时间:2023-03-25 10:43:27
导语:在英语硕士论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
EE6442 Assignment 3
Fan Zhang
University of Limerick
MEng. Computer and Communication Systems
ID: 0526401
Abstract: I am a video game fan, but not an addict. Since this topic attracted me a lot, I decided to choose this one as my topic for the third assignment of Processor Architecture Module. I started to play video games since I was five. While I was playing games, I found the game console itself just like a mystery, how could they react our actions to the controller then reflects so amazing pictures on TV? Although I have read a lot about it in game magazines, I admit that I didn’t try to find the answer until I found this topic. This is a great chance for me to answer the question myself. At the same time, I want to present you this paper, which should be fun.
This paper concerns the differences of architecture between PC and PlayStation 2. Since the purposes of PC and PlayStation 2 are different (or maybe I should say the purposes of PC include that of PlayStation 2), the different objectives decide the different design orientation. I think PlayStation 2 is a good game console for the comparison. First, a lot of documentations about PlayStation 2’s Emotion Engine can be found in the Internet. Second, as far as I know, PlayStation 2’s design has straightforward purposes: 3D games and multimedia, which makes the game console is seemed to be born for these two reasons. Contrasts to PlayStation, current PCs do very well on these two aspects, but the cost is the unstoppable upgrade of hardware. PlayStation 2 is a product born 5 years ago. Today tens of millions of people are still enjoy PlayStation games at home. 5-year-old PCs have been washed out already.
Keywords: PC, processor, video card, system controller, bus, Emotion Engine, Vector Unit, Graphics Synthesize.
1. INTRODUCTION
1.1 The evolution of game performance
The computer technology has achieved rapid evolution this year. From Figure 1.1 to Figure 1.5 you can see, in almost twenty years, how great changes of game performance are, both PC and game consoles.
Figure 1.1: Final Fantasy I (FC) 1987 by SQUARE
Figure 1.2: Final Fantasy XII (PlayStation 2) 2006 by SQUARE ENIX
Figure 1.3: Prince of Persia (PC) 1989 by Broderbund
Figure 1.4 Prince of Persia: The Two Thrones (PC) 2006 by Ubisoft
The screenshots above are the evidences of technique developments. In these twenty years, computers are almost 10 times faster than in the 1980’s. The cost of buying a computer is decreasing simultaneously. However, the development orientations of both PC and game consoles didn’t change much during these 20 years. Here I want to say game consoles and PC are different, although they both can be classified to ‘computer’ class, although PC includes all game consoles’ functions (but the software are not compatible each other). The differences include many areas, the architecture, the media, the software producing and selling model, and the customers.
1.2 Why they are different?
I would rather to say it is because of the distinct purposes. Of course PC can play games, can do anything that game consoles do, and in the present, PlayStation 2, the most famous game console in the world, can connect to Internet, can print paper, even can run complete Linux operating system, but PC is general purpose, this means PC should care too much things, and be good at almost everything. For instance, PC should be good at text processing, games, printing, Internet connection, a huge amount of protocols are settled for it; PC also need to compatible with all components and software that are designed and implemented by current standards. But game consoles are different. They need only care about games, which mean most designs are flexible. At the same time, the standards which PC has to obey do not affect it at all. No extra cost, no burden, only focus on games.
Figure 1.5: Sony’s PlayStation 2
1.3 Multimedia
From later 20th century, multimedia has become one of the main purposes of PC. Corresponding new technology for enhancing the capability of multimedia processing on PC has been developed as well. However, the reality of transmission speed bottleneck hasn’t been changed much. Keith Diefendorff and Pradeep K. Dubey published an article named “How Multimedia workloads will change Processor Design” in 1996. They argued the dynamic media processing would be a big challenge for current processor architecture. They also thought it will force the fundamental changes in processor design.
Before Pentium 4, the processors shared the same character: their data cache memory was big, but instruction cache memory was relatively small. It was quite useful for most usage, for instance, word editor, e-business, stock information processing, and so on. However, Diefendorff did not think it is useful, or efficient enough for multimedia processing, for multimedia data come and forth constantly, no need to settle a huge bulk of storage space for holding the information that rarely has chance of reuse. Contrarily, multimedia processing requires more calculation than others. So, for multimedia calculation, the instruction cache memory should become larger, both caches require faster transmission speed as well. We shall see this prediction has realized much in both Pentium 4 and PlayStation 2.
1.4 The purpose and the brief layout of the article
This paper is mainly talk about the architectural differences between PC and PlayStation 2, which is the most famous game console in the world. The article will discuss several aspects, the whole architecture, the CPU, the motherboard, and the graphics. In the following section, the whole architectures are compared. Two processors, Intel’s Pentium 4 and PlayStation 2’s Emotion Engine are discussed and compared in the third section. The fourth section is about the bus and caching comparison. The fifth section mainly talks about PC and PlayStation 2’s graphic devices, Video card and Graphics Synthesizer. The conclusion will be made in the last section.
2. WHOLE ARCHITECTURE COMPARISON
2.1 PC architecture
The basis of PC could root back to 1940’s. John von Neumann (1903-57), who constructed a very basis structure of computer, stayed his name in the history forever. The architecture of modern PC is still based mainly on his architecture. Let’s see a diagram of PC architecture as our basis of illustrating how PC works for game performance in the future.
Figure 2.1: PC architecture--------------------------------->
Different regions in the diagram have different clock speed. We can see the system controller is the heart of whole PC system. It carries data between processor and other components in PC over bridge. The bridge is used to connect interfaces and buses. Two kinds of bridges exist in PC, North Bridge (the system controller) and south bridge (the bus bridge). The system controller provides an interface between the processor and external devices, both memory and I/O. The system controller works with the processor to perform bus cycles.
From the diagram we can see, the system controller makes the whole diagram to be complicated. This is because the system controller has to adjust the bus cycles between the processor and the external device that it wants to access. Briefly, the PC’s working procedure can be described as follow:
PC executes commandsèaccess data with the help of system controllerèreturns the execution resultèexecute commandsè…
System controller also possesses the function of controlling DMA (Direct Memory Access), which is the ability to transfer data between memory and I/O without processor intervention.
2.2 PlayStation 2 Overview
Let’s first see the architecture of PlayStation 2.
Figure 2.2: the architecture of PlayStation 2---------------->
PlayStation 2 is composed of a graphics synthesizer, the Emotion Engine, the I/O Processor (IOP), and a Sound Processor Unit (SPU). The IOP controls peripheral devices such as controller and disk drive and detect controller input, which is sent to the Emotional Engine. According to this signal, the Emotional Engine updates the internal virtual world of the game program within the video frame rate. Many physical equations need to be solved to determine the behavior of the character in the game world. After this is determined, the calculated object position is transformed according to the viewpoint, and a drawing command sequence (display list) is generated. When the graphics synthesizer receives the display list, it draws the primitive shape based on connected triangles on the frame buffer. The contents of the frame buffer are then converted from digital to analogue, and the video image appears on the TV. Finally, the Sound Processor is in charge of sound card thing, it outputs 3D digital sound using AC-3 and DTS. This is the overview of PlayStation 2 working procedure.
2.3 Comparison
Compare Figure 2.1 and Figure 2.2, we can see that the PC’s architecture is far more complex than that of PlayStation 2’s. There are many reasons. PC has more devices has to care. For instance, PlayStation’s I/O processor, which is act as the same role as the system controller bus in PC, the chief responsibility of this chip is to manage the different devices attached to the PS2. 2 PlayStation controller port, and MagicGate-compatible memory card interface, 2 USB ports, and a full-speed 400Mbps IEEE 1394 port, which are much less than PC. The other main reason is processor’s speed increased much faster than other devices; the devices themselves had uneven speed increments as well. In general, PlayStation 2 has simpler architecture and less components and devices.
3. ALL ABOUT PROCESSORS
3.1 Pentium 4 Processor
Pentium 4 adopts Intel’s 7th generation architecture. We can see in detail from the diagram below. Since the birthday of PlayStation 2 waiting for exploring was 4th March 2000, when Pentium 4 was not published yet. It is unfair to PlayStation 2. However, Pentium 4 is the most popular processor in the present, and PlayStation 2 is globally the most popular game console, whatever.
Figure 3.1: Pentium 4 processor architecture
Since the previous generation architecture (Pentium III) Intel began to use hybrid CISC/RISC architecture. The processor has to accept CISC instructions, because it has to be compatible with all current software (most software is written using CISC instructions). However, Pentium 4 processes RISC-like instructions, but its front-end accepts only CISC x86 instructions. A decoder is in charge of the translation. Intel doesn’t create the path for programs using pure RISC instructions.
CISC instructions are rather complex, decoding one may cost several clock cycles. In Pentium III era, once a CISC instruction needed to be processed several times (i.e. a small loop), the decoder had to decode the instruction again and again. In Pentium 4 this situation has been improved by replacing Pentium III’s L1 instruction cache to Trace Cache, which is placed behind the decoder. The trace cache ensures that the processor pipeline is continuously fed with instructions, decoupling the execution path from a possible stall-threat of the decoder units. After decoding stage, Intel introduces the Renamer/Allocator unit to change the name and contents of 32-bit CISC instructions of the registers used by the program into one of the 128 internal registers available, allowing the instruction to run at the same time of another instruction that uses the exact same standard register, or even out-of-order, i.e. this allows the second instruction to run before the first instruction even if they mess with the same register.
The other big advance of Pentium 4 is its SSE2 - The New Double Precision Streaming SIMD Extensions. 128-bit SIMD package offers 144 strong instructions. Intel prepares two SIMD instruction units for Pentium 4 (64-bit each), one for instructions, and the other for data. Let’s recall Section 1.3, Pentium 4’s 128-bit SIMD extension is Intel’s efforts for meeting the future requirements for multimedia implementations. Because of that, video, games implementation capability gained the drastic enforcement.
Pentium 4’s pipeline is the most disputable place. When it was announced, 20-stage pipeline surprised a lot of people. Intel did so because the more stage pipeline can increase the clock rate of processor. However, once the pipeline does not contain the information what processor need, the pipeline refill-time is going to be a long wait. In fact, Pentium 4 is only faster than Pentium III because it works at a higher clock rate. Under the same clock rate, a Pentium III CPU would be faster than a Pentium 4.
Figure 3.2: Pentium 4 Pipeline
The scheduler is a heart of out-of-order engine in Pentium 4. It organizes and dispatches all microinstructions (in other words, uops) into specialized order for execution engines.
Figure 3.3: Pentium 4 scheduler
Four kinds of schedulers deal with different kinds of microinstructions for keeping the processor busy all the time. The ports are Pentium 4’s dispatch ports. If you read the diagram carefully, you can see Port 1 and Port 0 each is assigned a floating-point microinstruction, Port 0 is assigned Simple FP Scheduler (contains simple Floating-point microinstructions) and Port 1 is assigned Slow / Floating Point Scheduler (contains complex floating-point microinstructions). Port 0 and Port 1 also accept the microinstructions came from Fast Scheduler. For the floating point microinstruction may run several clock cycles, Pentium 4’s scheduler monitor decides to transfer the microinstruction to Port 1 if Port 0 is busy, and vice versa. Port 2 is in charge of Load microinstructions and Port 3 deals with Store microinstructions.
3.2 PlayStation 2’s Emotion Engine
PlayStation 2’s designers focus deeply on the purpose of 3D games. At the same time, they had to ensure it was completely compatible with DVD video. For performing 3D games well, PlayStation 2 has to possess perfect vision and audio functions. Emotion Engine acts as the role of Geometry calculator (transforms, translations, etc), Behavior/World simulator (enemy AI, calculating the friction between two objects, calculating the height of a wave on a pond, etc). It also in charge of a secondary job of Misc. functions (program control, housekeeping, etc). In general, Emotion Engine is the combination of CPU and DSP processor.
Figure 3.4: The architecture of Emotion Engine
The basic architecture of Emotion Engine is show in Figure 14. The units are composed of
(1) MIPS III CPU core
(2) Vector Unit (two vector units, VU0 and VU1)
(3) Floating-Point Coprocessor (FPU)
(4) Image Processing Unit (IPU)
(5) 10-channel DMA controller
(6) Graphics Interface Unit (GIF)
(7) RDRAM interface and I/O interface.
Something interesting in the diagram you may have noticed. First, inside the Emotion Engine, there is a main bus connects all components for data communication. However, between MIP III core and FPU, VU0 and MIP III, VU1 and GIF, there are dedicate 128-bit buses connect them. Second, VU0 and VU1 have certain relationship shown in the diagram. This design extremely enhanced the flexibility of programming with Emotion Engine.
MIPS III Core connects with the FPU and VU0 directly with the dedicated buses. The pipeline of MIPS III is 6-stage. The MIPS III is the primary and controlling part, VU0 and the FPU are coprocessors to MIPS III. They compute the behavior and emotion of synthesis, physical calculations, etc For example, in a football game, the flying orbits of the ball, the wind effect, the friction between ball and the ground need to be calculated. At the same time, 21 player’s AI needs to be implemented (the last player is controlled by the user), the activity, the lineup, etc. After the calculation, MIPS III core sends out the display list to GIF.
VU1 has a dedicated 128-bit bus connected to GIF, which is the interface between GS (Graphics Synthesizer) and EE (Emotion Engine). VU1 can independently generate display list and send to GIF via its dedicated bus. Both of these relationships forms a kind of dedicate and flexible structure. The final goal of EE is generating display list and send to GS. The programmer can choose either programming two groups (MIPSIII + FPU + VU0 and VU1 + GIF) separately, send their display list in parallel, or programming purposely, making MIPS III + FPU + VU0 group as the “coprocessor” of VU1, for instance, generate physical and AI information then send to VU1, VU1 then produces corresponding display list. The diagram below shows the two programming methods.
(a) (b)
Figure 3.5: Two programming methods of Emotion Engine
MIPS ISA is an industry standard RISC ISA that found in applications almost everywhere. Sony’s MIPS III implementation is a 2-issue design that supports multimedia instruction set enhancements. It has
(1) 32, 128-bit general purpose registers
(2) 2, 64-bit integer ALUs
(3) 1 Branch Execution Unit
(4) 1 FPU coprocessor (COP1)
(5) 1 vector coprocessor (COP2)
What I really want to cover are two vector processors, VU0 and VU1. This is the main reason why PlayStation 2 is powerful.
VU0 is a 128-bit SIMD/VLIW design. The main job of VU0 is acting as the coprocessor of MIPS III. It is a powerful Floating-point co-processor; deal with the complex computation of emotion synthesis and physical calculation.
The instruction set of VU0 is just 32-bit MIPS COP instructions. But it is mixed with integer, FPU, and branch instructions. VIF is in charge of unpacking the floating-point data in the main bus to 4 * 32 words (w, x, y, z) for processing by FMAC. VU0 also possesses 32 128-bit floating-point registers and 16 16-bit integers.
VU0 is pretty strong. It is equipped with 4 FMACs, 1 FDIV, 1 LSU, 1 ALU and 1 random number generator. FMAC can do the Floating-Point Multiply Accumulate calculation and Minimum / Maximum in 1 cycle; FDIV can do the Floating-Point Divide in 7 cycles, Square Root in 7 cycles, and Inverse Square Root in 13 cycles. In fact, as the coprocessor of MIPS III, VU0 only uses its four FMACs. However, VU0 doesn’t have to stay in coprocessor mode all the time. It can operate in VLIW mode (as a MIPS III coprocessor, VU0 only takes 32-bit instructions. In VILW mode, the instruction can be extended to 64-bit long). By calling a micro-subroutine of VLIW code. In this case, it splits the 64-bit instruction it takes into two 32-bit MIPS COP2 instructions, and executes them in parallel, just like VU1.
VU1 has very similar architecture than VU0. The diagram below is the architecture of VU1 possesses all function that VU0 has, plus some enhancement. First, VU1 is a fully independent SIMD/VLIW processor and deal with geometry processing. Second, VU1 has stronger capability than VU0: it has a 16K bytes’ instruction memory and a 16K bytes’ data memory, which VU0 only has 4K bytes each. VU1 acts as the role of geometry processor; it burdens more instructions and data to be computed. Third, VU1 has three different paths to lead its way to GIF. It can transmit the display list from 128-bit main bus, just as VU0 + CPU + FPU do; or it can transmit via the direct 128-bit bus between its VIF and GIF; the last one is quite interesting, the path comes out from the lower execution unit (which I will talk about later) and goes directly to GIF. Three individual paths ensure two main problems of PC 3D game programming will not happen: first, the bottleneck of bus bandwidth; second, the simplex way of programming.
Figure 3.6: The architecture of VU1
VU1’s VIF does much more than that of VU0 does. The VIF takes and parses in which Sony called 3D display list. The 3D display list constructs of two types of data: the VU1 programming instructions (which goes to Instruction memory) and the data that the instruction deal with (which goes to Data memory). The instruction itself can be divided into two units, Upper instruction and Lower Instruction, which directly operate on two different execution units, Upper execution unit and Lower execution unit. The 64-bit VLIW instruction can be used to deal with two operations in parallel. Recall that VU0 possesses the same function but most of time it acts only as the coprocessor of MIPS III, this mode can only operate 32-bit SIMD instructions. Programmers also rarely ask VU0 to do the same thing what VU1 is good at.
3.3 Comparison
I strongly agree if you think Emotion Engine is more flexible than Pentium 4. The design of Emotion Engine is completely around the performance of 3D games. Two vector units, VU0 and VU1, contribute a lot for the game performance. Pentium 4 architecture is straight, you can trace the path of data from the very beginning, and soon you will be able to know how Pentium 4 works easily. For Emotion Engine, except you are the game designer, you will never know exactly.
I did not put too much digits in this section, the comparison of digits does not make sense at all. The comparison between two PC processors depends on digits, because they are the same kind and work in the same situation. For game consoles, without the burden of compatibility, the designers think a lot for the perfect cooperation. This would results in better performance, plus less cost. Unfortunately the programmers don’t think it is a good idea, it cost them quite a lot of time to investigate the processor to figure how it works.
4. BUSES AND CACHEING
4.1 PC Motherboard
While multimedia processing requires massive quantities of data to move rapidly throughout the system, the speed difference between processor and external devices is the main bottleneck of PC. Processor companies like Intel have put a lot of energy into getting the rest of the system components to run faster, even if other vendors provide these components. Improving the performance of motherboard is a good idea. Figure 4.1 is the main structure diagram of GIGABYTE GA-8TRX330-L Pentium 4 Motherboard. The bandwidth between Processor and system controller, main memory and system controller has reached to equally incredible 6.4GB/S. However, the latency of memory is still impossible to remove. Here I want to talk something about the processor caching mechanism.
In the present, motherboard’s FSB (Front Side Bus) frequency has over 800 megahertz. However, it is slower than that of Pentium 4, which is over 3 gigahertz. Processor runs at a multiple of the motherboard clock speed, and is closely coupled to a local SRAM cache (L1 cache). If processor requires data it will fist look at L1 cache. If it is in L1 cache, the processor read the data at a high speed and no need to do the further search. If it is not, sadly processor has to slow down to the motherboard clock speed (what a drastic brake!) and contact to system controller. System controller will check if L2 cache has the required data. If has, the data is passed to processor. If not, processor has to access the DRAM, which is a relatively slow transfer.
4.2 About PlayStation 2’s buses and caching.
Recall Figure 2.2, we can see 32-bit interfaces between processor and I/O Processor, main memory and I/O Processor, which can achieve 3.2GB/S bus speed. Although slower than Pentium 4, Emotion Engine itself is relatively slow as well, 300MHz MIPS III processor. However, PlayStation 2’s 32-bit interface, 10-channel DMAC, 128-bit internal bus, and small cache memory group to an incredible caching condition. Any data necessary can be store or download in time. This strategy takes 90% of DMA capability. It makes the latency which main memory generates is acceptable for Emotion Engine.
4.3 Comparison
This time we can talk about digits some more. Let’s see a Pentium 4’s cache memory
L1 trace cache: 150K
L1 data memory: 16K
L2 memory: 256K ~ 2MB total: 422~2204K
Let’s see PlayStation 2 next
VU0 data memory: 4K
VU0 instruction memory 4K
VU1 data memory 16K
VU1 instruction memory 16K
MIPS III data memory: 2-way 8K
MIPS III instruction memory: 2-way 16K total: 64K
Contrast to Pentium 4, the cache memory of PlayStation 2 is too small. Its capability is indeed ‘weak’ in the present. Pentium 4 is able to hold more data and does more computations in parallel. However, PC architecture hasn’t been improved along with the processor. No matter how Pentium 4 fast is, present bus architecture is never going to perform Pentium 4 100% capability. PlayStation 2 achieves a nearly perfect structure and mechanism, which helps it exert as much as it can (or maybe I should say because Pentium 4 is too fast, the memory speed is relatively too slow). Besides, it remarkably low down the cost, you can afford a PlayStation 2 plus a controller with the same price of a single Pentium 4 chip.
5. VIDEO PERFORMANCE
5.1 Comparison of performance between PC and PlayStation 2
Figure 5.1 Need for Speed Most Wanted (PlayStation 2) 2006 by EA GAMES
PlayStation 2 Graphics Synthesizer (GS)
· 150 MHz (147.456 MHz)
· 16 Pixel Pipelines
· 2.4 Gigapixels per Second (no texture)
· 1.2 Gigatexels per Second
· Point, Bilinear, Trilinear, Anisotropic Mip-Map Filtering
· Perspective-Correct Texture Mapping
· Bump Mapping
· Environment Mapping
· 32-bit Color (RGBA)
· 32-bit Z Buffer
· 4MB Multiported Embedded DRAM
· 38.4 Gigabytes per Second eDRAM Bandwidth (19.2 GB/s in each direction)
· 9.6 Gigabytes per Second eDRAM Texture Bandwidth
· 150 Million Particles per Second
· Polygon Drawing Rate:
· 75 Million Polygons per Second (small polygon)
· 50 Million Polygons per Second (48-pixel quad with Z and Alpha)
· 30 Million Polygons per Second (50-pixel triangle with Z and Alpha)
· 25 Million Polygons per Second (48-pixel quad with Z, Alpha, and Texture)
· 18.75 Million Sprites per Second (8 x 8 pixel sprites)
Figure 5.2 Needs for Speed Most Wanted (PC) 2006 by EA GAMES
PC Graphics Chip RADEON X300 SE PCI Express
· Bus type PCI Express (x16 lanes)
· Maximum vertical refresh rate 85 Hz
· Display support Integrated 400 MHz RAMDAC
· Display max resolution 2048 x 1536
· Board configuration
· 64 MB frame buffer
· Graphics Chip RADEON X300 SE PCI Express
· Core clock 325 MHz
· Memory clock 200 MHz
· Frame buffer 64 MB DDR
· Memory I/O 64 bit
· Memory Configuration 4 pieces 8Mx16 DDR
· Board configuration
· 128 MB frame buffer
· Specification Description
· Graphics Chip RADEON X300 SE PCI Express
· Core clock 325 MHz
· Memory clock 200 MHz
· Frame buffer 128 MB DDR
· Memory I/O 64 bit
· Memory Configuration 4 pieces 16M x 16 DDR
· Memory type DDR1
· Memory 128 MB
· Operating systems support Windows? 2000, Windows XP, Linux XFree86 and X.Org.
· Core power 16 W (Max board power)
From the data we can see. GS is too weak, contrast to low-level video card of PC. However, the performance of PlayStation is not too that bad. I don’t want to analyze data here. What I am interested to discuss is about the performance itself.
Let’s see Figure 5.2 in detail. Texture is very clear and exquisite. This is what big video memory offers. The tree leaves in distance need a lot of polygons to build. The video card itself is low-level; possess no special effect for the game rendering. No refection and other sparking place can be found. In general, the game performance is only ok.
Figure 5.3 PC game rendering related architecture
Now let’s see PlayStation 2’s performance, which is in Figure 5.1. We see a good image. If you look the image in detail, you may found the mountain beside the road is weird: the shape of mountain is not that nature, like some spectrum graphics. This is done by VU1, which draws the Bezile, build 3D graphic based on the curve. Although not good enough, how many people will actually notice that when dashing at over 200km/h with his virtual car? VU1 does a lot of job like that and it could generate a lot of shapes without too many polygons to build. Now let’s see the car, the refection of cars is true reflection (which means it is not fake texture pretended to be the reflection), we can distinguish the mountains behind, however very blur. The whole image is not as clear as Figure 5.2 because the limitation of GS’s video memory (4M). However, this image is good enough for most PlayStation 2 players.
5.2 Some more about the video performance
Although Pentium 4 has enough capability to process image real time, the way of implementing games is still no change. The video card read the content of texture into its local memory card, the processor only deal with the data and instructions. After the calculation, the processor stores the display list (a list, recorded with the details of all elements, for instance, one single polygon’s position and texture code) back to the main memory. Video card then access the lists and process them, generate picture, transfer to analogue signal and output. Most special effects depend on the video card. So, no good card, no good performance.
Let’s see figure 2.2, we will see there is no direct connection between GS and main memory. At the PC’s point of view, 4MB video-memory is not enough to show a single frame with 1024*768 pixels. How is PlayStation 2 able to perform like that? The answer is bus. So we come back to section 4 again. The specialized display list (which Sony called 3D display list) is directly sent to GS, along with the required texture. GS has a huge bandwidth (3.8GB/S), its local memory can work as fast as it is (maybe it is more suitable if we call the memory as cache). GS itself supports only a few special effects. However, this situation can be improved by the simulation calculations finished by Emotion Engine… Again, PlayStation 2’s elegant design makes its all components work as a whole.
6. CONCLUSION
Hopefully you have got the idea of how PlayStation 2 and PC architecture differ. Let’s go through it again.
General architecture. PCs are more complex to read, but easier to implement. The system bus directly manages all devices inter-communications. PlayStation 2’s is easy to read, but much harder to implement. The communication between each other is convenient.
Processor architecture. The trend of processor architecture design is meeting the requirement of multimedia. Both PC’s Pentium 4 and PlayStation 2’s Emotion Engine are qualified to run multimedia applications efficiently. Pentium 4 is much stronger than Emotion Engine, but the architecture is very ‘straight’ and has to do extra jobs of translating instructions to be compatible with current applications. Emotion Engine has no this burden, the specialized 3D game performance design make it easy to handle complex calculation jobs with relatively low clock rate.
Buses and Caching. PC has classic bottlenecks and there is no way to overcome it. Current PC buses and cache has improved a lot by increasing the bandwidth and cache volumes, but the latency of main memory cannot be solved. PlayStation 2 works on nearly full load; perfect coordination between components is almost achieved.
Video. Although Pentium 4 can run perfectly on multimedia applications, the PC game developers don’t think so. They still stick to push the texture and other data into the video memory for one time. The awkward situation is, when you want to update your PC for high requirement games, the first component came into your mind must be the video card but processor. It is impossible to ask PlayStation 2 players to update. Emotion Engine is in charge of many jobs what PC’s video card does. The good condition of data transmission makes it is possible to implement ‘true’ multimedia processing in games, that is treating game image as media streams, no need to supply huge data storage to hold that.
Purpose: PC’s general—purpose VS PlayStation 2’s 3D game rendering purpose.
PlayStation 2 is 6 years old now. According to the principle of game console life expectance, it is time to hand the baton to its offspring, PlayStation 3. It is a successful game console of Sony. Contrast to PC, it is too weird, but all its weird compositions seemed so reasonable as well. PC’s architecture is classical; all components have its space for upgrade. Maybe it is too early to say the architecture should evolve. However, PlayStation 2’s architecture gave us a good lesson. If you only were interested in games, you should buy a PlayStation series, not a PC. At least, you need not worry about upgrading your components for the next game. Special architecture can make it becomes the best in specialized region.
7. REFERENCE
[1] William Buchanan and Austin Wilson, “Advanced PC Architecture”, ISBN: 0 201 39858 3
[2] John L. Hennessy and David A. Patterson, “Computer Architecture—A Quantitative Approach”, ISBN: 1 55890 724 2
[3] Keith Diefendorff and Pradeep K. Dubey, "How Multimedia Workloads Will Change Processor Design." Computer, September 1997
[4] Jon "Hannibal" Stokes Sound and Vision: A Technical Overview of the Emotion Engine Wednesday, February 16, 2000
[5] K. Kutaragi et al "A Micro Processor with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point Dividers, and an MPEG2 Decoder," ISSCC (Int’l Solid-State Circuits Conf.) Digest of Tech. Papers,Feb. 1999, pp. 256-257.
[6] Jon "Hannibal" Stokes “SIMD architectures”
arstechnica.com/articles/paedia/cpu/simd.ars
[7] “Graphics Synthesizer – Features and General Specifications”
arstechnica.com/cpu/1q99/playstation2-gfx.html
[8] “The Technology behind PlayStation 2”
ieee.org.uk/docs/sony.pdf
[9] Michael Karbo,“PC Architecture“
karbosguide.com/books/pcarchitecture/start.htm
[10] Gabriel Torres, “Inside Pentium 4 Architecture”
hardwaresecrets.com/article/235/1
[11] Thomas Pabst, “Intel’s new Pentium 4 Architecture”
tomshardware.co.uk/2000/11/20/intel/
[12] KuaiLeDaYuShu, “Video Card Parameters Analysis”
blog.yesky.com/Blog/joyelm/archive/2005/07/30/253803.html
[13]Howstuffworks “How PlayStation 2 Works”
entertainment.howstuffworks.com/ps21.htm
[14] Craig Steffen “Scientific Computation on PlayStation 2 home page”
【关键词】 英文影视资料 英语听说教学 利弊
【中图分类号】 G424 【文献标识码】 A 【文章编号】 1006-5962(2013)01(a)-0038-01
1 英文影视资料应用的积极作用
英文影视资料内容丰富,文化特色突出,语料真实,贴近学生生活,是英语教学的好帮手,不仅可以使学生置身于英语环境,加深对语言的理解和认识。还能使学生了解英语国家的历史文化、风土人情、人们的行为方式和交往礼仪等文化内涵,是学生学习语言知识和文化知识的有效途径。
1.1 提供真实的语言场景
任何交际行为都是在一定的场合中发生的,而电影展现交际场景的真实性(龙千红,2003)。电影故事情节取材于生活,其中的场景,道具及其他方面都充分展示生活的真实。因此。看电影时,学生有亲临其境的感觉,这等于把语言学习放在真实的交际情景中进行,无疑使语言学习十分真实自然。经常看英语电影,学生就会逐渐地学会在不同情景中得体地使用语言。此外。电影作为动感的可视媒体,使学生在观看影片过程中不仅能听到人物的对白,而且能看到背景画面,演员的动作,表情,着装等超语言线索,可以更容易,更准确地理解语言和阐释影片。
1.2 传递丰富的文化知识
语言是文化的载体,学习一门语言也在学习一种文化(胡文仲,1989)。作为沟通中西方文化便捷的桥梁,英文影视资料浓郁的文化特色,向观众传递丰富的文化背景知识。通过对电彩情节故事的了解、经典台词的学习,可以挖掘出它们所反映的社会习俗、交际方式、政治体制、法律制度、、价值观念、艺术传统等与东方不同的文化内容。C.克拉姆(1999)曾指出:文化氛围始终存在于外语学习的背后,即使优秀语言者的交际能力也可能因文化原因受到限制,他们对周围事物的了解也可能因而产生障碍。学习英语的过程也是文化习得的过程,越是深入了解英美国家的历史地理,文化传统和生活方式,越能正确理解和使用英语。
1.3 提高全面发展的能力
根据认知主义学习理论,言语学习的主题输入强于单一的视觉或听觉输入,尤其是采用英语电影主体语言教学,其优势比较明显,有利于语言教学的多方位立体输入,突出重点,以此促进学生听说读写全面发展。(李萌涛,2006)英语电影有声有色,声色并茂给人以身临其境的感觉,引起学生的新奇感、注意力和求知欲,并能在教师的引导下获得知识,取得进步。现代教学的实践证明:学生获得知识若仅靠听觉,3小时后仅保持70%,3天后降为10%;单用视觉,3小时后保持72%,3天后降为20%;如果视听并用,3小时后保持85%,3天后降为65%。(杨明,1999)由此可见,在高职院校利用英语电影教学是最能提高学生效率的一种教学手段。让学生视觉、听觉都参与言语实践,对知识掌握更加牢固,其中变化的情景和言语实践活动可以直接或间接的从不同角度激发学生的能力。
2 英文影视资料应用存在的问题
2.1 语言难、过于耗费精力
电影教学过于费力,这是难以普及的重要原因。电影教学之难表现在:首先,电影语言本身难。电影语言是十分接近生活的自然语言。语速快、1:3语表达方式丰富。其次,电影内容包罗万象,涉及人类生活的各个领域。有时一部电影的主题非常分明.但人物的对话内容却十分宽泛,而且电影中的人物众多。谈话内容各异。教学环节上,大多数情况是课前师生都没有充分准备。从头放到尾,中间没有讲解。所以导致学生有许多消极反应。反而更倾向于选择传统的教学方式。
2.2 学生不重视
对有些学生来说,就最迫切的目标就是通过考试,认为口头表达没有语法知识重要。上课时如果教师又毫无指导说明,学生根本听不懂语速如此快的英语对白。严重挫伤了学习的自信心。听不懂时就会产生焦虑,最终导致恶性循环,因此没有教学目的和安排的电影欣赏是毫无意义的。
2.3 缺乏影视英语教学课时安排的合理性
当前各高校分配给大学英语的教学时数相当有限,而且大部分课时是用于阅读课,用于专门训练听说的课时少之又少。这种情况严重地制约了电影课的普遍开设。虽然目前高校都配备多媒体教室,但由于扩招导致学生人数增多,多媒体教室的发展赶不上学生人数的增长,一定程度上制约了英语电影在听说教学中的运用。
2.4 缺乏一套权威性的教材
从教辅市场上同类书籍的状况来看,在全国不同省市100多种英语教材近1000种版本中。影视英语类教材有IO多种,但是以欣赏、注释、参考类居多。缺乏一定的系统性、权威性。目前此领域尚属空白,急需专家、学者研发出科学、系统的教材.以便更好地实现教学目标。可想而知,教师没有教材的指向性。其课前的备课工作量是巨大的,更何况大部分教师不只担任一门课程,时间、精力都受到了限制。
3 解决办法
针对上述问题,笔者建议合理安排影片在听说课上的时间,结合课文主题引入电影资源,如Hobbies用《憨豆先生》,Success用《阿甘正传》,Travelling用《走遍美国》,Natural Environment用《狮子王》,Women用《时尚女魔头》等等。如此说中有看,看中有听,听中有写,互相作用,非常有利于培养学生的听说读写能力。
参考文献
[1] C・克拉姆契.语言教学的环境与文化[M].上海外语教育出版社,1999.
[2] 胡文仲.英语学习的教与学[M].外语教学与研究出版社,1989.
[3] 龙千红.电影与英语听说教学[J]外语电化教学,2003,(6).
第一个文学硕士论文故事:“不懂英语的国王”, 安妮女王并没有子嗣, 在其去世之后英国国王由女王的德国远亲乔治一世担任, 但是乔治一世并不会说英语, 更不关心英国的国家事务, 使得英国内阁的行政大全从国王乔治一世转移到财政大臣沃尔波尔手中, 由此产生了英国的第一任首相。针对这一故事, 教师需要要求学生按小组分析国王丧失了什么权力?
第二个文学硕士论文故事:“最年轻的英国首相”:1782年, 英国在北美失败, 通过不信任案, 诺思带领所有内阁成员集体辞职, 年仅24岁的小皮特上台组阁, 仍旧受到了议会的不信任, 但是这位“最年轻的英国首相”向国王提议, 解散议会下院, 宣布提前进行大选, 最终将反对派议员从议会下院中剔除。针对这一故事, 教师需要要求学生思考, 议会和内阁出现矛盾时, 可以采取哪几种处理方案?>>>>>中国汉字日本四种简化方法分析
第三个文学硕士论文故事:通过“48小时首相”这一故事, 向学生介绍1746年乔治二世否认了首相亨利·配兰的提案, 使得政府所有阁员集体辞职, 而乔治二世也仅仅当了两天的首相就下台, 被称作48小时首相, 也是英国史上任期最短的首相。针对这一故事, 教师需要要求学生按小组分析, 如果国王和内阁出现了矛盾, 内阁将会如何处理?
关键词:转述动词 文学类学术论文 中国作者 英语本族语作者
0 引言
转述是学术写作中不可缺少的部分,运用转述可以体现作者对转述命题或被引作者所持的态度,为作者的评论开启评价空间[1]。转述动词是转述的重要信号之一,作者可以通过转述动词实现言语功能,导入被引用者的声音,实现作者、被引作者和读者之间的对话。恰当使用转述动词是作者寻求其交际目的与学科规范之间平衡的一种重要手段[2]。因此,对转述动词进行研究是理解作者意图与学科规范之间关系的起点,对于英语学习者而言,正确使用转述动词有助于提高英语学术写作能力,以便于更好地实现写作目的。
1 国内外研究综述
语言转述现象一直以来受到众多学者的关注。国外学者从传统语法、文体学、功能语言学等角度对语言转述现象进行了研究。传统语法重点从直接引语、间接引语的转换关系上关注对他人话语的转述策略[3]。在文体学领域,Leech和Short把对言语和思想的表征区分成五类:直接引语、间接引语、自由直接引语、自由间接引语和人物话语的叙事性报道,这种分类方法扩大了语言转述研究的范围[4]。功能语法学家Thompson则关注转述动词的人际意义,指出转述者对转述内容的态度主要体现在转述动词上[5]。对批评话语分析学家而言,转述动词体现了语篇互文性和语篇中的多声特征[6]。专门用途学者也注重对转述动词的研究,他们对转述动词进行分类,关注转述动词在学术论文中的功能,同时通过引用分析(Citation analysis)关注转述动词的使用[7]-[10]。其中,Thompson和Ye将转述动词分为三类:研究转述动词(Research verb)、语篇转述动词(Textual verb)和心理转述动词(Mental verb),并分析了各类转述动词的人际意义。此后,Thomas和Hawes[8]以及Hyland[10]等人在其基础上做了类似分类。
国内部分学者从认知语用角度研究引用现象中与认知有关的方面[11],或者研究引语在语篇中所完成的修辞功能[12]。有的学者对学习者学术英语语料中使用的转述动词做了定性和定量分析[13]-[17]。也有学者分析了引用的结构形式及其与时态、语态的关系,探讨了转述动词的类别及功能[18]。
以Hyland为代表的国外学者的研究以英语本族语研究者的学术论文为语料,未涉及母语为汉语的英语学习者对转述动词的使用情况。而中国学者的研究中,对学习者学术英语语料的定性及定量研究所选择的语料大多来自应用语言学;以期刊论文为语料的种类及数量有限,从对比分析的角度探讨中国作者和英语本族语作者在学术论文中转述动词的使用情况的研究更不多。本研究将在这些方面做一些尝试。
2 研究方法
本研究从Springer电子期刊中选取近十年(2004-
2013)文学类论文共20篇,其中中国作者和英语本族语作者论文各10篇。选择语料时,研究者还考虑到论文期刊的多样性及代表性。然后,研究者根据学术论文撰写的规范要求,运用人工识别的方法记录论文全文中所有标注了引用信息(作者,时间,页码)的地方,对所得语料进行分类统计。首先统计了两类作者零转述动词的使用情况。其次,分别对转述动词总次数、使用频率较高的转述动词做了统计。最后,重点统计了两类作者表示评价倾向的转述动词的使用情况,并对以上各类型语料进行对比分析。
3 研究框架
Hyland基于Thompson和Ye以及Thomas和Hawes对转述动词的分类,运用过程法和评价法对转述动词加以分类[10]。按照过程法,转述动词可以分为三大行为类型,即研究行为(指研究者在研究结论或研究过程中对真实世界行为的陈述)、认知行为(指心理过程)、话语行为(指语言表述方式)。而按照评价法,转述动词又可以分为三大类,第一类表明现作者对被引作者提到的信息或做法持肯定态度;第二类表明现作者不同意或不接受被引作者提到的信息或其做法;第三类转述动词不直接表明现作者的观点,而是现作者通过转述动词传递被引作者的态度、观点和评价,具体又可以分为四个小类,包括①被引作者以肯定的口吻提出自己的观点;②被引作者以中立的姿态提出自己的观点或者客观上做了什么事;③被引作者以谨慎的态度提出自己的观点;④被引作者以批判的态度评价别人的研究或研究结果。
Hyland没有说明过程法和评价法各自的优缺点,也没有说明两者的相互关系。本研究认为,过程法基于研究行为的本质特征,从行为、心理和话语三个方面对转述动词进行分类,有利于提高人们对转述动词本质的认知,具有理论上的指导意义。而评价法立足于现作者、被引作者以及读者之间的对话性,旨在区分现作者、被引作者的立场和态度,从而帮助读者明确现作者的观点。同时,评价法也有助于提高英语学习者学术写作中对转述动词的运用能力,具有实际的指导意义。
本研究在对比分析中国作者和英语本族语作者转述动词时基于Hyland的评价法,首先将转述动词分为两个大类,第一类是现作者通过转述动词进入语篇,向读者阐明自己的立场、观点和论断;第二类是现作者通过转述动词表达被引作者的态度、观点和评价,从而间接帮助读者了解现作者自己的观点。之所以采用这样的分类方法,是因为转述是作者借助语言表述心理的过程,也是意向性自我构建的过程,反映了现作者对转述内容的认知评判,并通过转述动词进入语篇,向读者阐明自己的科学论断。
[2]Thompson,G.&Y.Ye.“Evaluation of the reporting verbs used in academic papers”,Applied Linguistics,1991(12): 365-
382.
[3]Yule,G.et a1.“On reporting what was said”,ELT Journal,1992,46(3):245-251.
[4]Leech,G.& M.Short.Style in Fiction.London:Longman, 1981.
[5]Thompson,G.Introduction to Functional Grammar.London: Edward Arnold,1996.
[6]Fairclough,N.Discourse and Social Change. Cambridge: Polity Press,1992.
[7]Thompson,G.&Y.Ye.“Evaluation of the reporting verbs used in academic papers”,Applied Linguistics,1991(12): 365-
382.
[8]Thomas,S.& T.Hawes.“Reporting verbs in medical journal articles.”ESP Journal,1994(13):129-48.
[9]Swales,J.Genre Analysis:English Academic and Research Setting.Cambridge:CUP,1990.
[10]Hyland,K.Disciplinary Discourse:Social Interactions in Academic Writing.Haflow:Peaon Education,2000.
[11]彭建武.语言转述现象的认知语用分析[J].外语教学与研究,2001(5):359-366.
[12]辛斌.引语研究的语用修辞视角[J].外语学刊,2010(4):67-
73.
[13]胡志清,蒋岳春.冲外英语硕士论文转述动词对比研究[J].语言研究,2004(3):123-126.
[14]袁邦株,徐润英.社会科学论文中转述动词的学术考察[J].求索,2008(12):79-81.
[15]孙迎晖.中国学生英语硕士论文引言部分转述语使用情况的语类分析[J].外语教学,2009(1):53-57,69.
[16]娄宝翠.学习者英语硕士论文中的转述动词[J].外国语学院学报,2011(5):64-68.
[17]张军民.基于语料库的英语学术语篇转述动词研究[J].河南师范大学学报(哲学社会科学版),2012(5):246-249.
[18]唐青叶.学术语篇中的转述现象[J].外语与外语教学,2004(2):3-6.
关键词:多元化教学方式 文言文教学 综述
一、文言文教学与多元化教学方式
文言文与现代汉语的语音、词汇、语法有着较大的差异,在教学过程中,文言文教学一直给语文教师带来困扰。王力先生认为:“文言是指以先秦口语为基础而形成的上古汉语书面语言以及后来历代作家仿古的作品中的语言。”张志公老先生曾经说过:“怎样对待和处理文言文问题,是一个很需要加深研究的相当复杂的问题。在这个问题上,要有眼前的办法,要有长远的打算。”
从教学工作来讲,多元化教学方式即多种教学方式,包括传统“以教为主”的教学方式,如讲授法、讨论法、提问法等以及新课改以后“以学为主”的教学方式如头脑风暴、思维导图、合作探究等。多元化教学方式在文言文教学中的应用着眼于现代文言文教学,运用多种教学方式,使学生在参与文言文学习的过程中,全面训练和发展活动能力、观察能力、动手能力和写作能力。
二、国内外研究现状述评
(一)文言文教学
近年来,在国内外期刊上公开发表的文言文教学方面的研究成果较多,但大多针对新课改以来普通中学的文言文教学方面,涉及职业院校公共基础课中的文言文教学部分极少,普通中学和职业院校的生源质量差异较大,也有着较大的区别。就现有的研究成果来看,主要可分为以下两大类:
1.研究者多为语文课程与教学论专业的硕士研究生,他们的研究对象也有着差别
(1)研究角度为共时研究,着眼于宏观把握,对象为中学文言文教学目的或教学模式。华中师范大学的万进峰和浙江师范大学的王志凯都以“中学文言文教学目的研究”为题作了他们的硕士论文。王志凯对“浅易文言文阅读能力”重新界定,他从语言学、课程论两个角度,对当前中学文言文教学目的的科学性与可能性提出质疑的同时,运用文本互文性理论,对当前中学文言文教学目的提出个人的见解。而万进峰从文言文教学目的和文言文教学目的制定思路科学与否切入,将文言文教育的主要因素整合在一起进行研究,以期获得对文言文教育研究的突破。华东师范大学的易建平从中学语文教材的文言文选文角度撰写了他的硕士论文。许令仪提出要结合学生的心理接受特点和文言文本身的特点,将建构主义学习理论、人本主义学习理论和归纳教学理论应用到文言文的教学模式中。
(2)研究角度为共时研究,着眼于课堂实践,对象为中学文言文教学中存在的问题及对策。东北师范大学的张海峡从实践的角度分析了文言文课堂教学的问题,并提出了相应的对策。向旭提出:“中学文言文教学的现代性不强”“教学实践中能采用的教学手段有限,特别是很少用现代教学传媒;师生之间文言水平差异较大,不易实行共享学习,教学相长;学生缺乏学习文言的大环境。”这的确是众多语文教师都不得不面对的问题。邓美娟对诵读教学法进行了界定,并回顾了我国诵读教学法的历史。她又从多个角度对中学文言文诵读教学现状进行了分析、阐述,同时她认为在文言文诵读教学中要运用多种诵读方法和方式。
(3)研究角度为历时研究,着眼于传统文化的传承或沿革。陈莉认为,传统文化教育具有重大的现实意义,中国的文化要创新和发展就离不开传统文化教育。张锋也持同样的看法。他认为,中学文言文教学历经了一个由传统迈向现代、由保守趋于开放的变革过程,事实上文言文教学已严重滞后于教育教学理论的现状:教学效率低下,教学方法陈旧,“教”与“考”严重脱节,教学实践缺乏相应理论的指导;教学过程中学生主体无从凸现,学生学习兴趣不高,参与性不够。种种问题表明,文言文教学确实是困扰众多语文教师的难题。
2.研究者为一线语文教师,立足于以应试为主的中学文言文教学,而非整体的文言文教学
中学语文教师在教学实践过程中获得切身体会,并进一步升华为理论,为我们的文言文教学提供了借鉴的平台。王海华认为,文言文教学重在激发学生兴趣,教师可从激趣导入、朗读催趣、趣味导学、趣味延伸四个环节着手,切实提高学生学习文言文的兴趣,增强其对古文的阅读鉴赏力。但是,截至目前,这类研究成果尚不多见。
(二)多元化教学方式
近年来,在国内外期刊上公开发表的有关多元化教学方式在各科教学中应用的成果也较多,研究者均为一线教师,只是研究对象有所不同。就现有成果来看,总体上可以分为以下两类:
1.研究者为中学教师,教育方式以应试教育为主,研究对象为多元化教学方式在其任教学科的应用,但其侧重点也有所不同。
(1)研究者的侧重点为应用研究。卓伟的《初中语文多元化教学方式探究》一文中提到:在授课过程中,一是可以采用多媒体技术,播放出许多书本上无法直接表现的图像、视频、动画,使文章内容显得更加直观、形象;二是可以在教学中渗透情感教育,使学生感悟保留、理解作者的情感走向;三是可以开展情境教学,通过创设情境,让学生身临其境,深入理解文章。虽然两者以上可称为多,但是仅仅三种教学方式稍显单薄。张美凤的《初中语文教学中的多元化教学方式》认为在中学语文教学中实施多元化教学非常重要,教学内容可以进行多元解读,教学成果可以多元评价。在中学教学评价过程中能够将平时成绩计入学业水平考核的范畴,不失为一种突破。
(2)研究者的侧重点为理论研究。周松柏的文章题为《初中语文教学中的多元化教学方法》,内容主要阐述了多元化教学特点和初中语文教学过程中多元化教学方法探讨两部分。在探讨教学方法时他提出要重视培养学生思维和创新能力,充分发挥其主观能动性,对教学课程要进行合理评价,适时给予学生必要的指导。孙丽丹的《初中语文教学中的多元化教学方法探讨》一文中提出要做到思维方式、教学内容、教学手段和教学技巧的多元化。这种文章属指导纲领性质的纯理论文章,可操作性不强。
2.研究者为高等学校或职业学校教师,教育方式着重于提高学生的综合素质和能力,研究对象为多元化教学本身或多元化教学方式在其任教学科中的应用。
过彩虹的《多元化教学方式的思考》一文对多元化教学方式进行了界定,认为它是用八种智能进行教学,用全新的方式激励和帮助学生学习,从而能够更好地激发学生的学习兴趣,使课堂充满活力。并整理出了多元化教学设计五步骤:一是聚焦并分析内容,二是陈述具体教学目标和结果,三是从“多元智能工具箱”中选择适当的工具,四是明确每种工具的使用方法,五是确定教学活动程序。充分应用KWL目标开展唤醒、拓展、教学、迁移四阶段教学。利用6S调色板完成教什么和怎么教这两个决定。文章对多元化教学方式思考较为深入,提出了个人实践教学的方法步骤,具有一定的参考价值和可操作性。
四川内江师范学院张大千美术学院副教授吴小华的《高校艺术设计专业课程多元化教学方式探析》从艺术设计课程课堂教学实践的角度,分析了包含传统教学方式、现代教学方式、综合教学方式等多元化教学方式的种类、特性及利弊。长沙商贸旅游职业技术学院陈明的文章《高职教育背景下英语多元化教学的启示》本着培养应用型人才的目标,阐述了英语多元化教学的意义及启示。武汉长江工商学院陈曦的《多元化教学在大学英语教学课堂中的应用效果及评价》一文提出,多元化教学在英语教学中的任务发生改变,变灌输式教课为自主式学习;充分激发学生参与积极性,强化其英语综合应用能力;因材施教,合理设置课程内容,有效推进教学资源整合。大学英语多元化教学的应用,可以激发教师教学自主性,体现学生自主性和任务教学的特点。
综上所述,文言文教学方面的研究成果虽多,但大都是单篇的侧重于中学语文教学的论文或硕士毕业论文,众多的硕士论文虽然在理论上都有着各种自己独到的见解,但是缺乏实践经验,未能真正做到实践与理论相结合。而中学一线语文教师较多地研究了多元化教学方式在语文教学中的应用,提出了个人实践教学的领悟和反思,但是探讨多元化教学方式在文言文教学中的应用的成果较少。
(本文为新疆维吾尔自治区教育科学“十二五”规划青年课题“多元化教学方式在文言文教学中的应用”的阶段性研究成果,项目编号为:[143031]。)
参考文献:
[1]王力.古代汉语[M].北京:中华书局,1999.
[2]王文彦,蔡明.语文课程与教学论[M].北京:高等教育出版社,2006.
[3]王志凯.中学文言文教学目的研究[D].金华:浙江师范大学硕士学位论文,2002.
[4]张海侠.中学文言文课堂教学的问题及对策[D].长春:东北师范大学硕士学位论文,2006.
[5]许令仪.中学文言文教学模式探究[D].重庆:重庆师范大学硕士学位论文,2006.
[6]张锋.文言文教学之历史沿革与革新策略[D].上海:华东师范大学硕士学位论文,2007.
[7]邓爱丽.现行高中语文教材文言文选文的研究[D].重庆:西南大学硕士学位论文,2008.
[8]洪素娥.情境教学在高中文言文教学中的应用研究[D].济南:山东师范大学硕士学位论文,2013.
[9]陈曦.多元化教学在大学英语教学课堂中的应用效果及评价[J].海外英语,2013,(22).
关键词: 学业自我概念 相关研究 意义
一、关于“学业自我概念”的定义
二十世纪初,人类将“自我”作为个体人格发展的核心,进行了深入而广泛的研究。伴随着自我概念研究的过程,“学业自我”也受到了研究者的广泛关注。1976年,Shavelson等人首先提出:自我概念是一个多侧面的等级结构,主要包括“学业自我概念”及“非学业自我概念”①。随后的研究中,不同的学者也从不同的认知角度界定了学业自我概念。
1984年,Byme研究发现,“学业自我概念”是指个体在成长情境中对自己的知识的知觉。1992年,House认为,“学业自我概念”是指学习者对其自身学业能力的认知,是学习者评价和判断自己能否掌握并获得学业任务的成功的过程。2002年,李叶、田学红认为,“学业自我概念”指的是学生对自己的学业的认知和评价。2003年,姚计海、申继亮等认为,“学业自我概念”是学生作为客体,对自己在学校中的学习态度、能力、情感和价值等做出的认识与评价②。
本文采用我国学者郭成2004年的界定方式:“学业自我概念”,是个体在学业情境中所形成的有关自己学业发展的比较稳定的认知、体验和评价,包括对自己在不同学业领域中的学业能力、学业成就、学业情感及学业行为等的认知、体验和评价。学业自我从层次上可以分为一般学业自我及具体学科的学业自我;而“一般学业自我”又被分为学业体验、学业行为、学业能力、学业成就这四个维度③。
二、关于“学业自我概念”的相关研究
1.“学业自我概念”与性别的关系
国外心理学研究者曾专门对学生学业自我的性别差异进行了广泛的研究。Meece等人的研究显示:在小学阶段,数学成绩和数学自我概念的性别差异不明显,但在初中阶段和高中阶段,男孩有较高的数学成绩和数学自我概念④。
我国学者郭成研究发现,中国青少年的学业自我发展在总体上不存在显著的性别差异,不过在具体维度上存在显著性别差异,如在学业能力上,男生优于女生,在学业成就和学业体验维度上女生优于男生⑤。
2.“学业自我概念”与学业成绩的关系
学业自我与学业成绩的关系探讨上也成为近年来的热点。在国外,Byme(l984)研究发现,学业成绩和能力与学业自我概念的相关较高,特定领域的成绩与相对应的学业自我概念有显著相关⑥。Orr和Dinur(1995)发现14~17岁学生的学业自我概念与学业成绩的相关。West,Fish和Stevens(1980)发现越是与学习有关的自我概念,与学生学习成绩相关越高。Marsh研究指出:数学自我概念和语文自我概念之间存在着负相关;数学自我概念和语文自我概念分别与数学成绩和语文成绩存着高相关;语文成绩与数学自我概念及数学成绩与语文自我概念之间存在着负相关⑦。
在国内,刘晓明(1991)以初中生为研究对象发现:高自我概念者学习成绩好,低自我概念者与成绩差。李叶、田学红对于初中生的研究发现:初中生学业自我概念与学业成绩之间存在显著相关。张怀春、杨昭宁的研究发现:师范大学生学业自我概念与学业成绩相关不显著⑧。
3.“学业自我概念”与成就动机的关系
以往的研究表明:自我概念与成就动机既相互区别又相互联系。自我概念时刻影响成就动机的产生及其作用的发挥。Lyon和Song等对中小学的研究发现,学业自我与学业成就有重要联系⑨。刘晓明等人对初中生的研究表明:低自我概念者则倾向于有低成就动机,而高自我概念者倾向于有高成就动机。成就动机的高低与自我概念的高低之间有着显著联系⑩。
三、“学业自我概念”的研究意义
积极的学业自我概念是大学生学业发展的基础,学业自我概念既是个体自我概念结构系统中的重要组成部分,又是影响学生学习动力的重要因素,经过大量研究发现,大学生的学业自我发展总体水平处于中等偏上水平,且各维度发展极不平衡。其中,学业能力的自我概念水平最高,学业成就价值的发展水平最高;从差异性上来看,虽然总体上性别和学校类型的差异不显著,但在学生身份、学生成绩分类上的差异显著。这些特点与我国社会和学校教育看重学习成绩、追求考试分数、升学竞争激烈实际有着必然联系。
作为当代教育工作者,我们应该关注学生对自己学业能力的积极知觉和对自己学业的愉悦体验。首先,我们要教会学生在学习的过程中享受成功的快乐;其次,要重视教学中的情感交流,使学生乐于学;最后,要对学生进行正面而积极的引导,尤其是要注意对普通学生和成绩较差的学生进行有针对性的教育引导,这是培养青少年积极的学业自我、促进学业发展的关键。
注释:
①ShavelsonR.J,HubnerJ.J.,StantonG.C.Self-eonecpt:Vadation of construct interpretations[J].Review of Edueational Researeh,1976(46):407-441.
②高萍萍.高职大学生学习动机、自我概念与学习成绩的关系研究[D].湖北:华中师范大学硕士论文,2007.
③郭成.青少年学业自我研究[D].重庆:西南师范大学博士论文,2006.
④卿凌.中学生英语学业自我的特点及其相关研究[D].重庆:西南大学教育科学研究所硕士论文,2007.
⑤郭成.青少年学业自我研究[D].重庆:西南师范大学博士论文,2006.
⑥Byme,B.M.The general academic self-concept nomological network:A review of construct validation research[J].Review of Educational Research.1984,54:427-456.
⑦高萍萍.高职大学生学习动机、自我概念与学习成绩的关系研究[D].湖北:华中师范大学硕士论文,2007.
⑧高萍萍.高职大学生学习动机、自我概念与学习成绩的关系研究[D].湖北:华中师范大学硕士论文,2007.
⑨Lyon,M.A.Aeademic self-concept and its relationship to achievement in a sample of junior high school students[J].Edueational and Psychological Measurement.1993,53,201-210.
⑩刘晓明,郭占基.成就动机、自我概念与学业成绩的关系研究[J].心理科学.1991,14(2):18-21.
参考文献:
[1]ShavelsonR.J,HubnerJ.J.,StantonG.C.Self-eonecpt:Vadation of construct interpretations.[J].Review of Edueational Researeh,1976,(46):407-441.
[2]高萍萍.高职大学生学习动机、自我概念与学习成绩的关系研究[D].湖北:华中师范大学硕士论文,2007.
[3]郭成.青少年学业自我研究[D].重庆:西南师范大学博士论文,2006.
[4]卿凌.中学生英语学业自我的特点及其相关研究[D].重庆:西南大学教育科学研究所硕士论文,2007.
[5]郭成.青少年学业自我研究[D].重庆:西南师范大学博士论文,2006.
论文关键词:课程教学改革;研究生教育;教学策略
与生机勃勃的基础教育新课改和百家争鸣的大学外语教改相比,有关外语专业研究生教育的改革研究相对较少,而且目前国内研究主要集中于研究生的培养理念和学术论文规范上,对于微观层面的教学模式、教学策略问题仍缺乏深入探索,这在一定程度上影响了外语专业研究生的培养质量。(戴炜栋、王雪梅,2005)鉴于此,本文在结合笔者多年执教研究生课程的基础之上,对一门重要的研究生学位课程的教学谈谈自己的探索与感悟,以期与同行共同探讨研究生教育改革,构建新型教学模式。
“英语教学论”是课程与教学论硕士研究生和教育硕士的一门非常重要的学位课程。主修这门课程的研究生将来多数会从事基础外语教学工作。由于硕士是目前我国中小学师资中学历较高的群体,他们对推行中小学外语教学改革和提高基础外语教学质量所起的作用不可低估。为此,我们对这门课程的教学进行了长期的、全面的探索:从课程教学大纲的制定到课程内容的抉择,从教学方式的更新到教学评估体系的变革。经过多年的努力,一门充满活力的、动态的、开放的研究生课程已经建立。回顾我们走过的历程,主要在如下五个方面进行了探索。
一、精心制定课程教学大纲
课程教学大纲在教学中起到指挥棒的作用,因此,课程教学改革首先从这方面入手。在课程与教学的运行当中,第一步也是最关键的一步是确立课程教学目标。(Tyler,1949)在考虑我国外语教学,特别是中小学外语教学的实际与未来发展趋势的基础之上,把“英语教学论”这门课程的教学目标确定为:培养研究生的外语教学理论素养和外语教学方法。此课程教学目标的确立,一是考虑了硕士生未来职业的需要,二是考虑了他们将来从事基础外语教学工作后的可持续发展。外语教学方法的训练是他们的立身之本,教学理论素养是他们可持续发展的源泉。
在课程教学目标确定之后,我们对教学内容进行了改革。由于外语教学理论与实践的时间、空间跨度很大,(Richards & Rogers,1986)外语教学理论、教学方法种类繁多而且日新月异,加之这门课程的学时有限,常常会给我们带来很大的挑战,教学中往往会出现顾此失彼或只见树木不见森林的现象。基于这种情况,我们把教学内容分为刚性内容和弹性内容。刚性内容是指研究生必须掌握的课程知识,包括中外外语教学流派的评析、各种外语教学方法的语言学和心理学基础等等。弹性内容主要体现在对外语教学中的热点问题、前沿问题的分析讨论,这部分内容是动态的、开放的,随着外语教学改革的深入而变化的。
在教学方式的选择上,我们克服以“讲授为主,讨论为辅”的“本科化”课程教学方式(罗尧成,2006)的弊端,采取“学生主题发言和教师讲授相结合,课堂学习与课堂讨论并重”的新型教学模式。例如,我们常常要研究生轮流在课堂上作主题发言,精要介绍一种外语教学流派或外语教学方法,然后教师在此基础上再补充完善。这样做可以培养研究生的自学能力和表述能力。教师讲授的主要是难点、疑点和重点问题。存在争议的问题和热点问题就构成了课堂讨论的内容。这种新型的教学模式能充分发挥学生的主体作用和教师的主导作用,两者相得益彰。
在教学评估方面,改变了以往单凭学期论文评定成绩的方法,而将研究生的权威著作阅读效果、课堂主题发言、课堂讨论、学期论文四项内容作为成绩考核的依据。这样做有利于促使研究生积极主动地学习。
二、指定必读权威著作,严格检查阅读效果
实践证明,对于任何一门硕士学位课程来说,要选择一本内容全面、对问题阐发深刻的教材十分困难,因此我们常常给研究生指定几本有关外语教学与研究方面的权威著作,如J.Richards和T.Rogers所著的Approaches and Methods in Language Teaching(1986),H.G.Widdowson所著的Teaching Language as Communication(1996)以及Peter Skehan所著的A Cognitive Approach to Language Learning(1998)等权威著作。教师可以先在课堂上对这些著作进行纲要式地介绍,然后要求研究生必须在规定的时间内读完,以便于系统地把握外语教学的历史与现状,了解外语教学的基本概念(fundamental concepts),深刻领会外语教学法不断发展演变的轨迹和缘由。为了检查研究生阅读权威著作的效果,我们经常和研究生的导师积极配合,采取灵活多样的方式进行严格检查,如提交读书报告或组织讨论交流。
三、师生共建课程参考文献库
众所周知,学术期刊是反映学科领域最新研究成果和研究动态的主要载体之一(另一主要途径是学术会议),它在培养研究生的学术素养和撰写学位论文方面具有不可替代的重要作用。因此,研究生除了要学习指定的权威著作之外,还必须经常阅读外语学术期刊。事实上,很多研究生对此非常迷茫。一是不知道应该阅读哪些期刊,二是阅读过的文献七零八碎,缺乏归纳整理的方法。为了解决这个问题,首先要确定参考文献库所收录的论文必须来源于国内外外语类核心期刊。然后根据这门课程的教学内容和教学目标,把参考文献库进行逐级分类并逐年更新。一级分类包括:国内外外语教学流派及其批判与继承、语言学理论与外语教学、心理学与外语教学、词汇教学研究、语法教学研究、阅读教学研究、口语教学研究、听力教学研究、写作教学研究和中国外语教学改革研究等十大类。一级分类类别不宜过多、过细。在一级分类的基础之上,我们又进行了二级分类。例如,在一级分类参考文献库“词汇教学研究”下设了七个二级文献库:词汇量调查研究、教学大纲词表研究、词汇学习策略研究、词汇水平研究、写作词汇研究、口语词汇研究、心理词典研究和词汇搭配研究。研究生还可以根据自己的研究兴趣对二级参考文献库进行进一步分类,以构建个性化的参考文献库。为了及时更新参考文献库,我们对每届研究生进行了分组,每组负责及时更新一个一级参考文献库,教师定期查看更新情况并给予相应指导。
实践证明,参考文献库的建立,不仅使研究生对该门课程的研究范围、研究历史和最新研究动态有了清楚的了解,而且极大地方便了研究生进行文献检索,使他们对某一具体问题的研究历史与现状有了清晰而全面的把握,为他们未来的硕士论文选题提供了有用的文献资料。通过师生共建课程参考文献库,教师也把握了外语教学研究的概况及研究前沿,极大地开阔了师生的学术视野。
四、选择重点、难点、热点问题进行专题介绍和专题讨论
如前文所述,由于外语教学理论与实践的时间、空间跨度很大,所涵盖的内容十分庞杂,加之这门课程的授课学时有限,我们不可能在教学中做到面面俱到,否则就会陷入以“讲授为主,讨论为辅”的“本科化”教学方式。(罗尧成,2006)因此,有必要对课堂讲授内容进行抉择,对课程教学方式进行改革。根据课程教学大纲对教学内容和教学目标的要求,我们选择了一些外语教学中的重点、难点、热点问题进行专题介绍,然后让研究生在阅读指定专著和课程参考文献库的基础上,在课堂上就这些专题展开讨论。就这门课程而言,我们把重点放在了对各种外语教学流派的历史分析及批判继承上;难点在于各种语言学理论和心理学理论如何催生了外语教学法的产生和流变;热点问题是动态的,随着外语教学改革和研究的深入而不断变化。
为了使研究生能更好地进行专题讨论,我们常常会提前公布讨论话题,并让他们根据自己的研究兴趣选择话题,组成研究小组,进行小组合作,这样可以培养研究生共同发现式的、合作式的学习。(文秋芳等,2006;戴炜栋、王雪梅,2005)此外,我们会对每个研究生在讨论中的的表现进行记录评分,作为课程考核成绩的一个重要依据。因此,研究生都会积极主动地参与学习和讨论。我们发现,专题讨论既可以以点带面,又可以培养研究生的口头表达能力、文献综述能力和理论思辩能力,同时还可以检查和监督研究生的学习状况,增进师生之间的交流与沟通,增加同伴压力(peer pressure),营造科学研究的气氛和求实求真的科研精神。
有学者认为,研究生与本科生的最大区别就在于“研究”二字上,离开这一点,就谈不上是研究生了。(林文勋,2005)而研究生的“研究”又集中体现在论文写作上。要写好学术论文,其关键是做好论文选题,因为“发现问题等于解决问题的一半”。过去,在研究生的培养过程中,发现多数研究生在论文(包括学期论文、学术论文和学位论文)选题方面比较茫然,要么选题太泛,要么重复别人的研究,要么把没有人研究过的问题误认为是学术创新,即把学术空白等同于学术前沿。(林文勋,2005)通过专题介绍和专题讨论后,发现研究生在论文选题方面比较敏锐,选题通过率明显提高,而且他们所提交的学期论文选题和硕士论文选题基本上都来源于师生课堂互动所探讨的重点、热点问题或与之密切相关的问题。这些问题涵盖基础教育课程改革中的“三维目标”、外语学习的最佳起始年龄、外语自主学习、我国基础外语教学改革、任务型教学法的本土化等等。
五、理论与实践互动,培养研究生的实际教学水平
我国研究生培养一直沿用“课程学习+发表文章+学术性学位论文”的基本要求,结果导致与社会需求脱节,学非所用,不少学生甚至遭遇毕业即失业的尴尬。(阮平章,2004)外语研究生的大多数课程都比较注重提高理论素养,(张德禄,2005)而研究生教育的实用性和应用性将会在学术性的基础上变得越来越突出。随着研究生教育规模的迅速扩张和社会的快速变革,单一的学术型研究生培养模式已难以适应社会多元化的需要,分类培养是研究生教育发展过程的必然选择。(阮平章,2004)基于这些理念,我们着力提高研究生的教学实践能力,为他们今后步入社会做好准备。因此,在开设“英语教学论”这门课程的同时,尽可能地给研究生安排适量的教学任务或是让他们自己去寻求教学机会,或是让他们充当本校任课教师的助手,目的是让他们亲历外语教学第一线,从中获得深刻的感性认识。这对于研究生来说是弥足珍贵的理论与实践相结合的锻炼机会。
“穷且益坚,不坠青云之志”
穷人的孩子早当家,何国英自从懂事以后就目睹了父母的劳累和家庭的贫困,虽然父母每天面朝黄土背朝天,但依然不能改变贫穷的命运。她期望着自己长大了能考上大学,为父母争光,让父母过上好日子。当别的孩子沉溺于玩乐中时,她却以异常的激情汲取着书中的知识,因为这其中寄托着她全部的期望和梦想。
1997年8月,一张广西大学的录取通知书,给这个家庭带来了少有的欢笑,长期的贫困和劳累已使何国英全家习惯了平淡而略带忧伤的生活,可是这一次,全家四口人破例都喝了酒,弟弟还说三年以后他也一定要考上大学。看着父母高兴的神情,何国英的心里还是沉甸甸的,她知道这意味着父母又要为她的学费而奔波了。
迈入大学校门的何国英,又进入了另一个奋斗的天地。在实现了昔日的梦想之后,新的梦想又插上了翅膀,她想大学毕业后继续考研,成为一名硕士,她甚至看到了父母捧着她戴着硕士帽、穿着硕士服的照片时的喜悦和激动。
正当这个女孩为实现理想而奋斗时,厄运向她袭来,第一学期时患了直肠癌。第二学期,何国英开学就要考试,因为上学期的手术耽误,她申请了缓考。这时,全班人都为她捏了一把汗,因为上学期期末考试的试卷特别难,全班只有几个人通过,何国英生病落下了课程,而且身体又虚弱,她能通过吗?结果,她全部通过。其实这并不意外,因为病中的她也在坚持学习。为梦想而奋斗的人是不知疲倦的!
虽然得到了同学和老师的帮助,但这次的手术还是增加了家里的债务。鉴于何国英的家庭状况,学校安排她到图书馆勤工俭学。她利用当图书管理员的机会,将学生借书用过的索书条装订起来,在背面打草稿、记单词,就是在这一张张面积尚不及身份证般大的小纸条上,写下了一个勇敢女孩为梦想而奋斗的历程。家在南宁的好友何影看她平时太节俭,就拉何国英到她家吃饭,却被何国英婉拒了。她要给大家带来欢乐和轻松,而不是给他们添麻烦,加负担。
有梦想的女孩是热情、乐观而又热爱生活的。何国英爱好体育,尤其爱打篮球,曾经,她也是篮球场上一道亮丽的风景线,手术后医生让她不要剧烈运动,她又改打乒乓球了。她觉得生命是可贵的,它赋予每个人只有一次,何国英珍惜自己有限的生命,要在这有限的时间里活出精彩来。在宿舍里,她尽自己的所能关心着室友,经常在室友回来晚时,帮她们打水、收衣服。在学习之余,她常常打扫宿舍。何国英的爱心、乐观和热情感染着她周围的人,以至于人们都忘记了她刚患过重病。
一次,好友何影到了何国英家,她惊异于如此贫苦困难的家庭竟然养育出这么开朗而热情的女儿。何国英家里的房子是祖上留下的,就为了这几间破旧的房子,她家已经打了好几年的官司,和一个亲戚争夺房权,而如果官司失败,何国英一家人将面临居无定所的困境。为了增加收入,何国英的父母在家里还养了猪,因为没有多余的钱盖猪圈,就腾出一间房养猪,人与猪隔墙而居。看到这样的家境,她理解了何国英平时的节俭,也明白了她力量的源泉。
大四那年紧张的考研结束,何国英就开始为工作奔波。在她找到一家公司愿意接收她后,考研成绩下来了,她没有考上。虽然难免会失落,可这又成为奋斗的起点,何国英开始了边工作边考研的生活,白天忙于工作,晚上挑灯夜战。
2002年,何国英终于考上了广西大学动物科学技术学院的研究生,师从夏中生教授,主攻动物营养与饲料科学。可是刚读研一,她的身体又出现了不适。2002年11月底,在好友何影的陪同下到医院检查。她患上了胰腺癌,而且癌细胞已转移到了肺部。当时何国英很轻松地说:“没事,人只有一叶肺也照常呼吸,就像上次一样,做完手术我又健康了。”何影强装着笑容,心里却很难过,因为刚才医生把何影叫到一边,告诉她:“癌细胞已扩散到了肺部,左肺有阴影,右肺也有一点,如果只是左边,我们还可以解决,可现在已转移到右肺,没有办法了。”其实,何影也知道何国英很清楚自己的病情,但为了不让好友难过,她依然乐观地说:没事。
得知何国英再次患上癌症之后,班长张维谊组织了一场“献出您的爱心,挽住年轻的生命”的捐款活动。2002年12月16日的清晨,十几个捐款箱摆在校食堂和学生宿舍周围,老师和同学纷纷解囊,一位民工经过捐款点,在得知情况后就捐了100元,有一位上南宁办事的广西大学学生家长也专门赶来捐款,一位二级士官还表示愿意长期资助,有许多广西大学的教职工在听到子女的宣传后纷纷捐款,不少学生以班级或宿舍的名义集体捐款,不同的人们留下了相同的真情。这真情给了何国英无穷的动力,她将其紧记心间。
“人是不能够被打败的!”
几天后,何国英抱着一大摞书,离开校园,住进了医院。在化疗的几个月中,她克服了常人难以想象的痛苦。病痛发作时,她大汗淋漓,吃下去一点东西,就不断地呕吐,头发也渐渐掉光了,身体极度虚弱。但就是在这种情况下,只要病痛稍微好转,她就拿起课本学习,戴上耳机听英语,老师们劝她好好养病,不用担心课程,可何国英对老师说:“老师,我首先是一个学生,在学业上不需要特殊对待。”住院的几个月,她不仅参加了英语六级考试,还修完了本学期的学分。
出院后,何国英戴上假发,走进了久违的实验室。在此后的一年多,何国英一边定期治疗,一边苦攻学业,和导师共同完成了两篇高质量的论文。
2004年7月,开始做硕士论文了,何国英选择了一个很“土”的课题:“非常规饲料――构树叶的营养价值评定研究”。她对导师说:“我家在农村,我喜欢这个‘土’的课题,构树叶在广西农村到处都是,如果能把构树叶做成饲料,让农民用很低的成本养猪养鸡,不就可以帮助农民脱贫致富了吗?”夏中生教授同意了她的选择,嘱咐她:这个实验很辛苦,多注意身体。并且安排了两个学生专门协助何国英。
课题选定后,何国英就全身心地投入到课题的研究之中。她要把她剩下的生命都交给这个课题研究,或许这是她最后回报社会的机会了。而此时,癌细胞正在侵袭着她,经常整夜睡不着,只能坐着。有好几次师妹刘丹见她很晚了还呆在实验室,一手抓住胸口,一手拨弄实验管做实验,就提醒她要注意休息,而何国英则回答:“或许我时日不多,不加紧恐怕完不成啊!”“癌痛像刀割一样,不是一下,而是持续性的,在这种持续不断的疼痛中,一般人是熬不下去的。”何国英的主治医生、广西医科大肿瘤医院化疗科主任胡晓桦说。
为了证明构树叶成为家畜饲料的可能性,就要做动物消化实验,而这个实验首先需要自己养鸡、养猪,还得养一群白鼠,喂这些牲畜需到野外去采摘大量的构树叶,采摘回来后还要调和,然后喂食,再接着是收集家畜的粪便、尿液,打扫鸡舍、猪舍,又脏又臭;天气热每天要给猪冲十几次水;消化实验要煮树叶,一煮就是几个小时,人不能离开。这一系列的体力活,虽然有师弟、师妹的帮忙,她仍然亲自上阵。师妹刘丹说:“师姐带着我们从宿舍到鸡场,骑车二十多分钟,两三个月风雨无阻。每天从早到晚,从鸡场回来再回到实验室做实验,正常人都累得不行。”实验后期,刘丹几乎每天都陪在何国英身边,“实验室在五楼,她要爬大半个小时,走一步休息一会。本来喂小白鼠可以交给我们做,但她每天都自己来喂。常常在实验室泡到半夜,那时她疼得受不了,睡不着,就来实验室做实验。”刘丹说,“师姐不久前曾经跟我说过她的几个心愿,读完硕士是第一个,能够好起来是第二个,把毕业论文的研究成果投入市场是第三个。”
人们惊异于何国英瘦弱的身体为何蕴藏如此的能量,她的弟弟说:“姐姐最大的心愿是用她的研究造福农村,让农民受益。”何国英再次证明了海明威笔下的老人桑提亚哥的那句话:“人是不能够被打败的!”
今年的三四月份,实验进入了关键时期,但何国英的身体也渐渐难以支持,剧烈的疼痛,呼吸困难,咳血。她把氧气瓶搬到实验室,一边做实验,一边吸氧。经过艰苦的努力,何国英发现,在广西农村遍地都是的构树叶在一定使用范围内安全无毒,完全可以成为家畜的好饲料。在严密计算的基础上,她写出了论文的初稿。然而,随着病情的发展,何国英已经两个星期几乎吃不下任何东西,呼吸困难,呕吐,疼痛排山倒海地袭击着她。
今年五月底,她才到医院,主治医生胡晓桦问,为何现在才来,答案让胡晓桦的眼泪几乎当场流下:一住院,就惊动很多人,导师、同学都尽了最大的努力,他们也是这里挤点那里挤点,我不能给他们增加太大的负担。
这次住院,她没告诉家人,也没告诉好友,在同学的陪同下,住进了医院。她不想让好友为她担心,本来她想把阳光和温暖带给这个世界,可是天不遂人愿。她更怕父母为她担忧、花钱,为给她治病,家里已经欠下了十几万的债。“常人难以忍受的痛苦,她独自默默地扛着,由于经济压力,她只服用普通的止痛药。”身为医生的胡晓桦痛心无奈地说。
后来,还是师妹刘丹在何国英的手机里找到了她弟弟的电话号码,双亲得知后,才匆匆赶来。
最后的答辩
2005年6月,病榻上的何国英在考虑论文答辩的问题:没有完成毕业论文答辩,这个研究生学业不算完整啊。在她生命的最后阶段,她恳求医生:“你一定要帮我顶住,答辩完论文,我才可以安心离去。”
此前,学校向何国英转达意见,她可以不答辩,也可以考虑把答辩会场开到病房,可对于何国英来说,在严格的氛围中按照标准的程序答辩,有老师和同学在场,这个答辩才是完满的,而这也是自己的心愿。她请求医生和导师,按照标准给她开答辩会,她说:“我也为了这个目标奋斗了几年,而且一直都是老师,还有朋友关心、鼓励和支持着我,我不参加这个答辩,就觉得有点说不过去了。”学校和医院在知道了何国英这个勇敢的决定后,都为她的毅力而感动。经过慎重考虑,大家决定帮助这个女孩完成心愿。
2005年6月10日,何国英早早起床,戴上了假发,还别上了自己心爱的发夹,她很兴奋。为了让她以良好的状态参加答辩,临行前,医生给何国英进行了严格的检查和适当的治疗。上午,几个师妹师弟和老师专程到医院来接她,医院派出3名医护人员,带上急救药与氧气,用救护车把何国英送到了会场。学校还特意把会场由三楼改为一楼,答辩桌高度也特意调低。
上午10时,坐着轮椅的何国英在众人的簇拥下进了会场。答辩开始,她细弱的声音响起:“感谢各位老师、同学来参加我的硕士论文答辩,由于准备得不充分,可能在讲的过程中会出现很多错误和漏洞,请大家多多包涵。”
接着她宣读那饱含生命激情的论文,十来分钟后,何国英咳嗽起来,呼吸困难,现场医护人员紧急输氧。由于她咳嗽得太厉害了,只好由师弟廖志超代读,何国英在一旁补充。很多人看到这一幕,都悄悄地背过身去,擦眼泪。
漫长的一个小时终于结束了,评委一致认为,论文设计合理,数据真实,有较高的学术价值和应用价值,总评分:优秀。这是她学位毕业论文的答辩,也是她生命的答辩,更是她灵魂的答辩。
热烈的掌声经久不息,何国英眼睛湿润了,苍白的脸上露出了微笑,她的第一个愿望终于实现了。
6月29日,广西大学举行颁发学位证书仪式,重病的何国英没能参加,当天下午,同班同学带上她的硕士服和硕士帽来到了医院,合影留念。7月1日,院系领导把硕士学位证书送到何国英的病床前。
7月12日,刘丹和几个师兄妹去看她,她拼命地呼吸,微笑了一下,用尽最后一口气,给这个世界留下了两个字:“谢谢。”
7月14日下午五时,何国英在广西区肿瘤医院的病床上离开了她热爱的世界,守候在一旁的双亲失声痛哭,他们压抑已久的泪水终于无法抑制地流了出来。
何国英苍白得近乎透明的身体像一片秋叶,轻轻落下,完成了她从绚丽到静美的一生。
在她不长的遗书里,有如下内容:财产3000元,一部分给父母,一部分捐给失学儿童;内脏器官如果能用,就捐给医学。
何国英的毕业论文所研究的项目受到专家、领导的高度重视,广西构树产业发展规划已经做好,大规模的人工种植构树已经展开,年产10万吨的构树饲料厂已经准备建设。虽然没有看见梦想的实现,但相信此时天堂里的何国英一定在微笑。
新华社7月27日播发新闻稿,报道何国英与病魔顽强抗争终于完成论文答辩的感人事迹,引起了强烈的反响。
关键词:文献综述英汉学术论文分布
中图分类号:H05文献标识码:A文章编号:1009-5349(2016)11-0232-02
近年来,体裁和体裁分析成了语言研究领域的热门话题,对各类语篇进行体裁分析的研究层出不穷,其中对学术论文的体裁分析尤为突出。但以往的研究多集中在论文的其他部分(如:摘要、引言和讨论部分),而对作为学术论文重要组成部分的文献综述的研究甚少,其英汉对比研究更为少见。学术论文中的文献综述具有特定的交际目的和交际对象,并在语篇结构、文体风格、社会功能等方面都具有特定的体裁特征。文献回顾能够体现论文作者对研究问题的理性认识,论证研究必要性的能力,以及宏观综合文献的能力,是整个论文中最难写的一部分。[1]鉴于文献综述在论文写作中的重要性和复杂性,本文以Swales学派体裁理论以及Connor的对比修辞理论为基础,从分布特征对英汉论文文献综述部分进行对比分析,揭示同一体裁在不同的社会文化中的异同。
一、数据和分析方法
本研究所使用的语料库总共包括40篇应用语言学领域的实证性学术论文。根据Nwogu(1997)提出的建立语料的代表性(representativity)、声望(reputation)和可读性(accessibility)的原则[2],确立了具有广泛代表性的4种杂志:《外语界》《现代外语》《AppliedLinguistics》《EnglishforSpecificPurpose》。这些杂志均出版于2013和2014年。运用WolframMathematics60软件进行随机抽样,从4种杂志中分别任意抽取10篇论文,从而构成了本研究的语料库共40篇文章。
本研究中文献综述宏观结构对比,主要是针对所建立的语料库论文中文献综述的分布特征进行对比。应用语言学领域实证性学术文章的宏观结构主要包含IMRD(Introduction,Method,ResultsandDiscussion)四个部分。[3]文献综述在论文中呈现的最主要的形式为引用,占据了文献中综述篇幅的大部分。Swales(1990)将引用分为两种类型:融入式引用和非融入式引用。在整合型引用中,研究者的姓名是句子成分的一部分。而在非整合性引用中,研究者的姓名以括号或上标数字加批注等形式出现。[4]运用PDF转Word转换器软件统计这两种引用在英汉论文中四个部分(引言、方法、结果、讨论)中的字(词)数。英语论文的篇幅长度是以单词数为单位计算的,而汉语论文的篇幅长度是以中文字数为计算单位,因此不能仅通过统计英语论文的单词数和汉语论文的字数得出文献综述的分布比例。为了使本研究更具有说服力,文献综述的句子数和出现频率也作为分析的依据。在统计整理数据的基础上,运用独立样本T检验对比分析英汉论文文献综述分布特点。
二、英汉论文文献综述宏观分布对比分析
1文献综述在论文各部分及整篇文章中所占的比例
表1是文章各部分文献综述字(词)数占相应各部分字(词)数的百分比。由表1可以看出,英汉论文都是引言部分的文献综述最多(英语论文中引言部分文献综述单词数24527,占引言总单词数的637%;汉语论文中引言文献综述字数16650,占引言总字数的495%),结果部分的最少。引言部分和方法部分的文献综述是英语论文多于汉语论文,而结果部分和讨论部分则相反。对于文献综述在整篇论文中的比例而言,英语论文略高于汉语论文(英语论文中文献综述总词数38401,占英语论文总词数的266%;汉语论文中文献综述总字数33667,占汉语论文总字数的225%)。除了上面说到的英汉论文篇幅以不同的单位衡量的原因外,这样的结果不能足以比较文献综述在两种语料中的分布情况,因此有必要运用独立样本T检验来检验两语料文献综述在各部分及整篇文章中所占的比例是否存在显著差异。表2显示了英汉论文文献综述在论文各部分及整篇文章中的统计分析的结果。独立样本T检验结果显示,英汉论文文献综述在论文各个部分的分布没有显著差异(t=1615,1953,0215,-1870,1875;df=38;p>005)。
2.文献综述的句子数和出现频率
表3和表4是文献综述在论文各部分的句子数和出现频率对比。从表3可以看出,英语论文中文献综述在论文各部分的句子数都多于汉语论文,其中引言部分和方法部分最为明显(英语论文中引言部分的句子数771,汉语论文中为275;方法部分英文论文为185,汉语论文为50)。文献综述在论文中的出现频率与句子的比较结果相似,也是英语论文多于汉语论文,引言部分和方法部分差距较结果和讨论部分要大。为了使研究的结果更具有说服力,我们同样运用独立样本T检验来检验英汉论文文献综述在这两方面是否具有显著性差异。表5和表6的统计结果显示,英汉论文文献综述的句子数和出现频率在引言、方法及整篇文章中有显著差异(p值均为0000,小于005)。研究表明,英语论文文献综述句子数和出现频率在引言和方法部分明显多于汉语论文,结果和讨论部分也是英文论文居多,但差异不明显。
三、结论
综上所述,文献综述在英汉论文中都占有相当大的比重,其中引言部分的文献综述分布最多。英汉论文文献综述在论文各个部分的分布没有显著差异。就句子数和出现频率而言,英语论文文献综述句子数多于汉语论文中的句子数,出现频率亦是如此。这两方面在引言、方法及整篇文章中有显著差异。总的来说,英语论文作者更加重视文献综述的写作,尤其是在引言和方法部分。这可能是因为中西方文化差异导致的写作习惯差异。中西方对于“礼貌”的理解不同:中华民族历来重视伦理道德,人际交往讲究“客气”。西方人似乎无暇“客气”,人与人之间交流往往直截了当。[5]因此,在进行文献综述的写作时,中国学者常常采用委婉、含蓄、迂回等间接的表达方式;而西方学者则倾向于直接、明快的写作风格。英汉论文文献综述部分的不同之处比较清晰地反映出了英汉作者不同的写作习惯。文化习俗和写作风格都会影响篇章的形成。本研究对于学术论文文献综述写作教学有着重要的理论和实践意义,同时有助于学术写作者了解不同语言文化各自的写作修辞特点,提高跨文化意识,加强学术交流。
参考文献:
[1]王姿懿,高桂珍.中外应用语言学硕士论文文献综述体裁对比[J].重庆科技学院学报(社会科学版),2014,08:104-106.
[2]Nwogu,K.N.The Medical Research Papers:Structure and Function. English for Specific Purposes,1997,16:119-138.
[3]杨瑞英.体裁分析的应用:应用语言学学术文章结构分析[J].外语与外语教学,2006,10:29-34.
[4]Swales,J.M.Genre Analysis:English in Academic and Research Settings [M].Cambridge: Cambridge University Press,1990.