可靠性直接决定着汽车的安全性能。因此,针对汽车防盗报警器电路的可靠性设计研究,可以降低汽车电子防盗报警器出现问题的几率,整体提升汽车自身的安全性。下面从五方面具体分析汽车电子防盗报警器电路可靠性设计的必要性:一是能够预防发生故障,特别是降低了误报或者被盗等特殊故障发生的几率,从而确保汽车的安全与长期的使用时间。二是能够从整体上减少电子防盗器的费用成本,因为提升产品的可靠性,就需要质量更有保证的元部件,对一些多余功能的部件调整以及其他部件的可靠性设计、研究、实验等,都需要大量的经费支撑,因此首先就是在费用方面得到保证。但是,产品一旦可靠性得到提升,就能将花费在修费与停机检查费用方面的费用降到最低。根据美国某相关公司的实际调查发现,在提升汽车可靠性和维修性研制阶段所花费的每一美元,将会在之后的使用与后勤方面节省至少30美元,即产生30:1的实际效益。同时,可靠性所产生的直接经济效益不但表现在未来实际运用方面,而且在研制过程中还会降低样机研制的所需次数,每减少一个样机,不仅仅能够节省很多资金,而且可以节约大量时间。三是能够大大缩减停机时间,提升产品的可用率,降低汽车发生故障或者被盗的概率。四是可以大幅提升产品的可靠性,增强企业的信誉,提高市场竞争力,拓展产品的销路,实现经济效益的提升。五是可靠性的提升能够直接降低汽车发生其他事故的几率,这样就能降低因多种事故所造成的费用支出,从而避免其他不必要的损失。提升产品的可靠性需要从生产的每个环节着手,但最为重要的是产品设计阶段,因为缺乏合理性的设计,如果想在之后的环节中加以维修并达到预期的可靠性,其几率微乎其微。所以,产品设计者必须具备扎实的可靠性设计基础知识与技能,并能够运用多种方法与手段进行设计,从多个途径寻求产品可靠性的突破。
三、汽车电子电路系统可靠性的设计方案
预计、分析、分配以及改进等一系列产品可靠性研发活动就是所谓的汽车电子电路系统可靠性研发设计,结合产品技术文件与图样,对汽车某个电子电路系统的可靠性进行定量设计,进而促进产品的可靠性更加稳固。这一过程包括确定的可靠性指标、构建的可靠性模型、预计法加速检验可靠性指标、分配的可靠性、分析检验电路的可靠性、筛选元器件等。
(一)建立可靠性指标。
我国在1997年加以修订的《汽车报废标准》,规定凡是非营运类轿车大于等于10年(经过申请通过最多研制15年)或者达到50万公里之后要进行强制性报废,这一规定可以说是汽车电子电路系统可靠性指标的确定范围。尽管当前新出台的汽车报废标准有所改动,但是此规定依然是检测机车各个部件功能可靠性指标的主要参考。依据报废指定标准的15年计算,汽车报废的时间长度约为129,600个小时(按照24小时/天计算),与轿车共计行驶里程达到50万公里的报废标准,把这两种汽车报废标准的大约值视为同等效率,同国军标准规定的不能低于5,000千米的汽车电子系统故障发生的平均间隔里程数,计算得出汽车电子系统的可靠性指标即MTBF是1,296小时。
(二)确定可靠性模型。
在设计产品的最初时期,通常要依据产品的可靠性指标与其功能,确定具体的可靠性模型,从而为分配可靠性指标作准备。汽车系统一般包括贮备系统、复杂系统与非贮备系统。其中,贮备系统又分为工作贮备系统与非工作贮备系统,而工作贮备系统又分为并联、混联与表决这三个系统,非工作贮备系统又称之为旁联系统;而贮备系统就是串联系统。对于普通的电子电气系统,又可分为并联系统、串联系统与混联系统。并根据具体系统的模块功能确定框图与可靠性模型。构建汽车电气系统的可靠性模型的常规条件是:在整个汽车电气系统之中,除去电子的元器件之外,还包括其他部件部分(例如机械元件、系统软件、同电子的元器件相关的PCB板和连线等)的可靠性都是彻底可靠的;而所有电子元器件的使用时间则是服从分布的指数与故障形式的相互独立。
(三)分配可靠性指标。
分配可靠性指标就是把各个系统中的可靠性指标依照原有的规则分配给各个单元,并把分配所得的结果当做各个单元可靠性的定量要求通过设计加以实现。实际操作中的分配可靠性的方法多种多样,例如评分型的分配阀、层次型分析法以及工程加权型的分配法等,就当前而言,最为简单且容易操作的方法就是工程加权型的分配法,并且涵盖的面积比较广,因此应用愈来愈广泛。所以,针对汽车电子电路系统的可靠性指标分配也是采用工程加权型的分配法进行的。
四、结语
1.1机械电子式软启动装置控制系统工作原理设计研究
机械电子式软启动装置可以说是对于启动期间压降进行自由限制冲击转矩与电流的干扰也是不存在的,对传动机械相关设施进行保护的同一时间对相关工作人员也起到了保护作用,以往不必要的能源浪费也不再是个问题了。它的启动电流还可以根据具体荷载而自行调整。另外机械电子式软启动装置体积小,不容易出现故障,维护工作也相对比较简单。机械电子式软启动装置通常选用大功率晶闸管做回路开关的原件,凭借单片机对它的导通角做智能化的控制,它的工作原理为在启动的时候,电机端电压伴随晶闸管导通角一起上升就可以对晶闸管的调压电路输送电压,电机转速当达到转矩起动要求时就可以完全结束启动过程[2]。软启动装置限流功能非常好,当晶闸管被全部导通的时候,电机就可以在该装置额定电压的限制下进行工作,同一时间旁路的接通器会随之被触发,晶闸管寿命会大大延长,电机正常稳定运行。当需要被关闭的时候,第一应将旁路的接触器切断,让软起动器里面晶闸管的导通角由大到低逐渐减少,电机转速会停止,进入关闭状态,进而整个过程完成,以上就是机械电子的软启动装置控制系统的全部工作原理。
2机械电子式软启动与传统的启动方式设计间的不同点
2.1对传统的启动装置的启动方式设计研究
伴随我们国家机械工业迅猛发展,各类机械电子装置在电动机的功率上也逐渐在提高。传统启动方式应用当中的缺点也已经被暴露无疑了,所以会显得越发跟不上时代步伐,这时候软启动的控制装备就随之诞生了,因为它的故障率较低还有启动时比较平稳等优势特点,在各种机械电子类控制系统当中逐渐独树一格。现如今传统启动方式缺点逐渐显露,集中体现于:第一,故障出现频繁需要不断进行修理,导致维修费较高,当部分启动器的线路被切断时会出现很高电流的转矩峰值,这种现象使得使用受到很多约束,打个比方,在井下的防爆条件下就不适合使用了。第二,部分启动器启动时候会伴有高电流的峰值现象,对整个供电系统冲击较大,所以对启动次数会有要求[3]。第三,有些比较先进设备结合了软启动装置应用,相较以往启动就比较平稳,但电流固定不能够调整,荷载的能力也不是很高。
2.2对机械电子式软启动装置启动方式设计研究
机械电子式软启动装置不单满足了电动机指定荷载下能够平滑启动,使供电系统冲击大大减低,还可以通过部分简单设置达到通过计算机进行通信控制的目的,所以,我们可以推测机械电子式软启动将来也能够向自动化、智能化的控制设施方向靠拢。机械电子式软启动装置启动方式大致可以总结为下面几种:第一,斜坡电压式,该启动方式无需电流闭环的控制步骤,电压是呈斜坡式上升的,其优点是易于操作,缺点是它不限流的特点,对于晶闸管冲击相对较大。第二,斜坡恒流式,该方式电动机初启阶段电流呈阶梯性上涨,电流达到预期值后持续它的恒定状态一直到启动过程全部结束。电流上涨速率越大,启动时间越短。第三,阶跃式的,该方式一般在电动机启动瞬间给一个较大起动转矩,目的是将它负载静摩擦减到最低,但该过程向供电系统输送尖脉冲,对其他荷载造成干扰。
3结语
在对学生进行心理教育的过程中,应当积极培养学生自信心。因此,在学生的前几节课当中,应当充分调动学生的热情。通过这种方式能够令学生对电子电工这项技术产生更加浓厚的学习兴趣。随后学生才能够在这个过程中产生对该项学科进行研究的主观能动性。一些学校在这个过程中意识到培养学生自信心与学习热情的重要性。因此,在具体的课程安排过程中就会刻意设计实训课程。例如,在课程开始阶段,首先对学生教授万用表的内容,并教授学生认识测量电阻等,让学生形成先入为主的求知欲望,并且教师多与学生进行沟通,在课堂上活跃气氛,对于比较腼腆的学生要多些耐心交流,学生有了自信心,对理论基础课的恐惧也就淡化了。培养学生强大的内心世界,不要受到挫折和困难就立刻退缩,要建立自信,相信自己,迎难而上。
2.注重学生演示实验
演示实验最能激发学生的兴趣,可以让学生积极动脑。在演示实验中,可以不拘束于教材的安排,由自己动手。比如:学生可以自主选择器材,自主决定设计实验方案,在实验中,学生发现的问题可以自主寻找解决的办法,有助于学生对实验和知识记忆。让学生充分运用大脑进行大胆的猜想和独立的实验,使学生产生积极的态度学习,并通过实验得到正确的理论,从而让学生有解决问题的勇气与信念。
3.充分利用多媒体,形成多元模拟课件
电子电工基础内容作为进一步研究电能技术的专门课程,更是一项十分抽象的学科。因此,在教学过程需要对学生进行复杂图像以及相关电路路线的思维运转培养。如果学生缺少抽象思维能力,将不能更好地进行实验,在对专业相关的内容进行理解的时候,也就十分困难了。与此同时,一些实验需要进行演示,但是演示的过程中无法进行观察,变化情况也相对较小,学生很难在这种情况下对其进行直观感受,也就不能深入理解。例如,学生在整流电路的过程中,实验现象可以通过肉眼观察到,但是波形失真比较久很难进行观察。利用Flssh制作教程动画,将实验教学内容整体进行模拟演示,就能够将教学当中抽象化的部分以更加直观的方式展现给学生,使学生接受起来更加容易。同时,也更能够提升学生的学习兴趣与积极性。
4.结束语
模拟电路诊断开始于二十世纪六十年代,发展了二十年后,在二十世纪八十年代,模拟电路故障研究有了更大的发展和研究,朝着更为实用的多故障诊断方向迈进,而电力电子电路对其它的模拟电路也起到了一定的促进作用。在二十世纪八十年代,美国的电力研究所起初对电力电子设备进行早期的故障检测方面工作,相比之下,我国的电力电子电路诊断工作开展的稍微晚一些,基本上是在引进国外较为先进技术的基础上再进行研究和吸收发展的。在测试手段方面,对电力电子电路进行诊断最为常见的是电压,电流方面也有少量的应用,近些年来出现了红外和磁信号等各种新型的检测手段和诊断方式。我国浙江大学的吴为麟教授还提出了采用加速度、无线电波和声能来对其进行检测和诊断,进一步对其进行了研究和分析,在他看来,利用综合型的信号检测电路的状态会对装置系统的可靠性预测和诊断带来积极作用。此外,还有专家提出将神经网络和红外图像检测相结合,来提高诊断速度、检测装置简化和测试程序复杂性低的效果。通过对大量的电力电子电路的在实际中的运行情况进行分析和比较,不难发现大多数的故障都以功率开关器件的损害为主要的原因,在这其中最为常见的是功率开关器件的直通和开路,这被称作是硬故障。但是电力电子电路的故障诊断不同于普通的模拟电路诊断,关键在于故障信息的存在,这对信息的实时检测以及在线诊断提出了更高的要求。
电力电子电路装置一旦出现故障会对装置本身的电气设备设施造成影响,还会带来一些问题,比如设备损害甚至造成生产无法正常进行,造成企业停产等严重后果,更为严重的是还会造成安全事故,有一定的危险,严重的时候会发生人员伤亡事件。在电力电子电路中,最容易出现的故障多表现在晶闸管的损坏方面,其中晶闸管的短路现象和开路现象是比较常见的,因为电力电子电路的故障和模拟电路的故障有所不同,发生故障再到停电的过程时间很短暂,所以要求运行的操作人员在短时间内要判断出故障的元器件损害再去报警是比较困难和难以实施的,哪怕是有着丰富经验的工作人员也会受到人为因素和现场操作环境的影响,难免出现错误的判断,这就需要智能的方法来进行处理和分析。针对具体的问题,及时有效的做出判断来减少损害。对电力电子电路进行及时有效的智能诊断可以实现对故障进行预报,从而有助于采取及时有效的措施来预防事故,降低事故风险,排除安全隐患。根据诊断的结果进行对设备和装置的维修和维护,从而有效提高管理水平和技术,方便检修和维护,有效降低检修所需要花费的时间和人力,提高设备和装置的利用效率,保障使用效果的良好,这对提高设备的制造水平和技术也会起到重要的作用。不难发现,电力电子电路故障诊断对工业生产和国民生活的各个方面都会产生重要的影响,起到重要的作用。
2对电力电子电路故障诊断技术研究的作用和意义
电力电子技术日益重要,在改造传统的电力、机械、交通、化学化工、轻纺和矿冶等方面都具有突出的作用,对航天、通信和激光等高新技术的发展和能源的高效利用都有突出的贡献。就从电力和电子的变流这项技术来看,在发达的国家大约有八成的电能是利用电力电子技术转化之后再进行使用的,在未来几年内这个比例还会更高。之所以电力电子电路技术得到广泛的应用和推广,涌现出各种高性能的电子电力电路产品,也是得益于现代科技的不断发展和进步。但是,也对电路发生故障的对设备的维护要求更高,传统的人工诊断技术和方式很难满足现如今的要求,要有效克服这个问题需要对电力电子电路进行更加高效合理和科学的研究和探索。
第一,电力电子电路设备一般在工程系统中发挥起到核心电源或控制器的作用。如果出现了故障而没有办法短时间内进行恢复,那么会对设备造成严重的损害,严重的话还会造成不必要的人员伤亡事件的发生,造成的经济损失也会比较大。突出的表现在对可靠性要求高的领域,比如在航天设备中使用的电子设备,这对电力电子电路的测试、诊断和维修技术要求是相当高的。
第二,针对一些电路元件数量多的电力电子电路,比如说有的新型的静止无功发生装置的多达数十个晶闸管,如果采用每一个都诊断的方法来进行诊断势必会浪费大量的时间和人力,所以需要研究和开发出一种智能的故障诊断功能的方法和技术,可以有效的节约大量的人力、财力和物力,提高资源的利用效率。
第三,在很多领域内对电力电子设备一般都有很高的要求,要求极高的可靠性、准确性和安全性。此外还要求电力电子设备具有自我诊断、自我修复和自我测试的功能和作用。这对电力电子电路的工作状态和运行提出了更好的要求,要实现及时有效准确无误的判断,当出现故障时能够及时检测并有效排除和处理,还要能够在不影响正常的电路运行的状态之下进行定位和修复,还需要再次快速的投入到使用和运行中去。这对电路的智能诊断技术提出了新的要求,要能够有效并快速的明确出故障发生的位置以及问题出现的原因,大力减少电力电子电路无法运行的时间,还需要容错的电力电子电路系统来有效的提高系统的可靠性、准确性和安全性。
第四,伴随着电子工业的蓬勃发展和进步,使得集成技术也得到了更加广泛的普及和应用,由于越来越复杂和精细的电子电力电路设备,对其保养和维护也比较复杂多变,因此需要花费的资金也是十分庞大的,要对还没有出现的电子电力电路的故障进行预防和预测,这样可以减少当设备出现故障时的损害度,有效的节约日后维修的成本和资源。
3电力电子电路智能故障诊断方法介绍
电力电子电路故障诊断技术有:对故障信息进行检测和对故障的诊断两个方面。对故障信息检测是利用专门的故障检测技术来对故障发生时的信息进行提取,为故障分析提供可供参考的依据和数据;另外对故障进行的诊断和判断,以故障诊断出的信息,来对产生故障的部分来进行分析和进一步推理,从而可以找出导致故障出现的原因所在,来明确出现故障的位置和区域。就当前来看,比较常见的电子电路智能故障诊断方法、使用比较多的对故障信息的预处理主要有:小波变换、数据聚类、现代谱估计法、粗糙集、主成份分析、傅里叶变换和归一化处理等。需要注意的是,对这些技术的使用不是单一使用,更多采取多种技术来获得最好的电力电子电路故障特征的集合判断和分析。
3.1频谱分析法。
电力电子电路的故障诊断的频谱分析方法具有的鲜明特点和优势表现在:检测硬件简单和测量点少两个方面。但是在特殊场合如触发脉冲故障等时频谱分析方法会显得不太适用。
3.2粗糙集方法。
这个方法的主要是依赖于建立在保持分类不变的基础上,利用对知识的约简来推导概念的分类,特点在于能够分析并处理不完整和不精确的各种定量、定性或者混合性的不完整信息,能够从中发现隐含信息,揭示规律性。但是由于粗糙集方法是从不精确和不完整的信息中推导出的诊断规则难免会出现误差。
3.3小波分析和小波包分析法。
该方法是目前应用比较广泛的方法,它具有频域和时域的高分辨率,并且能够很大程度上降低故障特征来简化神经网络的结构。不少专家学者将小波包、决策树和主成份分析三者结合起来来进行对电力电子电路故障的诊断技术研究,用小波系数能量法以及小波系数模极大值法进行诊断的结论,还就如何选取小波包基的问题进行了分析和研究,分析了基于散度准则和距离准则等方法。
3.4专家系统诊断方法。
专家系统是属于智能计算机程序系统,它的内部包含有大量的某领域专家水平的知识和经验,从而能够利用专家的知识和经验来解决问题的方法,处理该领域的问题。换言之,专家系统是一个有着大量的专业知识和经验的程序系统,它被广泛应用于人工智能技术和计算机技术方面,以某领域的一个或多个专家所提供的知识和经验,进行进一步的推理和判断,模拟出人类专家的决策过程,这样有助于解决需要人类专家处理的复杂性问题。电子电路智能专家系统诊断利用专家的知识对出现的故障问题进行描述和判推理,较之传统的诊断来说,冲破了个人知识的局限,有助于对专家的经验进行推广,最大限度的得到利用人力资源,最专业人才的培养也是大有帮助的,电力电子电路智能故障诊断方法依赖于专家系统的诊断方法可以使其有更好的发展和进步。
4结束语
1.1水轮发电机组的自动控制
应用过程:机组监控设备将监测数据传送至控制室计算机,计算机启动预先设定的运行程序并判断机组运行状况,然后再依照相关逻辑规则发出控制(或调整)指令。应用内容:⑴实现机组开、关,调相转发电,发电转调相等项目的智能化控制。⑵实时计算最佳运行机组数并自动控制,在机组间智能分配负荷(包括自主调节有功和无功),从而维系水轮发电机的低成本运行。⑶当机组出现意外或者外部系统发生事故而导致频率降低,预设程序通过启动备用机组来维持系统稳定;反之,汛期来临频率过高时,预设程序会关闭一些机组。
1.2主要辅助设备运行状态的监控
在水电站中,围绕发电机组有一些主要的辅助设备,这些设备的运行工况同样影响着电站的稳定生产。电气自动化在这里有了广泛的应用。应用过程:通过“监测设备——控制设备——控制节点”的方式,将辅助设备运行数据发送至计算机,计算机通过数据库和预设规则比对,判断辅助设备的健康状态并相应控制设备的电气参数。应用内容:⑴检测定子和转子回路是否正常;⑵检测定子绕组的铁芯温度是否正常;⑶检查机组度及变速系统、制冷系统等是否正常;⑷以上无论哪部分出现问题,电气自动化系统都会迅速启动应急程序和保护措施,同时将故障信息上传警报。
1.3主要电气设备的监控和保护
水力发电的输出离不开变压器、母线、开关柜、输电线路等主要电气设备。对这些设备的监控和保护成了水电站电气自动化应用的必然内容。应用过程:通过PT、CT等设备采集到的电气量,判断设备是否有故障,并视故障情况作出反应。应用表现:⑴对不立即危害发电机组的异常情况(如机组冷却水源中断、机组温度超限、油槽油面异常、推力轴承或者导轴承温度升高等),只发警告以引起运行人员的注意;⑵对于超过保护整定限值的故障情况(如机组过速且调速器失灵、导水叶剪断、铜管爆破等),电气自动化系统不但跳开断路器和,还同时关闭机组进水闸门。
1.4机组外辅助设备的监控
完整的水电站拥有数量众多的水泵、空压机、油泵等机组外电气设备,以及浩大的水工建筑物。电气自动化在这一块的应用为:⑴控制水泵等设备的运行状态,故障时及时投入备用设备;⑵检测大坝闸门是否可正常启动,检测拦污栅是否堵塞,当水位过高过低时引发自动报警。
2、PLC技术应用展开
PLC即可编程控制器。在水电站电气自动化中,可应用PLC来控制几乎所有设备的生产过程。⑴在轴流桨式水轮机调速器中的应用。轴流浆式水轮机厂家一般会提供所谓“协联曲线”(即描述不同水头下浆叶转角与导叶开度的关系的曲线),以指导电站生产。但实际运行时,上下游水位及水轮机水头处于不断变化之中,某些情况下会远离厂家参数,因此按协联曲线运行不一定能达到最佳状态。采用PLC技术后,可先针对不同上、下游水位及水头情况,手动协联浆叶和导叶,在获得最佳协联曲线后修改原厂家曲线并输人至PLC控制器,从而使机组能时时处在最佳状态。⑵在水库式电站调速器中的应用。水库式电站的运行水头波动范围较大,其调速器与启动开度一般按水轮机设计水头确定。但当水头降低或水头远高于设计标准时,为保证机组额定转速,往往需要更换调速器控制芯片,改变开度指示仪电阻(串接或移除),工作量较大。在采用PLC技术后,则可依据水头高低设计出相应程序,依照程序来自动改变启动开度。
3、电气自动化瓶颈
虽然电气自动化给水电站自动运行带来了方便,但其自身发展存在一定瓶颈,主要体现在:因电气自动化的基础是实现对设备的全面监测,因此整个自动化系统的监控模块非常之多,这样就导致通信网络较为复杂且通信速度、通信质量面临挑战。随着新技术(如光纤通信技术)的推进,相信电气自动化瓶颈能够得到解决。
4、结语