时间:2023-04-08 11:30:14
导语:在抗震理念论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:建筑方案设计;抗震;作用分析
中图分类号: TU2文献标识码: A
1、建筑方案设计在建筑抗震设计中的几个主要设计问题分析
1.1 建筑体型设计问题
建筑体型包括建筑的平面形状和立体的空间形状的设计。震害表明,许多平面形状复杂,例如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。海城地震和唐山地震中有不少这样的震例。而平面形状简单规则的建筑(包括单
层和多层建筑)在地震中都未出现较重的破坏;有的甚至保持完好无损。沿高度立体空间形状上的复杂ss和不规则,例如相邻单元的高差过大、出屋面建筑部分的高度过高、有的建筑装饰悬伸过大过高,这些沿高度形状上的变化,在地震时都会造成震害,特别是在建筑结构刚度发生突变的部位更易产生破坏。在历次地震中工业与民用建筑都有此类震例。
所以,在建筑体型的设计中,应尽可能的使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说,都是较好的体型。尽可能少做外凸和内凹的体形,尽可能少做不对称的侧翼和过长的伸翼,在体型布置上尽可能使建筑结构的质量和刚度
比较均匀地分布,避免产生因体形不对称导致质量与刚度不对称而引起建筑物在地震时发生对抗震极不利的扭转反应。在建筑方案设计中,特别是高层建筑的建筑方案设计中,为了建筑立面美观和艺术上创意,复杂的建筑体型是难以避免的,但是,在设计时一定要把建筑艺术、建筑使用功能同结构抗震安全很好的地结合起来。
1.2 建筑平面布置设计问题
建筑物的平面布置在建筑方案设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离,内墙的布置,空间活动面积的大小,通道和楼梯的位置,电梯井的布置,房间的数量和布置等等,都要在建筑的平面布置图上明确下来;而且,由于建筑使用功能
的不同,每个楼层的布置有可能差异很大。因此,这就带来一个建筑平面布置的多样化如何同时考虑结构抗震要求的问题。一个比较突出的问题是,建筑平面上的墙体(包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙)布置不对称;墙体与柱的分布不对称,不
协调;造成建筑结构质量与刚度在平面上分布的不对称,不协调;使建筑物在地震时产生扭转地震作用,对抗震很不利。根据抗震设计审查结果统计,有的城市在建筑平面布置上不合理的达17%,在墙体设置上不符合抗震要求的达24%。
1.3 地展力问题
在高层建筑方案设计中,除了考虑垂直荷载和水平荷载外,还要考虑地展力。往往由水平地震力产生的内力,成为设计控制的主要因素。高层建筑的结构体系有多种,当地震烈度低于8度时,只要建筑物体型合理。垂直刚度均匀,九层以下的高层建筑,仍可采用钢筋混凝土框架结构。然而,由于高层建筑结构体系自身的柔性较大。加上设计师在建筑方案设计时因商业要求,无法建筑结构上进行合理的设计,从而引起建筑结构设计不合理,造成这类建筑抗震性能先天不足,加上临街一面底层抗震墙设簧减少,引起底层的侧移刚度比纵横墙较多的第二层要小,这种结构的建筑物其地震倾覆力矩主要由钢筋砼框架柱承担,使得底层钢筋砼框架柱的承载能力大为降低,当地震时,因为下柔上刚,从而危及整座建筑的安全。如何才能克服这些闲难就是建筑方案设计者所面临问题。
1.4 缺乏理论指导和经验
建筑抗震设计中缺乏科学规范的理论指导,缺乏实际经验的积累;我国对地质地震的认识尚不够完善,对地震的成因,预测,防治研究不够深入,地震防治规范不够科学。因此,在进行建筑结构抗震设计时候,缺乏一定的科学依据,或依据的是不完善的理论。因此,难以在建筑结构设计中完美融合防震设计理念。设计中,没有能够深入研究地震对建筑结构破坏的层次和顺序,难以做到重视主体的设计而兼顾细节问题。没有能根据实际情况灵活变通的运用抗震设计准则。
2、建筑方案设计和抗震设计的关系分析
建筑方案设计对建筑抗震起重要的基础作用。建筑的结构设计难以对建筑方案设计有很大的改动,建筑方案设计已经初步形成了,建筑结构就必须按照原则服从建筑方案设计的要求。设计师在建筑方案能够全面的考虑到抗震设计的要求,那么结构设计人员按照建筑方案
对结构部件进行科学、合理的布置,保证建筑结构质量与结构刚度均匀分布,结构受力和结构变形共同协调,提高建筑结构抗震性能和抗震承载能力;如果建筑方案没有考虑到抗震的要求,直接给结构抗震设计带来更大的难题,建筑布局设计限制结构抗震布局设计。为了进
一步提高结构部件抗震承载能力,就必须增大结构构件的截面面积,这样又会造成很多不必要的浪费。所以,在建筑抗震设计的过程中建筑单位要对建筑体型设计、建筑平面布置设计、屋顶建筑抗震设计等问题加以关注。
3、在建筑方案设计中考虑抗震问题的作用
3.1 体型设计中能够避免质量和刚度分布不均
建筑体型包括建筑的平面形状和主体的空间形状的设计。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则:在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。
3.2 屋顶建筑的抗震设计作用
屋顶建筑的抗震设计人员常被人们忽视,这是因为屋顶并不是结构承重的重要部分。所以人们并不重视这一方面的设计。事实上恰恰相反。屋顶建筑是建筑方案设计的非常重要的一部分,根据现在一些地震的破坏来看。屋顶建筑是地震破坏最严重的地方之一。在这一部
分的设计中应该尽量降低屋顶建筑的高度,在材质上选择用高强轻质的建筑材料和轻型的建筑造型,保证屋顶建筑的结构质量和刚度的均匀分布,这样就能保证地震作用沿结构方向的均匀传递。同时在设计的过程中,要注意屋顶建筑与整体建筑的重心应该保持一致,这样能
够显著提高屋顶建筑的抗震稳定性。减少地震过程中扭转、变形等情况对建筑物自身的破坏。
结语:
总之,建筑方案设计在建筑的抗震设计中非常重要,二者之间有着非常密切的关系。因此,对于建筑方案的抗震设计,我们要有足够的重视并且使其能够发挥它的作用。从而保证建筑的抗震能力,保障人们的生命财产安全。
参考文献:
[1]蒋山.浅谈建筑方案设计在建筑抗震设计中的作用,[期刊论文]中国房地产业,2011 年10 期
[2] 陆伟权.浅析建筑方案设计在建筑抗震中的作用,[期刊论文]城市建设理论研究,2012 年14 期
[3]曾锐.重视建筑方案设计在建筑抗震设计中的作用,[会议论文]中国铁道学会铁路房建管理会议,2010
论文关键词:混凝土 抗震 经济性
作为从桥拱建筑中发展而来的混凝土大跨度板柱,发展历史悠久,应用广泛,特别是经过现代科学技术的运用,发展为一种新型建筑体系,由于其结构设计较容很符合抗震设计理念,混凝土大跨度板柱只要设计、构造措施得当,对改善框架节点的延性、增加节点区在地震作用下的变形能力有非常大的作用。同时会有效避免混凝土灌注中出现的许多现实问题:诸如在施工过程中由于框架节点区钢筋过于密集,混凝土难以灌注的问题,振捣困难的问题等等。由此,大跨度板柱体系在结构设计中越来越得到更为广泛的应用。伴随着我国混凝土行业、高层建筑业的蓬勃发展,行业规范越来越严格,对混凝土制品的品质的标准也更高,这在一定程度上也加快和推广了大跨度版主的发展和应用。再就是大跨度板柱体系在经济方面和混凝土密肋梁板相比较也具有很大优势。在下文中,对大跨度板柱体系和混凝土密肋梁板体系在抗震性能和经济性方面作计算分析比较。
一、结构方案概述及计算分析结果
本工程处于8度抗震设防烈度区,属三类场地,基本风压0.35kN/m2,框架抗震等级三级。X方向总长7.3x6=43.8米,Y方向总长8.2x3=24.6米。大跨度板柱体系:结构总高度为3.0米x9层=27米,框架柱600x600,外围框架梁考虑到门窗洞口的设置以及避免形成边框架扁梁偏心的因素,采用300x600,其余内框架梁800x400,次梁400x400;混凝土密肋梁板体系:结构总高度为3.3米x9层=29.7米,框架柱600x600,框架梁300x600,次梁250x500。
现在用中国建筑科学研究院PKPM系列SATWE软件依次对它们进行计算分析,来研究大跨度板柱与普通混凝土密肋梁板两种方案的地震作用效应。我们通过数据数据明显看到:当地震作用时,两种板柱体系表现出近似的地震效应,特别是处于两个方向同时产生地震平动效应。混凝土密肋梁板体系拥有较高的空间抗侧强度,而大跨度板柱体系又具有相对高的空间抗扭强度。原因在于:处在水平地震受力下,混凝土密肋梁板具有很高的抗弯强度,柱端受到的约束作用力相对较强,完全抵消了高空间的影响后表现出更大的空间强度;但大跨度板柱在建筑平面内的约束却拥有更大的强度,因而展现出更好的结构整体抗扭性能,当抵抗地震扭转作用时充分发挥了这些强度的平衡作用。以上结论对我们具有一定的参考价值,对这两方面的地震反应特点进行结构概念设计,结构方案选择时应予以重视。
二、通过比较来看两种结构方案的经济性
我们通过数据可以分析出,选择混凝土密肋梁板体系比采用大跨度板柱体系节省钢筋用量28%左右,节省混凝土用量10%左右,如果采用大跨度板柱体系当可以将高度差范围的维护结构(框架填充墙以及玻璃幕墙等)的费用节省。如果放弃结构总高度的因素下,运用混凝土密肋梁板体系具有相对的经济优势,相反,如果是结构总高度设为确定值的状况下,运用大跨度板柱体系当拥有可以在本来建筑基础上再递增一重的经济效应,这对现在寸土寸金的购地建筑中能大大降低成本,具有明显的优势!
三、大跨度板柱的设计构造要求
关键词:抗震设计;基于性能;性能水准;性能目标
Abstracts: Performance-based seismic design theroy is the new earthquake engineering concept proposed by international earthquake engineering in the 90’s. It’s a revolution in seismic engineering, and was considered as the future direction of seismic design for development. So it was taken attention and studied at home and abroad. This paper describes the background, basic content and the development of the performance-based seismic design theory, and it make a preliminary discussion of the methods and procedures for the current seismic design under the performance-based seismic design theory.
Key words: Seismic design, Based on performance, Performance level, Performance objectives.
引言
现行的各国抗震规范大多采用以地面运动加速度反应谱为基础,按结构延性调整结构反应的设计计算方法。抗震设计的基本目的是保障生命安全,然而近十几年来大震震害却显示,按现行规范设计和建造的建筑物,虽然在地震中没有倒塌保障了生命安全,但其破坏却造成了严重的直接和间接的经济损失,甚至影响到社会的发展,而且这种破坏和损失往往超出了设计者、建造者和业主原先的估计。因此,20世纪90年代初基于结构性能的抗震设计理论由美国科学家和工程师首先提出来,可概括为:基于性能的抗震设计理论以结构抗震性能分析为基础,针对每一种抗震作用水准,将结构的抗震性能划分成不同等级,设计者根据结构的用途,业主、使用者及邻居的特殊要求,采用合理的抗震性能目标和合适的结构抗震措施进行设计,使结构在各种水准地震作用下的破坏损失,能为业主选择和承受,通过对工程项目进行生命周期的费效分析后达到一种安全可靠和经济合理的优化平衡。随后,这一理论引起了日本和欧洲地震工程界学者的极大兴趣,纷纷展开多方面的研究。近年来,我国学者也开始就这一理论展开讨论。
近年来地震震害分析
当前各国抗震设计理论多采用二级或三级设计思想,三级即“小震不坏、中震可修、大震不倒”的设防水准,并据此制定抗震规范和条例。按这种以保障生命安全为基本目标的抗震设计理论所设计的建筑物,在震中基本保证了人员的安全,却不能有效地控制地震破坏所造成的直接和间接的经济损失。例如,2008年发生在四川省汶川县里氏震级8.0级的大地震地震导致69197人遇难,直接经济损失8451亿元人民币。发生在今年四月的震级为里氏7.1级的中国玉树地震造成2698人遇难,20万人受灾,经济损失超过800亿。发生2010年1月的海地地震造成11.3万人丧生,造成的经济损失约为77.5亿美元。上述震害更使我们认识到过去的规范仅以保证人的生命安全为目标的设计理论,在抗震设计理念、适应社会需求等方面都存在一定问题。实际上,社会和公众对结构抗震性能存在多种层次的要求。如何改进现行的抗震设计理念,使结构在未来地震中的抗震性能达到人们的预定目标,这是摆在地震工程学界面前的重要课题。
现行抗震设计方法的缺陷
目前国际上所广泛采用的抗震设计方法主要为反应谱法和时程分析法,这两种方法是在以往的震害经验和当时的理论基础上发展形成的,随着建筑物形式的不断变化,地震震害也出现新的特点,反应谱法和时程分析法已渐渐难以满足现有结构的抗震设防要求了。反应谱给出的是结构体系的周期与最大反应(加速度、相对加速度、相对位移)的关系曲线。目前,反应谱法已在许多国家的工程结构抗震规范中得到应用。但是,目前所广泛才采用的反应谱法仍存在许多不足之处:首先,反应谱法不能有效地考虑强震时结构的非线;其次,不能考虑土与结构之间的动力相互作用;再次,不能考虑地震动持时长短的影响;并且,反应谱理论只能给出结构的最大地震反应,不能给出结构反应的全过程,以及结构各构件的破坏机理;此外,反应谱法对于非比例阻尼结构以及不规则结构的分析效果还不甚理想。
对于结构进行动力时程分析需要考虑的因素有:地震动输入要符合当地场地情况,对复杂结构要给出三个分量的过程及其空间相关性;结构和构件的动力模型要能真实反映实际情况,能包括非线性特性,动力分析要能够考虑积累损伤、土与结构相互作用、地震波的相位差等。时程分析所用的地震波为实际的强震记录或人工地震波,结构对不同的地震波输入的敏感度不同,输入后反应将会有较大的差异,这让设计人员也往往无所适从,难以定论。
我国现行的结构抗震设计是基于承载力或强度的设计方法,即采用弹性方法计算结构在小震作用下的内力和位移,用计算所得的组合内力验算构件截面,使构件具有一定的承载力。同时,为了防止非结构构件发生破坏,还要进行使用阶段的位移验算。对结构的延性和耗能能力大多是通过构造措施获得的。规范采用的“三水准”设防目标和“两阶段”抗震设计方法建立在定义结构的可靠度为结构在规定的时间内,在规定的条件下,完成预定功能的概率的基础上。表1中列出了我国抗震设计规范所采取的地震水准、结构性态水准和性态指标。表2列出了我国建筑抗震设防分类和设防标准的具体要求,体现了建筑按功能分类设计的思想。
表1我国抗震设计规范所采取的地震水准、结构性态水准和性态指标
表2 我国建筑抗震设防分类和设防标准
这里的“功能”指的是正常情况下结构能够承受可能出现的各种作用、保证结构的工作性态和耐久性态及在偶然事件中的整体稳定性。从某种意义上说,中国的抗震设计规范已包含了某些基于结构性态设计的思想,但在结构功能不断细化的今天,现行指导抗震设计的规范仍有不足之处:
(1)设防烈度(地震动)单纯依据地震区划的结果以及部分工程抗震经验来确定,很少或没有考虑设防烈度的取值对经济损失或人员伤亡的定量或半定量的影响,从而难以通过设防列队(地震动)的取值来控制未来地震的经济损失和人员伤亡。
(2)与结构性态有关的设计参数选择不适当。
现行抗震设计是基于承载力或强度的设计方法,但通过对历次地震震害的调查分析发现,在一些地震动的某些区段内,对结构破坏起控制作用的因素不是力而是速度和位移,因此,结构的抗震设计应该不仅仅是基于强度的设计。
(3)业主的要求得不到满足,损失控制不力。
由于主体结构的破坏与人身安全的关系最大,现行设计理念对主体结构破坏所造成的损失是重视的,但对非主体结构的破坏,内部设施的损坏和功能失效等所造成的损失却估计不足。
(4)规范的形态概念不明确,设计透明度小。
现行规范没有把功能或损失从定量的意义上清楚的定义为多级设防的目标。现行抗震设计方法是以规定的地震力来验算结构截面及变形以确认是否达到想象中的抗震性态,而不是以科学的性态评价为基础。业主对设计的结构性态可能完全不清楚,甚至设计人员对多级设计保证的抗震性态也并非真正领悟。规范通常通过经验系数和细部构造把复杂的抗震设计问题简化,设计出的建筑物只是达到了规范或结构工程师认为合理的性态,整个建筑物和地基系统在地震中所表现的性态对设计者越来越模糊。
(5)规范标准缺少灵活性。
设计者在设计过程中为稳妥起见,只按规范条款设计,不大会采取规范没能体现出来的、有利于抗震性态的新技术,使新技术的推广应用受到限制。而且,这些条款在某种程度上已经成为一种性态水平固定的模式和普遍适用的标准,约束了业主和设计者的主动性。
(6)设计方法具有不足之处。
目前结构抗震设计规范采用弹性加速度反应谱,用具有质量m、弹性周期T和阻尼比的单自由度体系来表示结构,这种基于承载力(或强度)的设计方法还有值得商榷之处:(1)、由于结构的基本周期未知,需要根据经验公式对其基本周期进行估算,影响因素众多,通常使得结构的设计偏于保守;(2)、规范采用的是设计地震对应的多遇地震弹性反应谱,由于结构在设计地震作用下很可能已进入非线性状态,所应用的弹性反应谱计算的地震作用需要进行折减,而折减系数需要考虑多种因素的综合作用;(3)、对结构的位移,虽然很多规范都给出了结构对应的位移限值,但只是将位移作为设计的第二步来验算,这导致设计者不能有效把握结构在地震特别是大震作用下变形行为。
基于性能的抗震设计理论研究的内容
基于性能的抗震设计理论是以结构抗震性能分析为基础,根据设防水准的不同,将结构的抗震性能划分为不同的等级,设计者可根据业主的要求,确定合理的抗震性能指标和合理的结构措施。
我国“三水准,两阶段”具有基于性态设计的雏形,但是两者又有巨大的区别。基于性态的抗震设计要求结构在不同水平地震作用下具有明确的性态水平,而目前抗震方法尽管也提出三个水准,但是并没有被明确具体量化,建筑功能很难在实际设计中得到保证。在基于性态的抗震设计中,目标性态水平的确定要综合考虑社会的经济水平、建筑物的重要性以及建筑物的造价、保养、维修以及可能遭受地震作用下的直接和间接损失来优化确定,这里的性态水平是针对整个结构体系的,而目前的抗震设计规范只针对结构构件和非结构构件,并没有对整个结构提出明确的性态水平。基于性态抗震设计方法可以满足不同业主提出的不同设计要求,发挥设计者的创造性,同时也有利于新材料和新技术的应用。
1995年,美国加州结构工程师协会在Vision2000文件中首次正式阐明了针对建筑结构的基于性态的抗震设计思想。基于性态的抗震设计思想主要包括结构抗震性态等级的定义、抗震性态目标的选择以及通过正确设计实现性态目标三部分。对于具体的工程结构,基于性态的抗震设计过程是:首先,设计人员提出几种抗震性态目标及对应的造价;其次,由社会团体或业主选择结构应达到的性态目标;最后由设计人员根据所选定的性态目标进行抗震设计,使结构满足预期的抗震性态目标。基于结构性能的抗震设计理论的基本内容包括地震设防水准、结构抗震性能目标和结构抗震设计方法等三方面。
4.1 地震设防水准
地震设防水准是指未来可能施加于结构的地震作用的大小。由于地震设防水准直接关系到未来结构的抗震能力,因此地震设防水准的选择在基于结构性能设计的理论中占有重要地位。Vision2000在关于结构性能设计的研究报告中,建议设防地震等级如表3所示。
表3Vision2000中的设防地震等级的划分
4. 2 结构抗震性能水准
结构抗震性能水准表示结构在特定的某一地震设计水准下预期破坏的最大程度。结构和非结构的破坏以及因它们破坏引起的后果,主要用结构破坏程度、结构功能性和人员安全性来表达;对于不同等级的抗震性能,都应根据结构类型、整体结构、竖向和横向承载构件、性能水准、结构变形、设备装修、修复使用等方面加以定义,应该表达为量化指标,以便工程设计和评估。表4为对结构性能等级的描述。
表4 结构抗震性能等级及其划分方法
Vision 2000针对建筑结构定义了四个可接受的抗震性态等级,即:
等级1 完全保持正常使用功能:建筑物基本未遭受破坏,可完全正常地投入使用;
等级2 维持一定的使用功能:非关键设备或设施遭受较小的破坏,建筑物可继续使用;
等级 3 确保生命安全:建筑物遭受中等或大范围破坏,但生命安全无忧;
等级 4 不倒塌:建筑物破坏严重,生命安全受到威胁,但不会倒塌。
建筑结构的抗震性态目标选择示于图1.1。抗震性态目标定义为在预期设计地震下结构应达到的性态等级。图中,三条斜线分别代表三个可供选择的抗震性态目标,从上到下分别为基本目标、提高目标1和提高目标2。对于一般建筑物可选择基本目标,对于重要建筑物(如医院等)一般选择提高目标1,而对于会引起严重次生灾害的建筑物(如核电站等)一般选择提高目标2。越高的性态目标意味着越高的工程造价。
图1 结构的设防目标与设防等级、抗震性能等级的关系
规范提出的抗震性能目标是最低标准,结构抗震性能目标可以根据业主的要求采用比规范的设防目标更高的设防标准。结构的设防目标与设防等级、抗震性能等级的关系如图1所示。
4. 3 基于性能的抗震设计方法
基于性能的抗震设计方法自提出以来,在国内外都受到广泛重视和研究,对基于性能的抗震设计的主要理念和目标,学术界也基本形成一致的认识。但是怎样把基于性能的抗震设计思想合理并且简单有效的应用到实际设计中,目前尚无统一的方法和标准。概括起来,基于性能的抗震设计方法主要有承载力设计方法、直接基于位移进行抗震设计方法、能量设计法。
(1)承载能力设计方法
这是我国规范现阶段采用的设计方法,对于常遇地震,利用反应谱计算底部剪力,然后按一定规则分配至结构全高并与其他荷载组合,进行结构的强度设计,使结构的各部分都具有足够的承载能力,然后再进行变形验算。承载力能力设计方法的优点是为设计人员所熟悉,并易于使用,性能概念清楚,细部设计可靠,通过非线性静力分析验算,进一步增强了对结构非线性反应的控制,可以更好地达到预期性能目标。缺点是该方法基于弹性反应,对于非弹性反应仅用于结构类型有关的系数加以折减,表面上它控制整个性能目标,实际上却只是保证了一种性能目标。
(2)直接基于位移进行抗震设计
该方法采用结构位移作为结构性能指标,与传统方法相比,基于位移的抗震设计方法从根本上改变了设计过程。主要不同是,该方法用位移作为整个抗震设计过程的起点,假定位移或层间位移是结构抗震性能的控制因素。设计时用位移控制,通过设计位移谱得出在此位移时结构有效周期,求出此时结构的基底剪力,进行结构分析,并且进行具体配筋设计。设计后用应力验算,不足的时候用增大刚度而不是强度的方法来改进,以位移目标为基准来配置结构构件。该法考虑了位移在抗震性能中的重要地位,可以在设计初始就明确设计的结构性能水平,并且使设计的结构性能正好达到目标性能水平,是性能设计理论中很有前途的一种方法。但应用于多自由度体系、多种结构类型等时,还需要做更多的研究。
(3)能量法
假设结构破坏的原因是地震输入的总能量,地震对结构物及其内部设施的破坏时由其输入的能量与结构物所消耗的能量共同决定的。能量设计法的优点就在于,能够直接估计结构的潜在破坏程度,对结构的滞回特性以及结构的非线性要求概念清楚。另外,耗能元件的设置可以更好地控制损失。缺点在于应用方法不够简化,不确定因素较多。
可见,基于性态的结构抗震设计,实际上是对人们早已认识的“多级抗震设防” 思想的进一步的细化。这一设计思想使抗震设防目标与设计过程直接相联系,设计工程师可以更准确地把握结构在不同的地震动水平下的实际性态,使所设计的结构更加经济合理。
5国内外的研究与应用发展
自基于结构性能的抗震设计理论提出以来,建立以结构功能评价为理论基础的结构设计体系是近几年美国、日本和新西兰等国家的研究课题。美国成立放眼21世纪委员会,其目的是建立新的结构性能设计体系的框架。1995年4月,日本建设省启动了一项3年联合研究开发项目,称为“建筑结构现代工程方法开发”。该项目旨在建立基于性能的结构工程方法以推动技术革新。另外,欧洲国家和拉美国家也在进行此项研究,中国这方面研究还处于起步阶段。
在未来应用方面,美国《洛杉矶性能高规2005》和《旧金山市性能高规2007》已清晰展现了性能设计方法用于高层建筑结构的具体技术框架,可供我国相应规范进行修订时的参考:
(1)在三水准地震作用下,分别从正常使用、生命安全和防止倒塌三个极限状态对结构进行分析和设计,保证结构满足以上三个极限状态的性能目标。
(2)基本设计地震(中震)作用下的结构分析应考虑P-效应、基础刚度、偶然偏心的影响,但取消(或放松)剪重比限值和层间位移限值。
(3)小震作用下正常使用极限状态只在特殊的情况下才要求进行结构计算分析,并应考虑预期地震水平和结构累计损伤程度,可以采用线性反应谱分析方法,也也可以采用时程分析法。
(4)Pushover方法不再适用于高层建筑,应采用三维非线性时程分析方法,荷载组合考虑双向地震作用。结构非线性分析反应的评估应引入能力设计的思想,将结构构件的评估分成三个水平:延性结构复核、有限延性结构复核和完全弹性状态的非延性结构复核。
(5)混凝土结构的弹性模量应考虑开裂、黏性滑移、屈服强化、剪切开裂后的受拉刚化、节点区变形等影响,取其毛截面的0.5倍进行模量折减,或者根据试验数据拟合。
(6)地震时程记录的选取应满足场地特性与统计意义。
(7)非线性分析模型必须经过试验校正。
6结语
基于结构性能的抗震设计理论是以结构抗震性能分析为基础的结构设计,是设计理念上的一次变革,代表了未来结构抗震设计的方法,采用“投资-效益”准则下的抗震性能水准的划分、抗震性能目标的确定以及常用的性能抗震设计方法,将克服基于承载力的抗震设计不能预估结构屈服后的工作性能的缺陷,可充分发挥工程师的主动性,工程师可以根据实际情况与业主的要求及其它条件自主地选择结构性能目标水准、结构措施等。
7参考文献
[1]小谷俊介. 日本基于性能结构抗震设计方法的发展[J]. 建筑结构, 2000,(6):3-9
[2]韩小雷,郑宜,季静,黄艺燕.美国基于性能的高层建筑结构抗震设计规范[J]. 地震工程与工程振动, 2008, 28 (1) : 64- 70
[3]孙俊,刘铮,刘永芳.工程结构基于性能的抗震设计方法研究[J]. 四川建筑科学研究, 2005, 31(3):98-101
[4]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J]. 地震工程与工程振动, 2001, 21 (4) : 73- 79
【关键词】现代设计,仿古建筑,应用探讨
中图分类号:S611 文献标识码:A 文章编号:
一、前言
中国古代建筑以木结构居多.木结构有很多优点,倒如卯榫结合整体抗震、雕粱唾栋艺术纯粹、单体组合空间丰富等;但也有许多致命的缺点,例如取材匮乏、腐朽老化、制作复杂、单体空间单调等。现代钢筋混凝土结构如何合理化、规律化的在古建筑中应用,使现代结构的仿古建筑既保持浓郁的中国古代特色又能摒弃木结构的致命缺点,是值得研究的课题。
二、现代设计中仿古建筑的特点分析
1.现代设计中仿古建筑的概念简述
中国建筑文化历史悠远,形成独特,建筑物造型优美,结构严谨,宏伟中不失细腻,庄严中不失优雅。而“仿古建筑”一词正式起源于20世纪50年代,但直到上世纪末学术界在理论上的探讨, 褒贬不一, 可以说它经历了一个坎坷不平的产生发展和成熟的过程。
仿古建筑形式有广义和狭义之分, 广义的仿古建筑形式是指利用现代建筑材料或传统建筑材料, 对古建筑形式进行符合传统文化特征的再创造。狭义的仿古建筑形式是指利用传统建筑材料, 在特定范围内对古建筑的复原,严格讲属于文物修复范畴。
2.仿古建筑的特点简述
仿古建筑通俗点讲既是用现代的施工工艺体现古代建筑的外形。而我们知道由于古代建筑材料和理论的局限性,古建筑并不存在高层结构;故而现今的仿古建筑多以单层和多层为主。众所周知,现代多层建筑多为砌体结构和框架结构。所以在仿古建筑中以钢筋混凝土结构为主。
(一)中国古代建筑特点体现在使用木材作为主要建筑材料,并保持构架制原则。为了保护木材,表面需加油漆,在长期的发展演变中,中国古代建筑形成独具特色的彩画制度,令世人叹为观止。鉴于木结构的耐火性很差且使用周期短,在现今建筑中已经不提倡使用;而构架制的结构形式和现在的钢筋混凝土框架结构极为相似:传力途径明确,主体的承重结构和围护结构分开。这就说明框架结构是最能体现古建筑精髓的结构形式。这也为室内空间的灵活布局创造了条件。
(二)中国古代建筑中,常用多种多样的罩、挂落、隔扇、屏等自由灵活地分隔室内空间。但彩画制度这一形式在现今的钢筋混凝土结构中也只能通过外贴或喷绘等装修手段才能达到。
(三)中国古代建筑创造并使用斗拱结构形式,斗拱是中国古代建筑体系中所特有的形制,它既是梁和柱之间传递荷载以及承担抗震作用的结构构件,又以其自身优美、华丽的造型而成为建筑的主要装饰构件。集结构功能与装饰功能为一体的精华所在。随着现代结构形式及建筑材料的发展,斗拱这一重要的结构构件应用在仿古建筑中时已经失去了原有的实质性作用,而仅仅作为一种具有观赏性的装饰构件。但是它作为古建筑的代表性构件是不可或缺的。
(四)中国古代建筑组群大多以庭院为组合单位:单体建筑沿周边布置,围合成中间的庭院。这样的庭院整体风格是内向的:内部开敞而富于变化,外观较封闭。按照中国的封建礼制观念,庭院强调中轴对称布局,以突出主体建筑,并求得整体的平衡。正是由于这种理念,古代建筑的单体建筑形式也是高度统一,无论是宫殿、寺庙、住宅等,不论其规模大小,外观体形皆由台基、屋身和屋顶三部分组成。这些特点难免单调,也在一定程度上限制了古建筑的多样性,而古代建筑师则从建筑组群沿轴线作多层次的纵身布局,从而使庭院变化丰富多彩的。而在古代园林的设计中这些特点并不明显,原因是中国古代园林建筑以“师法自然”为原则,极尽自由灵活之能事。这才有了现在我们熟知的各式园林。
三、现代设计在仿古建筑中的应用
仿古建筑中应尽可能的以现在设计方式来使得各个方面的特点得到显示。中国古建筑中以明清时期的苏式园林古建最具代表性,也最为人们熟知;所以在仿古建筑形式中以仿明清苏式古建为主。仿古建筑的主受力构件大体可分为:柱、梁、桁、檩、椽。传力方向为:屋面椽檩桁梁柱;途径明确,受力简单。笔者将以一个简单的仿古建筑设计做出分析。
1.景点的整体规划
如图1,该景点是为纪念一个上古凰落架”的传说依山而建。简单地分为两个标高平台。
首层平台是一个小型的游园,二层平台是围绕一颗老梧桐树的纪念游园。两个高差所形成的两个立面采用汉阏组合造型,第一立面两组组合,中间设神道,通过神道台阶上至第一层游园平台,该平台采用对称手法完成以铺装、落差广场、旱地喷泉等要素组合的休闲广场;第二立面一组组合,中间设过门阀门,阕门两侧分列两组阁和宫墙,通过阕门上至二层纪念平台。该平台上设纪念亭和老梧桐树遥相对应。其间夹杂绿化、铺装、廊道、水池等园林设计因素。
2.单体设计
如图2,汉阕的造型古朴刚劲,别名凤阕,能够很好地突出该景点纪念。凤凰落架”的古老传说。将单体的阗分体量大小,前后不一地组台在一起形成立面造型就要求单体的阔比例及大的构件仿古特点明显,且利于现代结构施工。
设计中通过对古代汉阋造型有选择取舍,强调大形体的同时忽略某些结构细部,尽量通过小型装饰构件体现古朴的昧道。单闫分上下两层檐,中间是空口回音腔体,内置风铃致枚,每当山风吹过铃声清脆引人寻觅。戗脊、覆瓦条等构件粗拙刚劲.线条挺拔。双层阕顶面覆墨绿琉璃平瓦,其余外露面铺青灰陶土砖。阕体正面中间置古式青铜浮雕。总体组合色调以青灰的阕墙、青灰的铺装地面、墙上铜制金属花箍、古松柏、红绿的花草构成既庄重又活泼的纪念场所。单体组合方面通过阕体的高低、前后错落,材质的转换,横向竖向线条的对比,墙体古式花盆的点缀形成单体的统一,丰富的多角度观感组合立面。
3.结构分析
如何用现代钢筋混凝土结构百分之百解决建筑设计的思路,在基础承载、基础形式、墙体形式、阕头形式、细部构件等方面分别对待,既要考虑安全合理.又要考虑经济实用。由于该地盛产石灰石,所以在基础和墙体上采用了M7.5水泥砂浆浆砌MU20石灰石,在围头标高范围内采用了内部框架,两层檐板和竖向腔板从框架梁上以折板的形式挑出,板厚100 mm,壬10配筋,根部由于双层板厚承载剪力不是问题,主要荷载考虑板自重、瓦板重量、风荷载、雪荷载。内部框架柱基础伸人浆砌石灰石满足锚固,并每隔800mm环形拉结一道框架梁,框架梁内侧挑出基础板,上浆砌石灰石作为压载。且为防止风的侧向力,必须在框架基础上砌够足够压载的石灰石,防止阕头的侧倾。其余戗脊等构件按照加工尺寸,用细石混凝土9号铅丝做骨架,壁厚15 mm,预制后,焊接在相应位置的预埋铁件上。外露装饰分90采用铺装、抹面涂料、斩假石等做法。
四、结束语
通过对现代设计在仿古建筑中的应用案例分析,对现代结构的仿古建筑借助古老传说的优美意境,和谐地与景观规划有机地融为一体有了浅显的认识和大胆的尝试。该景点建筑建成后,给人以建筑总体布置。彰显雄浑大气,单体建筑突出沉稳厚重,细部装饰刻意精雕细琢的感觉,是谓成功的现代设计思路,同时也成为人们在闲暇时观赏、游览、休闲、散步的理想场所
参考文献:
[1]牛毅胜 浅析现代设计在仿古建筑中的应用 [期刊论文] 《山西建筑》 -2007年28期
[2]张向东 肖胜利 夏琪谷 洪勋 马学 仿古建筑地震灾后重建施工技术 [期刊论文] 《施工技术》 ISTIC PKU -2011年6期
[3]张福萍 仿古建筑结构设计实例简介 [期刊论文] 《煤炭工程》 PKU -2003年9期
[4]谢海燕 浅谈仿古建筑的设计――永定下洋温泉度假酒店设计 [期刊论文] 《建筑设计管理》 -2012年7期
关键词 玻璃幕墙 非结构构件 建筑节能 主体结构 抗震设计
一, 前言:玻璃幕墙始于20世纪50年代,代表建筑有联合国大厦和纽约利华大厦。我国玻璃幕墙起步较晚,以1983年北京长城饭店和上海联谊大厦为标志开始,主要是构件式明框玻璃幕墙居多,由于无国家行业规范和标准,技术质量水平较低,多靠引进和模仿国外技术。1990~2000年,出现和发展了隐框幕墙、铝板及石材幕墙,开发了单元式幕墙,引进和创新了点支撑玻璃幕墙,同时国家颁布了相应的技术规范。2000年至今,双层幕墙、光电幕墙、智能幕墙、膜结构幕墙等等多元化幕墙的发展和应用,标志着玻璃幕墙成为现代建筑的显著特征。
二、玻璃幕墙的特性
玻璃幕墙是指由支承结构体系可相对主体结构有一定位移能力、不分担主体结构所受作用的建筑护结构或装饰结构,是一种美观新颖的建筑墙体装饰方法。它的材料构成是由金属构件和玻璃板材组成。它的施工方法分为现场组装和预制装配。
玻璃幕墙在建筑领域广泛应用,是因为它具有其他材料无法比拟的特点:它能将建筑艺术、建筑功能、建筑节能等因素有机地统一起来;选材简单,构件制作工厂化;安装方便,工期短;更换性、改造性强易维护;自重轻属于轻质幕墙,价格便宜等等。同时玻璃幕墙也存在着一些局限性,例如光污染、能耗较大等问题,但这些问题随着新材料、新技术的不断出现,正逐步纳入到建筑造型、建筑材料、建筑节能的综合研究体系中,作为一个整体的设计问题加以深入的探讨。
三、玻璃幕墙的建筑设计
首先是玻璃幕墙的选型问题,当今玻璃幕墙形式成多元化发展,种类繁多,建筑师应根据建筑物的艺术造型、建筑的使用功能、当地的地形和气候条件以及经济技术条件选用明框,隐框、半隐框或者是全玻璃幕墙等。其次型式确定后应提出幕墙性能等级要求,玻璃幕墙的性能主要有风压变形、空气渗透、雨水渗漏、保温隔热等,建筑师应根据建筑物所在地区、气候条件、建筑物高度和体型、建筑物功能和重要性等明确等级要求。最后就是玻璃幕墙的构造设计及安装工艺,这点对于玻璃幕墙的整体性和外观至关重要,同时也对幕墙的使用寿命、日常维护、工程造价具有决定性意义。各种类型玻璃幕墙的构造设计及安装各不相同,但都应处理好以下几个方面:1、伸缩缝、温度缝、沉降缝的处理,使其既美观又起到变形的要求;2、幕墙构件的面板和边框所形成的空腔应采用等压设计,防止室外空气压力将雨水压入腔内,以提高幕墙抗渗性;3、对于可能产生渗水的地方和容易结露的部位预留泄水孔道,集水后由管道排出;4、板材与边框连接处必须用硅酮密封胶进行处理,密封材料应能在长期压力下保持良好的弹性;5、由于幕墙位移和温度收缩,幕墙某些部位会发生摩擦,影响建筑物的使用,所以要考虑在该部位设置垫片来减少摩擦;6、各种五金件、连接件、设计要防止不同金属相互接触所产生的电化腐蚀;7、要考虑擦窗机的设置问题;8、降低能耗损失,满足节能要求应重视玻璃幕墙中玻璃的选择;9、玻璃幕墙还应注意防雷电措施。
对于很多建筑师来说,在设计中采用建筑幕墙,往往更加着重的是营造建筑立面,而对不同类型的建筑幕墙带来的不同的室内空间效果和建筑幕墙的技术手段缺乏深入的认识。往往是设计了一个新颖的立面,而把这个立面的技术细节留给幕墙厂家进行二次设计,厂家的幕墙设计在满足造价和立面后,要么满足不了设计的技术要求(如冷桥、隔热等问题,在工程验收时很难发现,而在使用过程中不断暴露);要么忽略室内空间的效果(如竖向龙骨排布给空间带来凌乱的感觉),或者各种弊病并存。建筑师的幕墙设计不能简单的只从几个方面控制住幕墙厂家,就算完成任务,而应该和厂家的二次设计及施工人员密切合作共同完成,这也是建筑幕墙技术进一步发展的必然要求。二十一世纪建筑正日益追求绿色建筑,建筑师还应该重视新型幕墙设计的研究和应用。
四、玻璃幕墙的结构设计
玻璃幕墙作为建筑物的围护体系,属于非结构构件。主要承受自重、风荷载、地震作用以及温度效应,其支撑条件需有一定的变形能力以适应主体结构的变形位移。根据工程经验及震害分析,它的破坏形式有:第一、玻璃幕墙自身强度不足产生的破坏。对于竖向的玻璃幕墙,风荷载为主要作用,在风压较大的地区,玻璃将产生较大的弯曲变形;第二、玻璃幕墙与主体结构的连接破坏。地震作用对连接件影响很大,以至于玻璃幕墙发生脱落或倒塌;第三、主体结构的变形导致玻璃幕墙的破坏。主体结构在外力作用下产生位移,通过连接件使玻璃幕墙产生过大的应力。如何避免这些破坏,结构师应把握以下几个方面:1、玻璃幕墙设计时,应计算地震效应(包括自身重力效应和支座相对位移产生的效应)和其他荷载效应的组合,同时还应考虑地震效应与风荷载效应的组合,摩擦力不作为抵抗地震作用的抗力。2、玻璃幕墙在位移方向上的刚度应根据实际连接状态分别采用刚接、铰接、弹性连接或滑动连接等简化模型。3、支撑玻璃幕墙的结构构件,应将玻璃幕墙的地震作用效应作为附加作用对待,并满足连接件的锚固要求,且对连接部位采取加强措施。4、玻璃幕墙的主要构件应悬挂或支撑在主体结构上,按非结构构件设计,不承受主体结构的荷载及地震作用。5、玻璃幕墙及连接件应有足够的承载力、刚度和与主体结构相适应的变形能力。6、应预估玻璃幕墙设置位置对主体结构的不利影响,避免不合理设置而导致主体结构的破坏。
对于大多数结构师而言,玻璃幕墙与主体结构的设计是分开进行的,玻璃幕墙设计时,其与主体结构的连接点假定为支座;主体结构设计时,则将幕墙以荷载的形式作用于主体结构上;对于一般的工程结构而言,这样的假定和分析是合理的,但是如果幕墙结构的自身刚度加大且不能忽略时,就应对上述方法进行修正。最好的办法是将玻璃幕墙结构与主体结构结合在一起,整体来考虑结构的动力性能,并通过调整幕墙结构体系的相对约束度来改变整体结构的抗侧刚度以及总荷载作用在玻璃幕墙和主体结构之间的受力分配,从而得到一个最为安全、经济、合理的设计方案。
五、结语
为实现建筑幕墙的可持续发展,建筑设计领域和结构设计领域的技术理念要从传统的的高耗能型转向低碳、环保、生态的发展模式。技术理念不是某种固定的结论或方法,而是所蕴含的设计原则,即追求健康舒适以人为本的原则、因地制宜和安全可靠的原则。
参考文献
1.《玻璃幕墙工程技术规范》 JGJ102-2013
2.《玻璃幕墙工程质量检验标准》JGJ139/T-2001
3..《建筑抗震设计规范》 GB50011-2010
4.赵西安 /幕墙工程手册/ 中国建工出版社/2002
5.赵西安/对汶川地震中玻璃和玻璃幕墙抗震性能的初步分析/中华玻璃网/2008
6.张其林/玻璃幕墙结构/山东科技技术出版社/2006
7.曹辉/玻璃幕墙的光污染控制分析/建筑技术/2009
关键词:建筑结构,抗震设计,设防目标,基本措施
Abstract: With requirements increasing of people on the building of the product, all kinds of new structure building gradually increases based on the performance of the seismic design thought aseismatic design, which is an effective path. This paper from the structure design of the seismic design, first to structure the seismic fortification basic goals for discussion and analysis, and then in structural seismic design of the basic principles and objectives, how to do well the seismic design of building structure were discussed. Some basic measures, trying to improve structural seismic performance, strengthen building structure design of the seismic capability.
Key Words: building structure, seismic design, fortify goal, basic measures
中图分类号:TU973+.31 文献标识码:A文章编号:
前言
近年来,一些国家和地区相继发生强烈地震,造成巨大损失。而我国又是一个地震多发的国家,要抵御、减轻地震灾害,必须对建筑结构进行必要的抗震设计。在结合建筑构造中的抗震设防理念,建筑结构的地震反应,地震反应特性、地震破坏模式等因素综合考虑的同时,为了努力减轻地震造成的破坏,减轻经济损失,我国政府和相关部委陆续颁布了一系列防震减灾的法律、法规条文,并强制规定设防强度为6度以上地区的建筑必须进行抗震设计。
一、建筑结构抗震设防的目标
抗震设防是指对建筑物进行抗震设计,并采取一定的抗震构造措施,以达到结构抗震的效果和目的。我国通常采用“三水准抗震设防”和“两阶段抗震设计”的设计方法。下面就对这两种设计方法进行阐述和分析。
1.三水准抗震设防
抗震设防的依据是抗震设防烈度,抗震设防烈度按不同的频率和强度可以分三个地震烈度水准。采用第三水准烈度的地震动参数,计算出结构的弹塑性层间位移角,以满足第三水准大震不倒的要求。目前,我国抗震设防为“三水准”目标通常将其概括为:“小震不坏、中震可修、大震不倒”。其中,“小震不坏”是指当遭受低于本地区抗震设防烈度的多遇地震时,建筑物一般不受损坏或不需修理仍可使用,建筑处于正常使用状态,从结构地震分析角度,可以视为弹性体系。第一水准对应抗震正常使用极限状态,就是在该状态下结构的功能和使用应不受影响,这意味着结构和非结构都不会发生需要修复的损伤。“中震可修”是指当遭受到相当于本地区抗震设防烈度的地震影响时,建筑物可能损坏,经一般修理或不需修理仍可继续使用,结构在地震影响时进入非弹性工作阶段。第二水准对应结构损伤控制极限状态,在该结构状态下结构中受力较充分的部位已经进入屈服后变形状态。“大震不倒”是指当遭受高于本地区抗震设防强度的罕遇地震时,建筑物不致倒塌或发生危机生命安全的严重破坏,此阶段结构有较大的非弹性变形,但人员可以逃离。第三水准对应人在地震中能够幸存的极限状态。在这一极限状态下虽然允许结构出现不可修复的损伤,但要求保持较好的整体性而不倒塌。
2.两阶段抗震设计
为实现上述三个烈度水准的抗震设防要求,《抗震规范》提出了两阶段抗震设计方法。第一阶段设计是多遇地震下的承载力验算和弹性变形计算。除了在确定结构方案和进行结构布置时考虑抗震要求外,还应按照小震作用进行抗震计算和保证结构延性的抗震构造设计。第一阶段设计的第一步是,在方案布置符合抗震原则的前提下,采用第一水准烈度的地震动参数,用弹性反应谱法求得结构在弹性状态下的地震作用标准值和相应的地震作用效应,然后与其他符合效应按一定的组合系数进行组合,对结构构件截面进行承载力验算,从而满足第一水准的强度要求。第二步,采用同一地震参数计算出结构的弹性层间位移角,使其不超过规定的限值,另外,采用相应的抗震措施,保证结构具有相应的延性变形能力和塑性耗能能力,从而满足第二水准的变形要求。第二阶段是罕遇地震下的弹塑性变形验算,主要针对甲级建筑和特别不规则的结构用大震作用进行结构易损部位(薄弱层)的塑性变形验算。第二阶段的设计主要表现在反应谱理论的变化,反应谱理论是根据弹性结构的地震反应得到的,因此一般也只能计算结构处在弹性状态下的最大地震反应。当结构遇到强烈地震而进入强塑性阶段时,反应谱将不能给出各构件进入强塑性状态的内力、变形,无法找出结构的薄弱环节。利用延性系数将弹性反应谱变为塑性反应谱,从而使抗震设计理论进入了非线性反应阶段。
二、做好建筑结构抗震设计的基本措施
由上述可见,抗震规范设计的方法已经具有了基本的雏形,但在实现这一抗震设防目标时,仍有一些问题需要认真研究。因此做好建筑结构中抗震设计的基本措施显得至关重要,它是保证抗震设计实现“三水准”抗震设防目标的基础。
建筑结构应立足于工程抗震基本理论,灵活运用抗震设计准则,从根本上提高结构的抗震能力。根据当前抗震理论下形成的基本原则和要求,下面就对做好建筑结构中抗震设计的基本措施进行探讨分析。
1.选择有利场地
造成建筑物震害的原因是多方面的,场地条件是其中之一。在不同工程地质条件的场地上,地震对建筑物的破坏程度是截然不同的。因此,选择工程场址时,设计者必须结合工程的实际需要,尽可能避开对建筑抗震不利的地段,选择对建筑抗震有利的地段,当没有办法避开时,适当的抗震加强措施应被采用,任何情况下均不得在抗震危险地段上建造可能引起人员伤亡或较大经济损失的建筑物。
2.优化平立面布置
建筑布置的平立面应规则,体型要求简单。建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,就能从根本上保证房屋具有良好的抗震性能。建筑中的独立单元及整个建筑应力求质量刚度对称,使其刚心与质心偏心很小甚至完全重合。此外,建筑沿竖向分布的刚度和质量还须均匀,只有简单、规则、对称结构容易准确计算其地震反应。
3.选择合理的结构形式
选择合理的抗震结构体系,首先,应有多道抗震防线,避免因部分结构或构件破坏而导致整个体系丧失抗震能力;其次,应具备良好的耗能、变形能力和必要的强度。一个没有足够延性,只有较高的抗侧力强度的抗震结构体系,在地震时很容易遭到破坏;再次,结构刚度和强度分布须合理。结构体系宜具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的塑性变形集中,对可能出现的薄弱部位,应采取措施提高抗震能力。
4.提高结构的延性
结构的延性可定义为结构在承载力无明显降低的前提下发生非弹性变形的能力。结构的延性反映了结构的变形能力,是防止在地震作用下倒塌的关键因素之一。 结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震长时间持续作用引起的共振效应。
5.确保结构的整体性
结构是由许多构件连接组合而成的一个整体,并通过各个构件的协调工作来有效地抵抗地震作用。若结构在地震作用下丧失了整体性,则结构各构件的抗震能力不能充分发挥,这样容易使结构成为机动体而倒塌。因此,结构的整体性是保证结构各个部分在地震作用下协调工作的重要条件,确保结构的整体性是抗震概念设计的重要内容。
结语
总的来讲,结构工程师在建筑结构的抗震设计中,只有注重对结构抗震设计的方法总结和不断完善,不断提高建筑抗震等级,真正理解设计规范,严谨认真,才能设计出经济安全的建筑,才能确保人民生命财产安全。也就是说,在建筑结构抗震体系中,只要使体系布局合理,计算正确,同时采取有效的加强措施,便可获得结构的最大抗震能力,达到防震减灾的目的。
参考文献:
[1]陈翠荣.关于工程抗震设计中应注意的问题[J].山西建筑,2007(11).
[2]叶列平.经杰.论结构抗震设计方法[C],第六届全国地震工程会议论文集,2002.
关键词:钢筋混凝土结构;抗震结构;设计
中图分类号:TU37文献标识码: A
引言
地震是一种破坏力极大的地质灾害,对人类的财产安全以及国家的长治久安造成非常重要的影响。而我国处于环太平洋地震带,是一个地震多发的国家,每年都会引起巨大的生命以及财产损失。人类在寻求抵御地震的发展历程之中,孜孜不倦的寻求一种兼具安全适用经济为一体的房屋耐震体系。
建筑抗震概念设计在地震灾害和工程经验这些基础之上而形成的基本设计原则和设计思想,在进行建筑和结构总体布置之时可以确定出细部构造的过程。建筑抗震概念的设计在地震区的建筑抗震设计之中具有相当重要的作用,并且也会贯穿到抗震设计种种环节之中。
1、钢筋混凝土结构抗震设计的体会
在《建筑抗震设计规范》之中对于平面或者竖向不规则的建筑结构,它的计算模型具有特殊的要求,出现计算工作量较大以及计算难度提高。虽然计算的手段不断增多,然而并不可以确保它的计算结果的精确,使得结构安全度比较难以控制。所以,在设计之中注重避免使用不规则的设计方案。
设置防震缝的目的是解决体型复杂以及平面不规则的建筑结构因为变形复杂而避免碰撞。
但是对于高层建筑,特别是超高层建筑应该使用比较合理的建筑结构方案而不设置防震缝,使用比较合理的计算方法以及比较有效的措施,这样就可以清除不设防震缝带来的不利影响。
对于“强剪弱弯”的强调,因此应该改变传统的做法之中箍筋只用工级钢,现在也可以使用Ⅰ、Ⅱ级钢箍;混凝土强度越高的话,那么其脆性也越大,导致起抗震性能降低。
2、抗震措施
2.1、强柱弱梁
其主要措施是通过人为来增大梁的抗弯能力,使得塑性铰更多的出现在柱端而不是梁端。使结构可以在地震引起的动力反应之中形成“梁铰机构”或“梁柱铰机构”。可以框架梁的塑性变形这样使得地震能量来消散。依据对于构件在强震之下非线性动力分析可知,在强震之下,构件会产生塑性变形。如此就将使得部分地震能量消散开去,并且可以依据杆系结构塑性力学分析就可以得知,在保证结构不形成机构的前提之下,“梁铰机构”或者“梁柱铰机构”对于“铰机构”来说可以有效的形成更多的塑性铰。这样可以耗散较多的地震能量。所以,我们应该使柱的抗弯能力不断加强,使结构在强震之下可以形成更加优秀、更合理的“梁铰机构”或“梁柱铰机构”。这样的抗震措施观念已经被各国的设计师所接受。
2.2、 抗震构造措施
2.2.1、通过相应构造措施保证可能出现塑性铰的部位具有所需足够的延性,一般来说就是塑性转动能力和塑性耗能的能力。对于梁柱这些构件、其延性的影响因素将可以归纳是根本的两点:混凝土极限压应变、破坏时的受压区高度。影响到延性的其他因素在根本上都是这两个根本因素的延伸。 对于梁来说,不管是对不允许柱出现塑性铰即就是底层柱被除过,还允许柱出现塑性铰的但是控制它出现时间以及程度的方案。梁端自始至终都是引导出现塑性铰的主要部位。因此都希望梁端的塑性变形具有良好的延性以及良好的塑性的耗能能力。除过计算之上应该满足一定的要求之外,还应该通过一系列比较严格的构造措施来使得梁的这种延性得到满足。控制好受拉钢筋的配筋率,配筋率主要包括有最大配筋率以及最小配筋率。其前者是为了使得受拉钢筋屈服之时的混凝土受压区压应变同梁最终破坏之时的极限压应变之间有一定的差距。其后者则是确保梁不会在混凝土上受拉区刚开裂之时钢筋则就会屈服有时还会被拉断。保证梁具有一定的受压钢筋,受压钢筋可以分担一部分剪力。减小受压区的高度,此外在大震之下,梁端有可能出现正弯距,下部的钢筋则有会可能受拉。使得箍筋用量、用法得到保证,箍筋的作用主要有三个方面:其一是抗剪,其二是规定箍筋的最小直径,确保纵筋在受压之下不会过早的出现局部失稳的现象,其三是通过箍筋约束受压混凝土,而提高它极限压应变以及抗压的强度。
2.2.2、对截面尺寸的要求。规范之中明文提出框架梁截面尺寸应该符合以下要求。第一、截面宽度不应该小于200mm,其二,截面高度同宽度之间的比值不应该大于4。第三、净跨同截面高度的比值不应该大于4。通常我们应该把跨高比小于5的梁称之为深梁,深梁的抗弯以及抗剪机理同一般的梁即就是跨高比大于5的梁,有所不同。因此我们在设计之时应该避免设计为深梁。
2.2.3、柱除过受弯距以及剪力之外,还应该承受轴力,尤其是在高层建筑之中,轴力则就更大了。因此,柱还有对轴压比的限制。其中对于不同烈度之下具有不同延性要求的结构则有着不一样的轴压比限值。此外,柱端箍筋用量的控制条件不只是简单的使用体积配箍率,而是使用配箍特征值,应该考虑到箍筋强度等级以及混凝土强度等级对于配箍量的影响
2.3、“强剪弱弯”的措施
使用剪力增大系数来增大梁端、柱端、剪力墙端、剪力墙洞口连梁端和梁柱节点之中的组合剪力值。并且使用用增大之后的剪力设计值来进行受剪截面控制条件验算以及受剪承载力设计。这样可以有效避免在结构之中出现脆性的剪切破坏。钢筋混凝土的抗剪能力是由混凝土自身的抗剪能力、裂缝界面的骨料咬合力、纵筋销栓力以及箍筋的拉力等部分来构成的,而通过对框架梁在强震之下抗剪的分析可得知,混凝土的梁端抗剪能力在形成塑性铰之后会比非抗震之时有所降低,在这之中的主要原因有:通过结构力学以及材料力学的分析可以得知。梁端则是正剪力大于负剪力,一旦如果发生剪切破坏之时,剪压区通常都在梁的下部,而此时混凝土保护层则已经被剥落,同时梁下端又没有现浇板,因此混凝土剪压区的抗剪能力则会比非抗震之时偏低,因为在强震之下剪切破坏发生在塑性铰充分转动的情况之下,而非抗震之时的剪切破坏通常都会发生在纵筋屈服之前,所以在抗震的条件之下混凝土的交叉裂缝宽度则会比非抗震情况之下偏大,这样就会使得斜裂缝界面之中的骨料咬合效应逐渐被退化,加上斜裂缝会反复开闭,混凝土体的破坏更加的严重。这样就会使得混凝土的抗剪能力逐渐被削弱。混凝土保护层的剥落以及裂缝的加宽则会使得纵筋的抗剪销栓作用逐渐退化,我们通常在计算钢筋混凝土的抗剪能力之时,只计算了混凝土自己的抗剪能力以及箍筋的抗剪能力而将斜裂缝界面之中的骨料咬合能力以及纵筋的销栓作用当成它多余的强度储备,在抗震之下梁端的塑性铰的形成。降低骨料咬合力及纵筋的销栓的作用。钢筋混凝土的抗剪强度储备也会随之而降低。同时因为混凝土的抗剪能力的降低。
3、结语
在抗震设计之中,应该保证结构的整体抗震的性能,使得全部建筑具有一定的承载能力、刚度和延性,同时不断提高设计人员的业务素质,将“小震不坏、中震可修、大震不倒”的设计理念深入到每一个设计人员心中,使得抗震性能设计目标一步步得到实现,在地震发生之时有效的保证人民的财产安全,把损失可以降到最低。正如古语所说;不以积跬步,无以至千里。我们应该从点滴做起,不断提高建筑的抗震等级。
参考文献:
[1]张林振.预制预应力混凝土框架结构抗震设计有关问题研究[D].东南大学,2006.
关键词:高层建筑结构设计;设计分析;概念设计
中图分类号:TU97 文献标识码:A 文章编号:
1. 引言
结构设计师在进行设计时,应设计出安全、经济的建筑,同时还应符合人们对精神生活的追求,这些都要求设计师拥有扎实的理论基础,充分掌握高层建筑结构设计中的要点问题,能够合理有效的处理设计中可能出现的问题。下面笔者将结合多年的工作经验,通过对具体工程的设计分析,提出在高层建筑结构设计中应该注意的问题,希望对读者有一定的借鉴作用。
2. 工程概况
本工程为一座综合楼工程,处于城市中央商务区,四周环绕着城市道路。房屋总高度为89m,上部楼房层数为19层,有一层屋面结构局部突出,并附有2层地下室。一层地下室为汽车库,同时用于各类设备的放置,二层地下室主要为汽车库,同时部分空间兼有人防的功能。裙房用于银行的办公,包括营业大厅,办公区、业务区、计算机房、档案室、职工之家和花园等。主楼主要用于公司办公,包括办公大堂、两层共享空间、物业办公用房、员工餐厅和会议室等。
3. 设计分析
3.1 地质条件和基础设计水位
经过现场地质情况的勘查,本工程环境类别为Ⅱ类,地下水位的稳定埋深为3.33~8.50m,稳定标高为14.17~14.44m,按A类水进行设计。场地孔隙潜水水质良好,只具有轻微的腐蚀性,对混凝土结构和钢结构有较弱的影响,但对钢筋混凝土结构基本无影响。粉质粘土对钢结构也有轻微的腐蚀性,但对混凝土结构和钢筋混凝土结构的钢筋基本无腐蚀作用。设防水位的选择要考虑抗浮和抗渗的因素,综合考虑之后选用的设防水位为场地标高21.00m。
3.2 基础方案的选择
本工程中地基基础的底部标高大约为-11.10m~-12.20m之间,基础的持力层为细砂层和粗砂层,经测定,这两者的承载力特征值分别为150kpa和200kpa。对于部分纯地下室和裙房地基,这两层持力层已基本能够满足承载力要求,因此采用天然地基即可抵抗上部荷载的作用,基础的形式采用平板式筏型基础,但对于部分高层地基,持力层的承载力还无法抵抗上部荷载的作用,因此考虑使用桩筏基础作为高层部分的基础,桩采用钻孔灌注桩。本工程中另一个需要考虑的重要影响因素是抗浮设防水位,由于其水位很高,需要采取相应的抗浮措施,针对本工程的特点,采用的抗浮措施为抗拔桩。
3.3 抗震等级
本工程的结构形式为现浇钢筋混凝土框架-剪力墙结构,地下2层框架抗震等级为四级,剪力墙等级为四级,地下1层框架抗震等级为二级,剪力墙等级为三级,地上1层~地上2层框架抗震等级为二级,剪力墙等级为三级,地上2层~顶层框架抗震等级为三级,剪力墙等级为三级。标高为±0.00的楼板处通常兼做上部结构的嵌固层,剪力墙的底部应进行局部加强,本工程对地下1~3层进行了加强。
3.4 屋盖及楼盖结构的确定
在本工程中经过综合考虑之后,上部结构的部分楼面采用的楼盖结构为以现浇主框架梁为主配以次梁的楼盖,而地下部分结构采用的楼面体系为以现浇主框架梁为主配以厚板的楼盖。在楼面中有时出于需要,楼面中会设置面积较大的孔洞,这往往会降低建筑物的整体刚度,因此为了避免整体刚度的减弱,设计中采取的措施为:对孔洞周围楼板的厚度进行加强,同时增加周围楼板的配筋和加大孔洞边梁的截面尺寸等。在三层的大堂顶板由于其特殊的结构形式,在设计时为重点考虑的问题,由于大堂空间的需要,对大堂进行了抽柱,造成了托柱转换,转换梁的跨度过大,已达到17.4m,在这种情况下,一般的钢筋混凝土结构已经无法解决这个问题了,进过分析考虑,本工程在大堂位置采用了钢骨混凝土梁,最终解决了这个问题。
3.5 结构缝的设置
鉴于本工程裙房部分的荷载较小,而高层部分的荷载较大,这其中存在的较大的荷载差异会造成地基不均匀的沉降,但由于本工程中为了承受高层部分较大荷载的作用,所采用的基础形式为桩基,桩基的使用大大减少了两部分结构之间差异沉降,满足设计对沉降的要求,因此本工程只需设置施工后浇带即可满足要求,无需设置永久后浇带,施工后浇带的设置能够避免混凝土的收缩变形所引起的开裂问题。
在本工程中,由于混凝土的收缩和温度应力在较长的地下室混凝土结构中所引起不利影响往往较大,为了减弱这种影响,设置了后浇带,同时还采取了以下措施:(1)在设计中,部分结构在配筋时合理的提高了最小配筋率,包括基础外墙和地下室顶板等,顶板的钢筋采用了双层双向贯通整个顶板。(2)在选用水泥时,考虑的原则为较小的水化热和收缩变形。在选择混凝土的强度等级时,对于基础外墙和地板,应合理的控制混凝土的强度等级,以60天的混凝土强度指标为标准。对于抗裂要求较严格的结构部位,加入一定量的抗裂纤维,基础外墙、顶板和主楼顶层的混凝土在采取这种措施之后均可满足抗裂要求。在混凝土中往往有外加剂的使用,对于这些外加剂,在使用过程中应正确搭配,并严格控制其用量和质量。
4. 高层建筑结构设计要点
显然,相对于普通建筑而已,高度上较大的高层建筑结构受风荷载和地震的影响较大,而且这两种荷载都是随机振动的,这加大了结构设计的难度和复杂性。因此,在进行高层建筑结构设计时,应考虑采取概念设计辅助力学分析。
概念设计是从结构的整体角度出发,立足于整体和局部结构体系之间的力学关系和相互反应,运用结构设计基本原理和思想解决设计中遇到的问题。概念设计即注重总体布置,又关注局部的细节设计,统筹兼备从而达到合理有效的设计。
本工程的概念设计包括以下几点:(1)设计时应选用简单规则的平面形式。简单规则的平面形式,其风荷载的影响较小,有利于抵抗高层建筑的风压,同时简单规则的形式,有利于实现抗震的结构平面布置,相对而言抗震性能较好。(2)高层建筑中所设计的竖向体型应采取合理的形状,其原则为经济合理、对侧向力反应较弱、较强的外荷载抵抗能力等。(3)建筑宽高比对结构传力体系的影响较大,在设计中应按规范要求选择宽高比,同时应保证抗侧刚度的均匀变化。(4)在设计时,结构应始终保持连续性和整体性,构件节点的承载力应大于连接构件的承载力。(5)高层建筑基础承受着较大的荷载,结构在整体稳定性上受着较大的挑战,因此应合理的进行基础形式和埋深的选择。(6)在材料的选择上应满足均匀、各向同性、延性好等原则。(7)在抗震上尽量采取多道抗震设防措施。
5. 结语
笔者结合多年在建筑结构设计中的工程实践经验,并结合建筑结构概念设计的理念,通过具体高层建筑的结构分析,阐述了高层建筑中几个重要方面的设计分析过程,并论述了概念设计中的几个要点,提出了高层建筑结构设计中的注意事项和可能遇到的问题以及相应的解决措施,希望能够对读者在今后的工程设计中有所帮助。
参考文献:
[1]夏卓文.高层建筑结构设计特点与剪力墙设计[J].住宅科技.,2007,2:29~32
关键词:大跨度体育馆;钢桁架;结构设计;内力;杆件;抗震性能
钢结构自身的重量小、强度高,可塑性和柔韧性都较强的特点,使其成为公认的具有良好性能的结构,而且以桁架为代表的钢结构被广泛应用到空间结构体系中,尤其是跨度较大,标高较高的大型场馆,空间钢结构管桁架设计作为其屋盖结构发挥着很多的优点。
1 管桁架结构的分类
大量的建筑工程实践证明:大跨度桁架结构的运用一方面满足了建筑的基本原则和要求,另一方面也与最新的设计理念相吻合。伴随着建筑业的不断深化与发展,出现了许多类似跨度大、空间形状相对复杂多变的钢结构的建筑,而且在形式方面也日渐新颖。
桁架根据杆件布置的不同以及受力方式的差异,一般分为平面和空间两种结构形式。平面桁架是指上、下弦以及腹杆全部处于同一平面,而空间桁架结构的上、下弦同腹杆通常处在一个三角形截面上。一般说来,前者的外部刚度较差,而后者的结构跨度大、稳定性高,外观通常也比较富有美感,因此被采用的较多。另外,对于管桁架的连接件杆件截面的种类,一般常用的为圆形、正方以及长方形,选择不同图形的截面相应的桁架类型也有所不同。
2 大跨度桁架结构的受力分析及结构设计
大跨度桁架结构的受力分析及计算是钢结构屋盖体系中的重点和难点,因此无论是受力分析还是结构设计,都需要借助专业计算软件的力量来达到事半功倍的效果。
2.1 计算软件的选择
大跨度桁架结构的设计一般使用同济大学的3D3S软件,同时还采用有限元软件Sap2000进行校核。3D3S可方便输入单元、节点、局部单元荷载,各种工况荷载都可以通过导荷载的方式由面荷载转化为节点荷载,风荷载可自动考虑风压高度变化系数、风振系数;可套用多种规范进行验算,特有同一模型中对不同的单元采用不同的控制参数功能;可方便输出模型以及每一单元在各工况、组合下的内力、位移、应力比图,因此,工程中最常使用计算软件为3D3S。同时,采用Sap2000对结构整体分析,可得到杆件最不利内力及结构最大变形。
2.2 受力分析
在大跨度体育馆桁架结构的设计中,传统的开口截面(如H型钢和I字钢)应用的很多,但相比较来讲,尤以管状的桁架更为常见,因此本论文在讲述桁架结构的受力特点和计算规则时,主要是以管状的桁架为例。管桁架,是指用圆杆件在端部相互连接而组成的格构式结构。
通过建模分析以及荷载的组合分配,理论上将大跨度体育馆桁架的荷载分为永久荷载与可变活荷载两类。前者主要指承重结构的自重(包括杆件及节点的自重)、屋面板及檩条的自重、马道、吊挂灯具及其他设备的自重,一般按从属面积折算荷载值;后者主要是一些不确定的载荷,如风荷载、雪荷载、上人屋面的荷载,甚至是地震荷载等作用在屋盖上的“可动力”。
管桁架结构的计算要满足基本的规定:管桁架结构应进行重力荷载及风荷载作用下的内力、位移计算以及整体的稳定性验算,并应根据实际情况,对地震、温差变化、支座沉降及施工安装荷载等作用下产生的位移与内力进行计算。其中,内力和位移可按弹性理论,采用空间杆系的有限元方法进行计算。外荷载可按静力等效原则将节点所辖区域内的荷载集中作用在该节点上。结构分析时,应考虑上部空间网格结构于下部支承结构的相互影响;另外应根据结构形式、支座节点的位置、数量和构造情况以及支承结构的刚度,确定合理的边界约束条件。
当然,受力分析的重点是桁架的节点处。统筹的讲,桁架的相贯节点有K型、T型、马鞍加强型(具体如图1所示),也需要对节点的受力形式及连接形式进行计算。
2.3 结构设计优化
追求永无止境,成功的设计是在保证安全、设计质量、规范要求等的前提下,尽可能地采用3D3S等结构设计软件对杆件、节点进行对比分析,改善结构布局,运用新工艺、新材料、新技术、新设备来不断地优化整个结构,以期达到经济性和实用性的推广作用。
3 大跨度桁架结构的强度和稳定性设计
3.1 抗风荷载作用的构造设计
对于大跨度的轻型屋盖来讲,风荷载的作用是影响结构稳定的重要因素。大跨度体育馆都要求内部空间的宽广,而这势必就造成屋盖在风的吸力作用下被掀起,因此大跨度桁架结构的设计要充分考虑整个结构的抗风系数和抗风能力。大跨度结构受力复杂,质量较轻、阻尼较小,处于湍流度高的低矮大气边界层中,导致负压作用明显,如屋面转角、边缘和屋脊等部位。另外,这些部位的压力波动往往较大,甚至有可能产生交变力的作用,因此这些部位容易成为大跨度屋盖结构在强风破坏中首当其冲,对风灾后大跨度屋盖房屋破坏情况的实地调查资料也充分证实了这一点。
对于大跨度屋盖结构的抗风问题,除了应对结构进行合理的抗风荷载设计以保证结构主体的强度以外,还需要针对桁架结构的薄弱部位和薄弱环节采取有效的抗风结构构造设计,用来加强结构各构件之间的整体性。一般来讲,体育馆中大跨度桁架结构的抗风构造设计从下列三个方面考虑:①加强屋盖系统自身的连接和整体性;②加强屋盖系统与其承重墙(柱)体的连接;③加强桁架各个节点的连接形式。
3.2 桁架的抗震性能设计
地震是地壳运动时地表产生的一系列纵向和横向颤动。根据规范,凡属剧场、体育馆等大跨度公共建筑,其抗震措施按设防烈度均应选用8度设防,而且多采用时程分析进行补充计算。
采用时程分析法时,应按建筑场地类别和设计地震分组选用不少于两组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振形分解反应谱法所采用的地震影响系数曲线在统计意义上相符。当采用振形分解反应谱法进行体育馆大跨度桁架结构的地震作用分析时,要取前30个振形,而且对体形特别复杂或重要的需要取更多振形进行效应组合。在抗震分析时,应考虑支承体系对其受力的影响,此时可将桁架结构与支承体系同时考虑,按整体分析模型进行计算,其中的地震作用效应分析的阻尼比可以根据不同的情况参照下表。
参考文献
[1]戚豹,康文梅.《管桁架结构设计与施工》.中国建筑工业出版社,2012.
[2]中华人民共和国标准.GB50017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
[3]中华人民共和国标准.GB50009-2012建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.