时间:2023-03-23 15:09:16
导语:在铁路论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
一是将火车头精神融入校徽。学院校徽以“道”为主创元素,化形为书和飞驰的机车,犹如一列迎着朝阳飞驰的机车,火车头精神迅猛前进和勇往直前的奋斗精神得到充分体现,彰显湖南铁道人像火车头一样风驰电掣,勇往直前。二是将火车头精神融入到校园环境建设的各个角落。校园内列车飞驰的标志、各种型号的火车头模型、道路的命名、文化长廊的设计、教室里的标语等体现着铁路的特征,展示着火车头的形象,诠释着火车头的精神。当人们一进入校园就能感受到浓厚的铁路文化气息。三是将火车头精神融入校系校园文化活动和主题班会。校系两层面的每年大型主题活动和主题班会融入“火车头”、“铁路”、“高铁”、“动车组”等要素,学习传播铁路特有文化,大力弘扬火车头精神。
2依托教育教学主渠道,大力实践火车头精神
2.1弘扬永争第一、跑在前头的“领头羊”精神,实施师生“德技双馨”工程,培育一流师生
学院始终把做高职教育的“领头羊”作为自己的目标,通过大力实施师生“德技双馨”工程,德、技并举,努力培养一流的教师和一流的学生。一是建立较为完善的师德师风建设机制,培育良好的师德师风。育人为本、德育为先,而做好德育的首要环节又在于培育良好的师德师风。学院把师德建设作为专任教师队伍绩效考核的第一指标,在教师中大力弘扬火车头精神,树立师德高尚教师的典型示范作用和辐射功能,造就一大批“领头羊”。每两年开展一次师德师风先进个人评比,在教学科研评价体系中突出师德方面的评价指标,教书育人并重,实行师德“一票否决制”,激励广大教师敬业爱生,增强育人为本、德育为先的使命感和责任感。二是建立完善的教师能力提升机制,培育一流“名师”。主要表现在:第一,学院在教师中广泛开展了教学能力测试、专业技能测试、双师型教师认证、教学技能竞赛等活动。要求人人过关,个个有证;第二,依托轨道装备制造职教集团,与企业合作建立几十个教师流动工作站和企业大师工作站,所有教师三年一轮到企业现场培训,教师和企业工程技术人员合作进行项目开发,不断提高实践能力;第三,选拔一批骨干教师进行重点培养,将优秀的教师培养成具有国际视野的领军人才。三是着力实施大学生思想道德素质提升工程,培养道德优良的大学生。依托涉及学生思想教育、宿舍管理、心理健康、校园文化、特质培养、党团组织建设等大学生思想政治教育的各个领域的上百个大学生思想道德素质提升工程建设项目,学院为学生构建了较为完善的道德教育与实践体系,搭建起思想道德素质提升的良好平台,推动了学生思想道德素质的显著提升。四是大力开展铁路段、站的顶岗实习,建立学生技能提升机制,培育学生一流技能。学院将课内与课外,校内与校外紧密结合,充分运用各项资源推动学生技能水平提升。首先改革教学方式,强化体验式教学,推进课程过程考核,并定期开展技能检测与竞赛;其次利用寒假与广铁集团公司、北京铁路局、南昌铁路局等数十家路局开展春运社会实践,让数千名学生深入路段、站现场学习铁路特色文化和专业技能,从而达到校园文化与铁路文化无缝融合。第三通过组建兴趣小组、专业技能协会、社会实践等方式实现理论与实践的紧密融合,从而高效率提升学生技能水平。
2.2弘扬追求卓越、不断超越的“自我挑战”精神,实施全面质量管理,推动教育教学质量螺旋式提高
教育教学质量是学院的生命线,追求更高的教育教学质量一直是学院的工作目标。学院导入ISO9001质量管理体系,运用PDCA循环,将学院教育教学质量目标管理与过程控制相结合,推动学院教育教学质量的不断“自我超越”。ISO9001质量管理体系由学院质量手册、部门工作手册、流程控制程序、记录文件、作业文件组成,学院通过强化从市场调研→专业设计→资源配置→培养实施→就业创业的全过程、全方位控制,输入师资、教材、教学实训设备、办学经费、教育教学管理等有形与无形资源,经过教师的教和学生的学,转化为学生职业道德、职业技能和就业创业能力等综合素质提高的输出。
2.3弘扬融洽和谐、同心协力的“团队协作“精神,大力开展“三精”校园文化活动,提高学生的团队协作能力
(一)、国外铁路重载运输发展概况
世界铁路重载运输是从20世纪50年代开始出现并发展起来的,以开行长大列车为主要特征的重载运输开始出现;20世纪60年代中后期重载运输开始取得实质性进展,美国、加拿大及澳大利亚等国铁路相继在运输大宗散装货物的主要方向上开创了固定车底单元列车循环运输方式;20世纪80年代以后,由于新材料、新工艺、电力电子、计算机控制和信息技术等现代高新技术在铁路上的广泛应用,铁路重载运输技术及装备水平又有了很大提高。
列车重量的提高是铁路重载运输技术发展总体水平的体现。重载运输发展40多年来,一些国家列车牵引试验牵引重量的记录不断被刷新突破:
1、1967年10月,美国诺克福西方铁路公司(N&W)在韦尔什-朴次茅斯间开行重载列车(编组500辆、6台内燃机车、全长6500m、总重44066t)。
2、1989年8月,南非铁路在锡申-萨尔达尼亚间开行重载列车(编组660辆、16台内燃机车、总长7200m、总重71600t)。
3、1996年5月28日,澳大利亚在纽曼山-海德兰港间开行重载列车(编组540辆、10台Dash-8内燃机车)。
4、2001年6月21日,澳大利亚BHP公司开行重载列车(编组682辆、8台机车、总重99734t、总长7300m),全列只有1名司机,另外7台机车由GE公司生产的哈里斯机车遥控系统控制。
(二)、我国铁路重载运输发展概况
同世界各国相比,我国铁路重载运输起步较晚,1984年经国务院批准,决定在北京局管辖的丰沙大和京秦电气化铁路试验开行重载列车,从此开始了我国的铁路重载运输。我国铁路发展重载运输走两个途径:一是对既有干线铁路进行配套改造,在既有主要繁忙干线上开行5000t级整列式重载列车;二是新建能力大、标准高的重载运输专线,如大同-秦皇岛双线电气化重载运煤专线。
我国铁路重载运输经历了三个阶段:
第一阶段(1984~1990年)为改造旧线、开行组合式重载列车模式阶段。1984年11月在大同-沙城-丰台-秦皇岛间首次开行了由两列普通货物列车合并的重载列车,随后又在沈山线、石德线和平顶山-江岸西间开行了7000~7600t的组合列车。
第二阶段(1990~1992年)为新建大秦铁路,开行单元式重载列车模式阶段。1992年我国建成了全长653.2km的大同-秦皇岛铁路,它是我国第一条双线电气化重载单元列车的运煤专线,单元列车的重量达到了10000t。它是中国铁路重载运输发展的重要标志。
第三阶段(1992年以后)为逐步改造既有繁忙干线,开行整列式重载列车模式阶段。为在全国既有路网推行重载列车技术,铁道部有计划、分步骤地在一些主要干线(包括京广线、京沪线、京哈线等)繁忙区段组织开行了5000t级的整列式重载列车,这种扩能效果显著的重载运输方式,已成为中国发展重载运输的主要方式。
二(一)、铁路重载运输的含义铁路重载运输是指行驶列车总重大、行驶轴重大的货车或行车密度和运量特大的铁路运输。
(二)、铁路重载运输的标准
1994年6月国际重载运输年会上,对铁路重载运输作了最新定义。凡具备以下三个条件之二者,可视为铁路重载运输线路:
1、经常、定期或准备开行总重最少为5000t的单元或组合列车;
2、在长度至少为150km的铁路区段上,年计费货运量最少达到2000万t及其以上;
3、经常、定期或准备开行轴重25t及以上的列车。
(三)、重载列车的组织形式
目前,国内外铁路开行的重载列车组织形式主要有单元式、整列式和组合式重载列车三种。
1、单元式重载列车。单元式重载列车是以固定的机车车辆(大功率机车+一定编成辆数的同一类型的专用货车)组合成为一个运输单元,并以此作为运营计费单位,在装卸车站间循环直达运行的货物列车。这种重载运输方式运用范围广,经济效益显著。美国、加拿大、澳大利亚等国均采用此方式,我国大秦重载运煤专线上也有重载单元列车的开行。
2、整列式重载列车。整列式重载列车是采用普通列车的组织方法,由挂于列车头部的大功率单机或多机牵引,由不同型式和载重的货车车辆混合编组,达到规定载重量标准的列车。在我国繁忙干线上开行的重载列车主要为这种模式,其它国家应用较少。
3、组合式重载列车。组合式重载列车是由两列及以上同方向运行的普通货物列车首尾相接、合并组成的列车。这种重载运输方式始于1964年前苏联。我国大秦线进行的20000t重载列车采用该形式。世界范围内应用不太广泛。
三、重载运输对铁路技术装备的要求
铁路技术装备是发展重载运输的物质技术基础。世界各国铁路都在发展重载运输过程中,积极研究开发重载运输技术装备。
(一)、重载运输对铁路工电设备的要求
1、重载运输对铁路工务设备的要求。为保证重载列车的安全运行,减少维修成本,必须强化重载线路和桥梁的承载能力,使其具有高度的耐久性、可靠性和平顺性。
2、重载运输对铁路供电设备的要求。根据重载运输的特点,重载运输要求发展完善电气化铁路。电气化铁路供电系统由“外网”(国家电力供电系统)和“内网”(牵引供电系统)两网组成。在外网供电能力充足的情况下,铁路部门要加强内网的改造,大幅度提高铁路供电设备供电能力。根据重载列车牵引重量标准、列车追踪间隔时分等对牵引供电的需求来设计变电所容量和供电臂长度,保持供电区间长度和行车区间大小的适配关系,便于运营和检修作业的配合。
(二)、重载运输对铁路机务设备的要求
开行重载列车必须采用大功率的电力或内燃机车,牵引机车应采用电空制动方式、无线遥控同步运转的“locotrol”系统等技术方法及技术设备;同时还应具有能牵引或顶送重载列车的调车机车。
(三)、重载运输对铁路车辆设备的要求
重载货车通常采用载重量大、强度高、自重系数小的大型四轴货车。货车车体大量采用耐腐蚀的钢结构和铝合金材料,高强度、低自重、浴盆式车体,低动力作用的转向架或径向转向架,装备新型的空气制动装置、高强度车钩和大容量高性能缓冲器。
1、提高车辆轴重。国际重载协会于1994年把重载货车的轴重标准从21t提高到了25t,有的国家已将货车轴重提高到25t,有的高达35t。更大轴重的货车经济性和适用性也在进一步研究之中。
2、降低车辆自重。这是提高货车净载重的有效措施,主要是通过采用耐候钢、低合金钢及铝合金等轻型高强度的车体结构材料,以及采取改进车体承载型式和优化结构设计的手段来实现。
3、降低货车动力作用。可通过车辆结构合理优化来实现。如采用铰接式转向架、自导向径向转向架、无间隙牵引杆新型结构设计、车体外形采用流线形设计、缩短车长等。
4、提高车钩强度和缓冲器容量。加强货车车钩强度,从车钩材质的选取、结构的优化等方面提高车钩强度,从行车安全角度考虑,改善车钩纵向力,提高缓冲器的容量。
(四)、重载运输对列车制动系统的要求
铁路重载货物列车要求其制动系统更高,世界各国都在进行技术研发和创新。随着微机控制技术的发展和应用,美国、德国、日本等国都研制了用于货物列车的电空制动装置。我国重载铁路目前已引进ECP重载列车电控空气制动系统并进行试验,动车组(客车)就采用电空制动装置。
(五)、重载运输对铁路站场改造的要求
为保证重载列车正常的接发、通过、办理相关技术作业,重载运输相关车站的站场配置和线路有效长度应能满足列车牵引长度的要求,能保证重载列车的停靠和作业。如整列式重载列车的到、发、解、编和途中越行及技检作业;组合式重载列车的合并、分解和途中越行及技检作业;单元式重载列车的到发和装卸作业等。
跨入二十一世纪,中国铁路迎来了她的“黄金发展期”,铁路重载运输也将取得突破的发展,为更好更快地建设和谐中国做出新的贡献!
隧道衬砌结构及辅助施工措施
本工程具有周边环境复杂、工程及水文地质条件差、结构形式及受力复杂、施工工序多、地面沉降控制严格、工期紧等特点。由于铁路无法设置便梁等临时保护措施,在临时支撑拆除时为确保隧道有效控制沉降及铁路的运营安全,隧道采用3层衬砌结构[2](1次初支、2次模筑衬砌),全环设置299超长管幕预加固[5],按双侧壁导坑六部[6]微台阶开挖方式进行施工。2.1衬砌结构1)初期支护。①喷混凝土:C25耐腐蚀混凝土,厚度35cm;②钢筋网:8钢筋,网格间距15cm×15cm,全环双层;③钢架:I25工字钢架,全环设置,间距60cm。2)一次模筑衬砌。采用C40耐腐蚀防水钢架混凝土,厚40cm,钢架采用25四肢格栅钢架,间距50cm,一次模筑是在中壁临时支护不拆除的情况下施工。3)二次模筑衬砌。采用C40耐腐蚀防水钢筋混凝土,厚50~60cm。在一次模筑衬砌的保护下,分段拆除临时支护后施工。4)中壁临时支护。临时支护采用C25喷混凝土(中壁厚30cm、横撑25cm)、工字钢架(中壁I25、横撑I20a)、8钢筋网联合支护,钢架间距同主钢架,并对掌子面喷混凝土进行封闭。2.2辅助施工措施1)299超长管幕。全环设置299钢管管幕[5],隧道管幕左线长度110m,右线长度76m。钢管环向间距35cm,与隧道外轮廓净距25cm,钢管采用299×12mm的无缝钢管水平铺设在土体中,299钢管之间打入60钢花管,通过60钢花管对管幕外的土体进行注浆加固并使之与299钢管成为一个整体。钢管之间的连接采用273mm的内接管箍,管箍长400mm,直接对焊连接。2)洞内深孔注浆。管幕施工完成后,采用超细水泥-水玻璃浆液对掌子面进行全断面超前注浆加固地层,防止隧道开挖过程中出现坍塌引发地表下沉。3)地面注浆。为有效保护铁路,采用超细水泥浆对隧道拱部管幕以上1.5m、边墙管幕以外2m范围进行注浆,对管幕以外的松散土体进行加固,防止土体从管幕之间的薄弱环节掉块。
工法选择及施工组织
隧道施工工法根据隧道的结构形式、工程及水文地质和周边环境条件,经综合比选后,隧道采用双侧壁导坑六步微台阶法[6]施工工法,详见图3。1)施工299管幕,全断面注浆,采用双侧壁导坑法分六步分部开挖并支护[5]。2)凿除一次模筑衬砌范围的中壁临时支护喷射混凝土,保留临时支护钢架,施作一次模筑钢架衬砌,每循环长度为6m。3)待一次模筑衬砌达到设计强度后,在其保护下,分段拆除中壁竖向临时支护,铺设防水板,施作二次模筑衬砌底板。4)采用衬砌台车施作拱墙部位的二次模筑衬砌。管幕与注浆施工顺序的选择对于超长管幕与注浆的施工顺序有先施工管幕后注浆和先注浆后管幕2种。1)如采用先施工管幕后注浆,管幕扩孔施工是在原状松软地层中进行,较容易推进,但注浆需要分2种方式,在管幕以内部分需要洞内水平注浆,管幕以外需要在地面垂直注浆,这样就存在2种注浆方式的工序转换,且洞内注浆效果没地面效果好。2)如采用先注浆后管幕,由于埋深较浅,均采用地面注浆方式,施工容易,注浆效果较好,但对管幕的施工影响较大,由于注浆后会提高地层的强度,对管幕的扩孔造成较大的困难,对工期和管幕的施工质量均有较大影响。经综合比较后,选择先施工管幕后注浆的施工顺序。(a)(b)图3隧道双侧壁导坑微台阶法步骤图Fig.3Sequenceoftunnelconstructionbydoublesidedriftminibenchmethod3.3管幕施工工艺为控制地表及铁路沉降,保证铁路运营的安全、畅通,在综合比较108双层大管棚、299钢管管幕、600管幕后,根据施工现场的工程及水文地质条件,并结合目前各施工工艺情况,根据计算和工程类比,确定超前支护采用299钢管管幕。考虑到管幕最长为110m,采用前拉后夯[5]施工工艺进行施工,即首先利用水平导向钻机打设127的水平孔,然后通过前拉后夯工艺将299钢管拉到指定位置。具体施工方法为:采用127钻杆每隔4孔打设一个导向孔,要求导向孔的导向精度控制在5cm以内,利用导向孔进行扩孔作业,扩孔作业要采用挤扩的方法,不能采用通常水循环方法,防止引起地层扰动,导致地面沉降;扩孔完成后采用前拉后夯法,将299钢管连同60注浆管同时拉入;在拉入时,可能会遇到回填及不均匀的硬地层引起卡钻现象,局部用夯锤夯法,在钢管后部施以夯力使钢管顺利通过,直至将钢管拉出对面掌子面。管幕导向孔利用有线和无线2种导向方法,严格控制导向精度。利用高精度有线导向仪及管内光学测量系统,其精度控制在3‰以内;利用无线导向仪器在地表进行测量定位,将偏差控制在5cm以内。为了避免相邻管幕施作后引起地层松动,确保地面无沉降,在管幕施工过程中须适时在管幕外侧进行回填注浆,补偿地层的松散变形,更加有效地控制地层的扰动变形。跟进回填注浆采用60mm钢花管注浆。根据本项目管幕的施工情况统计,一般正常情况下3d可以施工2根长管幕。当地层中遇到障碍物时就会较长,最长1根管幕花了5d才完成。地层条件对管幕的工期影响较大,在选用时应慎重考虑。
铁路保护措施
鹰厦铁路是进入厦门本岛的主要铁路通道,每天有13对客车与17对货车通过,交通十分繁忙。隧道下穿段既有铁路有3~4条股道交错设置,平面布置十分复杂;与拟建下穿隧道交角较小,影响范围长,专用线道岔位于隧道拱顶位置。控制标准根据《铁路线路修理规则》,线路轨道静态几何尺寸容许偏差管理控制标准值如表1所示。对铁路的保护措施1)采用强大的隧道支护结构和措施,控制隧道及地表变形。隧道采用3层结构,施工阶段荷载由初期支护与一次模筑衬砌承担,使用阶段荷载由一次模筑衬砌与二次模筑衬砌承担。一次模筑衬砌达到强度后,拆除临时施工支护,施作二次模筑衬砌。2)洞口管幕端头设置支撑于桩基的导向墙,从而管幕形成刚度较大的纵梁,控制隧道周边地层变形及地表沉降。3)与铁路工务部门密切配合,为避免沉降累计,影响铁路的正常行车,可分阶段起道填碴或垫钢板(如管幕施工完成、开挖过半、开挖完成等不同阶段),根据监测数据,分别对轨道做出调整。4)隧道施工中,铁路应限速,每趟列车经过前监测一次(由第三方进行自动化监测),轨道变形接近控制标准的70%时,应立即对铁路进行起道填碴或垫钢板,保证铁路的安全畅通。应遵守现行《铁路线路修理规则》、《铁路工务安全规则》等规范。5)左、右线隧道错开30m施工,并采用小于0.7m的短进尺开挖,避免地面沉降累计,降低单位时间的沉降量。6)应有工务部门的专人负责铁路的安全评估,当影响列车通行时,应停止隧道施工,对铁路进行整修和保护。紧急预案1)每趟列车经过前监测一次(由第三方进行自动化监测),轨道变形超过控制值时,应立即与铁路运营部门联系,征求其处理意见,原则上货车应以慢性方式通过,客车应停止通过。并立即组织人员进行抢修,尽快恢复铁路正常的运营。2)隧道施工前,应备齐铁路抢险整修的材料、工具,整修人员到位,保证铁路抢险及时,列车安全通过。3)接受工务部门专人负责铁路的安全评估,整修不到位,严禁列车通行。
工程实施效果及变形分析
管幕直径较大且密排布置,其施工对其周边土体扰动较大,地面及铁路的变形对其影响的敏感性较强。左、右线隧道在下穿铁路段管幕施工引起的地表沉降主要规律及特点如下:1)管幕施工造成的地表变形量较大,刚开始施工时正线甚至出现隆起现象。管幕施工完成后,造成的地表沉降累计一般有40~50mm,多的达70~80mm,最大一天的沉降量为3mm。局部沉降较大,是因为在施工中,当管幕拉进困难时,部分段落采用高压水冲切土体超挖引起的。由于现场采用了起道填碴措施,所以没有对铁路运营造成大的影响,起道填碴频率一般为1~2次/周。2)管幕施工引起的地表沉降有3个原因,分别为成孔时的应力释放、成孔过程中的水土流失、成孔施工偏差及扰动引起的沉降。3)管幕施工引起地表沉降大小除与地层条件、埋深和施工工艺等因素有关外,还与管幕之间的施工间距和施工持续时间有关系。施工间距越大,沉降越小;施工持续时间越长,沉降越大,对周围环境造成的影响也越大,因此应尽量保持管幕施工的连续性。4)一般管幕施工期间都会引起地表沉降,而本工程局部出现隆起现象,是因为在施工过程中,正线下方遇到较多的锤坡石,给拖管或夯管造成一定的难度,强行夯或拖管会导致石块挤压土体,而管幕的埋深较浅,强夯会造成地表或轨面隆起现象。隧道开挖及初期支护施工隧道开挖采用双侧壁六步微台阶法施工,在管幕的保护下,考虑到到初支刚度较大,每循环进尺控制为1m(2榀钢架距离),在开挖后及时进行初期支护和临时支护。上台阶均采用人工开挖,下台阶采用小型挖机配合人工修边开挖。上下台阶的长度均控制在3~5m,待③部开挖支护10m后,隧道中导洞⑤部即展开施工。根据以上施工工序,要完成以上①~⑥步一个循环,最短的长度是23m。在施工开挖及支护施工过程中,由于有管幕对隧道周边的保护和注浆加固对地层的改良,施工进展较顺利,没有发生影响施工及铁路运营安全的事故,在自动化监测和铁路养护部门的配合下,保证了铁路的运营安全。隧道一次模筑衬砌施工隧道一次模筑在初支喷射混凝土达到强度后,即可进行一次格栅钢架模筑混凝土施工。只能凿除一次模筑钢架格栅混凝土范围的临时支护喷射混凝土,保留临时支护钢架,每次凿除长度为6m。一次模筑的格栅钢架和初期支护的型钢支撑间隔布置,格栅钢架的纵向间距与型钢钢架相同,两者的接头也错开位置至少1.0m。为保证隧道拱顶处混凝土的密实性和两者的较好结合,在拱顶采用自流平、免振捣混凝土。隧道二次模筑衬砌施工隧道二次模筑混凝土采用钢筋混凝土,在一筑混凝土强度基本达到设计强度要求后施工。由于初期支护和一次模筑衬砌可以承担全部的荷载,所以可以根据二次模筑台车的长度,逐段全部拆除中间2道临时支护钢架及喷混凝土。先施工仰拱防水层及仰拱混凝土,其超前于边拱混凝土衬砌约30m,然后采用模板台车进行拱墙衬砌的施工。施工监测情况为了确保铁路的正常运营和施工安全,第三方监测对铁路钢轨沉降、地表沉降、隧道拱顶沉降和隧道收敛情况共4个主要项目进行了监测。共布设地表沉降测点152个,拱顶沉降测点108个,围岩收敛测点52个,钢轨沉降测点73个。1)钢轨沉降和地表沉降监测如表2所示,通过表2可以看出,由于下穿铁路隧道地质条件差,土层松软,在管幕施工和隧道开挖期间,两者均发生了较大的沉降,由于现场采用了起道填碴措施,所以没有对铁路运营造成大的影响,起道填碴频率一般为1~2次/周。根据监测数据和各阶段的综合分析,各阶段的累计沉降比例如下:管幕施工阶段约占25%;在上、下台阶开挖阶段差别不大,两者累计约占55%;二次模筑衬砌及拆撑阶段约占20%。从各阶段的沉降比例对比分析,由于采用了二次模筑衬砌,较以前常规采用一次模筑衬砌相比,在拆撑阶段引起的地表沉降比例大大降低,从而体现出采用二次模筑衬砌的重要性。2)隧道拱顶沉降和围岩收敛监测。鉴于下穿铁路隧道地质条件极差,土层疏松,并且隧道上面还有火车动荷载的反复作用,隧道开挖引起的沉降变形较大,拱顶测点和水平收敛测点间距均为5m,具体的监测结果如下:左线隧道①部拱顶最大累计沉降值50mm,③部拱顶最大累计沉降值118mm,⑤部拱顶最大累计沉降值63mm。右线隧道①部拱顶最大累计沉降值74mm,③部拱顶最大累计沉降值84mm,⑤部拱顶最大累计沉降值50mm。左线隧道①部最大累计收敛值-6.54mm,③部最大累计收敛值-7.05mm。右线隧道①部水平收敛最大累计收敛值-7.37mm,③部最大累计收敛值-7.96mm。根据监测数据和各阶段的综合分析,隧道拱顶下沉主要是因为下台阶施工引起的。水平收敛较小,与隧道的支护刚度及强度较大和上下台阶之间的临时仰拱发挥了较大的作用有关。
结构计算
计算条件隧道按荷载-结构模型进行计算。衬砌结构分2种工况进行计算:1)施工阶段,一次模筑混凝土与初期支护共同承受荷载;2)使用阶段,考虑初期支护失效,一次模筑衬砌与二次模筑衬砌共同承受荷载。荷载考虑围岩压力、结构自重和列车活载,覆土厚度3m,围岩压力根据《公路隧道设计规范》确定,结构自重及列车活载根据《铁路桥涵设计基本规范》确定。由于隧道顶覆土厚度h≥1m,不计列车竖向动力作用。施工阶段一次模筑衬砌结构计算在施工阶段,根据《公路隧道设计规范》并考虑初期支护厚度0.35m,一次模筑衬砌的厚度0.45m,按两者的厚度比例并适当考虑初期支护弱于一次模筑衬砌,确定一次模筑衬砌的荷载分摊比例为60%。经模拟计算,一次模筑衬砌主要控制点的内力值如表3所示。使用阶段二次模筑衬砌结构计算在使用阶段,考虑一次模筑衬砌的厚度0.45m,二次模筑衬砌的平均厚度0.55m,按两者的厚度比例并适当考虑一次模筑衬砌性能降低,确定二次模筑衬砌的荷载分摊比例为60%。经模拟计算二次模筑衬砌主要控制点的内力值如表4所示。
精心处理征地拆迁工作控制征地拆迁费用
铁路新线建设涉及面广,影响因素多,需要大量的征地拆迁工作,包括乡镇企业、果园、民宅、家田、三电线路、即有铁路等等,征地拆迁工作的难度远比普通建设项目要大,很容易因征地拆迁工作影响工期进度和工程造价。在前期,必须做好征地拆迁的准备工作,对工程范围内进行调查摸底,结合国家和地区相关政策制定《拆迁工作实施办法》和《拆迁补偿意见》,使征地拆迁工作和补偿费用有法可依。同时,要取得地方政府的大力支持和积极配合,将征地拆迁工作分解到各县区,落实征地拆迁宣传教育,做好征地拆迁补偿工作,确保征地拆迁工作进度,排除各类干扰因素。
加强施工配合减少辅助工程费用
铁路新线建设项目中,辅助工程费用占据了极大的比例,也是浪费最为严重的工程内容。在投资决策阶段、工程设计阶段在、施工建造阶段,都必须考虑施工配合的问题,以尽可能的减少辅助工程如土方运费、新增辅助工程费用等。如铁路新线建设需要大量土源以满足路基土方填筑的需要,在投资决策阶段就应当考虑土源供应问题,在设计阶段还要加强土源调查与土源选定工作,为土源做好充足的准备。如在施工组织设计时,可以充分考虑地区乡村城镇建设、农田水利建设等规划,与乡村城镇建设和农田水利建设协同配合取土,这样既能优化土源供给,还能为地区乡村城镇建设和农田水利建设出力,获取更好的经济效益和社会效益。再如铁路新线建设需要大量钢材、水泥、砂、石料等材料,可以充分与地方建材供应协同,就地取材既能降低建材储运管理费用,还能促进地方建材行业的发展。
加强合同管理确保投资控制力度
摘要:随着铁路列车向高速化与准高速化方向的迈进,为保证有效的人机控制和提高运输效率,要求建立一个功能完善的、技术构成先进的铁路通信网。主要介绍了在现实的铁路通信工程建设中,我们应该注意的问题。
一、铁路传输技术
1.1SDH传输技术
SDH是取代PDH的新数字传输网体制,主要针对光纤传输,是在SONET的标准基础上形成的。它把信号固定在帧结构中,复用后以一定的速率在光纤上传送。SDH是在电路层上对信号进行复用和上下。论文百事通当带着信号的光纤通ODF(光纤分配架)进入ADM时,信号必须通过O/E转换和设备上的支路卡才能下成2Mb/s的基本电信号,并经过通信电缆和DDF(数字配线架)接到用户接口或基站BTS(基站收发信机)。
1.2ATM网络传输技术
ATM是一种基于信元的交换和复用技术,即一种转换模式,在这一模式中信息被组织成信元。它采用固定长度的信元传输声音、数据和视频信号。每个信元有53个字节,开头的五个字节为信头,用以传输信元的地址和其他一些控制信息,后面的48个字节用以传输信息。利用标准长度的这种数据包,通过硬件实现数据转换,这比软件更快速、经济、便宜。同时,ATM工作速度有很大的伸缩性,在光缆上可以超过2.5Gbps。
在网络传输中,为了使多个用户共享高速线路,通常采用时分复用方式。时分复用方式又可分为同步传输模式和异步传输模式。在数字通信中通常采用同步传输模式,这种传输模式把时间划分为一个个相等的片段,成为时隙,一定量的时隙组成一个帧,一个信道在一个帧里占用一个时隙,一个用户占用一个或多个信道。而在异步传输模式中,各终端之间不存在共同的时间参考,各个时隙没有固定的占用者。在ATM中时隙有固定的长度而且比较短,一个时隙传输一个信元,每一个信元相当一个分组。各信道根据业务量的大小和排列规则来占用时隙,信息量大的信道占用的时隙多。
1.3MSTP传输技术
MSTP依托于SDH平台,可基于SDH多种线路速率实现,包括l55Mb/s、622Mb/S、2.5Gb/s和10Gb/s等。一方面,MSTP保留了SDH固有的交叉能力和传统的PDH业务接口与低速SDH业务接口,继续满足TDM业务的需求;另一方面,MSTP提供ATM处理、以太网透传、以太网二层交换、RPR处理、MPLS处理等功能来满足对数据业务的汇聚、梳理和整合的需求。
1.4RTKGPS网络传输技术
随着GPS无验潮测深技术应用的不断深入,传统电台数据链的传输模式已不能满足长距离RTK作业的需要。而网络RTK技术则是利用网络来取代UHF电台进行数据传输,它传输距离远,信号稳定,抗干扰性强,已成为数据链传输的新宠。
通用分组无线业务GPRS,是在GSM系统上发展出来的一种新的分组数据承载业务,GSM是一种使用拨号方式连接的电路交换数据传送方式。GPRS利用现有通信网的设备,通过在GSM网络上增加一些硬件和软件升级,形成一个新的网络逻辑实体。
1.5WDM传输技术
WDM(或DWDM)是在光纤上同时传输不同波长信号的技术。其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。WDM(或DWDM)系统在信号的上下上既可以使用ADM、DXC,也可以使用全光的OADM和0XC,WDM(或DWDM)是基于光层上的复用,它和SDH在电层上的复用有着很大的区别。同时,通过OADM进行光信号的直接上下,无需经过O/E转换,而拥有EDFA的WDM(或DWDM)可以进行较长距离的光传输而不需要光中继。
二、接入网技术
随着通信技术的快速发展,人们对铁路通信技术提出了更高的要求,铁路部门必须采用先进的、现代化的有线和无线通信的传输和接入方式,实现铁路通信网的升级,发挥铁路通信网在国民经济中的社会效益和经济效益。
接入网技术是铁路通信中一项关键技术,由于原有用户铜缆接入的普遍性和现在光纤技术的发展,接入网建设就必须考虑通信网络的现状与发展,这就决定了接入网技术的多样化。接入网从接入方式上可分为有线接入和无线接入。
2.1有线接入技术
(1)高速率数字用户环路技术。
通过2-3对双绞线双向对称传送基群数字速率信号,传送距离为3km-5km,上行速率与下行速率相等。通过回波抵消技术实现在一对双绞线上全双工传输,通过特定的编码和调制方式提高传输质量,用多线对并行传输,以降低每对双绞线上的传输速率,增加无中继传输距离。
(2)非对称数字用户环路技术。
它的上行速率和下行速率不相等,下行速率可高达(9-10)Mbit/s,上行速率只有数十或数百kbit/s,此技术适用于视频点播VOD系统;其高速下行信道可向家庭用户提供多路的数字图像信号及低速语音信号,而上行信道用于传送用户控制信号。ADSL的优势在于它几乎不需要对现有的对1双绞线作任何改动就可获得高传输速率。
(3)混合光纤同轴电缆接入技术。
它是基于有线电视系统CATV发展起来的。在有线电视中心与地区中心、地区中心与光节点之间采用光纤连接,光节点与用户设备之间采用同轴电缆连接。其主要是使用副载波调制,将CATV原有的单向传输系统改造成双向传输系统。HFC可以充分利用现有的CATV网络,进行少量投资,就可形成一个支持多种业务的宽带综合业务网。
(4)光纤用户环路技术。
以光纤为主要传输媒介,根据光纤向用户延伸的距离,可以分为FTTC(光纤到路边),FTTB(光纤到大楼),FTTH(光纤到家)等。FTTB是用户接入信息高速公路的最终理想目标,但根据现有通信发展的实际,FTTC、FTTB与铜缆相结合的用户接入,虽然是有过渡性质的折衷方案,但价格相对经济,并且在时机成熟时易扩展到FTTH,所以是现实并且可行的。
2.2无线接入技术
无线接入网是在接入网中部分或全部引人无线传输媒介,为用户提供固定终端业务和移动终端业务。无线接入可分为固定接入和移动接入两大类。其基本结构由控制器、基站和用户终端设备构成。应用技术主要包括微波1点多址技术、蜂窝技术和微蜂窝技术等。无线接人由于其灵活方便易于建设,目前已得到极大的重视。
集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。它集交换、控制、通信于一体,通过无线拨号的方式把一组信道自动最优地动态分配给系统内部用户,最大限度地利用系统资源和频率资源,降低系统内呼损,提高服务质量。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。
三、结语
铁路通信网是保证行车安全、提高运输效率的有力工具,我国铁路引入现代通信技术还不久,对铁路通信工程建设还需要一段时间对其了解、分析和试验,对其中所要注意的问题,特别是技术问题要认真对待,只有这样才能为铁路通信现代化作出贡献。
参考文献:
[1]梁培超.浅析铁路通信工程应用接入网技术[J].科技资讯,2008.
1铁路工程设计阶段投资控制的重要性
投资控制是项目建设的控制要素,贯穿于项目建设全程。据既有研究显示,不同建设阶段对项目投资的影响度为:项目建议书与可行性研究的项目决策阶段为75%以上;初步设计阶段为(35~75)%;施工图设计阶段为(5~35)%;施工阶段为(5~25)%。设计阶段是控制整个项目投资的前提,设计阶段对项目投资控制重要性主要体现在:1)通过设计概算掌握工程造价结构,观察建设项目各部分的“功能与成本”是否匹配,促进造价的合理性,提升资金的利用率。2)通过设计预算,掌握项目投资概况,严控各投资环节,提升投资控制效率。3)技术与经济相结合,既保证工程功能,又不忽视经济成本。采用最小投资实现预定目标,确保投资效益。
2案例论证铁路工程设计阶段的客观规律
2.1案例简介
兰州铁道设计院有限公司设计的大塔站至马场壕铁路建设项目,全线位于内蒙古西南部鄂尔多斯市境内,横穿该市东北部所辖达拉特旗。正线全长约为59km,全线桥隧比26%左右。主要技术标准:单线,国铁Ⅱ级,限制坡度6‰,最小曲线半径一般地段1200m。工程投资预估算总额13.8亿元。其中:静态投资12.6亿元;建设期贷款利息0.6亿元;机车车辆购置费0.6亿元;铺底流动资金0.03亿元;本项目由呼和浩特铁路局商鄂尔多斯市政府及有关企业共同投资建设,且一同组建合资铁路公司,担负项目建设与经营。
2.2工程设计的复杂性
2.2.1复杂的自然特征,决定了铁路设计的复杂性大塔站至马场壕铁路工程沿线地貌自西向东可划分为黄河冲积平原区、沙漠区、低山丘陵区三个地貌,隧道围岩级别较差,为Ⅴ、Ⅵ级,土质围岩极差,埋深较浅,且横穿包茂高速公路。在设计阶段,应按照相应的地质条件选取适宜的技术标准,提前做好各类防护工作,加强隧道地震断裂带的探测预报工作;进、出口段及洞身做好支护处理,防止塌方冒顶,并做好通风措施。
2.2.2复杂的铁路技术标准体系,决定设计的复杂性社会经济的不断发展,对铁路呈现多样性的需求,铁路建设形成“高速铁路客货混运”、“客运专线”与“货运铁路”等相对独立又彼此关联的三大技术标准体系。大塔至马场壕铁路,属于货运铁路,在路基工程设计上,严格依照货运铁路技术标准:1)本线部分路基穿越半固定及固定沙地,风沙路基为主要工程类型,风沙路基防护采取本体防护与平面防护相结合的处理方法;2)线路行经粉细砂、粉砂等地层,同时有软弱地基,在地基处理工程上采取挖除换填、铺设土工膜、强夯、设土工格栅和设置护道等工序,必要时采取砂石桩等复合地基处理方式。
2.2.3专业工程多,技术接口复杂铁路设计涵盖20多个专业工程,如土建、机电设备等,设计中需依据系统的设计理念,正确解决专业接口关系,实现最佳的系统设计目标。如重点关注对接口管理,梳理各项接口关系;拟定有效可行的措施,确保投资的准确性与完整性,规避投资的重、漏问题。
2.3铁路建设项目具多阶段计价的投资特征据现行的铁路建设程序及管理,决策阶段主要负责拟定投资的“预估算与估算”,设计阶段主要负责拟定“概算与预算”,交易阶段主要负责拟定“招标概算”,实施阶段主要负责拟定“变更设计概算、清理概算及竣工决算”。各阶段投资要求各异,发挥不同效用。比如,可研阶段估算若审批通过,则为项目投资控制的“法定限额”;竣工决算,则为工程的实际投资。因此基于整体控制角度,铁路投资应前后照应,彼此补充、完善,不断深化让投资渐近真值。
3铁路工程设计阶段投资控制措施
3.1构建设计储备制度
初步设计与施工图设计是设计的两大阶段,每阶段都含有设计“前期、中期与后期”三阶段。设计前期,担负实地勘察与技术储备的任务,为中后期的初步技术设计搜集第一手资料,是保障设计质量的首要环节。为了加强工程的前期设计工作,项目启动前,即委托铁道勘察设计院展开实地勘察,构建“设计储备体制”,储备了项目沿线的“地质、环境、线路走向”等资料,为中后期设计的论证及方案的选取给予充足时间,确保方案的合理及符合技术标准。
3.2落实勘察设计单位责任制,引进设计监理制度
相关研究表明,勘察设计对工程投资控制的影响达(35~75)%。建设公司与设计单位签署合同后,要求设计单位依专业配套,落实“技术经济”责任制与专业设计人员“岗位”责任制,拟定奖惩考核体制,将可研确定的投资估算总额落实至各专业。明确落实“设计总包机构”对“各分包部门”设计技术的协调工作。此外,引进设计监理体制,强化监理设计质量力度,构建监理机构组织,监制设计各阶段的“设计方案”与“工程造价”。提升铁路工程设计阶段的设计质量,严控投资额度,坚持合理定价,即依照铁路工程的“地形、地质、地貌、施工方法、工期要求”等,拟定科学合理、贴合实际的基价,以降低投资风险。
3.3实施设计
招标与设计方案竞选措施利用市场竞争机制,展开建设项目设计招标,择优选取设计方案及单位。设计单位若想中标,前提是要对建设建设项目的“规模、设备选型、技术标准、功能方案及投资控制”等展开详尽分析对比,竞标方案务必做到“经济合理、技术先进”,将项目投资效果置于首位,以经济合理的设计方案参加竞选。建设单位则利用“价值工程”对竞选的设计方案展开技术经济分析及对比,选取一个即可满足工艺与功能要求,又可降低投资的“技术选进、经济合理”的设计方案。实施设计招标与设计方案竞选,使铁路平纵断面条件获得优化,长度较可研设计的65.626公里缩短了6.626公里,特高桥由原来的1148m调整至1109m,取得显著的技术经济效益。
3.4采取限额设计
采取限额设计控制项目投资额度,是投资控制的重要措施。限额设计,即是依批准的可行性研究报告及初步设计的“投资估算控制、总概算控制施工图设计”。此外,在各专业确保达到使用功能的基础上,以分配的投资限额展开投资控制设计,杜绝单位工程和分部工程的不合理变更,保障不超出总投资限额。实践表明,投资分配与工程量控制,是实现“限额设计”的有效手段,反映了科学确定设计的“规模、标准及原则”,及科学取用概预算的资料。经层层限额设计,在达到科学控制投资限额的同时,亦达到控制设计“规模及标准”、“概预算指标”及“工程量”等标准和要素。投资控制运行过程见图1。
3.5运用价值工程原理优化设计方案
利用价值工程原理,弥补限额设计于实际应用的不足,合理分配设计限额总值,依据工程项目各组成部分的功能进而判定其功能目标的成本比率,然后参考类似工程的经验数据展开调整,排除分析目标建成后的维护费影响功能评价,反映了限额设计的主动性。新包神铁路工程实践中,提升产品价值的做法有:1)提升工程功能的同时,减少投资额度。2)确保工程功能不变前提下,降低投资额度。例如:通过优化路基项目,地基处理渗水土减少12.16×104m3,取消地基处理碎石桩11.69×104m,强夯减少16.25×104m2,路基费用降低了1662.51万元;3)项目投资不变前提下,提升工程功能。4)保障工程主要功能不变、略降次要功能前提下,大幅降低投资。例如,通过优化减少了站场排水、道路及围墙,降低费用669.22万元。5)略增加项目投资前提下,大幅提升工程功能。
3.6加强设计咨询工作
设计咨询是优化“初步设计”及“施工图设计”的关键。确定设计单位后,委托专业咨询单位审查优化“初步设计”与“施工图设计”;进行设计时,依据“可研报告评估机构、初步设计咨询机构、施工图审核机构”审查流程层层把关,墙塞漏洞,纠正错误,协调统一站前“专业设计”与站后“工程经济”,做到“数量与定额”的准确。设计咨询流程图见图2。
3.7加大方案概算、施工图预算编制的管理审查力度
为防止概算与设计及施工有出入,发生“算错工程量、套错定额”等问题,提升概算质量,必须做到:1)概算编制与设计人员要进行沟通,对不明之处,概算编制人员要询问设计人员,进行详细了解;2)提升概算编制人员的专业素养与自身素质,提升其责任心;3)认真审查初步设计概算,有效控制工程造价。施工图预算对确定承包合同价、签订施工承包合同、进行工程结算至关重要,直接影响投资控制。除了设计单位,建设单位与概算审查机构皆需加大初步设计概算审查力度,保障概算的合理性和真实性,规避损失。
4结语
1.1项目概况
工程全线共设特大桥633.31m/1座,框构中桥69.41m/1座,框架中桥318m/1座,框架小桥564.58m/3座,框架涵洞39座(其中原位新建1座、原位利用2座);全线共设车站2个,其中接轨站1个(双子河站)、新建终点站1个(电厂站)。项目建设布置施工生产生活区8处,弃土场3处、表土暂存场1处,新建施工便道6.5km。工程总占地面积103.84hm2,其中永久占地86.27hm2,临时占地17.57hm2。工程建设挖方总量为77.76万m3,填方总量为148.74万m3,借方总量为90.94万m3,弃方总量19.96万m3(其中表土剥离5.52万m3,永久弃方14.44万m3)。
1.2项目区概况
项目位于黑龙江省东北部伊春市,地处小兴安岭东南端,总体地形有东南高、西北低之势,地势起伏较大,海拔高程200~500m,相对高差60~100m;属中温带大陆性季风气候,最大冻深为2.6m,多年平均降水量为652mm,多集中在6—9月份,多年平均风速为1.75m/s,最大风速23m/s,主导风向为西风。主要土壤类型以暗棕壤为主。项目区植被属长白山植物区系,植被类型为温带针阔混交林。
2防治责任范围
根据本工程的总体布局及项目建设特点,确定该工程水土流失防治责任范围为117.57hm2。
2.1项目建设区
项目建设区包括主体工程区占地、站场工程占地、施工生产生活区占地、施工便道占地、弃土场占地和表土暂存场等区域,总面积为103.84hm2。
2.2直接影响区
直接影响区主要指主体工程区、站场工程、施工生产生活区、施工便道、弃土场和表土暂存场等项目建设区以外因施工而可能造成水土流失及直接危害的区域,主要包括路基两侧、站场工程周边、弃土场周边、施工便道两侧、施工生产生活区周边、表土暂存场周边等。根据对同类工程的类比调查,结合有关项目水土流失监测和工程建设实际经验确定本项目直接影响区范围如下:1)主体工程区内路基挖方边坡征地范围外1m,填方边坡征地范围外2m范围;特大桥梁基础施工上游10m范围,下游50m范围;框架中小桥梁基础施工上游5m范围,下游20m范围。2)站场工程周边2m范围。3)弃土场周边3m范围。4)施工生产生活区周边1m范围。5)施工便道两侧2m。6)表土暂存场周边2m。经统计,直接影响区总面积为13.73hm2。
3水土流失防治方案
3.1水土流失防治分区
3.1.1分区原则
1)分区内气象水文特征、地形地貌特征、土壤植被等生态特征具有相似性。2)分区应与地方水土保持规划中水土流失防治分区的划分相协调、一致。3)分区内建设时序以及工程建设新增水土流失特点相似。
3.1.2防治分区
根据工程布局、施工扰动特点、建设时序、地貌特征、水土流失影响等,将伊春至翠峦铁路改线工程的水土流失防治区划分主体工程防治区、站场工程防治区、施工生产生活防治区、弃土场防治区、表土暂存场防治区和施工便道防治区等6个防治分区。
3.2防治措施布设
3.2.1水土流失防治措施布设原则
1)水土流失防治措施的布设遵循植物措施与工程措施、施工临时工程和永久措施相结合的原则。2)注重临时防护、优化土石方的综合利用及合理调配,尽量减少施工过程中对原地貌、植被的破坏。3)在调查的基础上,充分借鉴当地水土保持的成功经验,树草种的选择以当地乡土树种为主。4)水土保持措施的配置要与环境相协调的原则。
3.2.2水土流失因子分析及防治措施布设
3.2.2.1主体工程防治区
主体工程区由于路基清理、路堑开挖、路基填筑等施工活动,形成松散堆积土和坡面,特别是桥梁施工,扰动地表强度较大,对土石方极易产生水土流失[2]。产生水土流失的主要时段为路基清理填筑和桥梁基础等施工前期,施工后期,主要为路面铺设和边坡防护施工,产生水土流失较轻。1)工程措施。a)表土剥离、回覆:对主体工程防治区内占地类型为耕地且地形条件较平坦的区域进行表土剥离,将剥离的表土集中堆放到表土暂存场,施工结束后,表土全部回覆于路基两侧实施植物措施的区域。b)路基排水工程:依路基的自然纵坡及路线纵向汇水面积设置路基排水工程,全线路基排水工程由侧沟、天沟、排水沟和截水沟组成。c)路基边坡防护工程:对路堤边坡高H<4m,采用客土植草结合栽种灌木防护,路肩采用硬化处理措施(干砌片石护肩);路堤边坡高H≥4m采用M10浆砌片石拱型截水骨架内培土植草+栽种灌木防护,骨架尺寸均采用3m×3m,拱骨架厚度0.6m,肋骨架厚度0.6m;对土质及风化岩石路堑边坡采用客土植草结合栽种灌木防护、浆砌片石骨架内培土植草和浆砌片石护坡;一般土质及软质岩路堑边坡高度≤6m时坡面客土植草(撒播草籽)防护,坡高>6m时采用3mm×3mm10浆砌片石拱型截水骨架内培土植草+栽种灌木防护。2)临时措施。a)编织袋装土拦挡:结合工程全线路基实际类型及工程施工时序,在路堤边坡高度>8m及路堑边坡>6m路段,在边坡底部布置编织袋装土拦挡措施,编织袋装土拦挡断面为矩形,宽为70cm,高为90cm。b)密目网覆盖:对路堤、路堑路基高度>6m的路基坡面,在防护及绿化工程完毕之前采用密目网覆盖。3)沉砂池:大桥基础施工时,产生泥浆弃渣,经沉砂池沉淀后运至路基填方利用,设沉砂池4个,砂池尺寸为长度5m,宽度3m,深2m,结构为砌砖,施工结束后拆除建筑物,利用永久弃渣填平。
3.2.2.2站场工程防治区
站内建筑物基础土方开挖、回填,扰动地表强度较大,产生土石方极易产生水土流失。1)工程措施。a)表土剥离、回覆:对站场工程占地类型为耕地的区域实施表土剥离,剥离表土分别集中堆放于2个站场的到发线预留处内,施工结束后回覆利用。b)站内路基排水、防护工程:站内新建轨道路基均为填方路基,但路堤边坡高度未超过8m。设计对路堤边坡高H<4m时,采用植草结合栽种灌木防护,当路堤边坡高H≥4m时采用M10浆砌片石拱型截水骨架内空心砖内培土植草+栽种灌木防护。骨架尺寸均采用3m×3m,拱骨架厚度0.6m,肋骨架厚度0.6m。电厂站站址地面横坡不明显,路基排水工程采用路基两侧护道外设排水沟。2)植物措施。)站区绿化:对站区内站前广场、办公区和道路周边采取绿化设计,具体绿化设计意见为:a)旅客车站、生活区宜采用庭院绿化设计方法。站区绿化不得影响旅客乘降和货物装卸,不得影响可视信号瞭望和各类管线的安全使用。站台栅栏可用攀缘性植物覆盖,或用高绿篱替代。站台中间可种植乔、灌木或绿廊。在站房侧布置种植乔木和灌木。墙面采用种植攀缘性植物绿化。站前广场绿地率指标≥10%。b)办公生产区周围的绿化应以卫生防护的要求为主。宜在向阳面栽植落叶乔木,东西向栽植高大浓荫的乔木,北向混栽常绿和落叶乔木及灌木,空地处应广植草坪。窗前1~2m种植灌木绿篙,内铺装草坪,点缀花卉。车站办公、货场、段、所绿化率指标≥20%。c)一般的条件下,绿化带在道路中所占比例为20%以上。人行道树下可种植铺草皮灌木。3)临时措施。编织袋拦挡、密目网覆盖:对区内堆土表面采用密目网满铺覆盖,并在堆土边坡底部布置编织袋装土拦挡措施,编织袋装土拦挡断面为矩形,宽为70cm,高为90cm。
3.2.2.3施工生产生活防治区
施工准备期,表土剥离、场地平整等施工,易产生水土流失,土建施工期,施工机械碾压,扰动地表。1)工程措施。表土剥离、回覆:对施工生产生活区占地类型为耕地、荒草地的区域实施表土剥离,剥离表土堆放于区内临时堆土场,施工结束后,表土全部回覆于扰动区域。2)植物措施。a)植草:施工结束后,设计对占地类型为荒草地的区域及时清理场地,回覆表土后植草恢复植被。草种选择为野牛草、早熟禾混播。b)复耕:施工结束后,设计对占地类型为耕地的区域及时清理场地,全面整地、深翻土层后恢复耕地。3)临时措施。a)临时排水工程:为减少地表径流对施工生产生活区的冲刷影响,设计在占地周边开挖土质排水沟,将场区雨水汇集后全部排至附近天然沟道,根据经验断面选择矩形,规格为底宽60cm,深60cm。b)编织袋拦挡、密目网覆盖:设计对区内堆土表面采用密目网满铺覆盖,并在堆土边坡底部布置编织袋装土拦挡措施,编织袋装土拦挡断面为矩形,宽为70cm,高为90cm。
3.2.2.4弃土场防治区
弃土施工时,设计应达到满足后期植物措施实施要求,堆土坡面做到堆弃平整,堆弃高度>4m时,设1m宽台阶,堆土顶面平整,边坡坡率控制在1∶1.5内。弃土结束后,设计栽植樟子松+植草结合防护,株行距1.5×1.5;草籽选择草木樨和早熟禾混播。
3.2.2.5表土暂存场防治区
施工准备期,表土堆放倒运及机械运输碾压等施工,易产生水土流失。为此,采取复耕措施。施工结束后,设计对原占地类型为耕地的区域及时清理场地,全面整地、深翻土层后恢复耕地。再采取临时措施。1)编织袋装土拦挡:设计在堆土边坡底部布置编织袋装土拦挡措施,编织袋装土拦挡断面为矩形,宽为70cm,高为90cm。2)密目网覆盖:表土堆放期间形成的边坡,设计对堆土坡面采用密目网覆盖。
4结论
武汉铁路职业技术学院图文信息中心作为学院教学和科研的服务性机构,在履行信息服务职能的同时,充分发挥特色高职院校教育职能这一社会属性,不断加强自身特色文化建设,优化文化育人环境,利用铁路文化传播平台,弘扬铁路文化,普及安全知识,开展铁路安全警示教育,学院高铁安全警示与事故救援中心已成为其为在校学生、铁路职工、社会大众开展安全警示教育的重要科普基地。
1高速铁路安全警示与事故救援
培训中心学院高速铁路安全警示与事故救援中心是我国第一个“高速铁路安全警示与事故救援培训中心”。中心通过图文、实物、视频、模拟沙盘、仿真模型、互动视窗等载体,全方位构建了完整的铁路安全教育与防范、事故预设与排除、事故救援与自救体系。高速铁路安全警示与事故救援中心设有铁路发展史示教区、铁路安全警示区、高速铁路安全监控系统示教区、事故救援起复演示四个区域。借助丰富的实物、图片、模型及电子声像资料,运用声、光、电等高科技手段,系统展示了中国铁路不平凡的发展历程,剖析铁路安全责任事故案例,介绍高速铁路安全保障系统,传授高速动车与重载运输事故救援起复等基本方法。学院图文信息中心充分利用这一安全警示平台,发挥特色文化教育职能,向全院师生、特别是高速铁路及相关专业学生,提供铁路安全文化教育和普及事故救援基础知识,培养学生形成安全意识、责任意识和使命意识,了解自救、救人和救援的基本技能;配合学院系部,向铁路在职职工提供安全警示教育和事故救援起复培训,强化学员的安全责任意识,提升职业素质,提高突发事件应急处理能力和事故救援能力;面向中小学生、社会大众,提供开放式社会服务,通过铁路安全教育,普及铁路安全知识,提高受众的生命意识、安全意识和自救意识,在自身遭遇铁路安全突发事件时,能最大程度地减少损失。目前,中心已接待参观学习团体达8000人次,接待对象主要为学生、铁路行业员工、党政工团各类学习组织等。
2安全警示教育的探索与实践
2.1模式创新
教育部颁发的《普通高等学校图书馆规程(修订)》中明确规定,高等学校图书馆必须贯彻国家的教育方针,履行信息服务职能和教育职能,为培养德、智、体、美等全面发展的人才,发展教育科学文化事业,建设社会主义物质文明和精神文明服务。这就决定了特色高职院校图书馆在履行信息服务职能的同时,还应充分发挥特色高职院校教育职能这一社会属性,加强自身特色文化建设,优化文化育人环境,让其成为开展大学生素质教育的重要阵地。铁路高职院校图文信息中心铁路安全警示教育既不同于传统模式的课堂安全知识教育,也不同于学生在课外或实训中所受到熏陶和感染,是一门潜在性、辅的课程,其教育职能是以浓厚的铁路文化氛围为基础,以其丰富的铁路特色馆藏文献、图文资源、仿真模型、互动视窗为保障,通过积极、主动地组织、参与、配合专职部门开展安全警示教育工作(或活动)而得以实现。这种独特、有效的铁路安全文化教育方式是课堂安全教育无可比拟的。
2.2浓厚的铁路文化氛围为基础
作为华中地区唯一的国家示范性铁路高职院校,学院一直秉承“立足湖北,服务铁路,育人为本,特色创优”的办学思想,走出了一条“跟着铁路转,联合铁路办,帮助铁路干,乘势谋发展”的特色办学之路。近年来,学院以培养优秀铁路工程建设人才为目标,在校园文化建设中着力传承铁路精神、融通校企文化、培育筑路先锋,发挥铁路文化的引领作用,打造多个铁路文化传播平台,在全校师生中倡导学习闪光的二七精神、火车头精神,“挑战极限、勇创一流”的青藏铁路精神和“勇攀科技高峰、争创世界一流”的高铁精神,通过对铁路精神和优秀文化的学习,让“铁”字精神成为学校师生治学态度、精神意志和思想境界的共同追求,激励着铁路学子奋勇拼搏,勇攀高峰。学院浓厚的铁路文化氛围加深了全校师生对铁路文化的认同感,增强了师生对学校的归属感和荣誉感,同时为图文信息中心发挥教育职能,开展安全警示教育营造了良好氛围。
2.3丰富的铁路特色
馆藏图文资源为保障铁路高职院校图文信息中心除藏有铁路科技类图书、铁路规章、规范、标准、史志年鉴之外,还藏有大量传播铁路文化、促进和谐铁路建设的图书、期刊及有声读物。此外,安全警示中心还藏有大量的实物、图片、仿真模型、电子声像等资料,图文信息中心可以利用这种特色的馆藏资源保障优势,在学院师生中大力弘扬体现不同时期要求、富有深厚底蕴的铁路文化,广泛普及铁路科技知识,开展安全警示教育,使之成为爱国主义教育窗口和铁路文化科普宣传基地。
2.4紧跟高铁时代步伐为发展方向
在数十年的发展中,中国高铁从最初的跟随者逾越到世界的领跑者。高速铁路从无到有,总里程跃居世界第一,成为展示中国改革发展新成果的“国家名片”。进入高铁时代的中国铁路,更需要强烈的安全责任意识、完善的安全保障体系保驾护航。铁路高职院校图文信息中心紧跟高铁时代步伐为导向,以人为本,以铁路文化为载体,通过文化渗透,开展安全警示教育,普及安全价值观和安全行为准则,弘扬“安全高于一切,责任重于泰山,服从统一指挥”的铁路职业精神,让每一位学生更加明确自己是铁路“职业人”的角色。
二结束语
该车站站点共有工作人员142人,设计污水量160m3/d,包括生产废水和生活污水。其中生产废水主要是车辆洗刷污水,以及对设备进行清洁和检修过程中产生的废水,污染物包括废油、清洁剂等,废水量为110m3/d。生活污水主要是工作人员日常生活中产生的污水,包括食堂排除的污水、工作人员淋浴污水等,污水量为50m3/d。
2污水处理的工艺流程
结合站点的实际情况以及政府相关部门对于污水处理的要求,需要对车站污水进行处理和回收利用。从资金、技术、操作等因素考虑,决定采用一体式膜生物反应器对铁路污水进行处理,处理的工艺流程包括:对污水进行分类处理,对于生产废水,要引入沉淀池,经气浮设备,进入MBR污水处理设施;对于生活污水,经预处理后,导入MBR污水处理设施在设备中,对污水进行消毒处理将处理后的污水导入回用水池沉淀处理后,对于下部污水,就近排入市政污水系统,上部净水经泵房进行回用。回用水可以用于冲洗厕所、绿化灌溉、设备和道路清洗等,减少水资源的浪费。
3配套设施建设
在膜生物反应器中,主要配套设施包括:(1)调节沉淀斜板隔油池:根据车站污水量,设置容积为50m3的调节沉淀斜板隔油池,以钢筋混凝土为主要结构材料。为了方便对污水进行处理,可以将其分为并联运行的两个部门,每一个部分细分为拦污区、斜板隔油区以及调节沉淀区三个单元。当污水进入后,利用隔板可以对大颗粒悬浮物质进行去除,如果颗粒的密度较大,可以通过沉淀去除,如何颗粒密度较小,如油类物质,会悬浮在水面上,方便去除。不仅如此,调节沉淀斜板隔油池可以对进水水质和水量进行调节,确保废水可以更加均匀地进入到后续处理环节,减少对于整个污水处理系统的冲击。(2)气浮设备:气浮设备可以对污水中的固体悬浮物、油脂以及各种胶状物进行去除、所谓气浮,主要是使悬浮物附着气泡,上升到水面,对悬浮物和水进行分离。在该污水处理系统中,气浮设备配套有加压泵、空压机以及相应的加药装置等,其处理能力为10m3/h。经过调节沉淀斜板隔油池处理后的污水,水质和水量比较均匀,而经气浮设备处理后,可以进一步去除废水中存在的油类物质,从而为MBR设备的运行创造良好的条件。(3)一体化MBR设备:MBR设备是膜生物反应器污水处理系统的重点和关键,根据该站点的实际情况,配备了处理能力达到100m3/d的一体化MBR设备两套。在MBR设备中,利用相应的微生物,可以对污水中存在的有机物进行分解,形成无机盐类;利用硝化菌,可以对水中存在的氨氮类物质进行硝化,去除污水的异味。经生物降解后,再次使用膜分离技术对污水进行高效分离,将微生物污泥隔离在反应器内部,而污水则经过分离膜排出反应器。(4)消毒设备:污水经过一体化MBR设备后,再次进行消毒处理,就可以进行回用或者排放。在该污水处理系统中,选择二氧化氯作为消毒剂,设置有效氯产量为100g/h的电解法二氧化氯发生器一套。
4最终处理效果
经膜生物反应器处理后,该站点的污水出水水质可以达到以下标准:CODcr:<20mg/L;BOD5:<5mg/L;SS:<3mg/L;NH4-N:<1mg/L;浊度:<2NTU;大肠菌群数:0。与国家规定的污水排放标准相比,水质更优,可以满足排放和回用要求。
5存在的不足
虽然膜生物反应器与其他污水处理技术相比具有非常明显的优势,但是也存在着膜污染、运行费用高等问题,在一定程度上影响了其应用范围。对此,相关技术人员必须充分重视起来,深入研究,对其进行改进和创新,确保其有效的推广和应用。
6结语