时间:2023-03-24 15:08:42
导语:在仿真技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
论文关键词:三维虚拟仿真技术,物流,教学
当前,仿真技术已经成为分析、研究各种复杂系统的重要工具教育学论文,它广泛用于工程领域和非工程领域。高职院校的物流实训中心大多数是基于软件模拟的物流实训室,这类实训室是以物流软件模拟来搭建物流模拟平台,如仓储管理软件、运输管理软件、ERP、MRP、国际货代软件、TPL软件或基于上述几个软件集成起来的供应链软件等;然而对于基于设备的物流实训室来说,由于资金等方面的限制,比较先进的设备还尚欠缺教育学论文,这就造成了学生对立体库、高速分拣机、巷道式堆垛机、AGV、码垛机器人等先进的物流设备缺乏足够的感性认识论文格式模板。三维虚拟仿真技术等够对仓库、配送中心、企业生产线等进行简单的建模,能够加深学生对各种物流设备的认识,帮助学生理解工业、企业、生产线的布置与产出平衡、物料需求计划、企业资源计划等相关知识,更好地找出生产瓶颈,加深对现代化立体仓库、配送中心的了解。因此三维虚拟仿真技术在教学中的应用教育学论文,对于学生更好地学习物流专业理论知识、培养相应的职业技能是大有裨益的。
一、三维虚拟仿真技术概述
三维虚拟仿真(3D Virtual Simulation)就是利用三维建模技术,构建现实世界的三维场景并通过一定的软件环境驱动整个三维场景,响应用户的输入,根据用户的不同动作做出相应的反应,并在三维环境中显示出来。三维仿真的关键技术主要有动态环境建模技术、实时三维图形生成技术、立体显示和传感器技术、应用系统开发工具、系统集成技术等论文格式模板。该软件提供了原始数据拟合、图形化的模型构建、虚拟现实显示、运行模型进行仿真的实验、对结果进行优化、生产3D动画影像文件等功能。
利用三维虚拟仿真技术教学具有以下优点:
1、教学内容视觉化
2、学习中的交互性好
3、沉浸感真实感强
二、三维虚拟仿真技术在物流教学中的应用
基于青海交通职业技术学院物流实训中心3D实训室的应用系统及操作流程。
1.开机步骤
开机顺序依次为:
2 AP转换器(数量两台):
按下电源按钮教育学论文,
2 工作站(数量两台)
2 投影机(数量四台)
进入控制工作站,进入中控程序,点击投影机控制,选择开
等投影机启动完毕后再进入下一步
2 边缘融合机(数量两台):
按下电源按钮
关机顺序依次为:
立体图像工作站——边缘融合机——AP转换器——投影机——控制工作站
2.基本操作设置
立体图像工作站设置
(1)多显示器设置
鼠标在桌面上右键
进入NVIDIA控制面板
点击设置多个显示器
设置作为一个大水平桌面(水平平移模式)
显示的结果是,显卡双头输出两个通道的桌面。
(2)分辨率设置
单屏分辨率1024×768教育学论文,重叠像素为192
整体分辨率为1856×768(含边缘重叠区192个像素)
重叠像素设置图如下:
立体设置为管理3D设置里面,基本设置,选用立体启用
3 .基本演示操作
(1)立体电影
检查左右眼是否正确?
2 将图像移动分别移动到第一个通道和第二个通道进行检查论文格式模板。
如果第一个通道和第二个通道都不正常,点击一下软件里面L/R
2 如果图像只在第一个通道出现左右眼反的现象?
在第一台AP转换器后面的绿色按钮按两次切换左右眼
2 如果图像只在第二个通道出现左右眼反的现象?
在第二台AP转换器后面的绿色按钮按两次切换左右眼
(绿色按钮按两次表示切换左右眼)
(2)NVSG演示软件
同样观看立体是否正常,可以通过软件切换左右眼
(3)VEGA演示软件
同样观看立体是否正常教育学论文,可以通过软件切换左右眼
4系统连接图如下
5投影机图像不正确的调试方法
(1)首先检查画面比例是否正确
再点击高级:
水平位置和垂直位置,如图所示。
6融合机出现故障处理方法
出现基本问题首先重新启动融合机来解决
如重新无法解决可以采取如下步骤:
(1)找到是那台融合机出现的问题,并接入键盘鼠标
(2)ALT+F4退出融合服务软件
(3)点击桌面上的blend文件夹
(4)复制setting.cfg文件到其他地方
(5)将备份的该文件copy到blend这个文件夹下面
(6)双击STEREO_CAP程序
(7)按ESC,再点击开始扑捉、全屏幕、下一次开机启动,保存设置、开始
(8)重新启动
7注意事项
(1)投影机开启后遥控器上的auto、aspect两个按键不能按教育学论文,正常使用情况下不需要遥控器;
(2)投影机机械结构不能轻易触碰
(3)屏幕位置不能挪动,屏幕表面不能触碰,灰尘可用干净的柔软布沾水擦;
(4)投影机关机后不能立即断电,同时投影机电源需接入UPS稳压电源,UPS后备电池时间不小于10分钟;
(5)不能随意拔插设备连接线缆;
(6)立体工作站显卡、立体、分辨率等设置不能改变
(7)控制工作站IP:192.168.1.10不能改变。
开机先后顺序要严格按照技术要求顺利
三、结束语
三维虚拟仿真技术软件在高职的教学中能发挥出积极的作用,一方面能提高学生的学习兴趣,学生在学习的过程中能够对仓储、运输、配送、生产加工等有一个感性的认识,同时也提高了学生分析问题、解决问题的能力,实践证明三维虚拟仿真技术软件的应用对于高职物流专业的教学具有积极的意义。
参考文献:
[1]吕明哲,物流系统仿真,东北财经大学出版社,2008.10。
[2]贺国先,现代物流系统仿真,中国铁道出版社,2008.12.1。
[3]青海交通职业技术学院物流实训中心3D实训室操作手册
1.1Hilbert-Huang变换
HHT首先对信号进行EMD处理,得到信号的IMF及残差。EMD分解的思路是:对一原始信号x(t),利用三次样条函数曲线插值的方法找出其上、下包络及包络的均值曲线m(t),如果x(t)与m(t)之差h(t)不满足IMF分量的条件,则将h(t)视为新的原始信号,继续进行前述分解,直到找到本阶的IMF,记为c(t)。重复计算,可以将x(t)分解为多个IMF分量ci(t)和残差r(t)之和:x(t)=∑ici(t)+r(t)(1)对上述IMF分量ci(t)进行Hilbert变换,即可得到每个IMF分量的瞬时频谱,综合所有IMF分量的瞬时频谱就可得到一种新的时频描述方式,即Hilbert谱。Hilbert变换是一种线性变换,它强调局部性质,由它得到的瞬时频率是最好的定义,避免了Fourier变换产生的许多事实上不存在的高、低频成分,具有直观的物理意义。ci(t)的Hilbert变换为:H[ci(t)]=ci(t)•1πt=P.V.∫+∞-∞ci(t-τ)πtdτ(2)其中P.V.表示柯西主值积分。构造ci(t)的解析信号为:zi(t)=ci(t)+jH[ci(t)]=ai(t)e-i(t)(3)式中:ai(t)为瞬时幅值,ai(t)=c2i(t)+H2[ci(t槡)];(t)为瞬时相位,i(t)=tan-1{H[ci(t)]/ci(t)}。可以看出,式(3)给出了幅值和相位的定义。定义瞬时频率为:fi(t)=12πd[i(t)]dt(4)定义ci(t)的Hilbert谱为:Hi(t,f)=ai(t)f=fi(t)0f≠fi(t{)(5)如果直接对信号x(t)进行整体Hilbert谱分析,可以表示为:x(t)=Re∑iai(t)ei2π∫fi(t)d[]t(6)式(6)表达了信号x(t)联合的时频变化关系。根据式(5)和(6),可以得到x(t)的Hilbert谱:H(t,f)=∑iHi(t,f)(7)式(7)描述的Hilbert谱可看作是一种加权的联合幅值-频率-时间三维谱。又定义Hilbert边际谱为:h(f)=∫T0H(t,f)dt(8)在式(8)的Hilbert边际谱中,在某一频率上存在着能量就意味着具有该频率的振动存在的可能性,具有该频率的波在信号整个持续时间内的某一时刻出现了,而该振动出现的具体时刻在Hilbert谱中给出。定义Hilbert能量谱为:ES(f)=∫T0H2(t,f)df(9)在分析中,可能只对某些频率范围内的信号感兴趣,即对某几个IMF分量的组合进行Hilbert变换,结果成为局部Hilbert谱。
1.2Hilbert-Huang谱与Fourier功率谱的比较
对解析信号zi(t)两边做Fourier变换,可以得到:zi(jω)=ci(jω)+j^ci(jω)(10)式中:^c(jω)为ci(t)的Hilbert变换,^c(jω)=H[ci(jω)],ω=2πf。如果只考虑正频率部分,那么式(10)可写为:zi(jω)=2ci(jω)=2∫+∞-∞ci(t)e-jωτdτω>0(11)典型的Fourier功率谱的定义为:设x(t)为一平稳随机过程,若其自相关函数Rxx(τ)的傅立叶变换存在,即:Sxx(ω)=12π∫+∞-∞Rxx(τ)e-jωτdτ(12)则称Sxx(ω)为x(t)的功率谱密度,ω为频率。在工程中多用频率f作为功率谱密度的自变量,这时有下面关系成立:Sxx(f)=2πSxx(ω)(13)另外由于工程上负频率无意义,往往使用单边谱密度,其定义为:Gxx(f)=2Sxx(f)=4∫+∞-∞Rxx(τ)cos2πfτdτf≥0(14)功率谱密度描述了随机振动的频率结构,从物理意义角度上看,它是随机振动的能量按频率分析的度量,功率谱密度曲线下方的面积即为随机信号的均方值,即:∫+∞-∞Sxx(ω)dω=Rxx(0)=E[x2(t)]=φ2x(15)对比式(8)、式(11)和式(14)可以看出,由于IMF分量ci(t)是原始信号的某一个包络,其幅值大于对应的原始信号,因而计算边际谱的幅值与Fou-rier功率谱幅值是不一致的。
2公路运输振动数据分析
公路运输的振动响应一般随运输平台、公路路面等级、运输平台速度等不同而有一定差异。为了获取真实有效的振动响应数据,需要通过设计采集试验,获取在特定路面等级和运输速度组合下一定时间长度的振动数据。文中利用LMS振动采集系统,以400Hz的采样率,在不同的路面等级下以不同的速度,采集匀速运动的卡车上的产品振动情况。以某点位Z方向的振动为例,其中EMD分解将原始信号分为8个IMF和1个残余量。将c1(t),r(t)略去,分别作c2(t)∶c8(t)的PSD并求和,得到P=∑8i=2PSD[ci(t)],与原始信号的PSD对比。,IMF分量中剔除了最高频的c1(t)及残差,基于IMF分量的在低频部分有所加强,而在高频部分得到了抑制。显然,该计算对传统功率谱密度计算中“低频幅值偏低,高频部分偏高”进行了有效修正。边际谱的频率与功率谱的频率峰值点基本是一致的,表示边际谱对信号能量特征的识别度较好。
3结语
关键词:土木工程;仿真技术;实习实训;应用
实践教学是对教学理论的进一步加强,学生在此过程中也能够有效提升自身的创新精神与动手能力。过去大众化、讲学式的教育体系对实习实训的认识不够,因此很多学生面临毕业之后找工作难的窘境。通过加强实践教学、推动创新教育的方式,能够有效提升学生的综合素质,为现代社会培养更多实用型人才。
一、土木工程施工实习实训教学中仿真技术的问题
在我国有很多高校的土木工程专业在教学时依然没有创新,还是在按照已经过时的模式进行教学,虽然也涉及实习实训内容,但效果不佳,并且基本上只是流于形式,实际效果有限。通常高职院校会有近一年的实训期,在这么短的时间内是很难进行施工实训的。即使在训练过程中采用集中分散结合的方式,但施工效果仍旧不理想。由于单一教学模式的限制,并且对教学和实训的安排缺乏合理性,实训教学通常难以发挥应有的作用。进行实训教学存在以下几个问题:第一,不重视实践教学的重要性;第二,对课程体系的设置缺乏合理性;第三,缺乏实训教学资源;第四,缺乏足够的实训教学时间。
二、土木工程施工实习实训教学中仿真技术的实现
(一)虚拟场景建模
通过仿真设计软件能够设计出具有实际价值的虚拟场景,制作方法为:第一,用摄像头拍摄现实场景,然后利用仿真技术对所得影响进行全景图合成设计;第二,通过程序设计语言和编程软件生成场景[1];第三,使用仿真设计软件制作虚拟三维场景。以上步骤需要用到的主要软件有3DSMAX软件和VRML软件,结合两款软件的使用方法为:首先,制作场景贴图、动画、造型等;其次,将场景导出至VRML;最后,修改源程序代码,添加所需文件,并进行相应操作。
(二)实现物理建模
通过Export命令,对建模得到的max文件进行导出,导出后的文件为wr1文件,然后对导出的文件进行建模。这一过程可以通过VRML的传感器节点完成,同时通过事件及路由器实现。
(三)实现行为建模
以Script节点定义及改变场景对象的外观及行为,当Script节点开始初始化,某个程序脚本就会被调用。该事件在VRML场景中会被检测出来,并传递至JAVA,通过JAVA对其作出相应的响应,也可以进行反向传递。
(四)构建网络系统
虚拟的仿真教学环境可以对网络中的信息资源进行高效利用,确保实训教学具有动态有效性。例如Flashmx等工具能够进行在线虚拟实习活动,具有十分广泛的教学覆盖面,在当前常用的辅助实训教学工具中,最具发展前景。通过信息技术能够建立远程服务系统,实现对虚拟仿真实训教学的系统资源共享,这也是虚拟仿真教学系统未来进展的主要方向之一[2]。利用虚拟仿真实训教学系统能够给学生提供大量学习资料,保证学习效率和学习效果。网络虚拟实训可以运用web三层结构建立B/S架构的虚拟仿真实训教学体系。
三、土木工程施工实习实训中应用仿真技术的方法
(一)在教学中建立规范化的仿真技术
虚拟仿真技术具有人机互动的特点,娱乐性强并且能够形象直观地表现画面,有助于学生的记忆同互联网联系,能够营造出逼真的场景,增加体验乐趣。在学生开始土木工程施工实习的后,采用标准化的虚拟仿真技术能够在很大程度上激发学生的学习兴趣,从而提升其学习主动性,而这一点,在传统的教条主义教学模式下是难以实现的。通过规范的仿真模拟技术,能够很好地重现施工场景,使学生完美地融入其中。
(二)在教学中安全控制仿真技术实施
仿真技术通过虚拟成像的方式营造一个看起来真实的环境,但由于其特有的虚拟性,因此情境知识看起来和真实环境无异,但却很好地避免了真实环境中才会出现的各种危险因素。学生可以在课堂中融入真实的施工环境中去,在实践中应用理论知识,在虚拟的环境中对施工过程进行安全控制操作,即使存在不规范问题或其它缺陷,由于不具有危险性并且并非真实,学生仅仅会感觉到紧张,但并不会造成危险和损失。虚拟仿真技术能够加强学生规范化管理建筑施工流程,提高施工的安全水平,降低事故发生率。
(三)重视仿真技术的设计及师资培养
在教学中引入并应用仿真技术,也是加强土木工程师资力量的重要因素。土木工程是一门以实践为主的专业,培养的也主要是实用型人才。因此无论是学生还是教师,都需要具备一定的施工经验,才能在将来的工作或教学活动中,占据主动。教师在进行仿真技术实训之前,应首先做好完善的准备工作。在实现实践教学的科学化和精细化规划设计过程中,教师也应具有一定的创新能力。另外,学校方面也可以积极引入或自行开发一些具有实训价值的综合仿真技术的土木工程实习软件,充分满足学生需求。
(四)在实习开展前做好充分准备工作
在开展实训之前,教师会根据实习的基本纲要给学生安排各种实习任务,此外土木工程专业教师也会专门给学生安排一些工作,学生需要根据自己实习的内容做一份答辩论文。这种方法有助于培养学生总结施工实践经验的能力并培养学生养成良好的团队意识。并且表现优秀的学生所上交的论文内容也能够为教师日后教学水平的提升打下良好基础,教师也能从中找到各种有价值的案例以供教学使用。
结束语
土木工程施工实习实训是非常有必要的,这也符合其侧重实践应用的专业特点。在实训中应用仿真技术,学校在降低成本的同时,也能够很好地培养学生的实践能力和创新能力。
参考文献
[1]周国恩,梁鑫,周雨等.基于仿真技术在土木工程施工实习实训教学中的探索与实践[J].教育教学论坛,2013,(28):197-198,199.
This paper studies on the subject of production line, as well as the optimization methods, and then uses the simulation software Flexsim to make a model and simulate on sofa production line of the Sheng'Ao company, at last, analyse the simulation result, then found the bottlenecks of this production line. On this basis, optimize upon this bottlenecks, not only the operating rate improved dramatically, but also the final output increased a lot. Through the application of the simulation technology, a lot of problems in the modern enterprise can be solved, it can also solve some problems that simple mathematical methods can't, and on this basis to optimize it so the problems can be adequately highlighted in order to be resolved.
KEYWORDS: simulation technology、production line、Flexsim、optimize
正文目录
第一章 引言 1
第一节 研究背景与现状 1
第二节 选题的意义 2
第二章 生产线概论 3
第一节 生产线的基本理念 3
一、生产线的概念 3
二、流水式生产线的概念 3
第二节 生产瓶颈 4
一、生产线上的约束 4
二、节拍和瓶颈 4
第三节 生产线评价指标 5
一、生产线最终产量 5
二、操作器的利用率 5
第四节 生产线物流系统仿真方法的优势 6
一、传统生产线物流分析方法 6
二、仿真方法的优势 6
第三章 仿真技术的发展和应用 7
第一节 仿真技术的发展历史及其特点 7
一、仿真技术的发展历史 7
二.仿真技术的特点 7
第二节 仿真技术在生产系统中的应用与分类 8
一.仿真技术的应用 8
二.仿真技术的分类 9
第三节 物流相关仿真软件介绍 10
一、AUTOMOD 10
二、ARENA 10
三、EXTEND 11
四、FLEXSIM 11
第四章 生产线仿真建模 13
第一节 生产线仿真的基本过程 13
一 明确仿真目的 13
二 收集数据 14
三 建立系统的物理模型 14
四 建立系统的逻辑模型 14
五 模型确认 14
六 仿真模型运行 14
七 模型运行结果分析 14
第二节 模型介绍 15
一、圣奥沙发流水线简介 15
二、沙发制造部工艺流程图 15
三、模型实体 16
第三节 模型运行及其结果 23
一、仿真模型 23
二、仿真结果 25
第四节 结果分析以及模型改造 31
一、结果分析 31
二、模型改造 32
三、模型改进后的分析 38
第五章 结论与展望 39
参考文献 40
致 谢 42
第一章 引言
第一节 研究背景与现状
近年来,随着国内外市场竞争的激烈,我国加入WTO,企业面临巨大的挑战。物流的现代化越来越受到人们的关注。传统物流是一个流通与制造过程的附属品,其基本任务仅仅是完成商品流通或制造过程中物料的物理位置的转移,以确保流通或生产过程的正常运行,因此,物流的各个功能环节长期以来是相互分散和孤立的。现代流通与生产过程则是更加注重整体的效益。物流作为一个多因素、多目标的复杂系统,追求其整体的优化是一个复杂的系统分析问题。现代物流越来越多的强调物流的系统化合综合化,现代物流和传统物流的本质区别逐渐显现出来。正式由于现代物流的这一特点,尤其需要运用系统分析的方法对其进行分析研究。
生产线即产品生产过程所经过的路线,即从原料进入生产现场开始,经过加工、运送、装配、检验等一系列生产活动所构成的路线。生产线需要接收和处理大量的产品设计、加工、制造资源等信息,合理调度加工零件。传统的经验分析和人工调度不能适应复杂系统和现代管理的要求。过去,一个企业有十几辆、几十辆车负责产成品的运输。车辆的调度完全依靠管理人员、调度人员的已有经验。今后,企业物流逐步走向社会化。企业要降低成本,缩短供货期,对物流提出了更高的要求。不仅仅满足于车辆的调配,更需要合理选择运输路线、合理配载和返程货物搭载等。而且,由于生产的逐渐多样化,服务的客户化,不再有一成不变的计划生产,市场不断变化的生产和供货,需要管理人员动态调整计划。人工的、经验式的管理必须用科学的控制管理方式代替。系统仿真正是适应了物流系统的复杂化、物流目标的多样化的发展需要。 人们在研究一个较为复杂的系统时,通常可以采用两种办法:一种是直接在实际系统上进行研究;另一种就是在系统的模型上进行研究。在实际系统上研究固然有其真实可信的有点,但是很多情况下是不合适甚至不可行的。这主要有以下几方面的原因:
(1)、需要考虑安全性。在研究重要的,涉及人身安全或设备安全的系统时,不允许在实际系统上进行试验,例如宇航系统,核能系统,航空系统等。
(2)、系统具有不可逆性。有很多系统是不可逆的,例如已经发生的灾害,生态系统等。
(3)、投资风险过大。一些重大的工程项目,重大设备系统很复杂,投资巨大,不允许在实际系统上进行破坏性的实验。
(4)、研究时间过长。多数情况下,在实际系统上研究问题往往需要较长的时间。例如研究复杂的生态系统一般需要数十年;研究一个交通运输系统也至少需要数天甚至数月。
(5)、真实的系统尚未建成。如果希望在系统规划设计阶段评价方案的优劣,显然无法在真实系统上进行。
出于以上主要原因,利用模型来研究系统不仅是必要的甚至在某些情况下是唯一可行的方法。
第二节 选题的意义
生产物流系统是企业物流系统的子系统,同时也是制造系统的重要组成部分。生产物流系统的优化不但可以提高企业生产中物流的顺畅程度、提高生产效率,还可以降低物料搬运成本;进而提高企业的成本、质量、交货期等各项系统性能指标。由于生产系统的复杂性、动态性和随机性,数学解析方法无法对整个生产系统的诸多特征进行建模,也就无法准确地进行投产方案的计算和优化。而系统仿真以相似论、计算机科学、概率论、数理统计和时间序列分析等为理论基础,能够真实地仿真随即时间,实时模拟生产系统的动态特性[1],再现或预测所需的生产系统特征。
而Flexsim是一套系统仿真模型设计、制作与分析工具软件。它集计算机三维图像处理技术、仿真技术、人工智能技术、数据处理技术为一体,专门面向制造、物流等领域。运用Flexsim系列仿真软件,可在计算机内建立研究对象的系统三位模型,然后对模型进行各种系统分析和工程验证,最终获得优化设计或改造方案。
本文以圣奥有限公司沙发生产线为例,通过仿 真软件Flexsim建立生产线仿真模型,进行物流和调度仿真,瓶颈设备和故障分析与生产线能力评估,为生产线规划与布局及生产调度计划制定提供可靠的科学依据。而用仿真软件做生产线优化还可以可以减少成本,三维效果好,最重要的是仿真优化结果明显。第二章 生产线概论
第一节 生产线的基本理念
一、生产线的概念
产品生产过程所经过的路线,即从原料进入生产现场开始,经过加工、运送、装配、检验等一系列生产活动所构成的路线。狭义的生产线是按对象原则组织起来的,完成产品工艺过程的一种生产组织形式,即按产品专业化原则,配备生产某种产品(零、部件)所需要的各种设备和各工种的工人,负责完成某种产品(零、部件)的全部制造工作,对相同的劳动对象进行不同工艺的加工。
生产线的主要产品或多数产品的工艺路线和工序劳动量比例,决定了一条生产线上拥有为完成某几种产品的加工任务所必需的机器设备,机器设备的排列和工作地的布置等。生产线具有较大的灵活性,能适应多品种生产的需要;在不能采用流水生产的条件下,组织生产线是一种比较先进的生产组织形式;在产品品种规格较为复杂,零部件数目较多,每种产品产量不多,机器设备不足的企业里,采用生产线能取得良好的经济效益。
二、流水式生产线的概念
流水线是指劳动对象按照一定的工艺路线,顺序的通过各个工作地,并按照统一的生产速度(节拍)完成工艺作业连续的、重复的生产过程。
流水生产方式是把高度的对象专业化生产和劳动对象的平行移动方式有机结合起来的一种先进的生产组织方式。
单品种流水生产线又称不变流水线,指流水线上只固定生产一种制品。要求制品的数量足够大,以保证流水线上的设备有足够的复合。
多对象流水生产有两种基本形式。一种是可变流水线,其特点是在计划期内,按照一定的间隔期,成批轮番生产多种产品;在间隔期内,只生产一种产品;在完成规定的批量后,转生产另一种产品。另一种是混合流水线,其特点是:在同一时间内,流水线上混合生产多种产品。按固定的混合产品组组织生产,即将不同的产品按固定的比例和生产顺序编程产品组。一个组一个组地在流水线上进行生产。
第二节 生产瓶颈
一、生产线上的约束
生产线的生产过程是一个按照生产工艺安排的有序过程。因此,可完成生产作业要素受到一定程度上的限制。例如,在安装仪器或者设备外壳前需要装上电动机。进行生产线平衡时,除了考虑优先约束之外还应考虑非生产工艺的约束:
(1)区域约束。它时与生产工位布置有关的限制,分为正区域约束和负区域约束。正区域约束是指某些确定的作业要素应该彼此就近设置;负区域约束是指作业要素之间相互干涉,在位置上不应靠近的限制条件。
(2)位置约束。在大型的生产线上,如汽车的装配线上,由于产品比作业人员可完成的装配作业空间大,不能完成其周边的装配作业,产品装配作业受到空间的限制。
二、节拍和瓶颈
流程的“节拍 ”(Cycle time)是指连续完成相同的两个产品(或两次服务,或两批产品)之间的间隔时间。换句话说,即指完成一个产品所需的平均时间。节拍通常只是用于定义一个流程中某一具体工序或环节的单位产出时间。如果产品必须是成批制作的,则节拍指两批产品之间的间隔时间。在流程设计中,如果预先给定了一个流程每天(或其它单位时间段)必须的产出,首先需要考虑的是流程的节拍。
而通常把一个流程中生产节拍最慢的环节叫做“瓶颈”(Bottleneck)。流程中存在的瓶颈不仅限制了一个流程的产出速度,而且影响了其它环节生产能力的发挥。更广义地讲,所谓瓶颈是指整个流程中制约产出的各种因素。例如,在有些情况下,可能利用的人力不足、原材料不能及时到位、某环节设备发生故障、信息流阻滞等,都有可能成为瓶颈。正如“瓶颈”的字面含义,一个瓶子瓶口大小决定着液体从中流出的速度,生产运作流程中的瓶颈则制约着整个流程的产出速度。瓶颈还有可能“漂移”,取决于在特定时间段内生产的产品或使用的人力和设备。因此在流程设计中和日后的日常生产运作中都需要引起足够的重视, 注意生产线平衡的持续改善。
与节拍和瓶颈相关联的另一个概念是流程中的“空闲时间”(idle time)。空闲时间是指工作时间内没有执行有效工作任务的那段时间,可以指设备或人的时间。当一个流程中各个工序的节拍不一致时,瓶颈工序以外的其它工序就会产生空闲时间。这就需要对生产工艺进行平衡。制造业的生产线多半是在进行了细分之后的多工序流水化连续作业生产线,此时由于分工作业,简化了作业难度,使作业熟练度容易提高,从而提高了作业效率。然而经过了这样的作业细分化之后,各工序的作业时间在理论上,现实上都不能完全相同,这就势必存在工序间节拍不一致出现瓶颈的现象。除了造成的无谓的工时损失外,还造成大量的工序堆积即存滞品发生,严重的还会造成生产的中止。
为了解决以上问题就必须对各工序的作业时间平均化,同时对作业进行标准化,以使生产线能顺畅活动。“生产线工艺平衡”即是对生产的全部工序进行平均化,调整各作业负荷,以使各作业时间尽可能相近。是生产流程设计与作业标准化必须考虑的最重要的问题。生产线工艺平衡的目的是通过平衡生产线使用现场更加容易理解“一个流”的必要性及“小单元生产”(Cell production)的编制方法,它是一切新理论新方法的基础。
第三节 生产线评价指标
在生产线平衡中,通常可以使用生产线最终产量、工作时间、利用率、空闲率、阻塞率等几个指标来比较和评价生产线平衡的结果,而本文中主要用到生产线最终产量和操作器利用率这两个指标。
一、生产线最终产量
生产线的评价指标之一为该条生产线最终的产量。一般而言,最终产量越多越好,本文中模型改进前后对比的评价指标之一就是生产线的最终产量。不过,现实生活中,企业还是要考虑到生产成本问题。如果生产成本投入很大,相对而言,最终产量增加不多,那么就不一定值得投入更多的生产成本的。
二、操作器的利用率
生产线中机器的利用率也是一个很重要的生产线评价指标,一般利用率较高的生产线比较好。试想,如果一条生产线上的机器大多时间都处于空闲或等待之类的 非处理状态,那就说明这条生产线的利用率不高,存在很大的浪费。本文中模型的第二个评价指标就是机器的利用率,通过模型改造,使得生产线上的各个机器的利用率有大大的提高,充分的使用了其生产能力,没有造成浪费。
第四节 生产线物流系统仿真方法的优势
一、传统生产线物流分析方法
传统对企业的生产流程的优化,主要集中在生产流程、生产节拍和工艺流程方面的优化,且主要由工艺员根据企业现有的规模,建立实体模型,通过改变其中几个瓶颈设备来达到优化的目的。这种优化在很大程度上来说,没有相关理论为指导,多是从生产实际中总结出的一些经验中得出的,常常是局部的优化,可以说只是些修修补补,并不能从根本上解决企业整体存在的问题。针对企业优化问题,目前用的较多的传统生产线物流分析方法是对所研究系统建立起相关数学模型,通过数学工具对系统进行优化。
而对生产线进行分析的数学方法包括有运筹学、系统工程等学科。其内容包含有排队论、目标规划法、模糊综合评判法、层次分析法、关系矩阵法等等。不过类似于这些方法,计算量过大,而且有些时候不一定能得出结果,所以存在一定的弊端。随着生产系统越来越复杂,越来越多采用仿真方法。
二、仿真方法的优势
对于比较复杂的工艺流程,仅用数学方法往往不能发现工艺流程中的瓶颈,因而也无法为系统优化提供依据。因此,需要通过仿真技术的应用,对工艺流程建立仿真模型、设置参数,来实现工艺流程的仿真,从而找到瓶颈,再通过优化方法消除流程中的瓶颈。因为对物流系统的仿真能将制造厂内生产的实际情况逼真的再现出来,并结合虚拟制造、虚拟物流的思想,通过对各种模型设备的工作时间、利用率、空闲率、阻塞率等的分析,找出制约整个系统物流的瓶颈因素,再通过改变相关制约因素来达到系统整体的最优,这不仅有效的解决了传统的数学模型优化不能真实、具体、全面地反映系统运作情况的缺陷,又巧妙的回避了大量不必要的计算,操作起来十分经济方便。
仿真技术综合集成了计算机、网络技术、图形图像技术、多媒体、软件工程、信息处理、自动控制的多个高新科技领域的知识,是以相似原理、信息技术、系统技术及其应用领域有关的专业为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行实验研究的一门综合性技术。可有效的解决这种多因素、多目标、多层次的系统优化问题。
第三章 仿真技术的发展和应用
第一节 真技术的发展历史及其特点
一、仿真技术的发展历史
系统仿真是建立在系统理论、控制理论、相似理论、数理统计、信息技术和计算机技术等理论基础之上,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助于专家经验知识、统计数据和系统资料对实验结果进行分析研究,做出决策的一门综合性和实验性的学科。
早在几千年前,我们的先人就懂得了系统仿真的基本原理。中国象棋就是用于仿真古代战争的游戏;军事沙盘用来仿真两军对战的战略;建筑中用木模研究实际建筑物的结构与承载性能等。知道20世纪40年代,冯。诺依曼正式提出了系统仿真的概念,随后1952年美国成立了仿真学会,1963年出版了仿真领域最具权威性的学术刊物《SIMULATION》后,系统仿真之间变成了一门独立的学科。
二、仿真技术的特点
系统仿真技术是模型(物理的、数学的或非数学的)的建立、验证和实验运行技术。现代仿真技术的特点可以归纳为以下几点:
(1)、系统仿真技术是一门通用的支撑性的技术。在决策者们面对一些重大的,棘手的问题时, 能以其他方法无法代替的特殊功能, 为其提供关键性的见解和创新的观点
(2)、系统仿真技术学科的发展具有相对的独立性, 同时又与光、机、电、声, 特别是信息等众多专业技术领域的发展互为促进。因此系统仿真技术具有学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候条件和场地空间的限制等独特优点, 这是其他技术无法比拟的。
(3)、系统仿真技术的发展与应用紧密相关。应用需求倩影、系统带技术、技术促系统、系统服务于应用,这是一个辩证的关系。应用需求是推动系统仿真技术发展的原动力, 系统仿真技术应用效益不但与其技术水平的高低有关, 还与应用领域的发展密切相关。大量实例证明, 系统仿真技术的有效应用必须依托于先进的仿真系统, 只有服务于应用的仿真系统向前发展了, 才能带动系统仿真技术的发展。
(4)、系统仿真技术应用正向全系统、系统全生命周期、系统全方位管理发展, 这些都给予仿真技术的发展。
第二节 仿真技术在生产系统中的应用与分类
一、仿真技术的应用
仿真在生产中的应用,主要依赖于生产力发展水平的提高。对简单的生产过程和系统, 以人工操作为主的生产,仿真显示不出其突出的优点。然而,随着生产自动化水平不断提高, 生产系统越来越复杂。生产节奏越来越快,生产管理者对生产改进的每一决策,都需谨慎考虑。措施不当,往往需付出高昂的代价。而正是由于系统的复杂性、快节奏和柔性,要想预测每一种决策给系统带来的后果。已是人的大脑无法胜任的了。仿真技术正是弥补了这一不足,成为现代生产系统的有用工具,成为生产管理人员的得力助手。仿真在制造业中的应用,主要有以下几方面:
1.生产系统的规划设计
在一个新的生产系统建立时,往往要对该生产系统的方案设计进行评价。除了其它的系统设计与评价方法外,仿真是最常用的一种方法。对新系统建立模型,动态运行此模型,从而找到系统方案存在的问题。多次修改参数与运行,可以寻求一个较优的设计方案。
2.物料的管理
复杂、快节奏的生产系统。物料的管理往往是十分复杂的。不同的物料管理策略,会产生不同的效果。策略得当,可以保证生产系统均衡的生产,保证物料适时、适量的供应。反之,会造成生产物流的失调,或出现积压浪费,或出现供料不足。通过物料管理策略仿真, 可以确定出最恰当的物料管理方案。
3.生产系统的协调
多工序、多设备的复杂生产线。各加工工序生产节奏一般是不协调的。这种不协调会严重影响生产系统整体效率。协调各工序的生产节拍,充分发挥所有生产设备和人力资源的潜力, 力求系统生产的总体高效率,是生产中最常见的难题。仿真可以帮助人们迅速 找到生产的瓶颈,通过采取相应措旖,消除瓶颈,协调生产。
4.生产计划摸拟
企业、公司在制订计划时,为了预测计划下达后的效果,一般都采用定量分析的方法,通过分析来评价计划的合理性。仿真是定量分析方法中应用最广泛的。
5.生产成本分析
仿真可以模拟生产的动态过程。如果将成本作为一个基本变量,生产过程的模拟可以得到生产成本的统计性能。改变参数,多次仿真可以寻求降低成本提高生产率的较优方案。
生产线作为生产系统的重要组成部分,仿真技术在其中的应用同样十分广阔,从原料管理,工具管理,生产设备规划,控制生产吞吐等。
二、仿真技术的分类
系统仿真可以有很多种分类方法。
①.按模型的类型可以分为连续系统仿真、离散事件系统仿真、连续/离散混合系统仿真和定性系统仿真;
②.按仿真的实现方法和手段及模型的种类,可以分为物理仿真和数学仿真;
③.根据人和设备的真实程度,可以分为实况仿真、虚拟仿真和构造仿真等;
连续系统仿真和离散时间系统仿真是根据系统状态变化的不同而进行分类的。连续系统仿真是指系统状态随时间连续变化的系统的方针;离散事件系统仿真则是指系统状态值在一些时间点上发生变化的系统的方针。在系统仿真技术的发展历史中,连续系统仿真较早得到发展和成熟的应用。最为成熟的领域包括自动控制,电力系统,宇航,航空等。离散事件系统仿真是随着管理科学的不断发展和先进制造系统的发展而逐渐被重视和发展起来的。目前,在交通运输管理,诚实规划设计,库存控制,制造物流等领域都开展了离散事件系统仿真的理论和应用研究。
物理仿真是建立系统的物理模型。最早的仿真起源于物理仿真,例如航空飞行用空洞实验研究气流对飞机飞行的影响。数字仿真则是通过建立系统的数学模型进行研究。数学仿真又分为模拟仿真和数字仿真。数字仿真就是建立系统的数字模型。由于数字仿真依赖于计算机,并需要处理大量数据,要求能快速计算,因此数字仿真是随着计算机的发展而形成和不断成熟起来的。随着计算机的发展,数字仿真的研究和应用在系统仿真中占有越来越大的比重。
国外工业发达国家系统仿真技术的应用非常普遍。20世纪90年代初,美国提出了22项国家关键技术,系统仿真技术被列为16项;美国国防部提出了21项国防关键技术,系统仿真技术被列为第6项。美国已经严格规定所有重要的武器研究,必须进行仿真实验后才可投入正式生产和使用。
根据20世纪80年代末的统计,比人企业运用系统工程解决管理和决策问题时,采用系统仿真方法的已经超过80%。英国制造业也普遍采用系统仿真方法解决无聊控制、人力配置、调度评估、投资策略以及均衡生产等问题。根据国外应用统计,运用系统仿真油画系统设计规划可减少投资约30%,在库存控制方面科减少库存约15%。
第三节 物流相关仿真软件介绍
一、AutoMod
AutoMod仿真软件是由美国Brooks Automation公司出品,目前最新版本是11.2。 其研发基地位于犹他州的盐湖城,于上世纪80年代开始研发,目前已成为国际上产品较成熟、应用较广泛的仿真软件之一。 AutoMod的应用覆及汽车、家电、造船、化工、烟草、图书等制造业领域,军事、核工业等国防领域,以及邮政通信、港口、航空、仓储、配送、物料操作等物流及其他服务行业和领域。AutoMod是一款比较成熟的离散事件系统仿真软件,可完成对制造系统、仓储系统、物料处理、企业内部物流、港口、车站、空港、配送中心,以及控制系统等的仿真分析、评价和优化设计等。
二、Arena
Arena是美国System Modeling公司于1993年开始就基于仿真语言SIMAN
及可视化环境CINEMA研制开发的可视化交互级城市商业化仿真软件,为不同需求的用户开发有多种产品类型。
作为通用的可视化仿真环境,Arena的应用范围十分广泛,集合覆盖了可视化仿真的所有领域。在物流领域,Arena的应用涉及从供应商到客户的整个供应链,包括供应商管理、库存管理、制造过程、分销物流、商务过程以及客户服务等。在制造过程仿真应用中,Arena常用来进行四个方面的仿真分析:①生产过程中的工艺过程计划、设备布置等;②生产管理中的生产计划、库存管理(如库存规划、库存控制机制)等;③制造过程的经济性、风险性分析,降低成本或辅助企业投资决策等;④各种先进制造模式如虚拟组织与敏捷供应链管理的可视化仿真等。
三、Extend
Extend系统仿真软件是由美国Imagine That公司开发的通用仿真平台。Extend目前有连续、离散、工业和套装四个版本的商业产品。Extend提供了自成一体的集成环境,为不同层次的用户提供了多种工具,并且Extend的模块可以很容易地搭建并组合在一起,大大方便了建模。Extend在众多行业得到企业、学校和政府的广泛认可。其应用领域包括通讯、制造、服务、卫生、物流和军事等行业。
Extend提供了输入建模、运行仿真模型、数据分析等基本功能。Extend提供了模块化的建模功能,用户可以采用软件提供的基本模块,或者自己建立的模块搭建模型。此外,Extend包含了以个基于消息传递的仿真引擎,提供迅速的模型运行机制和灵活建模机制。Extend采用2D的建模与仿真显示功能,建立的模型和方针运行都显示二维的画面。Extend的方针运行支持及时的参数修改,能够及时看到修改参数后的运行情况。Extend也停工了专门的StatFit数据你和功能,辅助用户进行各种类型的输入数据的处理和分析。
四、Flexsim
Flexsim是一款通用离散仿真软件,被用来对若干不同行业不同系统进行建模和仿真。据粗略估计,大约500个Fortune企业中的一般为Flexsim的客户,包括General Mills, Daimler Chrysler, FedEx等一些著名企业。
Flexsim是一套系统仿真模型设计、制作与分析工具软件。它集计算机三维图像处理技术、仿真技术、人工智能技术、数据处理技术为一体,专门面向制造、物流等领域。运用Flexsim系列仿真软件,可在计算机内建立研究对象的系统三位模型,然后对模型进行各种系统分析和工程验证,最终获得优化设计或改造方案。
Flexsim是新一代离散时间系统仿真的有效工具。面向对象的建模方式使得建模过程更为快捷,只需通过图形的拖动和必要的附加程序就可以快速的建立起系统的模型。软件提供了丰富的物理单元,如处理器、操作员、堆垛机、货架等,大大方便了用户的建模。所建立的物理仿真模 型可以用三维动画方式表现出来。
目前,Flexsim软件已经在物流及生产制造领域里成功的进行了多种系统的建模与仿真分析,如配送中心的拣选仿真、仓储出入库仿真、产品库分拣仿真、生产物流系统仿真、高速公路交通仿真、集装箱码头仿真、机场仿真、城市应急系统仿真等。
以下是运用Flexsim成功解决的一些问题:
• 提高设备的利用率
• 减小等待时间和排队长度
• 有效分配资源
• 消除缺货问题
• 把故障的负面影响减至最低
• 把废弃物的负面影响减至最低
• 研究可替换的投资概念
• 决定零件经过的时间
• 研究降低成本计划
• 建立最优批量和工件排序
• 解决物料发送问题
• 研究设备预置时间和改换工具的影响
• 优化货物和服务的优先次序与分派逻辑
• 在系统全部行为和相关作业中训练操作人员
• 展示新的工具设计和性能
• 管理日常运作决策
Flexsim采用面向对象技术,并具有3D显示功能。建模快捷方便和显示能力强是Flexsim仿真软件的重要特点。该软件提供了原始数据拟合、输入建模、图形化的模型构建、虚拟现实显示、运行模型进行仿真实验、对结果进行优化、生成3D动画影像文件等的功能,也提供了与其他工具软件的方便接口。第四章 生产线仿真建模
第一节 生产线仿真的基本过程
生产线仿真的基本流程如图4-1:
图4-1 生产线仿真基本流程
一、明确仿真目的
建立生产线仿真首先要明确仿真的目的,这样才能避免对仿真过程中不必要细节的纠缠,突出问题的重点。
二、收集数据
数据收集包括收集与系统输入输出有关的数据以及反应系统各部分之间关系的数据:包括各个生产线的相互关系、生产时间、准备时间、加工零件路径关系等。这是保证以后Flexsim生产线模型能真正反映真实生产线模型的必要条件。
三、建立系统的物理模型
由Flexsim 中提供的各类资源来模拟生产线设备及产品。
四、建立系统的逻辑模型
通过connect 属性连接各实体, 以及对各实体参数的设置及编程, 实现一定产品加工顺序及不同品种的生产顺序。
五、模型确认
确认是确定模型是否正确代表实际系统,把模型及其特性与现实的系统及其特性比较的全过程。对模型的确认工作往往是通过对模型的矫正来完成,比较模型和实际系统的特性是一个迭代的过程。这个过程重复进行直到认为模型准确为止。
六、仿真模型运行
仿真运行就是将系统的仿真模型放在计算机上运行。在运行过程中了解模型对各种不同的输入数据以及不同的仿真机制输出响应的情况。
七、模型运行结果分析
对仿真结果分析是确定仿真实验中所获得的数据是否合理和充分,是否满足系统的目标要求,同时将仿真结果整理成报告,确定比较系统不同方案的准则、实验结果、数据的评价标准和问题可能的解,为系统方案的最终决策提供辅助支持。
第二节 模型介绍
一、圣奥沙发流水线简介
本模型以圣奥集团有限公司旗下的沙发流水线为实体模型。圣奥现有各类沙发共33款,其中6款为外购产品,25款为自行研发生产,淘汰2款。主要产品类别有: 厚重、气派沙发系列;高层主管(皮质) 稳重、时尚、简约沙发系列;各阶层(皮质及仿皮)贵宾、休闲沙发系列:访客、会客(布艺及皮质)。
二、沙发制造部工艺流程图
图4-2 沙发制造工艺流程图
该生产线的流程为图4-2所示。主要步骤有来料检验、材料入库、开料、钉架、打带、裁绵、裁剪、车缝、喷胶贴绵、成型安装、包装。而开料、钉架和打带是对板材进行处理的。裁绵和车缝是对皮料进行处理的。而各流程的先后顺序以及组合方式就如图4-2所示。
三、模型实体
表4-1 模型实体介绍
模型元素 系统元素 备注
Flowitem 原料 默认生成原料
Processor
机器 进行不同的参数定义以表征不同机器组中的机器
Queue 暂存区 暂时存放货物的区域
Conveyor 传送带 用来传送被加工对象
Source 原材料库 原材料的始发处
Sink 成品库 原料加工后的最终去向
(一)加工工艺及设备:
开料------根据产品、设计、工艺技术要求画板、用开料锯、带锯将板材锯成所需求规格形状(数量、品质),机械设备及工具:带锯机、推台锯、横截锯、压刨机。
开绵------根据设计技术、样板要求,用电剪将海绵简称所需求规格的产品部件,机械设备及工具:电剪
裁剪------根据技术设计要求,用裁剪工具将皮料和面料裁成所需规格的产品部件,机械设备及工具:电剪,剪刀
车缝------根据设计技术要求,对各型号的产品进行缝合,机械设备及工具:缝纫机、锁边机、双针机
钉架------根据工艺技术要求,对已开好的料进行拼接,机械设备及工具:马钉枪、直钉枪
贴绵------根据设计技术要求,对已钉好的沙发架加贴海绵、造型
成型------对已贴好绵的沙发进行们皮和组装,对沙发进行初步的成型
安装------根据工艺要求对需要组装的产品进行安装固定以达到工艺要求
包装------根据工艺要求对检验合格的产品进行包装以达到工艺需求。
(二)模型假定:
由于工序较多,所以我将生产线中对板材的操作步骤(开料-钉架-打带)合并为一个过程,简称为板材操作,假定存在一板材处理器,能完成此三个程序。同理,将对皮料进行操作的步骤(剪裁-车缝)合并为一个过程,简称为皮料处理器。由于贴绵过程只有一道,所以就不需要合并。此外,圣奥沙发生产流水线上是一个流程一个人负责的。所以因为我把对板材的处理合并为一个流程,所以设定有1个操作员操作该流程。同理可得,裁绵区1人操作,皮料处理区1人操作。综上,整条沙发生产线所需的操作员共有6人。
表4-2 车间生产线机器与操作人员明细表
机器名称 数量 操作人员数
板材处理器 1 1
裁绵器 1 1
皮料处理器 1 1
喷胶器 1 1
成型安装器 1 1
包装器 1 1
沙发生产线首先从原料仓库取材料。由于生产线流程中有来料检验这一步骤,我假设原材料的产品合格率为99%,即只有1%的产品,由发生器随机发送。而与发生器连接的第一个暂存区是存放合格品的,第二个暂存区是存放不合格品的,进入生产线的原材料是由第一个暂存区发出的,因此就不存在有出现有次品进入生产线的问题。板材处理的总时间为各步骤的总和(即开料时间+钉架时间+打带时间)为702s。裁绵时间为78s,皮料处理时间(即裁剪时间+车缝时间)为367s。当板材和绵料都处理完毕后,以1:1的比例进 行喷胶贴绵操作,该过程处理时间为345s。完成后,与处理完毕的皮料进行成型安装,需要时间380s。最后进行成品包装,需时256s。当上述步骤都完成后,将成品入库。
模型的布局如图4-3:
图4-3 模型布局图
图4-4 模型透视图
(三)运行时间:
假定沙发生产线是一周7天都工作,每天工作时间为24个小时,采用班组轮换制度进行运作。总计一次仿真时间为168小时(7*24=168),即604800s(168*60*60=604800s)。
(四)参数设置:
1.发生器source的参数设置为服从正态分布,均值为50,方差为2。
2.操作器处理时间服从常数分布。
3.除了装载废品的暂存区最大容量为1000,其他暂存区最大容量均为100。
4.由于有来料检验环节,我假定来自原料仓库的材料合格率为99%,所以在发生器的临时实体流分页中的送往端进行设定。如图4-5:
图4-5 发生器参数设置图
5.设定第一台合成器操作之后实体颜色改为黄色,自定义颜色为(R=255,G=255,B=0)。
6.第一台合成器设置:
图4-6 合成器一设置图
图4-7合成器一参数设置图
7.第二台合成器处理过后颜色设置为白色,即(R=255,G=255,B=255)。
图4-8 合成器二参数设置图
第三节 模型运行及其结果
一、仿真模型
由于本文的模型是以一周为一个模型周期的,因此我们用到Flexsim实验控制器的这个功能,实验控制器的参数设定如图4-9:
图4-9 实验控制器设置图
运行中的模型截图4-10。
图4-10 运行中的模型立体图
仿真结束时间为604813.30s。
图4-11 运行中的模型俯视图
该模型场景运行五次之后,观察的最终产量为860。如图4-12:
图4-12 最终产量图
二、仿真结果
(一)板材处理器:
由于在该生产线仿真模型中,我们假设的原料供应是得到充分保证的。如图4-13所示,板材处理器基本上处于满负荷状态,即一直在进行操作。
图4-13 板材处理器状态图
(二)裁绵器:
从图4-14可以看出裁绵器有大量空闲,空闲率超过50%。
图4-14 裁绵器状态图
(三)皮料处理器:
皮料处理器利用率也不高,大部分时间还是处于空闲状态。
图4-15 皮料处理器状态图
(四)喷胶贴绵器:
喷胶贴绵器的工作效率也不高,处理率只有近50%,大部分时间都是在收集。有前面几个操作器的状态可知,由于板材操作器的工作时间过长,导致裁绵器已经工作完成而它还没有操作完成。此外,喷胶贴绵器又是要由板材操作器和裁绵器都工作完后才能将处理过后的材料进行合成,所以它大部分时间都在等待经板材操作器处理过后的材料。
图4-16 喷胶贴绵器状态图
(五)成型安装器:
成型安装器的状态和上一个喷胶贴绵器状态相差不多,原因也相似。由于皮料处理器工作时间相对不是特别长,且工序只有一道,而喷胶贴绵器以及之前的操作不仅操作时间久,而且工序也有两道,所以成型安装器这里大部分时间都在等待喷胶处理过后的材料。皮料处理过后的材料也得闲置着,等待着进行合并。
图4-17 成型安装器状态图
(六)包装器:
由于成型安装器那里大部分时间都在等待,所以会造成包装器大部分时间都是空闲的,只有等待成型安装器安装完成之后才能进行操作,所以利用率不高,空闲率过高。
图4-18包装器状态图
第四节 结果分析以及模型改造
一、结果分析
由上述状态图可以看出,由于板材操作器的处理时间相对于裁绵器和皮料处理器的时间过长,所以导致同一层次的裁绵器和皮料处理器的空闲时间太大,操作率不高。而且,由于板材操作器的处理时间过长,导致喷胶贴绵器的大部分时间都在等待它操作完成。连锁反应,最后的成型安装器大部分时间久在等喷胶贴绵器操作结束。这样以来,最后的包装器大多时间都是空闲的。只有前一步骤的成型包装器完成了之后它才运作。
因此,这条生产线的生产瓶颈就在板材操作器那里。由于生产时间过长,导致整条生产线的利用率不高。其他操作器空闲率过大,利用率很低,而且合成器的大部分时间都是在等待。因此,本文的模型改造主要对板材操作器进行改造的。
下图就可以看出裁绵器后的暂存区十分拥堵。
图4-19运行中的模型图
二、模型改造
针对上述的结果分析,本文对模型进行以下改造:
(一)由于板材操作器是生产瓶颈,所以在模型中增加一台同类型操作器。此外进行技术革新,使其操作时间简短,改造后每台机器的操作时间为300s。
(二)在皮料处理器之后使用一跳传送带,并设定速度为1m/s。这样就使得皮料处理完成之后不会马上拥堵到暂存区。
模型改造后的立体图如下:
图4-20改造后的模型立体图
改造后的模型运行中的图:
图4-21改造后的模型运行图
模型运行结果中各操作器的状态:
板材操作器1:
图4-22改造后的板材操作器一的状态图
板材操作器2:
图4-23改造后的板材操作器二的状态图
裁棉器:
图4-24改造后的裁绵作器的状态图
皮料处理器:
图4-25改造后的皮料器的状态图
喷胶贴绵器器:
图4-26改造后的合成器一的状态图
成型安装器:
图4-27改造后的合成器二的状态图
包装器:
图4-28改造后的包装器的状态图
最终产量:
图4-29改造后的最终产量图
三、 模型改进后的分析
从上面的状态图中可以发现,各操作器的操作率有明显提高,并且最终产量提高了将近一倍。原先一次仿真结果产量为860。增加一台板材处理器之后仿真后的产量为1586,产量增加了84.4%。这个结果十分理想。因此,在设备和人员方面增加投入,换来产量的飞速增长是很值得的。
改造前后的产量比较:
图4-30改造前的最终产量图
图4-31改造后的最终产量图
第五章 结论与展望
通过对中国圣奥有限公司的沙发制造车间的生产线调查,运用Flexsim软件进行该生产线的模拟仿真,并设置参数,从最终的仿真结果中发现该生产线的不足。如板材处理器的生产瓶颈,经过仔细分析,最终在板材处理该环节上提高其生产能力,即增加一台板材处理器,分担部分原材料,并且进行技术革新,使得单板材处理环节的处理时间有所剪断。改造后的模型运行结果十分理想,不仅各个操作器的忙闲率有所提高,处理率增加了,空闲率降低了,最明显的改进结果就是其最终产量,由原先的860增加到1586,将近增加了一倍,表明使用仿真软件能够用方便的找出瓶颈,并且可以明显的对比改造前后的结果。
实体制造企业的生产线是一个十分复杂的系统,其决 策变量十分多,并且一般不是单一目标的系统,而是个多目标的系统。此外,会有很多不定性因素,所以单纯的数学方法很难对其进行准确分析并且找出不足。因而对生产线的建模和仿真是必不可少的。Flexsim的特点就是三位可视化效果好,操作也比较简便,实体类型丰富,数据选择也比较齐全,对于生产线仿真十分适合。
【参考文献】
[1]王雪兰,常治斌,唐秋华,朱传军,基于Flexsim的混流生产线生产顺序仿真[J].湖北汽车工业学院学报.2007-12,21(4):50-52
[2]林鑫,基于Flexsim的混合生产线投产方案的研究[J].湖北工业大学学报.2008-6,23 (3):70-72
[3]邓子琼,李小宁,何沛仁,等. 柔性制造系统建模及仿真[M].北京:国防工业出版社,1993 :12 - 17.
[4]赵建辉, 王. 基于Flexsim 的混流装配线投产顺序的仿真[J].微计算机信息, 2007, 23( 8- 3) : 29- 31.
[5]张卫德, 洪森, 徐成. 基于Flexsim 的生产线仿真和应用[J].工业控制计算机, 2005, 18( 9) : 46- 47.
[6]李晓雪. 基于Flexsim 的生产线的建模与仿真[J].机械工程师, 2007, ( 6) : 90- 91.
[7]程光,邬洪迈,陈永刚. 工业工程与系统仿真[M].北京:冶金工业出版社,2007 :200.
[8]刘晓萍,刘玉坤,石伟. 物流系统仿真原理与应用[M].北京:中国物资出版社,2005:
90 - 91.
[9]袁军,罗亚波.基于Flexsim的工艺流程仿真和优化[J].湖北工业大学报.2007-6.22(3):81-82
[10]石伟,郑晓海. 物流配送中心的系统仿真[J].权威论坛,2006(12):86 - 87.
[11]张汉江,肖伟.辅助自动化立体仓库设计的可视化物流仿真[J].系统工程, 2006 (3) :15 - 17.
[12]刘利军,阮建敏.基于仿真的自动化立体仓库运行效率研究[J].煤矿机械,2006 (10) :66 - 68.
[13]张硗萍。仿真技术及其在生产中的应用 [J]。计算机辅助设计和制造。1995
[14]孙小明.生产系统建模与仿真[M].上海:上海交通大学出版社.2006.
[15]熊光楞,等.仿真技术在制造业中的应用和发展[J].系统仿真报,1999,(6):145—151.
[16]贾启君,王凤岐,郭伟.生产系统的计算机仿真研究[J].计算机仿真,2003,20(10):111—113.
[17]汪应洛,系统工程理论、方法与应用[M]。高等教育出版社。1992。
[19]张晓亭.仿真技术及其在生产中的应用[J].天津大学学报,1997,30(2):193—198.
[20]张晓萍,刘玉坤。Flexsim 3。0 实用教程[M]。清华大学出版社,2006。
[21]David A。 Tremblay。Using Simulation Technology to Improve Profitability In the Polymer Industry[J]。 Aspen Technology Inc。Ten Canal Park Cambridge MA, 02141-2201
[22]Szykman S,Cagan J.A simulated annealing approach to three•
dimensional component packing[J].ASME Journal of Mechincal Design,1995,117(2):308—279.
.北京:清华大学出版社,2005.
致 谢
本学位论文是在我的导师曹玉华老师的亲切关怀和悉心指导下完成的。无论是从课题的选择到论文的完成,都包含了曹老师的细心的指导和不懈的支持。完成论文所需的Flexsim软件正是通过曹老师的帮助才得以使用,对于完成论文中实证部分起到了至关重要的作用。在论文的完成过程中,曹老师给予了我很多的指导,并指正了我在论文写作过程的错误;在论文完成后,曹老师又帮助我查找了论文中出现的错误。在这里谨向曹老师致以最真诚的谢意和崇高的敬意。
关键词:HLA,RTI,流程模拟
一、流程模拟系统
随着计算机、仿真技术的不断发展, 计算机模拟方法已成为进行系统研究时与理论和实验并列的一种主要的方法。在电力、化工等行业,仿真系统已作为必备的基础条件,应用广泛、成熟。在我国,仿真技术在冶金工业方面的应用尚属起步阶段。
钢铁生产作为一种典型的混合流程,复杂的物理、化学过程交织,各种突变和不确定性因素繁多,原料、半成品和成品之间温度、化学成分及物理形态在各工序都截然不同;冶金设备庞大、种类复杂;冶金流程可直接利用的信息和知识有限。由于以上原因,用真实的系统研究冶金流程,费时费钱,并且很难做到。用计算机仿真技术则可化繁为简,大大节省人力物力。
流程模拟系统提供了研究、分析钢铁企业结构、生产过程,开发相关应用的工具和手段。利用该系统,可验证计划排产的合理性和极限情况,可安全、经济地对现实钢铁厂布局进行设计、分析,可为相关信息系统提供开发调试验证环境,可分析能源、物料的平衡情况等。
流程模拟系统存在的问题。由于钢铁生产过程的复杂性,不同的钢厂及不同的钢种,其生产过程都有很大的差异,并且经常由于技术进步等原因发生设备和工艺方面的变化。面对这样复杂多变的背景,对仿真系统的通用性和可维护性都提出了很高的要求,流程模拟系统需要解决以下一些问题:能够模拟不同钢厂不同钢种的生产过程,即在生产设备已知的前提下生产过程可以组态;对于新出现的生产设备,能够很容易的添加到仿真系统中,它要求系统具有良好的可扩充性;单个设备的生产过程或生产工艺发生改变时,仿真系统的相关改动要局限在该设备的仿真系统本身;能够支持不同类型的仿真实验,即仿真系统在本身可以产生的仿真数据范围内,可以向特定的仿真实验提供特定的数据需求;由于仿真系统涉及大量仿真计算,这些计算最好能够在多台计算机中分散进行,以提高系统的计算性能。这些要求,从仿真或软件结构方面看,对应于寻找一种灵活可靠的系统体系结构。
二、时间管理的实现
时间管理是为了解决分布式仿真系统中时间一致性问题,使得对不同设备的仿真能协调一致的运行。时间是分布式仿真中的核心概念,HLA中的时间管理是使仿真世界中发生的顺序与真实世界中事件发生的顺序一致,保证各成员能以同样的顺序观察到事件的产生,并能协调它们之间相关的活动。
联邦运行时可被视为一组通过RTI来互相传递消息的成员的集合,而成员的运行可视为一系列的“计算”,其中一部分“计算”(比如激活“UpdateAttribute Values”服务)称为事件。成员向RTI发送事件,由RTI将事件传给感兴趣的成员。论文参考网。在理想情况下,模型计算和消息传递引起的时延应等于实际系统中相应的时延,但实际上两者通常是不一致的,这将导致仿真世界的运行以不希望的方式偏离真实的世界,例如因果颠倒。另外,由于网络延迟的不确定性,联邦成员接收消息的顺序也经常不确定,这样将产生另外一个问题:相同的初始状态和外部输入,重复实验产生完全不同的仿真结果。
时间管理的目标就是要减少上述偏差的产生或降低此类偏差带来的不良影响,它的主要任务是使仿真世界中事件发生的顺序与真实世界中事件发生的顺序一致,保证各成员能以同样的顺序观察到事件的产生,并能协调它们之间的相关活动。HLA的时间管理建立在如下的原则之上:联邦不存在通用和全局的时钟。在联邦执行的任何时刻,不同的联邦成员可具有不同的仿真时间。联邦中可以产生“时戳”是“未来”(即事件时戳大于成员当前的逻辑时间)的事件。联邦成员不能产生“过去”(即事件时戳小于成员当前的逻辑时间)的事件。不要求成员以时戳顺序产生事件。例如:一个联邦成员当前的逻辑时间为5,它可以先产生时戳为10的事件,再产生时戳为8的事件,但事件具体发生的顺序一定是先8后10。HLA的时间管理机制。HLA的时间管理机制包括两方面的内容:消息传递机制和时间推进机制,
1.消息传递机制。HLA的消息传递机制包括两方面的内容:一是消息传输方式,二是消息传递顺序。消息传输方式分为“可靠”(Reliable)和“快速”(Best effort)两种,前者保证将消息可靠的传给目的成员,但通常要增加时延;后者以减少时延为目的,通常会降低可靠性。目前HLA支持两种消息传递顺序:接收顺序和“时戳”顺序:第一,接收顺序(Receive Order,RO)。RTI按接收到消息的顺序将消息传递给成员。可以理解为RTI在内部为每个成员建立了一个队列,RTI将要转发给成员的消息按FIFO的方式在队列中排队,每次将队列前面的消息传递给成员。第二,时戳顺序(Time Stamp Order,TSO)。论文参考网。用这种方式,RTI将保证传递到成员的所有消息都是按时戳顺序到达。实现的方式是RTI将接收到的消息存于队列中,直到确信没有时戳更小的消息到达,才将这些消息转发给成员。使用TSO可保证成员不会收到“过去”的消息,以及所有从同一事件集中接收消息的成员能以同样的顺序接收消息。HLA通过为成员定义的时间前瞻量(Lookahead)来判断有无更小时戳的TSO消息到达。HLA中,无论是发送的消息还是接收的消息,其顺序类型只能是时戳顺序或接收顺序中的一种。
2.HLA中的时间推进机制。HLA的时间管理核心在于为所有仿真节点选择一个相同的精确时钟,确保在仿真过程中所发生的事件在逻辑上的正确性,以及所发送的消息在逻辑上的有序性。这也正是并行离散事件仿真PDES(Parallel Discrete Event Simulation)研究的核心问题。PDES提出的解决方法有两种:即保守算法和乐观算法。根据PDES的两种算法,HLA的时间推进机制可分为两类:一类为保守的时间推进机制,另一类为乐观的时间推进机制。
三、时间管理策略的设定
联邦成员的时间策略共有四种状态,即“仅时间控制”、“仅时间受限”、“既时间控制又时间受限”、“既不时间控制又不时间受限”。默认情况下,联邦成员的时间管理策略为“既不时间控制又不时间受限”。
若联邦成员想让自己的时间管理策略变为时间控制的,它需调用enableTimeRegulation函数,该函数的主要操作如下:调用Federation对象上的enableTimeRegulation函数,它返回联邦成员的当前时间;如果返回的时间不为0,设定该联邦成员为时间控制的,同时调用FederateAmbassador的回调函数timeRegulationEnabled。
Federation对象上的enableTimeRegulation函数根据该联邦成员当前的状态设定重设它的时间,该函数的主要操作如下:如果该联邦成员已是时间受限的,将该联邦成员的时间管理策略设为时间控制的,同时将它的时间设为联邦的时间减去该联邦成员的前瞻量,将该联邦成员的时间返回;如果该联邦成员不是时间受限的,将该联邦成员的时间管理策略设为时间控制的,同时计算该联邦成员的请求时间和其前瞻量之和WantTime;将联邦中时间控制的联邦成员计数器加一。论文参考网。
若联邦成员想让自己的时间管理策略设为时间受限的,它需调用enableTimeConstrained函数,该函数的主要操作如下:调用Federation对象上的enableTimeConstrained函数,返回联邦成员时间;若返回的时间不为0,设定该联邦成员为时间受限的,同时调用FederateAmbassador的回调函数timeConstrainedEnabled。
在基于事件的时间推进中,联邦成员要将自己的时间向前推进时,需以要推进到的时间为参数调用NextEventRequest函数,如果成员的TSO事件队列中存在时戳值小于要推进到的时间,那么成员的逻辑时间将推进到其中的最小时戳值处,否则将推进到指定的时间,其过程和基于步长的时间推进一致。
关键词:车辆工程;控制系统;仿真技术;教学改革
中图分类号:G642.4文献标志码:A文章编号:1002-2589(2015)23-0142-02
由于电子控制技术在车辆工程中的应用发展十分迅速[1],车载控制系统已成为车辆工程学科里一个重要的研究方向。现代汽车的电控系统数量一般为几十个,而高档汽车已高达上百个,电控系统控制器的开发对控制系统理论在具体工程中的应用提出了很高的要求。在车辆工程专业教学中,“控制系统与仿真技术”课程作为本科生的培养内容极为必要[2]。通过本课程的学习,使学生掌握控制系统设计的基本思路和方法,培养学生成为具有分析问题和解决问题能力的创新性人才。本文以安徽工程大学车辆工程专业“控制系统与仿真技术”课程改革为例,介绍教学改革实践中的一些体会和有益经验,与同行分享。
一、课程分析
1.课程现状分析
“控制系统与仿真技术”作为车辆工程学科一门专业选修课,是学生走向科研院所或汽车企业应该掌握的一门课程,安排在第三学年的第二学期,总学时为32学时。本课程仅安排4个学时的实验,其中控制系统的MATLAB建模和SIMULINK仿真分别为2个学时。“控制系统与仿真技术”原属于自动化专业的一门专业基础课,教学以理论讲解为主,侧重于数理公式的推导。这种教学无法培养学生的动手能力,不利于学生理解控制系统的理论本质,对于MATLAB软件的一些函数和命令,学生只能依靠死记硬背,降低了学习的积极性,影响教学效果。
“理论力学”和“控制工程基础”等作为前续课程,学生在学习“控制系统与仿真技术”时已掌握了一定的理论知识,但这些知识点对学生来说是相互孤立的,缺乏对知识体系结构的系统性认识,对具体的理论应用不知所措。“控制系统与仿真技术”教学中对理论过多的讲解也会造成教授内容的重复,降低了讲课效率,不能充分发挥学生学习的主动性。教学方法采用单一的任务驱动教学法,在任务训练的后期,任务小组内部容易出现少数学生具有依赖思想,导致抄袭现象经常发生。具体任务主要为传统控制理论的数字仿真分析,对汽车各种电控系统的工程背景基本没有涉及,这不利于学生了解本领域的科技进展,任务训练难以实现应用MATLAB解决实际工程问题。
2.课程定位目标
安徽工程大学车辆工程专业为安徽省首批“卓越工程师教育培养计划”建设专业,“卓越工程师教育培养计划”旨在培养造就一大批创新能力强、适应经济社会发展需要的高质量工程技术人才[3]。在“卓越工程师教育培养计划”引导下,车辆工程专业的培养目标定为:培养德智体全面发展、基础扎实、诚信实干、综合素质高、实践能力强、具有创新精神,从事车辆及其零部件设计、制造、实验研究以及车辆经营管理等领域的高级应用型专门人才。上述培养目标迫使我们必须改革传统的教学方法,积极探索富有活力、促进学生全面发展的新型课堂教学方法,激发学生的内在潜能,培养学生的创新能力和工程能力。
在广泛调研的基础上,制定了车辆工程专业的培养方案,对专业课程进行了调整,新开设了“控制系统与仿真技术”课程。由于车辆工程专业学科交叉明显,机械、电子、液压、控制等课程均有涉及,“控制系统与仿真设计”课程在整个培养体系中的定位如图1所示。由图1可知,在培养体系中,汽车的各种电子控制系统,如电控燃油喷射系统、稳定性控制系统、电控转向系统、车身控制系统、电控悬架系统、巡航控制系统、电控自动变速器和防抱死制动系统等为具体的工程应用。汽车系统动力学、汽车设计、汽车构造、汽车理论、汽车电子、传感器技术和控制工程基础等为基础理论课程。“控制系统与仿真技术”课程作为基础理论到工程应用的桥梁,在整个培养体系中具有重要意义。
二、课程教学改革措施
1.课程内容优化
根据“控制系统与仿真技术”课程的培养目标,对教学内容进行整合优化,将教学内容划分为理论教学与实践教学两部分。理论教学部分主要完成基本知识点的讲解,以汽车中涉及的动力学系统为分析对象,以汽车电子控制系统的设计方法为设计案例,突出课程特色。实践教学是课程学习的重要内容,在内容设置上力求做到理论联系实际,重视工程概念在实际问题中的应用,提高学生的工程意识和工程实践能力。
“控制系统与仿真技术”教材目前主要侧重于MATLAB介绍和控制理论的数字仿真等内容,系统地以车辆为研究对象讲解如何设计控制系统的教学案例非常少,适合于车辆工程专业学生及工程技术人员阅读的教材不多。在本次教学改革实践中,增加了汽车中相关控制系统的设计与应用,以车辆工程专业教师的科研成果为基础,编排了适合车辆工程专业学生阅读的教材,其中以汽车电控转向系统、电机调速控制以及自适应巡航控制系统为主要教学案例,在后续教学中继续增加相应的内容。在教材内容修订上,应尽量避免与其他相关课程知识点的重合。
设计工程项目时需遵循三个原则:融合相关教学内容涉及的知识点,并充分覆盖教学内容;紧跟汽车技术的发展方向,应具有较强的时效性;实施过程中所遇到的问题难度适中,易于激发学生学习的积极性。工程项目分解成实际案例需要与实践教学内容相结合,案例在功能上具有一定的完备性,且各案例之间保持一定的渐进性,逐步引导学生,避免产生抵触情绪。实际案例的筛选应以较为成熟的控制系统或具有代表性的控制方法为案例。实际案例讨论与分析完毕后,根据学生反馈的学习效果,指导学生将实际案例归纳综合成相应的具体任务,将具体任务进一步分解,让每个小组成员都承担一定的具体任务。2.教学方法设计
案例教学法是一种以案例为基础的教学方法,融合相关知识点于实际案例中。案例中设置的问题为一种两难问题,没有某一特定的解决方案[4]。教师在教学中作为设计者和激励者的角色,积极引导学生解决问题,培养学生主动分析和解决问题的能力。项目教学法是以项目为主线、学生为主体、教学为主导的教学方法。学生在教师的指导下负责信息的收集、方案的设计、项目的实施。项目需要小组成员的通力合作完成,这有利于增强学生的团队精神,提高学生的自主创新能力。而任务驱动教学法是以解决问题、完成任务为主的多维互动式的教学方法。学生结合自己的具体任务模块,构建知识体系,有利于激发学生的学习兴趣。
由上述三种教学方法的分析可知,三种方法在发挥学生主观能动性和培养学生创新能力等方面各有所侧重点[5]。在当前实践教学中,上述三种教学方法取得了良好的教学效果,但基本上以一种教学方法为主,过分依赖教学方法中所设计的单一项目、案例或任务,影响了教学效果。为此,建立了一种基于项目案例任务驱动的“控制系统与仿真技术”课程实践教学方法,其教学过程如图2所示。由图2可知,该教学方法结合“控制系统与仿真技术”课程,融合三种教学方法为一体,以工程项目为主导、实际案例为引导,用具体任务驱动学生构建车辆工程学科的知识体系结构。
三、课程教学改革实践
1.课程教学实施
“控制系统与仿真技术”课程具有明显的实践性和综合性的特点,特别注重应用能力的培养,因此课程安排理论教学20学时,实践教学12学时。整个课程安排在第8周至第15周,授课在每周的星期二和星期四进行,每次连续两个课时。实践教学安排3个工程项目,分别安排在第10周、12周和14周。理论教学安排在第8周、9周、11周、13周和15周,授课期间加入实际案例讨论,周四课后安排具体任务。
教师在工程项目的设计上,突出工程背景,结合自己的相关科研成果,加强实践环节的创新性和综合性。本课程的工程项目应用MATLAB软件开展训练,MATLAB是仿真软件中易学、功能强大的一款,成为“控制系统与仿真技术”课程项目训练的首选工具。为加深学生对控制系统、仿真技术的概念,本课程通过让学生参观相关的汽车电控系统,如电控转向系统平台、自适应巡航控制系统模拟器等。在教学手段上,合理使用多媒体课件讲课,为了加强学生对理论知识的理解,还可以穿插些图片、幻灯片等。在教学过程中,注重课外创新活动与课堂实践教学的结合,鼓励学生积极参加一些控制系统设计类的项目和竞赛[6],如大学生创新创业计划项目和飞思卡尔智能汽车竞赛等。
2.课程教学效果
采用文献[7]中的教学效果综合评价模型对教改的教学效果进行实证研究。评价指标为个人兴趣K1、职业发展K2、能力培养K3、教学效率K4、学习方法K5、行业经验K6和适应能力K7。个人兴趣为教学方法对激发学生学习兴趣、求知欲,调动学生积极性的评价。职业发展为教学方法对增进学生团队合作与沟通,对学生职业发展的导向性及学生是否提出新观点的评价。能力培养为教学方法对培养学生分析问题、解决问题,以及创造能力的评价。教学效率为学生掌握相关专业知识和考核指标的科学性与合理性的评价。学习方法为学生在课堂上对“控制系统与仿真技术”课程学习方法的掌握程度的评价。行业经验为教学方法对学生获得实务与行业经验的评价。适应能力为教学方法培养学生满足社会人才需求适合程度的评价。教学效果综合评价模型中评价指标的权重表如表1所示。
传统教学和实施教改后的教学效果评价指标如图3所示。由图3可知,7个评价指标在实施教改后均有不同程度的提高,其中行业经验提高最快,增幅为21.7%。综合评价值由2.4662提高为2.8994,这说明教改的实施提高了学生学习的自觉性,提高了发现问题、分析问题、解决问题的能力,激发了创新意识,调动了学生获取知识的积极性和主动性,从而为学生撰写毕业论文以及毕业后走上工作岗位运用仿真技术打下了坚实的基础。
论文摘 要:实验室担负着向学生传播知识与技术、培养学生动手的能力和创新能力的重要使命。随着社会经济的发展及教学改革地不断深入, 实验教学在整个教学体系中的地位越来越突出,实验教学模式的改革已经迫在眉睫。本文主要分析了实验教学的传统模式与存在的问题,并提出了提高电子信息类专业实验教学质量的方法[1]。
0 引 言
实验教学是学校教学活动的重要组成,教学质量的好坏是对学校人才培养层次与质量的直接体现。实验作为实验教学活动的主要内容, 在改善教学质量方面发挥着不可替代的作用。实验室在传播知识的同时,更重要的作用体现在对学生的创造性思维与想象力的培养上。通过实验教学,学生分析解决问题以及动手能力明显提高。伴随教学改革的日益深入, 实验教学的改革也越来越引起人们的关注,以往的教师灌输式的理论教授方式,学生被动接受的教学模式,已无法满足社会经济发展的要求。当前,社会需要的是主动型、能力为主的人才培养。加强学生创新能力的培养,必须切实转变以往重理论教学轻实验教学的错误观念,重新认识实验教学在学校教学活动中的地位与作用,根据当前社会经济对人才的要求, 改革传统的实验教学模式,改革实验教学手段,优化更新实验教学的内容,切实提高实验教学质量。
1 实验教学的传统模式与存在的问题
国内高校工科教育当中,实验教学存在着硬件条件不足、硬件实验条件的发展与技术要求不相符[2],加上近几年高校扩招,实验教学的硬件条件更是供不应求。进一步加大对教学硬件条件的投入,丰富实践教学的内容、加强实验条件的改革及建设,在目看来具有特殊的重要性。面对这种情况,我国的教育主管部门采取了一些推进实践教学改革及建设的措施。如:在全国高校本科的教学水平评估中,实验室基地建设与建设投资及其实验教学改革被列为一项重要的指标。并且,各高校也逐渐开始响应教育部的的这一举动,纷纷实行了“双基”型实验室[2],与此同时,建设了“实验教学示范中心”。当前,传统实验教学模式的缺点主要有以下几点:验证性的实验所占比例较大,与综合性、设计性、创新性实验之间的比例失调;实验模式单一、实验室设备陈旧;实验教学中缺乏先进的实验教学手段。
2 提高电子信息类专业实验教学质量的方法
2.1 实验中引入相应的仿真技术来进行虚拟实验
在实验教学中引入计算机仿真技术,能够充分调动学生主动学习的积极性,培养学生的学习兴趣。同时,教师能够通过计算机技术对学生的实验操作的全过程进行观察,对学生进行良好的跟踪与指导,更好地进行学生实验结果的采集工作,先进科学的教学理念与教学手段对于提升实验教学效果,提高实验教学水平具有重要作用。引入计算机技术后,理论与实验教学,教师教学指导与学生操作、思考融合成一个有机整体。以往传统实验教学中课堂、课时以及实验设备因素的限制作用得到了解决,实验教学更加灵活化,教学内容在时空上得到进一步的延伸,更好地激发了学生进行实验的热情。
将计算机仿真技术引入到实验教学中,通过相应技术进行的虚拟实验,为学生提供了更为灵活开放的实验环境,能够更好地培养学生在实验过程中独立思考能力,增强学生的的学习创新意识。对于实验教学内容,仿真技术的应用,将虚拟性实验与真实的电路实验整合成有机整体,实验的能动性与趣味性明显提高,同时实验内容的充实,有利于学生综合实践以及探索创新能力的培养。当前,已经有越来越多的高校重新进行了实验室的规划建设,通过计算机仿真技术进行虚拟实验是实验教学改革发展的新方向。将与实验教学相关的计算机软件技术引入到高校实验室中,为实验科研提供了良好的平台,对于激发学生学习的主动性与积极性,培养创新能力具有重要作用。计算机仿真技术的应用,一方面能够改善实验教学条件、充实实验教学的内容,另一方面,还能够明显降低实验成本,提高实验教学的效率。通过单片机的实验教学,能够发现,教学过程中引入proteus仿真软,通过该软件对单片机的硬件系统进行模拟,克服了实际实验过程中硬件电路固定以及实验内容不易改动等因素的限制。实验设计全过程,除计算机外不用再进行任何硬件的添加即可实验,这有力地推动了实验课程教学改革,更有利于学生创新能力的培养。仿真技术的另一重要应用主要表现在学生的业余爱好上,如挑战杯、电子设计大赛等等,学生就能够用计算机来实现仿真,首先用计算机仿真出实验的模型,再在计算机上进行相应的模拟调试,最终用硬件来实现。在整个仿真的过程中,学生可以自由发挥自己的潜能,通过大量的仿真对比,来达到设计目的,也可大胆反复地调试,避免了器件的损坏。电子设计竞赛中,由于proteus开发环的运用,培训过程中不需投入任何硬件的条件下,学生却普遍反映,对于单片机的学习比单纯理论知识的学习更易接受也更易得到提高。事实证明,运用proteus进行系统仿真成功后进行的实际制作,可明显的提高单片机系统的设计效率。此外,远程教学中仿真教学的运用具体重要的意义,对于教学改革是一种很好的尝试[2]。
2.2 实验中引入matlab软件内建的simulink组件技术
目前,我国开设了电子信息类专业的高校中,大部分都将matlab软件作为重要的实验教学平台,对定理以及算法进行仿真和验证实验。simulink组件作为matlab的重要组成,能够为用户提供一个仿真分析与动态建模的集成系统环境。该环境下,只需利用鼠标进行简单直观的操作,就能够完成复杂系统模型的构建,在此过程中避免了大量繁杂的书写程序。由于 simulink组件具有适应性强、效率高,结构仿真精细、流程清晰且贴近实际、效率高、使用灵活等诸多优点,simulink组件技术已经被广泛地运用于处理数字信号与控制理论等复杂的仿真设计之中。同时simulink能够通过连续、离散采样时间以及两种采样时间混合的的方式进行建模,该组件还可支持多速率系统,不同的系统组成部分的采样速率不同。此外,simulink为动态系统模型的创建,提供的图形用户接口(gui) ,使在进行模型方块图的创建时只需通过鼠标单击与拖动鼠等简单操作即可完成,为用户提供了一种更便捷、更直接的创建方式,同时能够立即获得系统仿真结果。
该组件的这一特性,一方面可以使算法的验证更为简单,减少学生投入在验证性实验中所用的时间,而将大部分精力投入到设计性、综合性试验中;另一方面,可以使学生更快捷的验证新思路、新算法,而不会由于代码调试方面的问题影响了创新实验的开展。以自适应滤波中的经典rls 算法为例,如果直接采用matlab编程方式,在进行代码调试时,就会消耗掉大量的精力,代码长度将达到200 行以上。而如果采用simulink组件模块化设计的思想,只需要鼠标对模型的拖拽,就能以流程图的形式将滤波器搭建起来。由于simulink提供了丰富的元件库,采用图形化的表示方法,学生在进行算法验证的时候只需调用成熟的模块进行参数设计即可。这样的实验方法事半功倍,思路清晰,参数的调整也十分便捷,广受学生欢迎。由此可见,引入simulink组件后的实验,既不会影响实验效果,又能够提高实验效率,对学生模块化编程的思想也有较好的促进作用。
3 结 语
当前,社会对人才综合素质的要求不断提高,进行实验教学改革已经迫在眉睫,而大学实验教学的改革又直接影响到学生的动手和创新能力。实验教学必须能够跟得上时代的脚步,把计算机仿真技术与simulink组件技术应用到实验教学中可以充分调动学生主动学习的积极性,充分发掘学生的创造能力,在学习到先进技术的同时,提高学生对社会的适应能力。
参考文献
根据高职医学影像技术专业电工电子技术课程教学中存在的问题,针对高职生特点,从教学内容选取,教学方法、教学手段、考核方法改革等方面进行分析、总结。
关键词:
高职;医学影像技术专业;电工电子技术
电工电子技术是医学影像技术专业一门重要的专业基础课程,理论性和实践性都非常强。本文针对医学影像技术专业高职生专业和职业能力需求,根据高职生特点,以实践、应用为主线浅谈其教学改革。
1存在问题
1.1理论与实践脱节
传统教学中理论教学与实践教学是分开的,且过分追求教学内容的系统性与完整性,忽视了电工电子技术作为应用学科的实用价值,学生缺乏明确的学习目标,难以理解课程目的和意义,影响了教学质量提高和应用型、技能型人才培养。
1.2教学方法陈旧
教学基本上采用“教师讲,学生听”的灌输式方法,有些教师对新的教学方法和手段不熟悉、不适应,课堂上讲得过多、过细,缺乏新意,没有留出足够的时间供学生思考回味。此外,课后作业过多也使学生无暇思考,导致其始终处于被动状态,无法产生学习兴趣和热情。
1.3考核方式单一,内容片面
电工电子技术课程考核采用闭卷笔试方式,主要考查学生理论知识掌握情况。这样既不利于学生对知识的全面掌握,又不符合高职生学习特点。
2改进措施
2.1课程整合和优化
打破学科体系,改革课程设置,实施课程内容的简约、集成与重组,体现高职教育特色。以实际应用能力培养为主线,精简教学内容,去除理论推导、证明、验证内容,注重技术重现和技术实现。实现做中学,弱化过深、偏难的理论,突出知识的实际应用。以适用、实用为原则,优化知识技能结构,形成与职业岗位需要相一致的教学内容。从职业岗位需要出发,将课程知识与技能有机结合起来,增加实用性和针对性,删去与今后工作关系不大的内容。例如,很多教材大篇幅讲解二极管如何形成单向导电性、三极管内部载流子的传输情况,然而在实践中,只有专门从事研究的人员才可能用到这些原理,对于高职生而言,教学重点应该放在二极管、三极管的作用,如何判断二极管正负极,三极管的标号及管脚判别鉴定,如何通过参数来选择二极管、三极管的型号等内容上。对电子电路应强化集成电路方面内容(特别是集成电路的应用),而难度较大、求解过程复杂的例题、习题应予以删减。
2.2加强与专业课程的对接
电工电子技术是专业基础课,一般在大一第一学期开设。此时,学生对专业还不够了解,授课内容既要注意与各学科专业基础知识的衔接,又要兼顾同后续课程的联系。教学内容应满足各层次学生对课程深度和广度的要求。
2.3课堂教学方法灵活多样
高职生基础相对薄弱,教师应根据学生实际水平,对基础知识、基本内容和重点内容精心组织,运用多种教学方法,如比喻法、类比法、启发质疑法、讲练法、实验演示法,使学生克服厌学心理,树立自信心,提高学习兴趣。对于理论性较强的内容,教师要耐心讲解,引入各种案例,多讲多练,反复强化,务必使学生掌握。
2.4充分利用现代科技,丰富教学手段
抽象的电工原理讲解起来容易使学生觉得枯燥乏味且生涩难懂,如电容的充放电等,若合理巧妙地使用辅助教具,往往能收到事半功倍的效果。教师可以通过教学录像、实物模型、幻灯片、投影以及生动详尽、图文并茂的教学课件,激发学生学习兴趣,开阔学生视野,进一步强化对基础理论的掌握。为了适应目前既要减少教学时数又要增加课堂信息量的教学改革形势,培养学生学习主动性,提高自学能力,充分利用网络资源是有效可行的方法之一。在理论教学中引入仿真技术来提升教学质量,使理论得以验证。比如,对于一些较抽象的内容,教师用语言不易描述,学生也难以理解,还有许多概念需要通过实验阐述和验证。在讲授需要实验演示的电路时,可利用事先建立的仿真电路文件进行现场演示,不但提高了教学效率,而且降低了教学难度。实验教学中引入仿真技术,具有3个优点:(1)实验信号存在时间过短,用常规仪器往往很难观察到,借助仿真技术可以方便观察;(2)将实验任务布置给学生,让学生先进行理论设计,然后按照设计要求进行计算机仿真设计,再到实验室按照仿真电路装配实际电路进行测量;(3)进行虚拟仿真实验,根据教学内容和专业要求,联系生产实际提出简单的设计题目,让学生进行理论设计,然后在计算机上完成仿真实验,检验和完善自己的设计。
2.5理论教学与实践教学相结合
电工电子技术是一门基础学科,也是一门应用学科,学生不仅要掌握必要的理论知识,还要把这些理论灵活应用于实践。但是,学生到企业实践的机会很少,无法了解具体工作流程。为此,教学中,每章都从最基本的应用实例出发,由实际问题入手引入相关知识和理论,由实训引出相关概念。首先,教师提出学习内容、目的、要求及注意事项,学生自主学习,再通过自己动手来加深对所学知识的理解,同时训练相关技能。这种在教师指导下,感性认识与理性认识的交互,对学生自主学习能力的培养起到了促进作用。教学所选实训项目应与医学影像技术专业相关,这样会极大地激发学生学习兴趣。此外,实践教学场所应按照职业环境来布置,突出职业特点。同时,实践教学严格按照生产、建设、管理、服务第一线的现场有关规定,强化学生职业技能和职业素质,促使学生形成一丝不苟、严格认真的工作作风。
2.6建立以能力为中心的课程考核体系
改变传统考核方式,强调学生能力考核,实现向过程考核的转变。学生学习效果的好坏主要取决于教学过程,与之相对应的考核也应贯穿整个教学过程。考试不再局限于单一的闭卷形式,而是采用开放灵活的方式,包括开卷考试、课程论文、口试、实际操作、调查报告、综合考查等。不同内容采用不同考核形式,如基本理论考核采用闭卷形式;实训技能考核采用项目任务形式,根据学生态度和操作情况,综合评定实验实训成绩;平时作业可以结合生产实际写课程论文和调查报告。课程结业成绩由平时成绩、实验实训成绩、期末成绩(试卷)组成。为使学生全程参与,将其注意力转移到日常学习上来,可扩大平时成绩和课程测验比例,具体为:平时成绩占20%,课程测验成绩占40%,期末成绩占40%。另外,改革平时测试和实验考核记分方式,实行实质性评价,部分考核可按照A、B、C、D级评分,淡化分数,促进学生全面发展。注重考核反馈,通过反馈使学生了解自己的不足,使教师调整教学方式。
3结语
关键词:计算机仿真;教学改革;合作创新
作者简介:华民刚(1980-),男,江苏无锡人,河海大学常州校区计算机与信息学院,讲师;陈俊风(1979-),女,江苏句容人,河海大学常州校区计算机与信息学院,讲师。(江苏 常州 213022)
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)31-0082-02
计算机仿真技术的应用已经渗透到工程技术的各个领域。最近几年高校纷纷开设计算机仿真类课程,由于此类课程开设的时间尚短,名称和内容也不统一,如“计算机仿真”,“控制系统计算机仿真”,“建模与仿真”等,一般大类归属于电子信息类,小类归属于不同专业,如自动化专业、电子信息专业、测控专业和通信专业等。[1-4]因此针对不同的专业,“计算机仿真”课程的内容需有所侧重,要突出专业特点和专业知识的连贯性。该课程课时短,理论性强,且需一定前续的专业课程和高级编程语言的基础知识,在多年的教学实践中发现,计算机仿真技术入门难,学生学习热情不高,且现行的课堂教学模式制约了“计算机仿真”课程的发展。由此认识到,要适应时展的需要,从根本上提高教学质量和学生仿真设计的能力,做到学以致用,所以有必要在“计算机仿真”教学中引入合作创新。
一、现行教学模式存在的问题
“计算机仿真”课程教学的主要目标使学生了解仿真技术的发展与应用,能建立系统的仿真模型,学会用MATLAB进行系统仿真,对相关学科有进一步的认识或拓宽知识面,为从事电类不同专业技术的分析与设计和后续课程提供必要的仿真实验技能。
1.教学模式与仿真课程独特性之间的矛盾
(1)要想学好“计算机仿真”课程,学生必须具备扎实的基础知识。“计算机仿真”课程内容包括:仿真的基本概念和基本流程;仿真模型的建立以及相互之间的转换;连续系统和离散系统仿真的基本算法与方法;建模与仿真的常用计算机软件,并能联系专业特色,解决具体问题。这其中涉及应用数学、仿真高级语言(典型如C++,MATLAB)和要仿真的对象的相关专业知识等多门交叉课程。计算机仿真技术离开这些基础知识,就成了无源之水,无本之木。目前学生基础参差不齐,普遍存在偏科和厌学的现象,因此在学生一无所知的情形下,讲解“计算机仿真”课程就更是费时、费力,且效果差。
(2)学习“计算机仿真”课程需要充分发挥出计算机仿真的实践性。计算机仿真的学习过程也是应用程序使用的训练过程。仅仅以课堂讲解为主,辅以较少的实验教学,理论生涩枯燥,难以激发学生学习兴趣,更无法充分发挥学生的学习主观能动性。课堂讲解教学无法训练学生的操作动手能力,也无法使学生理论联系实际,应用课本中的理论知识来解决实际操作问题。
(3)现在的考核方式难以考核学生的学习情况。现在的考试方法偏重基本知识的测试,而忽视能力的考核,单纯以期末考试分数作为学生水平高低的评价标准,不但严重扼杀了学生的创新能力,而且不能全面反映学生的学习情况。
2.理论教学与实践教学难以协调[5,6]
目前“计算机仿真”课程基本上采用课堂教学与上机实践分开进行的模式。以课堂讲解为主,辅以较少的实验教学。教师会根据自身的具体情况先进行理论知识的讲授,而一般上机实践的机会比较少。与此同时,由于授课与上机是分开进行的,学生在课堂上学到的理论知识不能马上在上机时加以应用;此外,上机实践中一般学生多教师少,学生在上机过程中所遇到的问题,教师无法一一解答,很难保证每个学生都认真独立地完成上机任务。
因此“计算机仿真”仅通过课堂讲授是不能达到教学效果的,这样既吸引不了学生的兴趣,也无法让学生真正理解知识、掌握相关技能。“上机实践是学习“计算机仿真”课程的重要环节,如何做好两者之间的衔接,是目前急需解决的问题。
3.专业特色不突出,工程背景不足
“计算机仿真”与不同专业的典型课程都有联系,如“现代控制理论”、“电力电子技术”、“电机与电力拖动基础”、“通信原理”、“信号分析与处理”、“过程控制系统”、“电力系统分析”、“自动控制原理”,结合专业课程进行仿真训练,选择上述课程的一些内容作为教学例题。然而目前在讲解“计算机仿真”课程时,未能结合专业特点,没有体现出专业特色。
此外“计算机仿真”课程的实践题目绝大多数都是工程背景不是很明确,题目数量也比较少,对象多为通用的数学模型。因此,要想让学生学会用MATLAB分析和解决实际工程问题,很难实现。
二、“计算机仿真”教学改革方案
1.理论与实践相结合教学方式
(1)在“计算机仿真”课程里选用MATLAB语言。该语言简单易用,有友好的工作平台和编程环境,具有强大的科学计算机数据处理能力和出色的图形处理功能。更值得一提的是,MATLAB的应用范围非常广泛,应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等各个领域。
(2)将“计算机仿真”课程移至机房,每个学生一台计算机,边讲边练。这不但方便学生消化新知识,现场练习,也便于教师现场指导。通过对课程内容和授课地点的调整,学生更能快速地掌握计算机仿真设计的基本思想,并加深对电类学科专业知识的理解,对提高学生分析问题和解决问题的能力,进一步培养学生的科研能力,具有很好的效果。