HI,欢迎来到好期刊网!

数学教研论文

时间:2023-03-20 16:14:54

导语:在数学教研论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

数学教研论文

第1篇

论文关键词:数学;教学;知识;教师教育

一、数学知识研究

传统上认为数学教师至少要掌握他所教的数学知识。班级授课制成熟后,人们开始同意这样一个原则:除了所教的数学知识以外,数学教师还需要掌握像组织教学、控制课堂秩序等一些教学知识。随着教学研究的深入,人们发现教师仅仅知道他所教的数学的术语、概念、命题、法则等知识是不够的。…除此之外,教师还要知道数学的学科结构。学科结构的概念最早源于Schwab。他指出了理解学科结构的两种方式:一个方式是句法性地(syntactically),另一个方式是实体性地(substantively)。所谓句法性地是指从学科所表现出来的逻辑结构方面去了解学科结构。比如,引入无理数表示不可公度线段,引入负数与复数表示某些方程的解。前者可以看到,后者看不到,仅是为了保持方程都有解这个论断的完整性和通用性所做出的一种假设与解释。对这三个概念含义的理解,只能通过产生这些概念的前后联系才能揭示。所谓实体性地是指从学科的概念设计角度去了解学科结构。比如,欧氏几何与解析几何有不同的概念框架。Ball把数学的学科结构知识称为关于数学的知识。它是指知识从哪里来,又是如何发展的,真理是如何确认的,又将用到哪里去。

主要有三个维度:一是约定与逻辑建构的区别。正数在数轴的右边或者我们使用十进位值制都是任意的、约定的。而0做除数没有定义或者任意一个数的零次幂都等于1就不是任意的、约定的;二是数学内部之问的联系以及数学与其他领域之间的联系;三是了解数学领域中的基本活动:寻找模式、提出猜想、证明断言、证实解法和寻求一般化。

对数学知识的研究,拓宽了人们对教学用的数学知识的理解。它显示教学用的数学知识是很复杂的,除了术语、概念、法则、程序之外,还有数学学科结构或者关于数学的知识。这些知识对于教师确定为什么教、选择教什么和怎么教都会产生影响。比如,约定的与逻辑建构的概念的教学策略会有很大的不同,逻辑建构的概念就必须讲清楚它怎么来的,为什么要定义这个概念,怎样定义,它会有什么用,它与其他的概念的关系是怎样的,它的应用有哪些限度。而约定的概念就没有这些必要。但是,有效地数学教学,仅仅具有上述知识还不够。它缺少对学生的考虑,不能给教师提供教授一群特定的学生所必须的教学上的理解。比如,仅仅通过推导知道(+6)=a+2ab+b对有效教学是不够的,教师还需要知道一些学生容易把分配律过度推广而记成+6)=a+b,知道用矩形的面积表征可以有效地消除这一误解。学生误解的知识与消除误解的教学策略显然不能纳入数学知识的框架,教学用的数学知识的复杂性要求更精致的框架来描述。

二、教材分析研究

有效的教学必须考虑学生已有的知识和知识呈现的最佳序列。在数学学科中,马力平的知识包(Knowledgepackage)是国际上较为典型的此类研究。知识包是围绕着一个中心概念而组织起来的一系列相关概念,是在学生的头脑里培育这样一个领域的纵向过程。(n知识包含有三种主要成分:中心概念、概念序列和概念结点,也包括概念的表征、意义和建立在这些概念之上的算法。下例是20以内数的加减法的知识包(图1)。在这个知识包内,中心概念是20至100数的“借位减法”,它是学习多位数的加减的关键前提。

马力平的知识包实际上是我国内地传统的教材分析研究。这类研究结果是教学参考书的主要内容之一。它是一种课程知识,是教师对课程的分析,比对数学知识的分析更接近教学用的数学。但它也不是教师教学时使用的数学知识。它最多是教师对教学的考虑,没有考虑师生互动时产生的数学需求。教师在教学时,能够动员起来的知识不一定符合教学情境的需要。比如教师预期的一种学生的反应在与学生的互动中没有出现,教师以学生的这种反应为跳板的后继知识就没有了用武之地。马力平概括出的知识包,与教师在课堂教学时使用的数学知识还有一段距离,教师在教学时可能用得上,也可能用不上。教师在教学时所需要的数学知识远远超出教材分析所能提供的内容。

三、教学用的数学知识研究

Ball开创了教学用的数学知识研究。她通过分析数学教学的核心活动,直接研究课堂教学中教师使用的数学知识及其影响。下面以Ball的一个课例来说明其研究方法与结果。该课内容是三年级多位数减法:Joshua星期一吃了16粒豌豆,星期二吃了32粒豌豆。问Joshua星期二比星期一多吃了多少粒豌豆?学生在解题过程中提供了六种解法。Sean从16的后继数l7开始向后数数,一直数到32得到答案。ba认为,32的一半是16,答案就是16。Betsy把表示16和32的教具(豆子)一一配对,数一下表示32的教具中剩余的没有配对的豆子得到答案。Mei的方法是直接从表示32的豆子中拿走16粒,数一下剩余的就行了。Cassandia提供了标准的减法算法,Scan受到启发,提供了另一种解法:16+16=32,整节课,学生想尽办法鉴定这些解法的异同。L6JBall认为,这节课教学的核心活动是处理数学知识的关联和控制课堂讨论。知识的关联涉及到在具体和符号的模式中,减法和加法是如何关联的、减法的“比较”和“拿走”的解释是如何关联的、教具的表征如何转化为符号表征、Betsy的配对比较法如何转化为Sean的向后数数的方法、Betsy的方法如何和Mei的方法协调,控制课堂讨论首先表现在提供线索和解释,推动正确的方法的发展;其次表现在搁置有问题的方法。比如搁置Riba的说法。Riba的论断是正确的,但要使其他的学生能够明白他的意思,还需要添加几步推理。但这几步推理与用它来证明Sean的结论超过了三年级学生的理解能力。

Ball对这节课教师需要使用的数学知识进行了归纳。除了传统的教材分析提供的借位减法的符号算法及其背后的位值制之外,教师还需要其他知识。首先需要知道问题的两种表征模式(如减法32—16:?与缺失加数的加法16+?=32)是等价的。其次,还要知道此问题的一些表征:比如像Sean的从17数到32,或者Mei的从32里拿走l6个等等。第三,教师还需要具有深刻的数学眼光去审查、分析和协调学生的多种解法。最后,教师还需要一些关于数学论证的知识。通过上述分析,Ball指出,教材分析只能提供教学用的数学知识的一部分,其余大部分只能在分析数学教学的核心活动中才能得到。

四、启示

1.教学用的数学知识是有效教学的知识基础。它与数学家的数学知识、教材分析得出的数学知识是不一样的。它具有一种教学上有用的数学理解,这种理解主要集中于学生的观念和误解上。学生对特定内容的理解是有差异的,教师需要调和学生不同的理解方式并在这些方式之间灵活自如地转换,引导学生把知识进一步组织,促进学生在已有的知识基础上有效学习。

2.教学用的数学知识是高观点下的数学知识,它联系着更深刻的概念和方法。Ball的课例仅是小学三年级的两位数退位减法,但是,通过对课堂教学核心数学活动的分析显示,隐藏在退位减法之外的,是高等数学的等价、同构、相似性和表征之间的转化等概念。从结构上说,前五种解法是同构的,前五种解法和最后一种缺失加数的加法是等价的。但前四种解法的解释模型是不同的,有三种是“拿走”模型,一种是“比较”模型。只有从数学结构上理清这些解法的关系,才能有效地引导学生在不同的方法之间转换并分清这些方法的异同,促进学生高效地组织自己的数学知识。香港的“课堂学习研究”也证实,数学专家参与的教研活动,能提升课堂教学的有效性。

3.教学用的数学知识存在一定的结构。首先是学生理解的知识。像Ball的课例所展示的,学生对退位减法的理解有不同的方式、不同的层次和一些误解,这些知识是教师教学的起点。以学生已有的知识为起点自下而上的讲授使知识加以扩充,把新知识与学生已经构成内在网络的概念和方法联系起来,这是提高教学效率的奥妙;其次是教学策略。像Ball的课例所展示的,学生的理解各种各样,需要教师使用相应的策略来控制课堂讨论,协调不同的方法,促进正确的方法发展,搁置有问题的方法,这是提高课堂教学效率的重要手段;第三、控制与反馈的知识。教师需要提供线索和解释,矫正学生的误解,促进学生自我评价的参与,促进学生进一步精简合理化知识;第四,课程知识。像马力平的知识包概念所揭示的,特定课题呈现的最佳序列,它的来龙去脉及与其它学科的横向联系,是教师用来教学的数学知识基础。顾泠沅的研究也揭示,辨明一门学科各知识点的固着关系及其潜在距离,构建适合学生特点的、具有合适梯度的结构序列,是提高教学效率的基础;最后是教学目的的统领性观念。像退位减法,是像Ball那样对学生的经验进行精简合理化还是直接教授退位减法的法则,取决于教师对数学的理解、信念数学的认识论以及对特定学生最有价值的数学知识的判断。当然,这些成分是从不同的维度来说明教学用的数学知识的属性,它们之间的关系及提高课题教学效率的机制还需从课堂教学的经验出发进一步的概念化。

第2篇

一、结合教材内容,“见缝插针”,使科学史自然融入课堂教学。

“圆”是一个古老的课题,人类的生活与生产活动和它密切相关。有关圆的知识在战国时期的《墨经》、《考工记》等书中都有记载,授课中将有关史料穿去,作为课本知识的补充和延伸。例如讲解圆的定义与性质时,我向学生介绍,约在公元前二千五百年左右,我国已有了圆的概念,考古说明我国夏代奴隶社会以前的原始部落时期就有圆形的建筑。至于圆的定义和性质在《墨经》中已有记载,其中,“圆,一中同长也”,即圆周上各点到中心的长度均相等;此外,还进一步说明“圆,规写交也”,即圆是用圆规画出来的终点与始点相交的线。这与欧几里得的定义相似,而《墨经》成书于公元前4~3世纪,是在欧几里德诞生时间问世的。再比如圆心角、弓形、圆环形、圆内接正六边形、直角三角形的内切圆、圆锥等一系列概念与性质,在《墨经》、《考工记》、《九章算术》等书中都有记载,在讲到这些内容时,我便用几句话向同学们作简要介绍。这样,随着这一章教材的不断展开,同学们对我国古代在相关领域的发展概貌有个初步的了解,明白我国古代就对这些内容有了比较全面、系统的认识。特别是早在战国时期就有了论证几何学的萌芽,几乎与古希腊的几何学同时产生。

二、根据教材特点,适当选择科学史资料,有针对性地进行教学。

圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家作出过卓越贡献。该章的“读一读:关于圆周率π”对此作了简单的介绍,并提到祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过实践逐步认识到用古率计算圆周长和圆面积时,所得到的值均小于实际值,于是不断利用经验数据修正π值,例如古埃及人和巴比伦人分别得到π=31605和π=3125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外切正多边形来求圆周率的近似值,得到当时关于π的最好估值约为:31409〈π〈31429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3141024〈π〈3142704。后来把边数增加到3072边时,进一步得到π=314159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在31415926与31415927之间。求出了准确到七位小数的π值。我国以这一精度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔·卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明———火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界记录”,祖冲之计算出的圆周率就是其中一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。

为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,我还进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了π是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止,例如1610年德国人路多夫根据古典方法,用262边形,计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在他的墓碑上,至今圆周率被德国人称为“路多夫数”。1873年英国的向克斯计算π到707位小数。1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重算一次。他从1944年5月到1945年5月用了一整年的时间来做此项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是,对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断深入的过程也使学生受到感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。

第3篇

(一)概念不清,表达有误。概念是反映客观事物本质属性的一种思维的基本形式。人类在认知过程中,把所有感觉到的事物的共同特点抽象出来,加以概括,就成为概念。学生在概念使用表达中经常会出现概念模糊、混用概念、曲解概念、扩大或缩小概念的外延等现象。(二)形量不分,表述有误。图形与数量常常存在包含的现象,图形可以蕴含数量关系,数量可用来揭示图形的本质,它们既是互相对立的又是互相统一的。有些学生往往会出现数量与图形不分的错误表达。(三)乱造术语,读法有误。术语是指某门学科中的专门用语。学生在数学语言的表达中常常出现乱造术语的现象。(四)分类混乱,表达不当。在数学学习中,经常要对各种数学知识进行分类,有些小学生会出现分类不当的现象。(五)增减条件,表述不清。数学语言具有准确、精炼的特点。每一个数学概念、定理、公式等都有精确、完整的描述。但小学生在描述时常常会出现增加、减少条件等现象。(六)自相矛盾,表述错误。在同一思维过程中,两个具有互相矛盾或反对关系的思想不能同真,其中至少有一假。小学生的数学语言表达往往会犯自相矛盾的错误。(七)重复啰嗦,词不达意。数学语言具有简约性,它不像自然语言那样繁琐、冗长。但是由于小学生的词汇匮乏,存在表达不简练的现象。(八)生活语言与数学语言混淆。数学表达自然离不开生活语言。但是有些词语在生活中数学中含义不同,要加以区分。

二、如何解决小学数学教育中的语言教育问题

(一)提高语言教育的规范性和艺术性。在小学教育阶段,教师的一言一行都时刻影响着小学生的学习与发展,要完善小学语言教育,教师就需要提高其规范性。首先,教师在备课或课堂教学活动中,都应力求语言的精练简短,时刻保持明确的语言思路,只有这样,才能让学生真正领悟书本中的思想知识,通过教师的悉心指导,不断深入分析,以此提高学生学习兴趣,增强自主学习和独立解决问题的意识能力,从而达到培养学习兴趣的目的。另外,还需要提高小学语言教育的艺术性,在课堂教学中,教师与学生之间的交流要注意语言表达的艺术性,生动形象、丰富多彩的语言词汇可以激起学生的兴趣,调动学生的主动性和积极性。在实际教学活动中,教师可以采用多样化的教学方式来活跃课堂气氛,增进师生之间的感情,从而促进课堂教学活动正常开展。(二)激发学生学习兴趣。在小学数学教学中,教师要经常对学生使用一些鼓励性的语言,这样有助于提高学生的学习兴趣,无论学生回答问题正确与否、作业对错也好,都应通过语言表述给予学生一定的鼓励和肯定。实际教学过程中,教师要本着面向全体,照顾差异的原则,尽可能多地给予中下游学生一些鼓励,对优异学生的独到见解给予表扬,对于表达能力较弱的学生来说,要有意识、有目的地帮助他们,课堂发言时要给予他们鼓励的目光,再结合教学内容,采取渐进的方式来指出他们回答的不足之处,从而使他们能够不断突破自己,积极参与并举手回答问题。(三)注重批评语言的幽默性。由于小学生的年龄较小,对任何发生在自己视野范围内的事情都比较好奇,所以在课堂教学中,让他们时刻集中注意力听讲是有一定难度的。因此,教师在批评学生不认真听讲时,要注重语言的幽默性,这样可以调动学生的积极性,也能提醒学生上课要认真听讲,从而达到事半功倍的效果。有时周末或节假日归校后,学生会上课走神、课堂纪律混乱,这样直接影响课堂教学质量,对此,教师可以使用幽默诙谐的语言,指出学生存在的问题与不足之处,以此吸引学生的注意力,通过这种委婉的批评方式来间接或直接的改善学生上课不认真听讲的不良习惯。(四)注重生动形象的语言教育。在小学数学教学中,教师可以采用生动形象的教学语言,这样可以让学生更轻松、更容易地接受新知识,掌握学习的重难点,把数学中一些抽象简短的定义转换成生动形象的语言,学生不仅不会觉得难懂,还会觉得很有趣,从而会参与其中,这对小学数学教学来说尤为重要。教师可以根据小学生自身特点,采用比喻、拟人等修辞手法来表述逻辑性强且抽象化的数学概念或定义,以此达到提高小学数学教育中语言教育的目的。

数学语言表达能力的训练是一个循序渐进、永无止境的过程。准确性、条理性、简洁性和完整性作为数学表达的四大要素,是相辅相成,缺一不可的。我们教师要创造一切机会,激发学生运用数学语言表达的兴趣,不断锤炼学生的数学语言,使学生语言表达能力得到提高,进而带动思维能力的提高。

作者:迟雅卓 单位:内蒙古包头市青山区一机三小

参考文献:

[1]冉红梅.如何培养小学生解决数学问题的能力[J].考试周刊,2013(60).

第4篇

所谓数学活动是指把数学教学的积极性概念作为具有一定结构的思维活动的形式和发展来理解的。按这种解释,数学活动教学所关心的不是活动的结果,而是活动的过程,让不同思维水平的儿童去研究不同水平的问题,从而发展学生的思维能力,开发智力。

那么,要想使数学教学成为数学活动的教学主要应考虑哪几个问题呢?下面谈谈笔者一些想法。

一、考虑学生现有的知识结构

知识和思维是互相联系的,在进行某种思维活动的教学之前,首先要考虑学生的现有知识结构。

什么是知识结构?一般人们认为:在数学中,包括定义、公理、定理、公式、方法等,它们之间存在的联系以及人们从一定角度出发,用某种观点去描述这种联系和作用,总结规律,归纳为一个系统,这就是知识结构。在教学中只有了解学生的知识结构,才能进一步了解思维水平,考虑教新知识基础是否够用,用什么样的教法来完成数学活动的教学。

例如:在讲解一元二次方程[a(x)2+bx+c=0a≠0]时,讨论它的解,须用到配方法,或因式分解法等等,那么上课前教师要清楚这些方法学生是否掌握,掌握程度如何,这样,活动教学才能顺利进行。

二、考虑学生的思维结构

数学教学是数学思维活动的教学,进行数学教学时自然应考虑学生现有的思维活动水平。

心理学早已证明,思维能力及智力品质都随着青少年年龄的递增而发展,学生的思维水平在不同的年龄阶段上是不相同的。斯托利亚尔在《数学教育学》中介绍了儿童在学习几何、代数时的五种不同水平,在这五个阶段上,学生掌握知识,思考方式、方法,思维水平都有明显差异。因此,要使数学教学成为数学活动的教学必须了解学生的思维水平。下面谈谈与学生思维水平有关的两个问题。

1.中学生思维能力之特点

我们知道,中学生的运算思维能力处于逻辑抽象思维阶段,尽管思维能力的几个方面的发展有所先后,但总的趋势是一致的。初一学生的运算能力与小学四、五年级有类似之处,处于形象抽象思维水平;初二与初三学生的运算能力是属于经验型的抽象逻辑思维;高一与高二学生的运算能力的抽象思维,处在由经验型水平向理论型水平的急剧转化的时期。从概括能力、空间想象能力、命题能力和推理能力四项指标来看,初二年级是逻辑抽象思维的新的起步,是中学阶段运算思维的质变时期,是这个阶段的关键时期。高一年级是逻辑抽象思维阶段中趋于初步定型的时期,高中之后,学生的运算思维走向成熟。总的来说,中学生思维有如下特点。

首先,整个中学阶段,学生的思维能力得到迅速发展,他们的抽象逻辑思维处于优势地位,但初中学生的思维和高中学生的思维是不同的。初中学生的思维,抽象逻辑思维虽然开始占优势,可是在很大程度上还属于经验型,他们的逻辑思维需要感性经验的直接支持。而高中学生的抽象逻辑思维则属于理论型的,他们已经能够用理论作指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。也只有在高中学生那里,才开始有可能初步了解对立统一的辩证思维规律。

其次,初中二年级是中学阶段思维发展的关键期。从初中二年级开始,中学生抽象逻辑思维开始由经验型水平向理论型水平转化,到高中一、二年级,这种转化初步完成,这意味着他们的思维趋向成熟。这就要求教师,要适应他们思维发展的飞跃时期来进行适当的思维训练,使他们的思维能力得到更好的发展。

2.学习数学的几种思维形式

(1)逆向思维。与由条件推知结论的思维过程相反,先给出某个结论或答案,要求使之成立各种条件。比如说,给一个浓度问题,我们列出一个方程来;反过来,给一个方程,就能编出一个浓度方面的题目。后者就属于逆向型思维。

(2)造例型思维。某些条件或结论常常要用例子说明它的合理性,也常常要用反例证明其不合理性。根据要求构造例子,往往是由抽象回到具体,综合运用各种知识的思考过程。例如:试求其反函数等于自身的函数。

(3)归纳型思维。通过观察,试验,在若干个例子中提出一般规律。

(4)开放型思维。即只给出研究问题的对象或某些条件,至于由此可推知的问题或结论,由学生自己去探索。比如让学生观察y=sinx的图象,说出它的主要性质,并逐一加以说明。

了解了学生的思维特点和数学思维的几种主要形式,在教学中,结合教材的特点,运用有效的教学方法,思维活动的教学定能收到良好效果。

三、考虑教材的逻辑结构

我们现有的中学数学教材内容有的是按直线式排列,有的是按螺旋式排列。

如果进行数学活动的教学,教材的逻辑结构就应有相应的变化。比方说,指数、对数、开方三种不同形式都可表示为:a、b、N之间的关系a的b次幂等于N,是否可以把它们安排在一起学习。再比方说,关于一元一次方程应用题,中学课本里有浓度问题、行程问题、工程问题、等积问题,在讲解时,可用一个方程表示不同问题,使他们得到统一,只是问题形式不同而已,其方程形式没有什么本质差异,可一次讲完几个问题。而现有中学教材把它们分开,使学生觉得似乎几种问题毫不相干。因为这些问题具体不同的思维形式,要受小学、初中和高中学生各阶段思维发展不同特点的制约。

数学思维活动的教学,就是要尽量克服这些制约,使学生在短期内高质量获取知识,大幅度提高思维能力,完成学习任务。

在考虑教材逻辑结构时,还应明确的一个问题是教材内容的特点,即初等数学有些什么特点,对它应有一个总的认识。

1.初等数学是相对于抽象程度来说的,其内容方法都比较直观具体,研究的对象大多可以看得见、摸得着,抽象程度不深,离开现实不远,几乎直接同人们的经验相联系。

2.初等数学是一门综合性数学,它数形并举,内容多种多样,方法应有尽有,自然分成几个部分,各部分又相互渗透,相互为用。

3.初等数学处于基础地位。因为无论数学多么高深,总离不开四则运算,总要应用等式、不等式和基本图形分析。初等数学又是整个数学的土壤和源泉,各专业数学领域几乎都是在这块土壤中发育成长起来的。

前苏联著名教育家斯托利亚尔在他所著的《数学教育学》一书中指出:“数学教学是数学活动的教学(思维活动的教学)

本篇论文是由3COME文档频道的网友为您在网络上收集整理饼投稿至本站的,论文版权属原作者,请不要用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系我们。

4.初等数学的普通教育价值。对中小学生来说,它的智能训练价值远远超过了它的实用价值。

5.与高等数学相互渗透,相互为用。一方面,由于实践中某些问题的出现,使初等方法被深入研究和发展成专门的数学分支,另一方面是高等数学中许多专题的初等化、通俗化。

初等数学具有这样的特点,不仅为编写教材提供了依据,同时对数学活动教学的模式来说也是恰到好处的。比方说,特点1,对于经验材料的数学化有得天独厚的帮助;特点2、3,对数学标准的逻辑组织化也很适宜;特点4、5,是对理论的应用。由此看来,数学活动教学对于初等数学再合适不过了。

数学活动教学,不仅考虑初等数学之特点、教材的逻辑结构,而且具体的某段知识也要仔细研究,不同性质的内容用不同方法去处理,这就是下面要谈的积极的教学方法问题。

四、考虑积极的教学方法

目前关于教学方法的研究呈现出一派兴旺的局面,种类之多、提法之广是历史上少见的。如目前使用的自学辅导法、读读议议讲讲练练教学法、六单元教学法、五课型教学法、自学议论引导教学法、启发诱导效果回授教学法、研究法、发现法等等。可以把这些方法归结为一句话,那就是:积极的教学法。其宗旨是在传授知识的同时,重视发展智力、培养能力。它们的特点是:充分调动学生的积极性,让学生独立解决一些问题,注意能力的培养。从实践效果看,这些方法在某个阶段,对某部分学生,结合某部分内容确实有事半功倍功能,但这些方法哪个都不是万能的,不是教学通法。因为教法要受学生水平的差异,兴趣的不同,教材内容的变化,教师素质不平衡等各方面条件的限制。

我们主张,采用积极的教学法,因课、因人、因时、因地而异。比方说,对于教材内容多数是逻辑上分散的数学定义和公理等采用自学辅导法较为适宜;对于教材中的一般公式、定理等采用问题探索法较好;对于教材中理论性较强的难点,一般采用讲解法较好。教师要灵活掌握。

数学活动的教学实质上是积极性思维活动的教学,因此,在教学中调动学生积极性极为重要。一般来说,教学内容的生动性,方法的直观性、趣味性,教师和家长的良好评价,学习成绩的好坏,都可以推动学生的学习,提高积极性。另外,如课外活动,参观工厂、机房,介绍数学在各行中的应用,尤其是数学应用在各领域取得重大成果时,能够促进青少年扩大视野,丰富知识,增进技能,从而发展他们的思维能力,提高学习的积极主动性。也可讲一点数学史方面的知识,比如我国古代科学家的重大贡献及在世界上的影响,也能激发学生的积极性。

另外,从学习方法上看,随着学科多样化和深刻化,中学生的学习方法比小学生更自觉,更具有独立性和主动性。因此,在教学中教师就要注意启发学生的积极思维。

究竟怎样启发学生去积极思维呢?方法是多种多样的。比方说,创设问题情境,正确提供直观材料让学生从具体转到抽象,也可运用已有知识学习新知识,把新旧知识联系起来。还可以把语言和思维结合起来,达到启发思维的目的。

从上面几个方面来比较,数学活动教学的核心是教学方法,因此教学方法的采用,直接影响活动教学的效果。

为使数学活动教学收到良好效果,目前没有一个成熟的模式,具体做法也少见。南通市十二中李庚南在总结过去经验基础上,提出几种有效的方法。

首先,重视结论的探求过程。数学中的结论教师一般不直接给出,而是引导学生运用观察、实验、练习、归纳等方法发现命题,尔后深入研究探求的过程和论证的方法,进而剖析结论的内容,举实例将结论内容具体化。

其次,是沟通知识间的内在联系。她认为:数学有着严密的体系,学生揭示数学知识之间纵横交错的内在联系,是学生主动思维活动的过程,可引导学生按知识的发生、发展、变化关系或逻辑关系整理出一个单元的知识结构和基本的研究方法,进行知识的引申、串变,提高学生灵活运用知识的能力。

第5篇

一、注重联系现实原型,对概念作解释。

数学概念都是从现实生活中抽象出来的,如正负数、数轴、直角坐标系、函数、角、平行线等,都是由于科学与实践的需要而产生的。讲清它们的来源与实物作比较,这样学生既不会感到抽象,而且容易形成生动活泼的学习氛围。

(1)注意概念的引出

例如:怎样用数表示前进3米?后退3米?收入200元与支出200元等这些相反量呢?引出正负数的概念;用温度计、杆称这些实物,引出数轴这个概念;由对不同实物的分类,引出同类项概念等。首先从对实物的感受激发学生学习的兴趣,再由抽象的特征浓缩成数学概念,学生容易接受。

(2)注意概念的及时整理

对于概念的引出,要把握好时间度,如过早的下定义,等于是索然无味的简单灌输,但定义过迟,学生容易失去兴趣,同时使已有知识呈现零乱状态。因此,教师在教学过程中,要及时整理和总结,在学生情绪高涨的时候及时总结出定义。

(3)注意概念的多角度说明

因为教师提供的感性材料往往具有片面性,所以常造成学生错误地扩大或缩小概念。因此要从多角度各方面加以补充说明。如“垂线”这个概念,不但要用“”号来表示,而且要用多种特殊图形和实物来透视概念的含义。

二、注重刻划概念的本质,对概念进行分析。

一个概念在其形成过程中,往往附带着许多无关特征。因此教师应抓住重点,善于引导学生,这样学生便能把握着概念突现出来的实质,尽量减少乃至消除相关不利因素的干扰。

(1)讲清概念的意义

例如:“不等式的解集”这一概念,抓住“集”这一特征进行分析,即不等式所有解的集合。更通俗地说,就是把不等式所有的解集合在一起(象学生排队集合一样),组成了不等式的解集,最终表示成x>a等形式。只有理解了这个定义,学生在解决问题的时候,就不会有丢解的现象。

(2)抓住概念中的关键字眼作分析。

例如:“同类项就是含有相同的字母,并且相同字母的指数也相同的项。”这个概念中,抓住“相同”这一关键字作分析,相同的是什么?是字母和它的指数

两部分;“最简分式”的概念中,抓住“不含公因式”这一关键字眼。只有学生真正理解了概念,那么在解决问题的时候,才能得心应手,不会出现错误。

(3)抓住概念间的内在联系作比较。

对于有内在联系的概念,要作好比较,加深学生对概念本质的理解。例如:“一元一次方程”的概念,是建立在“元”、“次”、“方程”这三个概念基础之上的。“元”表示未知数,“次”表示未知数的最高次数,次数是就整式而言的,所以“一元一次方程”是最简单的整式方程。这样学生便于抓住“一元一次方程”的本质,并为以后学习其它方程的概念打下基础。

再如:“乘方”与“幂”之间的关系,“直角”与“90°”之间的关系,“方程的解”与“不等式的解”之间的关系,“最简分式”与“最简根式”之间的关系等等。做好有内在联系的概念、相似概念的比较,学生应用起来才会得心应手。

三、注重实际应用概念,对概念进行升华。

学习数学概念的目的,就是用于实践。因此要让学生通过实际操作去掌握概念,升华概念。概念的获得是由个别到一般,概念的应用则是从一般到个别。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化具体化,而且能使学生对概念的理解更全面、更深刻。

(1)多角度考察分析概念。

例如,对一次函数概念的掌握,可通过下列练习:

①如果Y=(m+3)X-5是关于X的一次函数,则m=______.

②如果Y=(m+3)X-5是关于X的一次函数,则m=______.

③如果Y=(m+3)X+4X-5是关于X的一次函数,则m=______.

④如果Y=是关于X的一次函数,则m=______.

学生通过以上训练,对一次函数的概念及解析式一定会理解。

(2)对于容易混淆的概念,做比较训练。

例如学生学习了矩形、菱形、正方形的概念以后,可做以下练习:

下列命题正确的是:

①四条边相等,并且四个角也相等的四边形是正方形。

②四个角相等,并且对角线互相垂直的四边形是正方形。

③对角线互相垂直平分的四边形是正方形。

④对角线互相垂直且相等的四边形是正方形。

⑤对角线互相垂直平分,且相等的四边形是正方形。

⑥对角线互相垂直,且相等的平行四边形是正方形。

⑦有一个角是直角,且一组邻边相等的四边形是正方形。

⑧有三个角是直角,且一组邻边相等的四边形是正方形。

⑨有一个角是直角,且一组邻边相等的平行四边形是正方形。

⑩有一个角是直角的菱形是正方形。

教师在设计练习的时候,对相似概念一定要抓住它们的联系和区别,通过练习使学生真正掌握它们的判定方法和相互关系。

(3)对个别概念,要从产生的根源去考察:

例如“分式方程的增根”的概念。可从产生的根源去考察,教学时设计下列练习,让学生体会增根的概念:

①分式方程的根是。

②如果分式方程有增根,则增根一定是。

第6篇

智慧技能的教学是学校教学的中心任务.著名认知心理学家加涅认为,智慧技能主要涉及概念和规则的掌握与运用,它由简单到复杂构成一个阶梯式的层级关系:概念(需要以辨别为先决条件)规则(需要以概念为先决条件)高级规则(需要以规则为先决条件).因此,对于中学数学的每个单元,学生应该按照加涅关于智慧技能由简单到复杂构成的这个层级关系去学习,以便按照这个层级关系把所学的知识组织到大脑当中,形成具有良好层级性的认知结构.

据此,笔者在“排列、组合”单元的教学中,将教材内容的顺序进行了调整.调整后的结构如图1所示.排列、组合P概念从飞机票和飞机票价等具体问题的辨别入手,得出排列与组合的概念,进而介绍排列数概念、组合数概念及其符号表示.

概念

从飞机票和飞机票价等具体问题的辨别入手,得出排列与组合的要领进而介绍排列数概念、组合数概念及其符号表示.

专题一

算法

在解释P1n=n,C1n=n(n∈Z+)的基础上,介绍加法原理和乘法原理(引例和例题的处理均须用由P1n或C1n组成的算式来解答).

专题二

排列数公式与计算

专题三

组合数公式、计算与性质

应用

用直译法解决纯排列与组合问题(同时用分步法解答纯排列问题).题型如1990年人教版高中《代数》下册(必修)(简称:高中《代数》下册.下同)第234页例3、第245页例2.

专题四

用分类法解决加法原理的简单应用题.题型如高中《代数》下册第234页例4(此例还可用分步法)、第245页例3.

专题五

用分步法、分类法和排除法解综合性排列与组合问题.题型如高中《代数》下册第235页例5、第246页例4.

专题六

图1

于是该单元的教学次序是:基本概念的形成(排列与组合的概念、排列数与组合数的概念)基本算法规则的掌握(原理与公式)概念和算法规则相结合的应用(这里是以解题规律为主线,把排列应用题和组合应用题一并按其解法由易到难分层次集中而对偶地解决的),完全符合加涅关于智慧技能的学习必须按从概念到规则,再到高级规则的层级顺序去进行的规律,理顺了学生学习排列、组合内容的认知层次,加强了该单元认知结构的层级性.

2.运用先行组织者,促成认知结构的稳定性

运用先行组织者以改进教材的组织与呈现方式,是提高教材可懂度,促进学生对教材知识的理解的重要技术之一.其目的是从外部影响学生的认知结构,促成认知结构的稳定性.

因为高中生首次面对排列、组合单元的学习任务时,其认知结构中缺乏适当的上位观念用来同化它们,因此,我们在该单元的入门课里,在没有正式学习具体内容之前,先呈现如图2所示的组织者,能起到使学生获得一个用来同化排列、组合内容的认知框架的作用.

概念

排列、组合的概念

算法

算法原理、计算公式

应用

解排列、组合问题

图2

值得一提的是,安排在本文的入门课——专题一中的飞机票和飞机票价等具体问题,以及安排在基本原理课题中的两个引例,它们也分别起到了学习相应内容的具体模型组织者的作用.

3.实行近距离对比,强化认知结构的可辨别性

如果排列概念和组合概念在学生头脑中的分离程度低,加法原理和乘法原理在学生头脑中的可辨别性差,则会造成学生对排列和组合的判定不清,对加法原理和乘法原理的使用不准,从而严重影响学生解排列、组合问题的正确性.因此,在教学中我们必须增强它们在学生头脑中的可辨别性,以达到促使学生形成良好的“排列、组合”认知结构之目的.

按调整后结构的顺序教学,很自然地实行了近距离对比,加大了排列与组合、加法原理和乘法原理的对比力度,从而强化了它们在学生头脑中的可辨别性.

(1)在入门课里,开篇就将排列概念和组合概念进行近距离对比,有利于引导学生得到并掌握排列和组合的判定标准:看实际效果与元素的顺序有无关系.

(2)专题二首次近距离比较加法原理和乘法原理,并运用其判定标准——是分类还是分步,去完成对实际问题的处理,以加强学生对它们的理解与辨别.

1.调整教材内容顺序,加强认知结构的层级性智慧技能的教学是学校教学的中心任务.著名认知心理学家加涅认

本篇论文是由3COME文档频道的网友为您在网络上收集整理饼投稿至本站的,论文版权属原作者,请不要用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系我们。

(3)专题四、五、六里,把排列、组合问题按其解法分层次对偶地解决,在没有单独占用课时的情况下,很自然地为排列和组合的近距离比较,为加法原理和乘法原理的运用对比,提供了切实而尽可能多的机会.

4.及时归纳总结,增强认知结构的整体性与概念性

我们知道,认知结构是人们头脑中的知识结构,也就是知识在人们头脑中的系统组织,它具有整体性和概括性.认知心理学认为,认知结构的整体性越强、概括水平越高,就越有利于学习的保持与迁移.因此,在每个单元的教学中,我们必须随着该单元教学进度的推进,及时归纳总结已学内容的规律,以促进学生认知结构概括水平的不断提高,最终促使学生高效高质地整体掌握该单元,从而形成整体性强、概括程度高的认知结构.

于是对于“排列、组合”单元,笔者就随着教学进度的深入,引导学生不断归纳、及时总结出以下各规律:

(1)排列与组合的判定标准(见前文).

(2)加、乘两原理的判定标准(见前文).

(3)排列数公式的特征(略).

(4)组合数与排列数的关系(略).

(5)解排列、组合问题的基本步骤与方法:

①仔细审清题意,找出符合题意的实际问题.

所有排列、组合问题,都含有一个“实际问题”,找出了这个实际问题,就找到了解题的入口.

②逐一分析题设条件,推求“问题”实际效果,采取合理处理策略.

处理排列、组合问题的常用策略有:正面入手;正难则反;调换角度;整、分结合;建立模型等.但不管采用哪个策略,我们都必须从问题的实际效果出发,都必须保证产生相同的实际效果.因此,实际问题的实际效果,就是我们解排列、组合问题的出发点和落脚点,因而也可以说是解排列、组合问题的一个关键.

③根据问题“实际效果”和所采取的“处理策略”,确定解题方法.

解排列、组合问题的方法,不同的提法很多,其实归根到底,不外乎以下五种:枚举法;直译法;分步法;分类法;排除法.如所谓插空法,推究起来也只不过是在调换角度考虑的策略下的分步法而已.

5.注意策略的教学与培养,增大认知结构的可利用性

智育的目标是:第一,通过记忆,获得语义知识,即关于世界的事实性知识,这是较简单的认知学习.第二,通过思维,获得程序性知识,即关于办事的方法与步骤的知识,这是较复杂的认知学习.第三,在上述学习的同时,获得策略知识,即控制自己的学习与认知过程的知识,学会如何学习,如何思维,这是更高级的认知学习,也是人类学习的根本目的.

所谓策略,指的就是认知策略的学习策略,认知策略是个人用以支配自己的心智加工过程的内部组织起来的技能,包括控制与调节自己的注意、记忆、思维和解决问题中的策略.学习策略是“在学习过程中用以提高学习效率的任何活动”,包括记忆术,建立新旧知识联系,建立新知识内部联系,做笔记、摘抄、写节段概括语和结构提纲,在书上评注、画线、加标题等促进学习的一切活动.

在中学生的数学学习中,如果学生的认知结构中缺乏策略或策略的水平不高,那么学生的学习效果就不好、学习效率就不高,特别是在解题过程中,就会造成不能利用已学的相关知识而找不到解题途径,或造成利用不好已学的相关知识而使解题思路受阻,或造成不能充分利用好已学的相关知识而使解题方法不佳,以致解题速度不快、解答过程繁冗、解答结果不准确等.因此,中学数学教学,必须重视策略的教学和培养,让学生学会如何学习和如何思维,以增大学生认知结构的可利用性.

为此,笔者在“排列、组合”单元的教学中,除注意一般性学习策略(如做笔记、画线、注记和写单元结构图等)的培养以外,更注重解排列、组合问题的培养和训练.

(1)在专题二、四、五、六里,对排列、组合问题解法的教学,始终按“仔细审清题意,找出符合题意的实际问题逐一分析题设条件,推求问题实际效果,采取合理处理策略根据问题实际效果和所采取的处理策略,确定解题方法”的基本步骤进行,以培养学生在解排列、组合问题时,有抓住“实际问题的实际效果”这个关键的策略意识和策略能力.

(2)重视一题多解和错解分析(多解的习题要有意讲评,例题讲解可故意设错).

一题多解能拓宽解题思路,让学生见识各种解题方法和处理策略.另外,一题多解又能通过比较各种解法的优劣,使学生在较多的思路和方法中优选.同时,因为解排列、组合问题,其结果(数值)往往较大,不便于检验结果的正确性,而一题多解可以通过各种解法所得结果的比较,来检验我们所作的解答是否合理、是否正确,从而起到检查、评价乃至调控我们对排列、组合问题的解答的作用.

错解分析能使学生注意到解答出错的原因所在,同时使学生体验到解题策略调节的必要性和方法,防止今后犯类似的错误,增强学生解题纠错力.

故意设错如高中《代数》下册第246页例4的第(3)小题:如果100件产品中有两件次品,抽出的3件中至少有1件次品的抽法有多少种?

错解:由分步法得C12C299=9702(种).

略析:像该题一样的“至少”问题最好莫用分步法,这里分步出现了重复计算(以上错解是学生易犯错误,教学中必须注意).

参考文献

1邵瑞珍主编.学与教的心理学.上海:华东师范大学出版社,1990

第7篇

1、数学符号的科学性

数学符号是数学文字的主要形式,它是构成数学语言的基本成份。

1,2,3,4,5,6,7,8,9,0,这十个符号是全世界普遍采用的,它们表示了全部的数,书写、运算都十分方便。这10个符号常被称为阿拉伯数字,实际上却是印度人创造的,只是经过阿拉伯传到欧洲。这是印度对人类文明的一项重大贡献,这一贡献的意义也可能是今天的人们不易觉察的。但是,18世纪一位法国著名数学家曾说过:“用不多的记号表示全部的数的思想,赋予它的除了形式上的意义外,还有位置上的意义,它之如此绝妙非常,正是由于这种简易得难以估量。”

关于“位置上的意义”,指的是数字的进位表达。比如说724,它实际上是7×100+2×10+4,可是它只需简写成724就明白了。此外还有空位的问题,假若有个数字是7×1000+2×100+4,那该怎么写呢?现在我们是很容易回答了,不就写为7204吗?可是,在最初的数字符号系统中是没有0这个符号的。有的用一个点来表示:72•4有的用一个方格来表示;有的干脆就拉开一点写,表示空一位;……但这些写法的不准确、不方便是显而易见的。直到使用了0这个符号,问题才得以解决。而0这个符号比其他符号的出现晚了好几百年。如果年看72004这个数字,我们能更清楚地体会到0这个符号的特殊意义。

数学的简洁不只表现在数字符号上,还表现在其他符号上,表现在命题的表述和论证上,表现在它的逻辑体系上,总之,表现在思维经济上。

数学符号有许多种,除了前面提到的数字符号外,还有代数的符号,通常用英文字母或希腊字母表示。在笛卡儿时代,以英文字母的开头几个表示已知数,如a、b、c、…,以英文字母的最后几个代表未知数,如x、y、z,或以a、b、c、…代表常数,以x、y、z代表变数。现在,这已不是固定的了,在某种约定之下,a、b、c、…也可代表未知数,也可以表变数,x、y、z也可以代表已知数,也可以代表常数。还有一些特殊的常数,如π,e。还有另一些表现数量的符号,往往是其他类型符号的组合。

数字研究的对象已不只限于数,还研究形,表示三角形,表示四边形,表示圆。

数学研究的最一般对象是集合,而表示集合的符号常常用英文字母的斜体,如A、B、C、D、X、Y、Z等。某些特殊的集合又用特殊的符号表示,例如,用N表示自然数集,而实数集则用R表示,N与nature(自然)一词有关,R与real(实的)有关。特定的集合组成空间,空间有时用S表示,S与space(空间)一词有关,但也用其他字母表示空间。这些符号的运用使得数学语言变得简练。

还有一类符号是表示关系的,通过种种关系起联结作用。常用的如等号=,近似等号≈,全等号≌或。还有不等号≠,<,>,<<。∥表示平行关系,表示垂直关系,与表示元素与集合之间的关系,表示集合与集合之间的关系,表示蕴涵关系等等。

还有一大类是关于运算的符号。+,-,×,÷是四则运算符号。是开方运算符号,sin,cos,tan是三角运算符号,lim是极限运算符号,d,是微积分运算符号。表示若干项乃至无穷项求和,表示连乘(若干因子或无穷个因子),!表示阶乘,,是集合论中的运算符号。映射是比运算更普遍的概念,f,g,h等常被运用作映射符号。

微积分是英国人牛顿和德国人莱布尼茨彼此独立发现的,牛顿和莱布尼茨使用的微分符号却是不同的。牛顿创立了微分符号,比如说的微分用表示,可是牛顿的这一符号对于高阶微分并不方便,并且不宜于表现微分与积分的关系,因而实质上并不十分科学。相比之下,莱布尼茨的符号在这两方面都比牛顿的符号更加科学合理,它反映了事物最内在的本质,减轻了想象的任务。诸如这样的优美的式子,是在莱布尼茨符号下才能出现的。而英国人却以牛顿为自豪,这是无可厚非的,但是,由于他们长时间固守牛顿的符号,使英国数学的发展受到了严重的损害。

所以,数学符号的科学性直接影响着数学语言的质量,影响着数学及数学教育的发展。

2、数学语言的简洁性

数学语言非常简洁精确,它具有独特的价值,它是科学语言的基础。

从宏观来说,人们常以“成千上万”来研究多,再多就是“百万”、“千万”了,更多则是“亿万”。可是,数学能作出更简洁也更明确、更有力的表示,比如说,1025、286243这样巨大的数字,一般语言就说不太清楚了。

从微观来说,日常语言之中,“失之毫厘,廖以千里”,用一毫一厘来形容微小,还有形容体积之小的,时间之短的,距离之近的。但是,没有比10-15,10-45这样一些表达更能说明问题,它也更简洁、更明了。

[a,b]仅由a、b、[]这三个数学符号表出,但如果比用一般语言描述就成为“大于或等于a,小于或等于b的一切实数的集合。”除去标点还得需要20个符号,其中18个汉字。

若对任何使得对任何n,m>N,有,则数列有极限。这是著名的柯西判别准则。如果要用一般语言是无论如何也表示不清的,

作为有理数、无理数、代数数、超越数、实数、虚数之间关系之一的式子,是各种数的大统一。用数学语言来表达是这样的简洁、明晰。

数学语言有其独特之处,有其独特的价值,它不仅是普通语言无法替代的,而且它构成了科学语言的基础。越来越多的科学门类用数学语言表述自己,这不仅是因为数学语言的简洁,而且是因为数学语言的精确及其思想的普遍性与深刻性。

我们看看下面几个式子,就能明白物理学是如何用数学语言来表述的。

F=0

F=

F=

第一、二两个式子分别表达的是牛顿第一定律和第二定律,第三个式子说的是万有引力定律。

惯性定律说的是,在没有外力的条件下,物体保持原有的运动(或静止)状态,然而简洁的数学式F=0(C是常数)表达了定律的实质。

第二定律说的是,力与质量和加速成正比,数学式子F=表达了这一点。当质量是常数的时候,式子可写为F=,又可用a表示加速度,因此牛顿第二定律又可以表示为人所共知的形式F=ma。

万有引力定律说的是,任何两个物体之间都有引力存在,其大小与两物体质量之积成正比,与距离的平方成反比,式子F=又是多么有力地刻画了这一思想。

3、数学语言的通用性

数学语言与一般语言相比,它具有无民族性、无区域性,它世界上唯一的通用语言。

数学语言是人类语言的组成部分,它与一般语言是相通的,而且可以说是以一般语言为基础的。一般语言掌握得如何,直接会影响数学语言的学习。但是,一般语言学得很好的人也不一定能掌握好数学语言,它们毕竟有差别。

一般语言具有民族性、地区性,一般语言与民族、地区文化有极密切的联系。不同地区语言的差别可以很大,这种差别主要指符号及法则体系的不同。例如,英语与俄语,不仅符号表示的差别很大,而且语言规则的差别也很大;至于汉语,它与英语、俄语的差别更大,从书写来看,汉语是方块字,从读音来看,英语、俄语是拼读法,语法的差别也特别大。

就是同一民族,书面语言完全相同而发音很不相同的情形更多,例如同讲汉语,北方与南方就有很大不同,北京话与广大话很不相同。而且,目前世界上的语言就多达2500—3000种,其中仅美洲语言即有1000多种,非洲语言也近1000种。100万以上人口使用的文字则只有140种。这140种之中,以汉语为母语的人最多,约占世界人口的20%;其次是英语,约占6%;再次是俄语、西班牙语、法语,使用这五种语言的人占世界人口的40%以上。

但数学语言没有地区性、民族性。全世界因为地区之不同、民族之不同而有二、三千种语言(远远超过全世界国家的数目),可是,全世界的数学语言只有一种。

这种语言符号,全世界的中学生大学生们都认识,同一种书写、同一个含义,只是读音一般有所不同而已。

从以上的探讨中我们可以发现,由于构成数学语言的数学符号科学、简洁,而导致数学语言具有不同一般语言的特殊性,也就是具有科学性、简洁性、相通性。对数学语言的研究,不仅能促进数学及数学教育的发展,而且也能对人类精神文明和物质文明的进步起到积极作用。

正因为数学语言是一种特殊的语言,那它在数学教育中也具有重要的作用:

1、掌握数学语言是学习数学知识的基矗一方面,数学语言既是数学知识的重要组成部分,又是数学知识的载体。各种定义、定理、公式、法则和性质等无不是通过数学语言来表述的。离开了数学语言,数学知识就成了“水中月,镜中花”。另一方面,数学知识是数学语言的内涵,学生对数学知识的理解、掌握,实质是对数学语言的理解、掌握。一个对数学语言不能理解的人是绝对谈不上对数学知识有什么理解的。因此,从一定意义上讲。掌握数学语言是学习数学知识的基础,数学语言教学是数学教学的关键。

2、掌握数学语言,有助于发展逻辑思维能力。

逻辑思维是思维的高级形式。在各种能力中,逻辑思维能力处于核心地位。

因此,培养学生的逻辑思维能力是数学教学的中心任务。语言是思维的物质外壳,什么样的思维依赖于什么样的语言。具体形象语言有助于具体形象思维的形成;严谨缜密、具有高度逻辑性的数学语言则是发展逻辑思维的“培养液”。

3、掌握数学语言是解决数学问题的前提。

培养学生运用所学知识解决数学问题的能力,是数学教学的最终目的。“对一个问题能清楚地说一遍,等于解决了问题的一半。”解决问题的过程是一个严密的推理和论证的过程,正确地理解题意,画出符合要求的图形。寻找已知条件,分析条件与结论之间的关系,有关知识的映象,解题判断的形成,直至解答过程的表述等,处处离不开数学语言。

4、掌握数学语言,有利于思维品质的形成。

数学语言的特点决定了数学语言对思维品质的形成有重要作用。严谨、准确是培养思维的逻辑性、周密性与批判性的“良方”;清晰、精练对培养思维的独立性与深刻性有特效。

5、掌握数学语言,能激起学习数学的兴趣。

数学的语言美具有自己的特点,它是一种内在的美,表面显得枯燥乏味,其实却蕴藏着丰富的内涵。充分理解、掌握它,就能领略其中的微妙之处,感受其中的美的意境,从而激起学习、探究的兴趣。

数学语言作为一种表达科学思想的通用语言和数学思维的最佳载体,包含着多方面的内容;其中较为突出的是叙述语言、符号语言及图形语言,其特点是准确、严密、简明。由于数学语言是一种高度抽象的人工符号系统,因此,它常成为数学教学的难点。一些学生之所以害怕数学,一方面在于数学语言难懂难学,另一方面是教师对数学语言的教学不够重视,缺少训练,以致不能准确、熟练地驾驭数学语言。

接下来根据数学语言的特点及数学要求,谈谈教学中的实践与认识。

首先,注重普通语言与数学语言的互译普通语言即日常生活中所用语言,这是学生熟悉的,用它来表达的事物,学生感到亲切,也容易理解。其他任何一种语言的学习,都必须以普通语言为解释系统。数学语言也是如此,通过两种语言的互译,就可以使抽象的数学语言在现实生活中找到借鉴,从而能透彻理解,运用自如。“互译”含有两方面的意思:一是将普通语言译为数学符号语言,也就是通常所说的“数学化”,例如方程是把文字表达的条件改用数学符号,这是利用数学知识来解决实际问题的必要程序。二是将数学语言译为普通语言。数学实践告诉我们,凡是学生能用普通语言复述概念的定义和解释概念所揭示的本质属性,那么他们对概念的理解就深刻。由于数学语言是一种抽象的人工符号系统,不适于口头表达,因此也只有翻译成普通语言使之“通俗化”才便于交流。

其次,注重数学语言学习的过程,合理安排教学

数学概念和数学符号的形成一般包括逻辑过程、心理过程和教学过程三个环节。逻辑过程能够揭示概念之间的各种逻辑关系,便于对数学结构从整体上理解,有助于学生对数学本质的理解与认识。心理过程是指学生从学习数学语言到掌握数学语言的过程,这种过程往往是因人而异。数学符号和规则从现实世界得到其意义,又在更大的范围内作用于现实。学生只有在理解数学语言的来龙去脉及意义,而且熟练地掌握他们的各种用法,从而得到理性的认识之后,在数学学习中才能灵活地对它们进行各种等价叙述,并在一个抽象的符号系统中正确应用,从而达到对数学符号语言学习的最高水平。教学过程则是教师具体对某个数学符号进行讲解、分析、举例、考查的过程,教师在教学中要善于驾驭数学语言。

1.善于推敲叙述语言的关键词句。

叙述语言是介绍数学概念的最基本的表达形式,其中每一个关键的字和词都有确切的意义,须仔细推敲,明确关键词句之间的依存和制约关系。例如平行线的概念“在同一平面内不相交的两条直线叫做平行线”中的关键词句有:“在同一平面内”,“不相交”,“两条直线”。教学时要着重说明平行线是反映直线之间的相互位置关系的,不能孤立地说某一条直线是平行线;要强调“在同一平面内”这个前提,可让学生观察不在同一平面内的两条直线也不相交;通过延长直线使学生理解“不相交”的正确含义。这样通过对关键词句的推敲、变更、删简,使学生认识到“在同一平面内”、“不相交的两条直线”这些关键词句不可欠缺,从而加深对平行线的理解。

2.深入探究符号语言的数学意义。

符号语言是叙述语言的符号化,在引进一个新的数学符号时,首先要向学生介绍各种有代表性的具体模型,形成一定的感性认识;然后再根据定义,离开具体的模型对符号的实质进行理性的分析,使学生在抽象的水平上真正掌握概念(内涵和外延);最后又重新回到具体的模型,这里具体的模型在数学符号的教学中具有双重意义:一是作为一般化的起点,为引进抽象符号作准备,二是作为特殊化的途径,便于符号的应用。

数学符号语言,由于其高度的集约性、抽象性、内涵的丰富性,往往难以读懂。这就要求学生对符号语言具有相当的理解能力,善于将简约的符号语言译成一般的数学语言,从而有利于问题的转化与处理。

3.合理破译图形语言的数形关系。

第8篇

一堂音乐课能否吸引学生,使学生保持强烈的学习兴趣,教师语言艺术导入阶段是关健。

1、谜语导入。学生喜欢猜谜活动,教师可以根据学生的年龄特点以及歌曲内容或者题目设计有趣的谜语,活跃课堂气氛,激发学生的参与热情。需要注意的是谜面的难易程度,太简单,学生会感到很幼稚;如果太难,当学生猜了半天都没有结果时,学生会泄气并对此失去兴趣。

2、故事导入。讲故事是吸引儿童的最好方法之一。如:笔者在教唱一年级歌曲《小红帽》时,先给学生讲了童话故事《小红帽》,孩子对这个故事非常感兴趣,因而也对这首歌曲的学习产生了浓厚的兴趣,达到了事半功倍的效果。

3、情景导入。幻灯机、VCD、DVD等现代化教学手段可以直观、形象的创设情境,是有效展示教学内容、扩大课堂教学效果的重要工具。例如:笔者在教授集体舞《小牧民》时,让学生首先观看电视中的蒙古族人民在草原上骏马奔驰的威武、膘悍的形象和日常生活中的情景(可以提前从电视中录制),并播放《骏马奔驰保边僵》与《草原之夜》的音乐和画面,让学生仔细观察蒙古族牧民“双手勒马”、“单手勒马挥鞭”、“挤奶”等动作,并加以体会,模仿音像制品中的蒙古族儿童舞蹈。这种方法能烘托课堂气氛,使学生有身临其境之感,其效果必然比枯燥乏味的注入式教学要好得多。

“教学的艺术不在于传授的本领,而在于关于激励、唤醒、鼓舞”。无论是哪一种导入,教师都要在自己的教学语言上下功夫,才能真正激发学生的学习兴趣。例如为了解决学生歌曲气息的控制,在实际教学过程中,笔者用时尚的,略带魔幻的声音,对学生发出指令:“看,这是魔术师的手”;“现在你们的声音都在我的手上”;“它可以让声音变大,也可以让声音变小”;“接下来,是见证奇迹的时刻”。恰如其分地应用了这句流行语及“魔术师的手”,整个教学环节的导入用时不到2分钟,在魔术手的指挥下,慢速、弱音、渐强、渐弱……表现歌曲轻柔的、甜蜜遐想的意境。学生稚嫩天使般的声音以及在教师魔术手之下认真专注的表情,音乐的美加上魔术的梦幻渲染,让学生始终处在音乐审美的享受过程之中。从现场学生的反馈看,他们表现出了极大的兴趣。可见,在关键的“导入”阶段,教师充分运用生动活泼的教学语言调动学生的学习积极性,情绪铺垫好以后,在后面的教学过程中,教师就能紧紧抓住学生的心,做到游刃有余。

二、以准确优美的语言艺术,引领学生的学习热情

教学活动的主要目的是传授科学文化知识,因此,教学语言必须科学准确、生动形象。教师必须准确地掌握知识,并通过清晰的语言,准确地向学生传授音乐知识;同时,注意语言的生动性和形象性,引导学生展开想象的翅膀,轻松愉快的接受音乐知识,享受愉悦的音乐课堂气氛。

1、教学语言的准确性。所谓准确,就是用最确切、恰当的词语和句子表述概念和判断,使之准确无误地反映客观事物本身的意义(即反映所讲授的内容)。教学语言中最忌讳的是概念不明,这容易引起条理混乱,学生听后不知所云;或曲解含义,误人子弟。教学语言中的这些毛病很可能在讲课中造成逻辑混乱,使讲课内容失去科学性,影响知识信息的有效传递。教学语言是知识信息的载体,它离不开知识性这一原则。只有饱含知识的教学语言,才能使学生获取知识。因此它要求教师自身对知识的掌握要准确,表达更要准确,如果用词不当,逻辑混乱,语法不规范,就会造成词不达意、语无伦次,从而影响知识信息的有效传递。特别是一些容易混淆的概念,如“节拍”与“节奏”,“山歌”与“小调”,生活中的“快节奏”与音乐中的“节奏紧凑”等,教师一定要咬文嚼字,不能相差一个字。言之无物、似是而非的语言是不受学生欢迎的。

2、教学语言的生动性。教育家苏霍姆林斯基指出:“教师的语言在极大程度上决定着学生脑力劳动的效率。”他曾记叙在乌克兰一所学校里发生的一件趣事:有位校长去听一位有经验的教师上课,在课堂上,他的思想完全被教师的讲解迷住了,以至于教师向学生问道:“谁能回答这个问题”时,这位校长举起手说:“我!”可见,课堂教学语言是吸引学生注意力的有利工具。因此教师生动、形象的语言,能牵动学生的注意力,使学生的眼睛随着教师转动,大脑随着教师的问题去思考。在笔者的教学实践中,对此也深有体会。在一年级节奏教学中,三拍子教学内容对很多教师来说都是很难把握的。教学中常用的“”节奏图谱,可以准确划出歌曲的节奏,可是由于学生年龄小很容易因为没有变化而走神。于是,笔者再次运用这样的语言:“声音看不见,摸不着,今天魔术师要通过魔法的手把它画出来,请看!”“大家千万要看清楚了,不要慌,接下来是见证奇迹的时刻”。通过魔术师这一角色的扮演,改良传统的节奏图谱,选用与歌曲相协调的“”图谱,并在课件中应用KTV中歌词跟唱波浪线跟随的动画表现形式,学生有了发自内心的欢呼,也让所有的学生和观摩的教师都跟随她的“魔术棒”沉浸在美妙的音乐之中。

三、以赞美尊重的评价,增强学生的学习信心

有一位心理学家说:“人类本质中最殷切的需要是:渴望被赏识。”赏识是激发学生内在动力的最好方法。赏识学生、尊重学生、相信学生、鼓励学生,可以帮助学生扬长避短,克服自卑、懦弱心理,树立自信心。在教学过程中,适当的运用赞美尊重的评价,可以收到意想不到的效果。

赞美的语言可以鼓励学生参与学习的热情。卡耐基曾说:“使一个人发挥最大能力的方法是赞美和鼓励。”的确,情绪和情感是一种内动力,它直接影响着学生的学习情绪和参与热情,教师在课堂评价中应该运用恰当的措词、热情的语言给予学生鼓励。教师应放下高高在上的“架子”,对学生的语言要有情感投入,要爱护、尊重学生的个性发展。可用“请”、“让我们一起来”、“你能行”、“你唱得跟小鸟一样动听”等亲切的语言,鼓励学生参加音乐活动,拉近师生之间的情感距离,创设宽松和谐的教学氛围。在音乐教学中,教师应用真诚、和蔼的语言与学生交流,会使学生对教师产生一种友好、认同的亲切情感,从而调动学生的学习情绪,激发学生的求知欲望。这样,既能营造宽松而又自信的氛围,又能调动学生参与学习的积极性,同时激发他们进一步探索新知识的欲望。

新课程倡导“立足过程、促进发展”的评价理念,强调建立多元主题、共同参与的评价制度,重视评价的激励与改进功能。教师的课堂评价除了肯定学生的表现之外,更多的应该是要在肯定的基础上提出改进的方向、方法。正如美国著名教育家斯塔弗所言:“评价的目标不是在于证明,而是在于改进。”也就是说,教师的评价是使学生感受到自己被肯定的同时,又明白自己哪方面还存在不足,怎样改进会更好。如:“某某表现的真不错,如果再自信点就更好了!”“某某的歌声真让老师感动,如果加上表情会更加感人!”这样的评价既能调动学生的学习热情,又能帮助点燃学生的创新火花。

恰当的赞美和评价,让课堂教学变得更加轻松、有吸引力。学生在得到教师的赏识后而倍受鼓舞,他们会越来越喜欢上学,越来越自信。教师用自身的全部热情和机智去正确评价每一个学生,调动学生的热情,会感觉到班上的小助教越来越多,教师的教学轻松、得心应手,课堂气氛更加融洽。

第9篇

在艺术设计教育的发展史中,横向比较其他学科门类,实践是艺术设计学科教学发展的根本途径,学生从设计概念的提出,到自身设计方法的形成全部都来自课程的梳理。“包豪斯”的力量持续影响着艺术教育,它对现代艺术设计教学具有启发性的就是教学、研究、实践三位一体的现代设计教育模式,“科艺”的融合在国外艺术院校教学中的充分应用,科技的发展推动了整个艺术教学长足的发展,在教学中实验室已是不可或缺的部分,学生充分利用实验资源完成设计创作。前几年前往德国国立斯图加特造型艺术设计学院,艺术设计类学生在入学时,会在实验室制订三周的学习计划,通过实验室进行实验技术的训练,会有基础实验课程。通过课程设置的教学内容,逐渐对技术有一定的认识,也是对设计艺术学科的初步认知。学校要求学生能够深入生产的第一线,进一步掌握技术技能。国外院校通过多年的积累,建立了完整的实验教学体系。他们的规模及教学方法与我们有较大差异,是在多年的积累基础上建立的,我们可以从中剖析、借鉴,取长补短,不可盲目照搬。在目前的艺术设计学科设置公共基础实验课程具有必要性,部分高校已进行探索,共性课程对于整个本科阶段实验教学而言有着非常重要的地位,不可或缺。通过实验课程的训练让学生的实验技术能够达到一个比较高的程度。实验的目的在于把设计“纸上谈兵”的状态转向“劳作上手”的必要性上,在课程中真正解决设计流于形式的弊端,迈向实用、舒适、现代的设计教学理念。从手艺传承角度审视实验技术传承,不仅可以提升学生设计感悟能力和现代的设计视野,而且还为设计教育的创新发展提出了一条全新的途径。在一年级开设公共基础实验课程,构建学生自身的实验研究能力体系,充分利用现有公共共享实验平台,在低段就能够让学生认知实验原理、熟悉实验方法、运用实验技术,这也是现阶段艺术设计实验教学的本质。从当前现有的资料检索发现,公共基础实验课程的开发较少,我们的基础实验课程实践也可作为研究发展的基础,促进教学质量的提高是开设实验课程的意义,关键是教学主体——学生,从被动学习到设计思考的主动形成,全方位地去认知艺术设计学科所要解决的问题,设计敏感度是一名优秀设计师的基本素养。实行两段式教学是我们专业教学改革的成果,基础实验教学是专业基础教学的重要组成环节,在课程设计上要为公共基础实验教学—专业基础实验教学—专业实验教学,递进的教学环节做好坚实的基础。

二公共基础实验教学体系的构建

公共基础实验课程是本科实验教学的基础课程,目前国内艺术院校普遍实行“两段式”专业教学的前提下,基础教学具有共性。在一年级基础教学的同时开设公共基础实验课程,目的在于设计思维与视野的培养,培养设计思考、动手的能力,在低年级具备一定的技能,为后续的专业实验能力的拓展打好基础,符合现代设计教育培养的目标。通过实验课程解决实验技术认知的过程可分为;①对材料的认知:各种材料的基本特性、类别,材料与设计创作的关系;②对实验技术的认知:传统工艺、现代制造技术、先进数字化技术的应用。材料是创作的载体,实验技术是创意表达的途径。

1.公共基础实验课程设计

通过材料的认知来设计实验课程:木材认知、金属材料、复合材料。材料的认知是实验教学过程的根本,材料是造物的基础,通过每种材料不同的特性、肌理,设计合理的课程方法。按材料的划分,就可根据公共课程的特性设计课程体系。木材与金属的不同物理特性,可以从不同的角度入手,如木材肌理的认知,根据不同木材特有的肌理组成,完成谱系研究。在木材连接单元,材料的组合连接是材料特性研究的方法,通过基础的榫卯结构学习,利用木材可塑性,完成单个及整体的连接方式,全面认知木材的特性,为进一步研究木材的特性打好基础。

2.公共基础实验教学方法

基于实验技术的教学方法是区别于设计艺术理论教学模式的,实验技术的分类运用到课程教学中,课程教学中传统手艺的认知,传统手工区别于现代加工方式,注重加工过程中的手艺传承。机械加工应用“车、钳、刨、铣”的方式及随着科技的发展现代数字化科技的应用,在教学技术上特别体现在基于切割的精雕技术、激光技术及3D打印技术的推动下,学生在熟练掌握实验技术的同时为后段的专业课程学习打下良好的基础。在近几年的课程中,推动3D打印在三维基础实验课程中的应用,学生的认知与创作手段都随着新技术的介入发生本质改变。公共基础实验课程逐渐向科技与艺术结合的新方式上来。

3.公共基础实验课程评价

(1)课程前期评价:课程前期准备评价,包含备课笔记、教学大纲的解读、备课完整性、实验项目设计的合理性和创新性。(2)课程中期评价:教学执行力的评价,包含教学指导、教学示范、教学互动——师生之间互动。(3)课程后期评价:成果评价,包含教师总结、作业评分、集体评分、学生互评,或以课程展览形式呈现。总而言之,设计教育的专业界限只有在公共共享平台上才能被融通,我们目前在硬件条件、教学体系的构建上都较完善。并将全院可跨学科、跨专业的实验资源统一整合至大平台,公共共享实验平台每学年承担基础实验课程及专业实验课程将近百来门,教学人时数每年递增,目前将近41万人时数/学年。完成教学任务的同时,平台面向各专业师生开放,通过高效有序现代的管理系统,已实现自主化运行模式,教学秩序井然,实验室安全运行。以学生为本,积极探索创新实验教学手段,鼓励学生积极参与实验活动,改进教学方法和手段。引入校企合作模式,探索生产模式与实验技术的无缝对接。随着教学中不断完善新的教学方法,对内涵建设从不松懈,今后结合虚拟仿真的项目实践,更好地开展公共共享基础实验课程。

参考文献

[1]夏燕靖.对我国高校艺术设计本科专业课程结构的探讨[D].南京艺术学院,2007

相关期刊