时间:2023-06-01 11:33:21
导语:在故障检测与诊断的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词 航天故障 诊断 容错处理技术
中图分类号:V647 文献标识码:A DOI:10.16400/ki.kjdkz.2016.10.072
Abstract Aerospace fault diagnosis is the key to ensure the space work smoothly, this paper starts from the development of aerospace fault diagnosis and fault tolerant processing technology, the shortcomings of the aerospace fault detection in the presence of are analyzed, and combined with the specific problems of fault-tolerant processing technology design, is very important to enhance the level of fault treatment in spacecraft.
Keywords aerospace fault; detection; fault tolerant processing technique
0 引言
自从1903年俄国科学家齐奥尔科夫斯基发表《用喷气装置探测宇宙空间》,并从理论上论证采用多级火箭可以克服地球引力进入太空之后,特别是在哥达德、奥伯特、布劳恩、科罗列夫等一代科学巨匠的不懈努力之下,飞向太空终于在20世纪中叶从梦想变成了现实。
1 航天器故障的主要特点
1.1 航天器故障的危害性较大
航天器无论质量还是体积都足以对人的安全构成较大的危害。因此,航天器如果结构较为复杂,则很有可能在使用的过程中产生质量层面的问题。此外,航天器的元件比较容易产生质量故障。因此,航天器对精密仪器的质量要求较高,如果航天器在精密性仪器产生质量方面的问题,将会使航天器难以根据固定的模式进行故障的处理,也无法保证航天器可以提前结束对故障性因素的处理。还有一些航天器在实施任务处理的过程中,并不能保证当前的实用技术可以适应系统的技术处理方案,使得一些航天器在应用的过程中可能产生坠亡的问题,导致航天器的应用过程出现一系列的经济损失。航天器如果产生较为严重的质量问题,不仅会在问题的发生阶段出现质量问题,也很有可能影响到后来的技术研制工作的计划,使航天器的后续使用难以得到有效的保证。
1.2 航天器运行环境较为特殊
航天器在使用的过程中,难以保证具备足够的使用性能。因此,必须随时对航天器应用过程中的技术细节加以调整,使航天器具备充分适应运行环境的特点。此外,要结合航天器使用过程中的运行轨道特点,对全部的空间环境加以分析,使航天器可以在空间环境的带动之下进行运行性能的有效控制,保证航天器可以在操作的过程中凭借动力因素的特点加以技术性处理。航天器的运行还受到温度因素的影响较多。因此,航天器必须能够有效的针对噪音问题进行运行环境的适应,而技术应用过程中的电磁干扰等问题很有可能在外部因素的影响下发生变化,最终造成航天器的运行环境发生改变。航天器在应用的过程中,所处的整体外部环境与航天器生产过程中的日常环境并不一致,因此,航天器很有可能在元器件的质量发生问题的情况下受到零部件质量问题的干扰,造成零部件难以在实验过程中正常运行,形成较为强烈的质量问题。
1.3 航天器本身资源有限
航天器在运行的过程中,必须使用计算机系统对诸多资源因素加以研究和处理,因此,所有的计算机配置工作,都必须保证在能源处理过程中实现配置方案的优化。除此之外,必须结合全部的能源应用特点,对燃料质量控制过程中的故障分析机制加以研究,使全部的故障诊断工作都可以在容错技术的有效支持之下进行故障诊断机制的重构。此外,必须结合故障诊断技术的有效性分析结果,对全部的故障诊断机制加以研究,因此,航天器在诸多事务共同影响之下,难以预留足够的空间用来应对航天器的资源处理问题,也难以保证适应航天器运行模式的变化问题。还有一些航天器的资源储藏工作必须保证与航天器的运行技术相适应,因此,航天器在进行运行可靠性分析的过程中,必须使全部的应用技术都能与资源储藏现状相适应,这就使得航天器的资源储藏问题难以有效的保证与航天器的其它飞行性任务相适应。
2 航天器故障检测工作中存在的问题
2.1 信息资源融合角度的故障处理问题
目前,一些航天器在故障处理机制的设计过程中,并没有充分按照传感器的运行方式进行惯性因素的设计,使得一些传感器只能在技术层面上应用较差处理的方式进行信息资源的处置,无法从根本上适应传感器的应用技术要求。传感器的信息资源是保证航天器应用质量的关键。但是,一些传感器由于信息处理领域存在不确定性问题,难以保证传感器对诸多有效的信息资源实施完整的处理,也无法使传感器可以将信息资源以互补的形式完成设计,因此,必须通过互补性机制构建的方式进行传感器的不确定性因素的分析。但是,很多航天器在技术处理过程中,并不能从信息资源价值的角度实施航天器故障的有效分析,使得很多的航天器难以从故障处理有效性的角度进行航天器性能的控制,使得一些航天器只能简单的凭借传感器的基础性能进行故障处理机制的构建,难以保证航天器可以有效的整合全部信息资源的价值。还有一些航天器在处理故障因素的过程中,难以保证信息资源具备足够的有效性,使得信息系统无法完整的保证与信息利用机制相适应,造成很多信息资源的可信度难以得到充分的保障。
2.2 航天器闭环系统存在诊断技术问题
航天器在应用技术的选择方面,具备很强的复杂性,此外,航天器的控制系统不仅需要对常规的控制技术加以处理,还必须对航天器的全部组成构件加以研究。因此,所有的航天器都会在使用故障因素的影响下产生工作系统的紊乱。除此之外,必须对系统已经产生的故障进行分析,并对系统全部的运行故障进行关联机制的控制,使后续的系统运行活动可以在具备更强关联性因素的特点下进行故障处理机制的构建,确保故障能够在处理的过程中更加有效的同数据资源相适应。但是,一些航天器的避免系统并不能对诸多的航天器分支系统进行技术性处理,造成很多的航天器资源难以适应部件运行过程中的技术应用要求。还有一些航天器难以在使用的过程中对相关故障性因素实施处置,使得很多的部件运行程序难以在检测技术运行时间的有效控制下进行任务的处置,造成很多任务难以有效的凭借检测技术的应用特点进行测量机制的构建。还有一些航天器在闭环系统的质量诊断方面,并不能保证对闭环系统的全部的信息资源实施有效的采集处理,造成很多的闭环系统难以结合故障的具体存在特征进行信息检测机制的处理,最终导致很多的检测技术难以适应系统运行状态的控制要求。
2.3 模型诊断技术的应用不足
目前,很多航天器在实施诊断技术应用的过程中,都将硬件资源的质量控制作为工作的重点,这虽然能够保证诊断技术的应用可以增强航天器的技术处理质量,却容易导致很多的航天器无法在系统复杂性因素的影响下进行运行水平的提高。还有一些硬件资源在进行可靠性研究的过程中,并不能对已经产生的故障信息实施新型技术的重构,导致很多的信息资源无法应对现阶段的刚性需求。还有一些航天器必须对体积较大的液体燃料资源进行质量控制,导致很多的燃料处理程序难以适应动力基础的处理要求,虽然很多的模型诊断工作都可以适应燃料箱的技术应用特点,却难以充分保证所有的动力学模型都可以在航天器的质量控制过程中实施有效的技术性处理,也难以使全部的模型诊断技术可以在故障处理过程中实现诊断水平的提高。
3 航天故障诊断和容错处理技术的实践方案
3.1 运用信息融合技术实施故障诊断
首先,必须对航天器运行过程中的全部信息融合技术进行整合处理,使信息资源的控制工作可以在融合技术的有效支持之下实施传感器的质量控制。除此之外,必须对全部的传感器装置实施惯性因素的有效判断,以便传感器装置的诸多容错技术都可以在不同类型的传感器装置共同影响下实现容错技术的合理控制,提升传感器运行过程中的信息资源价值。在应用传感器对大量信息实施处置的过程中,必须保证所有的信息资源可以适应信息采集程序的要求,使全部的信息都可以在航天器运行过程中产生足够的互补性影响,确保所有的信息采集机制能适应资源互补性处理的要求。要加强对多种类型的传感器资源的关注,使传感器可以利用互补机制进行信息采集模式的适应,确保所有的信息资源都可以结合传感器应用程序的要求进行合理的分析机制的处理,切实保证传感器能够在有效的整合分析过程中实现信息资源处理质量的提高。
3.2 完善闭环系统质量控制机制
首先,必须加强对航天器运行过程中系统复杂性的关注,通过系统各类组成部件的有效分类管理,对航天器质量控制工作推进过程中的系统复杂性加以研究,使所有的系统质量控制工作都可以结合系统正常运行的技术性要求实施处置,以便系统可以有效的应对质量控制工作推进过程中的各项故障特点,并使全部的数据处理机制可以同数据运行的异常特点保持一致。在完成故障传播机制处理之后,必须对全部的系统运行质量关联性特点实施传播技术的处理,使得很多的故障性因素难以根据故障的实际特点对故障的实际呈现状态加以控制。因此,必须结合闭环控制技术的运行要求,对系统之间的各个组成部件是否具备足够的关联性加以研究,使后续的系统故障特点能够在传播模式的影响下得到更好的处理,保证数据资源的全部处置工作可以适应系统的关联性运行特点。
3.3 提升模型在航天器故障处理中的应用深度
首先,必须对航天器的所有组成材质进行质量可靠性分析,使后续的硬件资源可以结合系统的复杂性特点进行航天器的质量控制,保证航天器可以有效的增强全部的成本工作执行要求。其次,技术性因素的控制必须保证同成本控制的要求相适应。可以结合模型应用程序的特点,对故障诊断过程中的信息重构技术加以分析,使航天器的运行工作能够同全部的燃料装置形成结合,共同保证航天器装置可以在力学模型的技术指导下加以处置。
4 结论
容错技术和故障诊断技术是保证航天器运行质量的重要技术,深入地分析航天故障诊断技术的发展历程,并集合航天工作中的主要技术性问题进行容错处理技术的设计,能够很大程度上增强容错处理技术的实施质量。
参考文献
[1] 胡绍林,孙国基.基于系统仿真的故障检测与诊断技术[J].系统工程理论与实践,2014.21(6):8-14.
[2] 胡绍林.现代计算机控制系统的容错设计技术[D].中国科学技术大学,2015:1-120.
关键词: 暖通空调系统;故障检测;诊断措施;故障原因
一、暖通空调系统故障原因
HVAC系统整合了多种设备,很多参数互相配合和融合,使整个系统变得十分复杂,增加了故障之间的连接性和影响性。多个种类的空调设备通过管道连接而形成关联性和影响性极强的HVAC系统,倘若这个系统中有任何一个位置出现问题、发生故障,都会对其他设备和位置的运行情况产生影响,进而牵连到整个系统的稳定运行和控制性能。
暖通空调系统的故障大体可分成两大类:硬故障和软故障,既有局部性也有全面性,对整个HVAC系统的影响大小也不尽相同。硬故障是指机械设备和运转部件完全丧失功能所产生的故障,例如皮带断裂、传感器失效、阀门不受控制和风机停止运行等故障。从故障产生时间的角度分析,这些故障应当归为突发故障,且故障影响效果比较严重,所以检测和诊断的难度系数不大。软故障的实质是说设备和部件的机械功能降低或局部失效等,比如部件或管道结垢、堵塞,局部泄露、仪表稳定性降低等等。
另外,HVAC系y中所包含的传感器数量是极少的,因此缺少传感器带来是数据和信息,降低系统的监测性,而且,HVAC系统所整合数据比较多也比较复杂,通常都会给系统的控制者增大管理难度,由于系统所产生的数据和信息不能通过图案和文字直观的表现出来,其多变性较强,而这些数据信息最终都是由人工来进行处理和分析的,对故障的检测和诊断器械和软件也必须通过人来判断,还有就是系统的控制者比较容易忽视的故障和隐患,尽管这些故障不能干扰系统的稳定运行,但也许会有带来一些不确定问题。
二、暖通空调系统故障检测与诊断常用方法
1、直接方法
直接方法主要是指在暖通空调系统运行中,以不同的输入、输出参数为依据作为故障检测基本症状,直接将这些症状输入分类器中。利用预期设置完成的分类策略对分类器中症状进行具体分类,即对系统故障进行分类,再以此为依据作出准确故障诊断结果。该故障检测与诊断方法常用于分类器设计中,较常见的分类方法如专家规则、贝叶斯分类法等等。利用这些具体方法可有效实现对设备自动故障检测与诊断,效果良好,操作便利,诊断数据较准确。
2、间接方法
间接方法主要是指通过系统模型预测,该方法的应用前提条件是要先设立正常系统运行条件,并对已经确定的故障进行系统建模。在此基础上构建标准化模型系统,进而展开进一步针对性预测,再将预测结果所得参数与实测参数对比,将对比后偏差作为输入参数,再输入至分类器,确定故障类型。其分类方法包括贝叶斯分类法、故障树与神经网络法等等。其主要建模方法则为回归法等。
三、暖通空调系统故障检测与诊断分析
1、暖通空调系统诊断方法
暖通空调故障诊断方式主要有两种:一种是在线方式,即故障诊断系统实时地监测设备的工作状态,基于适时的在线故障检测与诊断算法,给出系统的故障信息,包括故障程度、故障所属模块、故障位置、故障报警等。另一种是离线方式,即构建计算机辅助决策支持系统,帮助系统迅速发现故障,制定合理有效的系统维修方案。
(1)基于知识的专家系统
建立专家系统诊断模块,包括专家系统知识故障诊断库,并可根据经验和知识的积累以及在获得了新的、可靠的故障诊断规则时或发现原有某条规则不足甚至错误时,能自动进行添加、修改和更新。 专家系统诊断模块由知识获取系统、知识库、推理机和输人、输出系统构成。
(2)基于规则的故障树
利用专家知识、工程师的经验和知识库建立基本故障诊断树,并可生成新的故障诊断树,用户则选择相适应的故障诊断树来执行故障诊断。
故障树分析是在复杂系统中作故障诊断的一种有力工具。用这种方法诊断的效率较高且不容易漏检,例如该模块能根据系统故障现象,逐次向下展开,查询有关的节点和树枝,直到找出故障的发生原因及处理对策。
(3)基于人工神经网 B P改进算法的模式识别
该模块由 B P改进算法的网络、网络结构参数及推理诊断等组成,主要用于完成模式识别和故障诊断。专家系统诊断与故障树诊断两种方法的相互结合,可以有效地解决过去已发生过的各种故障的诊断;但对于以前没有发生过的故障,不具备处理能力,因为知识库中缺乏相应的诊断知识。采用人工神经网络( A N N) 模式识别技术是一种较好的方案。它根据新的样本进行自动学习和训练以更新故障诊断知识,并可添加到专家系统知识库中。A N N的故障初始样本来自已有的故障实例,这些实例可通过故障机理分析或专家经验获得,此外还可在应用中逐步添加、删除和更新。
2、故障检测与诊断的应用
随着科技的进步,现在的故障检测和诊断手段嵌入了动态的控制系统体系,完善了检测和诊断的技术。制定一些模型数值或者一些经验数据,当传感器测量得到的实际运行过程中的参数和由模型得到的计算值在诊断软件中进行对比和评估,它们之间的差值作为传送的数据,送到故障诊断分析其中的问题,如果这个差值逐渐的增大时,就说明了这个系统发生故障的可能性就会增加。根据检测系统的分析,就会将故障的诊断结果及时传送出去进行显示。这些故障诊断由输入的数据类型、复杂程度、性质等进行分区,较难的诊断就会需要长时间来完成,或者由更高层次的诊断设备来完成。
暖通空调系统故障的检测方法。在以前,我们所用的方法就是用直接、解析和时序三种冗余法来进行检测。基于定量模型法在相同的情况下可以通过比较实际系统或者仿真的模型运行状态来进行检测和诊断系统故障,但是在执行的时候需要具体的、精确的数据模型来进行检测。还有一些基于定型模型法、基于统计学法、人工神经网络法和模式识别法等可以对暖通空调系统的故障来进行检测。
按照故障的级别和故障的优先级不同,不同故障在不同的诊断层次上来诊断。在分布式控体系(DCS)中,驻留在不同层级上的故障诊断工主要由输入数据的类型、性质、复杂程度和诊断具使用的频率来区分,复杂的、需要更多知识和能的故障诊断(如诊断周期需要一天或一个月的将由更高层次的诊断工具(或计算机)来完成,由现在传感器性能的提高,大量的、低端的故障诊倾向于在传感器中就地解决。
四、结束语
综上所述,针对暖通空调系统加强故障检测与诊断对保证系统正常运行,提高室内空气质量有着重要作用。为进一步提高暖通空调系统故障检测与诊断技术,应充分结合技术理论及经济性理论,在提高系统整体可靠性的同时,提高暖通空调系统节能性,有效降低暖通空调出现故障的几率,提升暖通空调应用质量及寿命。同时加强故障检测与诊断技术研究,对进一步推进我国暖通空调系统创新发展也有着重要意义。■
参考文献
[1]陈友明.自动故障检测与诊断在暖通空调中的研究与应用[J].暖通空调,2014,03:29-33.
[2]陈隆.暖通空调系统故障检测诊断技术与电气自动化技术初探[J].中国高新技术企业,2015,06:82-83.
设备检测与故障诊断技术现状
罗洪辉
(陕西法士特齿轮有限责任公司 陕西 西安 710077)
摘要:随着科学技术的发展,设备越来越复杂,自动化水平越来越高,设备在现代工业生产中的作用和影响越来越大,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,在现代工业生产中起着重要的作用。开展设备故障检测与诊断技术的研究具有重要的现实意义。
关键词:设备,故障,检测,预防,维修方法
本文从设备检测诊断的基本方法、内容和技术手段等多方面对我国机械设备检测和诊断技术的现状进行综述,并在此基础上提出了该技术今后的发展趋势。企业要实现设备管理现代化,应当积极推行先进的设备管理方法和采取以设备状态监测为基础的设备维修技术。
一、设备检测的一般常用方法概述
设备检测一般是指采用各类检测仪器对设备各项指标进行检测,以达到保障安全使用的目的。根据相关技术人员的经验,设备检测尤其是特种设备的检测需要符合国家、地方及行业协会的相关规定。设备检测常用的方法是无损检测,无损检测就是利用声、光、磁和电等,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。与破坏性检测相比,无损检测不会损害被检对象的使用性能,因此,无损检测又称为非破坏性检测。无损检测分为常规检测技术和非常规检测技术。常规检测技术有:超声检测、射线检测、磁粉检测、渗透检验、涡流检测。非常规无损检测技术有:声发射、 红外检测、激光全息检测等。二、下面对以上所说的检测技术做一下简要的介绍。 1、超声检测 超声检测的基本原理是:利用超声波在界面(声阻抗不同的两种介质的结合面)处的反射和折射以及超声波在介质中传播过程中的衰减,由发射探头向被检件发射超声波,由接收探头接收从界面(缺陷或本底)处反射回来超声波(反射法)或透过被检件后的透射波(透射法),以此检测备件部件是否存在缺陷,并对缺陷进行定位、定性与定量。2、射线检测射线检测的基本原理是:利用射线(X 射线、γ射线和中子射线)在介质中传播时的衰减特性,当将强度均匀的射线从被检件的一面注入其中时,由于缺陷与被检件基体材料对射线的衰减特性不同,透过被检件后的射线强度将会不均匀,用胶片照相、荧光屏直接观测等方法在其对面检测透过被检件后的射线强度,即可判断被检件表面或内部是否存在缺陷(异质点)。3、磁粉检测 磁粉检测的基本原理是:由于缺陷与基体材料的磁特性(磁阻)不同,穿过基体的磁力线在缺陷处将产生弯曲并可能逸出基体表面,形成漏磁场。若缺陷漏磁场的强度足以吸附磁性颗粒,则将在缺陷对应处形成尺寸比缺陷本身更大、对比 度也更高的磁痕,从而指示缺陷的存在。4、红外检测红外检测的基本原理是:用红外点温仪、红外热像仪等设备,测取目标物体表面的红外辐射能,并将其转变为直观形象的温度场,通过观察该温度场的均匀 与否,来推断目标物体表面或内部是否有缺陷。三、设备故障诊断技术的概述设备故障诊断是指设备在运行中或在基本不拆卸的情况下,通过各种手段,掌握设备运行状态,判定产生故障的部位和原因,并预测设备未来的状态,从而找出对策的一门技术。 设备故障诊断的任务是监视设备的状态,判断其是否正常;预测和诊断设备的故障并消除故障;指导设备的管理和维修。
1、设备故障诊断的内容包括状态监测、分析诊断和故障预测三个方面。其具体实施过程为信息采集、信号处理、状态识别、诊断决策。
2、设备故障信息的获取方法包括直接观测法、参数测定法、磨损残渣测定法及设备性能指标的测定。
3、设备故障的检测方法包括振动和噪声的故障检测、材料裂纹及缺陷损伤的故障检测、设备零部件材料的磨损及腐蚀故障检测及工艺参数变化引起的故障检测。
4、设备故障的评定标准常用的有三种判断标准,即绝对判断标准、相对判断标准以及类比判断标准。可用平均法制定相对判断标准。
5、从某种意义上讲,设备振动诊断的过程,就是从信号中提取周期成分的过程。组成周期成分的简谐振动可用位移、速度和加速度三个参量来表征,每个参量有三个基本要素:即频率、振幅和初相位。
6、试验数据处理的目的就是去伪存真、去粗取精、由表及里、由此及彼的加工过程,提高信噪比,找出客观事物本身的内在规律和客观事物之间的相互关系。
7、振动信号频率分析的数学基础是傅里叶变换;在工程实践中,运用快速傅里叶变换的原理制成频谱仪,这是故障诊断的有力工具
四、设备故障诊断技术的分类,有三种分类方法:
(一)按照诊断的目的、要求和条件分类,分为功能诊断和运行诊断、定期诊断和连续监测、直接诊断和间接诊断、在线诊断和离线诊断、常规诊断和特殊诊断、简易诊断和精密诊断等等。
1、功能诊断和运行诊断。功能诊断主要是针对新安装的设备或刚刚维修过的设备,而运行诊断更多是起到状态监测的功能。
2、直接诊断是直接根据关键零部件的状态信息来确定其所处的状态,例如轴承间隙、齿面磨损.直接诊断迅速可靠,但往往受到机械结构和工作条件的限制而无法实现。
3、间接诊断是通过设备运行中的二次效应参数来间接判断关键零部件的状态变化。由于多数二次效应参数属于综合信息,因此在间接诊断中出现伪警或漏检的可能性会增加。
4、在线诊断和离线诊断。
在线是指对现场正在运行设备的自动实时监测;而离线监测是利用磁带记录仪等将现场的状态信号记录后,带回实验室后再结合诊断对象的历史档案进行进一步的分析诊断或通过网络进行的诊断。
5、常规诊断和特殊诊断。
常规诊断是在设备正常服役条件下进行的诊断,大多数诊断属于这一类型诊断。但在个别情况下,需要创造特殊的服役条件来采集信号,例如,动力机组的起动和停机过程要通过转子的扭振和弯曲振动的几个临界转速采集起动和停机过程中的振动信号,停车对诊断其故障是必须的,所要求的振动信号在常规诊断中是采集不到的,因而需要采用特殊诊断。
6、简易诊断和精密诊断。
简易诊断一般由现场作业人员进行。凭着听、摸、看、闻来检查。也可通过便携式简单诊断仪器,如测振仪、声级计、工业内窥镜、红外测温仪等对设备进行人工监测,根据设定的标准或凭人的经验确定设备是否处于正常状态。
精密诊断一般要由专业人员来实施。采用先进的传感器采集现场信号,然后采用精密诊断仪器和各种先进分析手段(包括计算机辅助方法、人工智能技术等)进行综合分析,确定故障类型、程度、部位和产生故障的原因,了解故障的发展趋势。
(二)按诊断的物理参数分类
振动、声学、温度、污染、无损诊断、压力诊断等等,都是按物理参数分类。
(三)按照按诊断的直接对象分类
各种不同的对象,诊断方法、诊断的技术、诊断的设备都有很大区别,按照机械零件、液压系统、旋转机械、往复机械、工程结构等等来进行区分。
综上所述,设备的检测和故障诊断技术,可以迅速、连续地反映设备的运行状态,预示运行设备存在的潜伏性故障并提出处理措施,是保障设备安全经济运行的有力措施,应大力推广。然而,设备的检测与故障诊断技术毕竟为新兴的多学科高新技术,其发展和实施还存在许多困难,距离替代预防性定期检修还有较长历程。所以,既要积极开发、推广这一技术,也要客观对待,避免盲从,不断总结经验并完善系统。
参考文献
[1]李国华,吴淼. 《现代无损检测与评价》. 化学工业出版社.
关键词 汽车检测与故障诊断技术;实践能力;CAN总线
中图分类号:G642.0 文献标识码:B
文章编号:1671-489X(2017)04-0060-04
Abstract Aiming to the problems such as outdated content, only focus on the conventional vehicle technology and poor regionally adaption, the optimization study is conducted on the teaching content
of Vehicle Inspection and Fault Diagnosis Technology. The old tea-
ching contents are integrated based on market demanding of automo-
tive technology and conforming to Beijing around requirements, the
new type and new energy vehicle inspection and fault diagnosis tech-
nology are added. The course structures are more reasonable and broader coverage after optimized and could meet the vehicle service marked around Beijing as well as the objectives of school training objectives. The main purpose of this article is researching the optimi-
zation of teaching contents about the vehicle inspection and fault diagnosis technology.
Key words vehicle inspection and fault diagnosis technology; prac-tical ability; CAN bus
1 w论
汽车检测与故障诊断是汽车交通类专业的重要课程之一,也是理论联系实际的课程,课程目的旨在提升学生专业理论水平和实践能力。该课程具有很强的理论性和专业性,内容涉及汽车不解体检测的基本原理、整车技术状况的检测、汽车各部分故障诊断及检测仪器设备基本结构等,课程的设置能够为从事汽车检测与维修方面的工作提供一定的理论和实践基础。
北京信息科技大学车辆工程专业汽车运用与服务工况方向主要培养在京津冀地区汽车后市场服务的复合型、应用型人才,要求学生具有较强的专业实践能力。京津冀一体化的提出,对北京的定位提出明确的要求,未来的任务是加大京津冀的环境治理力度,而学校的定位是“培养适合首都经济圈的应用技术型人才”。因此,需要根据社会发展对首都的要求,根据学校的定位差异与学生学缘结构、基础及就业意向的差异来规划整合现有资源,从而契合《北京行动纲要》及符合北京信息科技大学工程认证新要求。
新能源汽车作为新能源、新业态及八个专项的首要组成部分,对大幅提升制造业创新发展能力具有重要的支撑作用。北京小客车摇号系统数据显示,北京地区的新能源汽车销量仅2015年就已呈现爆发式增长,电动车辆技术状况的检测也逐渐成为市场不可分割的一部分。新能源汽车检测与维修技术人才的紧缺对专业的发展既是机遇也是挑战。为更好地服务社会与适应京津冀的发展,需加快电动汽车检测与维修人才的培养。近年来,汽车底盘综合控制系统、稳定性控制系统及主、被动安全控制系统的运用及CAN总线的广泛运用,使基于CAN总线信息的检测技术得到发展,如何将先进的电子、测控、计算机等技术融入汽车检测与故障诊断课程中,成为教学人员需要解决的一个重要问题。
综上所述,可根据目前技术需求和京津冀汽车产业的发展方向,对汽车检测与故障诊断技术现有教学内容和教学资源进行整合与优化,在进行课程资源整合及新增新检测技术、新能源检测与故障诊断技术的基础上,构建面向首都的融传授知识、培养能力、提高素质于一体的具有北京信息科技大学特色的汽车检测与故障诊断技术课程,充分发挥学生在学习中的主观能动作用。
2 汽车检测与故障诊断技术课程现状分析
教学内容陈旧 随着汽车检测诊断技术的不断发展,新的检测诊断方法与设备不断涌现并逐步应用于实践中,而与发展状况相比,现行教材的知识结构与内容则显得有些陈旧。随着汽车技术的发展,化油器结构、柴油机简单喷射系统已经逐渐退出市场,某些汽车检测技术在日益变化的今天也逐步被淘汰。目前,教学内容陈旧,对社会上的4S店、大修厂普遍使用的汽车先进检测线系统、汽车先进底盘控制系统、稳定性控制系统及主、被动安全控制系统却没有涉及。这就造成书本知识与社会严重脱节,对培养掌握先进检测技术的应用型人才极为不利[1]。
重视传统汽车教学,新能源汽车教学落后 2016年上半年新能源汽车销量显示,新能源汽车销量出现井喷式增长,新能源汽车销量同比增长162%,达到17万辆,我国由此成为世界最大的新能源汽车市场。2016年,北京小客车指标年度配额为15万个,其中示范应用新能源指标额度6万个。随着电动车辆使用年限的增强,故障凸显,因此,需要掌握电动车辆故障检测与诊断技术的专业技术人才,满足就业和汽车服务市场的需求。而现有的汽车检测与故障诊断技术课程多针对传统燃油车辆,针对新能源车辆检测与故障诊断技术内容相对薄弱和落后。
目前,现有电动汽车服务行业从业人员素质较低,对电动汽车高、低压电系统了解较少,缺乏系统的电动汽车技术知识,跟不上电动汽车技术现代化的发展[2];需要加强从业人员的素质培养和技术水平,也需要地区高校加大人才培养力度,适应行业的发展。
教学内容适用性较差 就目前的汽车检测发展而言,先进的通信技术及先进的总线技术已经广泛应用于车载信息系统和控制系统当中,而这其中最为典型的为CAN总线技术的发展和应用[3]。现有的教学内容并未涉及CAN仪器的使用和纠错使用方法,知识内容跟进不够及时。与此同时,有一些自动化程度较高的汽车检测线使用CAN总线作为通信总线及自诊断系统的通信协议。因此,掌握总线的通信技术和纠错方法对汽车检测、检测线检测及先进汽车自诊断系统的故障检测和诊断具有重要意义。
在网络技术、信息技术等不断推广和应用的情况下,现代汽车故障诊断方法变得越来越多样化、智能化、自动化,是社会不断发展和汽车产业不断发展的必然趋势,是汽车故障诊断领域研究不断深入的必然结果。而现有课程内容对新技术及高自动化检测设备的试用性较差,需要进行内容优化,这对满足不同现代汽车的故障诊断需求有着重要意义。
3 课程教学内容优化
对现有内容进行整合梳理的基础上添加新型检测与故障诊断技术、新能源汽车检测与故障诊断技术方面的内容。
现有教学内容整合 按需进行教材整合和内容调整,同时强化教材整体性,加强立体化教学内容建设。在现有课程资源基础上,对现有的汽车检测与故障诊断技术进行完善和优化,删除化油器式汽油机燃油供给系统故障诊断部分内容。将发动机检测技术章节与电子喷射章节进行合并统一,调整为传统―电子点火系统故障诊断、电脑控制点火系统检测、汽油机燃油供给系统检测,具体内容调整为汽油泵的检测原理和方法、点火类型、波形形成原理、发动机点火正时检测、电控喷油信号和燃油压力的检测。各部分内容整合为传统―电子点火系统两部分内容,在对比分析点火系统的基础上,使学生对点火系统有整体的理解和掌握。其他诊断章节如气缸密封性检测、柴油机燃油供给系统检测、系统检测、发动机异响诊断维持原状不变。调整后的分类如表1所示。
新检测与故障诊断技术 在保留有益教学内容基础上,不断更新、充实新的教学内容,并将本学科的最新发展和科研成果补充到教学内容中,通过对教材内容的不断推陈出新,使课程内容更贴近生产实际。现近汽车检测技术发展迅速,CAN总线技术已经广泛应用于汽车通信、检测系统通信[4]及检测设备之间的通信设计,在CAN总线技术的帮助下使车辆各个传感器之间的信息得到共享,也为汽车故障检测与诊断提供最有力的保障。
在维修方面,CAN总线的应用也实现了在线诊断功能。故障诊断专家系统、视觉检测技术也已经广泛应用于检测与诊断的各个领域,包括电梯、变压器、电网、工程机械、数控机床等众多I域,在汽车检测中也获得广泛应用,如使用专家系统的汽车检测线检测系统及车轮定位参数的视觉检测系统开发等。与此同时,随着汽车自诊断技术及新能源汽车自诊断技术的发展,其基本原理均为通过分析数据总线(CAN)中的数据进行检测,可见CAN总线技术对汽车控制和检测的重要性。因此,读懂并了解CAN总线通信规则和数据格式提取等知识,对掌握先进检测设备及汽车先进诊断技术至关重要。
针对目前先进检测技术及控制系统关键内容,添加新型检测系统的检测原理及可检测项目、基于CAN总线技术的汽车底盘控制系统故障诊断与检测部分内容,对汽车新技术进行总结归纳,包括先进汽车检测技术、CAN总线通信技术及基于CAN总线技术原理。具体增加内容如表2所示。
新能源车辆检测与故障诊断技术 电机作为电动汽车的心脏是最容易出现问题的系统,而目前无刷直流电机[5-6]的广泛应用及学生对电机检测知识的缺乏,成为制约检测人员素质的一个因素。从新能源汽车的关键系统结构出发,针对目前新能源汽车的产业结构,根据混合动力电动汽车及纯电动汽车的相同和区别,新增新能源车辆综合检测技术现状分析部分内容。结合新能源汽车与普通燃油汽车的区别,对关键部分的电驱动系统故障诊断与检测[7]、混合动力电动汽车电机控制系统故障诊断与检测内容进行整合梳理。针对纯电动汽车的结构特征和目前受广泛关注的电池电压一致性和安全问题等,增加纯电动汽车电池系统故障诊断与检测[8-11]课程内容。新增课程共4学时,囊括了新能源汽车的关键部分故障检测与诊断技术。受学时限制,其他内容仅作课后自习内容。具体新增内容如表3所示。经过优化后的课程内容和建议学时如表4所示。
4 结论
根据本课程的特点及适应京津冀一体化对汽车检测与故障诊断人才的需求,结合学校的定位差异、学生学缘结构与自身基础的不同及就业意向的差异来选择教材和课程内容。在现有课程建设基础上,进一步整合和完善新型检测系统的检测原理及检测项目、基于CAN总线技术的汽车底盘控制系统故障诊断与检测、电动车辆综合检测技术现状及电驱动系统故障诊断与检测、混合动力电动汽车电机控制系统故障诊断与检测、纯电动汽车电池系统故障诊断与检测的教学支撑部分,进行教材整合和内容调整,同时强化教材整体性,加强新教材和立体化教学的建设。
通过优化,使课程涵盖面更广,内容更加丰富新颖,课程体系和教学内容更加符合北京信息科技大学的培养目标和定位,教学内容有助于提升学生学习能力、实践能力及创新能力,确保教学质量的提高和培养的人才能够更好地服务社会与适应京津冀的发展,达到面向首都地区车辆检测综合性人才培养的目标。
参考文献
[1]焦洪宇,李英,张凯,等.《汽车检测与故障诊断技术》课程教学改革研究[J].常熟理工学院学报:教育科学,
2012(12):106-108.
[2]张红英.电动汽车检测与维修技术人才培养的探讨[J].湖南农机,2011,38(11):195-196.
[3]李顶根,陈军,黄荣华,等.基于CAN 网络的纯电动轿车车载信息系统[J].华中科技大学学报:自然科学版,
2008,36(2):17-21.
[4]丁强强,鲍远慧.基于CAN总线的汽车检测线计算机控制系统[J].合肥工业大学学报:自然科学版,2010,33(4):
514-518.
[5]王强,王友仁,张子富,等.无刷直流电机驱动系统逆变器的开路故障诊断[J].中国电机工程学报,2013,33(24):
114-210.
[6]吴鹏坤,贾琴姝.无位置传感器无刷直流电机控制系统仿真研究[J].伺服控制,2011(4):29-33.
[7]孙天奎.电动汽车驱动系统系统故障检测与诊断技术的研究[D].哈尔滨:哈尔滨工业大学,2012.
[8]樊晓松,王英.动力电池系统高压电绝缘设计与测试[J].技术导向,2014(8):25-28.
[9]杨为,谢永芳,胡志坤.高压动力电池组绝缘性能的实时监测研究[J].计算技术与自动化,2015,34(3):55-59.
[10]缪传杰,高琛,陈建清,等.串联动力电池组单体电池电压检测新方法[J].传感器世界,2010,16(4):29-31.
关键词:变电站;高压开关柜;绝缘性能;检测;故障诊断
中图分类号:TM63 文献标识码:A
要想达到电气设备故障检测与诊断的安全、合理与高效,就要加强对其绝缘性能检测,为设备创造一个安全合理的运行环境。众多的工作经验表明,电力系统各项设备出现故障时,多源自绝缘故障,绝缘故障会引发电气设备绝缘性能下降,从而出现多种故障问题。对此,需要掌握开关柜绝缘性能检测与故障诊断技术,以此来提高故障检测工作效率,带来预期的检测效果。
一、超声波与TEV检测技术
开关柜绝缘性能的变质可能造成局部放电问题,逐渐的效应雷击可能导致绝缘介电性能慢慢发生变质、受损,甚至出现绝缘击穿问题。
1.超声波检测技术。局部放电伴随着一定量电荷的放出与转移,一旦出现局部放电,其附近电场应力、机械应力以及粒子等都将走向非平衡,从而出现震荡,动态变化等问题,也能引发附近介质的扰动现象。局部放电的初始现象为:出现较弱的火光,此时所释放能量较小,随之将出现相对激烈的电弧放电。经科学研究证实忽略空气密度以及声速情况下,声压的平方同声能量间呈正相关,对此可以通过超声波信号的声压变化代表局部放电释放能量的变化,对应能够测得放电高低。
2. TEV检测技术。局部放电所带来的电磁波,将途径金属箱体接缝位置逐渐向外传输,对应会出现一个暂态电压。TEV检测原理为:当高压开关柜对地绝缘处出现局部放电,导电系统和接地金属中间则将出现一些电容放电量,但是较小,放电持续较短,对应的放电量通常达到1000pC,而且一般要达到10ns,对应出现100mA电流。电气特点一般受分布电容等影响。对此,应该将其视作金属板,缝隙和地面中间的距离就是传输线。具体如图1所示。局放时,电磁波自放电点朝着外部传输,此时放电电流值和电磁波电压之间有密切关系,在忽略损耗情况下,阻抗需要按照下面公式计算:Z0=
Z0――阻抗,L――传输线自感,C――传输线电容。
经实验得出,局放所出现的TEV信号,和局放激烈度和放电点的距离等存在密切关联,这样就能够借助特定的探测设备来加以探测,凭借对局放TEV信号的检测,能够实现开关柜中设备局放的测试,也能对应锁定局放位置。
二、开关柜绝缘性能检测与故障诊断系统的应用
高压开关柜绝缘度下降的成因来自于多方面,例如:绝缘体质量不达标、空气间隙不达标,外界环境的不良干扰等,同时,由于遭受雷击过电压的不良影响等,都可能影响开关柜绝缘性能。开关柜安装在配网系统,要承受多方电压,可能面临多重威胁,对此,有必要创建一个绝缘性能检测与诊断系统。此系统主要应用对比性检测技术,也就是通过对比单个开关柜和之前已经得出的检测数据、以及同类开关柜的检测数据,当发现检测数据较大超出合理范围,意味着其出现了放电现象,从而预测出故障问题。检测过程中必须认真记下设备故障的具体信息,从而为放电的研判提供依据。诊断系统的构造图如图2所示。
故障诊断系统大体包括三大子系统,具体是指:被测设备、传感器、数据采集系统,通常位于主机部分,故障处理与诊断系统主要依靠PC软件,通常位于主控室。
实践应用:某220kV变电站,经检测得出开关柜后方局部放电检测值超出常规数值,达到31dB,放电处于开关柜后方左下部。将设备断开电力电源供应,对应核对开关柜,分析其局放现象,经检查得出开关柜面板左下方出现问题,具体问题为:C相电缆头处的螺丝出现变松现象,从而出现了局部放电现象,通过拧紧螺栓,以此为基础进行测试,幅值则有所下降,回归到了正常数值。图3为螺栓松动图示。
三、分析检测数据和趋势
1.统计分析。所谓的统计分析法,就是相同开关室中开关柜局放检测,对所得的TEV数据加以归类、统计,再对应判断检测结果。实际的局放检测影响因素包括:工作电压、绝缘物、环境条件等的影响,一切影响性因素都容易导致错误的检测结果。
2.动态判据。根据统计分析以及趋势的预测等,可以按照以下程序来判断开关柜局放:第一,初始判据。综合统计各个N面开关柜的状态,故障类别,根据统计得出的数据等来对应核算出故障率。第二,统计分析。测试一切N面开关柜局部放电状态,正确选择开关柜,Nxa%面为首选,同时,取其中数值最小的作为对比值A。第三,趋势分析。相隔一段时间后,要第二次测试各个N面开关柜,取检测数值最大的Nxa%面开关柜,同时,同样取数值最小的充当比较值B,对比B和A.此时可以进行下面的对比分析:BA,则要重点考虑下方因素:开关柜负荷略微上升,背景干扰有所加强,温湿度超标,开关柜受到了深入污染。B=A,开关柜负荷,温湿度状况以及开关柜污染度等大致相当。意味着开关柜相对稳定、健康。第四,明确判据数值。参照开关柜通常运转概况来明确A值或B值是判断依据,因为开关柜附近环境可能对局放带来一定的干扰。所以,实际的判断值应该将-2dB与+2dB纳入考虑范围,在根据以上流程来明确研判数据数值。反复的对比分析后,创建其一个地区开关柜检测的数据信息,最后形成科学合理的数据。
实践运用:某开关柜正常U型巡查过程中查出主变开关柜处出现明显震动,却无法精准地进行定位,通过局放检测最终发现开关柜局放扩大到56dB,最终查明放电点处于开关柜上端排线透墙的位置,利用故障检测系统进行测试,最终查明母排固定螺栓顶在导电触头处,从而使得接触面达不到预期标准,引发局部放电现象。
结语
变电站高压开关柜绝缘性能检测与故障诊断需要先进的故障定位技术的支持,其中TEV技术为科学的技术,其应用能够有效调整电气设备以往的局部放电检测模式,从而为电力设备状态检测供应了具体的数据。这一故障检测模式有下面的优势:装置的投切运行能够维持电气设备的安全运转,可以实现持续的自动化监测,检测能够有效抵御干扰。
参考文献
[1] GB/T 7354-1987,局部放电测量[S].
[2]恒,谈克雄.电绝缘诊断技术[M].北京:中国电力出版社,1999.
[3]苑舜.高压开关设备状态监测与诊断技术[M].北京:机械工业出版社,2001.
【关键词】高压断路器 在线监测 故障诊断
随着电力容量的不断增加,电力系统的安全保障要求也越来越高,为了提高电能输送的稳定性和安全性,需要将高压断路器应用到电气设备与电力之间的链路上。目前,由于高压断路器的技术还不够成熟,由于高压断路器故障带来的设备故障在电力系统安全故障中占大部分,因此需要对高压断路器进行在线监测,做好设备的预知性维修工作,减少设备故障所带来的大面积停电等事故。
1 高压断路器概述
高压断路器指的是额定电压3kv以上的断路器,其具有良好的灭弧结构和断流能力,能够根据需要控制电路的通断以及根据电气设备的负载电流情况使电气设备投入或退出运行,此外,高压断路器还能够同继电保护装置一同工作,切断电网系统中的故障部分,防止电力事故进一步扩散。
高压断路器可以根据灭弧介质和方法分为油断路器、sf6断路器、10kv真空断路器、压缩空气断路器、磁吹断路器。其中油断路器在我国电力系统中的应用最为广泛,sf6断路器主要应用在超高压电力系统中,10kv真空断路器的额定电压为12kv,具有重量轻、体积小、安全的优点,主要应用在操作频繁的场所,压缩空气断路器具有灭弧能力强、速度快的优点。目前,为了减少高压断路器的故障,灭弧的方式多为无油或少油,未来随着科技的发展,10kv真空断路器将得到进一步完善,在高电压电力系统运营中发挥更大的作用。
2 高压断路器在线监测及故障诊断方法分析
2.1 高压断路器故障诊断方法
高压断路器故障的诊断方法主要有三种:
2.1.1 基于解析模型的方法
该方法实施的前提是要构建适合该系统的残差模型,借助模型获得残差,并根据准则对这些残差进行分析,从而对设备故障进行识别和确认。但是由于诊断对象多为大型的电力系统,而模型的建立往往存在一定的误差,因此该方法并不适用于非线性系统。
2.1.2 基于知识的方法
该方法不需要精确的模型,是一种基于建模处理和信号处理的高级诊断形式,根据方法细节的区别,可以将该方法分为基于症状的诊断方法和基于定性模型的诊断方法,克服了传统方法在大型电力系统故障诊断中的弊端,但是依然存在部分缺陷。
2.1.3 基于信号处理的方法
该方法利用数值计算,将传感器采集得到的数据进行处理,根据处理结果分析故障类型,是目前较为常用的故障诊断方法。
2.2 在线监测与故障诊断的过程
在线监测与故障诊断系统分为信号变送、数据采集、处理和诊断三个子系统。首先,信号变送系统中包含电气设备和传感器,传感器的主要作用是采集物理信号并将其转化为后续系统可以识别的电信号;其次,数据采集与预处理系统包括信号预处理模块和数据采集模块,能够将传感器输送的电信号进行放大、滤波、隔离等处理,以利于信号采集模块对这些信号进行测量;最后,经过测量的数据信息通过数据传送模块传递到主控制室进行数据的进一步处理与判断,做平滑处理提高信噪比,并根据处理后的数据判断设备故障发生的位置。
2.3 高压断路器在线监测的主要参数
2.3.1 分合闸线圈电流
通过对图1的分析,我们可以认识到,该结构的主要工作原理如下:当电路接通后,电磁铁内产生磁通,铁芯在磁力作用下发生位置变化,接通操作回路,进而实现对高压断路器的间接操作。分合闸线圈的特殊结构决定了电流波形隐藏着丰富的信息,通过对波形的监测和分析能够判断分合闸电路的状态,从而对整个高压断路器的性能进行预判。例如,根据铁芯的行程以及铁芯是否卡涩能够判断高压断路器的操作机构的运行状态,进而判断故障发生的原因。
2.3.2 储能电机电流信号
高压断路器中弹簧操作机构最核心的部件是储能弹簧,对高压断路器故障的诊断需要获取储能弹簧内部的力学性质参数,但是很显然直接进行测量力的大小是不切实际的,因此需要通过分析储能电机的电流波形来检测推算储能弹簧的状态是否正常。
2.3.3 温度信号
在电力系统中,温度信号对故障的判断和检测而言更具直观性。电流经过导体会产生热量导致局部温度升高,温度升高的后果是电路连接处氧化加剧,使得接触电阻进一步加大,温度持续升高,可能带来绝缘件损坏或击穿的事故,因此需要对高压断路器内部的温度进行监测,及时采取措施降低温度,保证断路器稳定工作。
2.4 高压断路器在线监测及故障诊断系统的设计
一套完整的在线监测及故障诊断系统需要包含传感器、信号调理及采集、数据传输、数据处理四个单元,设计人员在设计的过程中,需要根据电力系统的特点,选择合适的组件。首先,传感器包括温度传感器和电流传感器,温度传感器主要选用铂电阻,能够在中低温区使用,在电流传感器的选择方面,需要测量开断电流时选择基于霍尔效应原理的开环测量模块,需要测量分合闸线圈电流时选择基于霍尔闭环原理的测量模块。数据传输单元采用GPRS无线传输模块向上机位传送数据,传输结构可以采用点对点的方式,当系统中包含多台高压断路器时,也可以采用星型网络结构。信号调理及采集单元中主要采用PLC远程采集方法,PLC具有较强的抗干扰能力和较高的精度,能够在高压断路器附近工作,此外,还可以采用NI M系列基于PCI总线的采集卡,相比于PLC采集,能够大大提高数据的采集、传输效率。数据处理单元主要完成对采集得到数据进行处理和分析,从中提取有用的信息作出高压断路器故障的诊断,同时,数据处理单元中往往还包含故障数据库,为今后数据的识别和专家系统的建立提供帮助。
3 结束语
高压断路器故障往往会导致泄漏故障、部件损坏、大面积停电等事故,因此建立实时的在线监测及故障诊断系统对于提高供电的可靠性具有十分重要的意义。目前常用的系统主要通过对电气参数的采集和处理来判断高压断路器的工作状态,尽管已经能够投入到实际应用中,但是依然存在些许不足需要做进一步的完善。
参考文献
[1]卞皓玮.高压断路器在线监测与故障诊断系统研究[D].扬州:扬州大学,2012.
[2]彭搏.高压断路器在线监测与故障诊断系统的研究[D].上海:上海交通大学,2013.
关键词:塔式起重机;故障;诊断;监测
1 前言
随着经济的发展,塔式起重机的应用越来越广泛,为了使塔式起重机能够更好的服务于生产,不定期的对塔式起重机进行故障诊断分析与检测是十分重要的,但是塔式起重机的故障分析并不是由一种原因造成的,可能是由于一种或者多种原因造成,因此,对塔式起重机的故障诊断与检测,必须要从多方面考虑,才能更加有效的对设备进行正确诊断[1]。
对于人体的故障诊断,需要询问病人的病史、诊脉以及对心电图进行测试等,根据测试得到的数据,再次进行综合分析才能得出正确的病因,从而制定只治疗的方案,同样,对于塔式起重机的故障诊断,也要根据机械的固有特性,在机械的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过分析和数据处理提取机械特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论。
2 塔式起重机常见故障分析
在使用塔式其中机器的过程中,根据以往的经验,对塔式起重机的故障做一些记录和总结,可以得出,塔式起重机经常出现故障的部位为电气系统、回转、起升以及小车的变幅机构,也有外部环境等因素。
电气系统的故障
塔式起重机的电气系统一般是由于控制箱中的交流接触器、驱动电机系统、电阻箱中的串联电阻以及联动线路等部分组成,当塔式起重机在正常工作状态下运行时,电阻箱中的电阻大部分时间均投入正常运行,从而使电阻组产生大量的热量。在高温环境中,无论是电阻本身还是电阻连接端子均易变质。在这种情况下塔机重载工作或长时间工作必然导致电机损坏等故障[2]。
通常情况下,由于塔式起重机远离电源变压器,或者在专用供线路上装有其它较大功率的用电器等,由于塔式起重机是全电压起动以及主电机的功率一般较大,使得电源的电压在瞬间降低,电源电压的降低值一般大于额定值的10%,从而造成电气系统的损坏。
(2)起升机构故障
由于主电机方面的原因,导致电机输出力矩不平衡,从而在减速机齿轮副啮合过程中产生较大的冲击力。齿轮副齿轮压紧螺母松脱导致齿轮啮合错位或者轴承损坏,电机主轴与减速机连接轴同轴度误差超差、连接销轴损坏等方面的原因,也将引起齿轮啮合不好或阻力过大并产生噪声,在这种情况下塔机长时间工作也将导致电机损坏等故障。
(3)回转机构故障
摆线针轮减速器底座固定螺栓松动、机壳损坏,由于不良使摆线针轮减速器内部元件损坏,电机与减速器连接部件故障使电机损坏等。这通常是由于回转启动或停止时回转惯性力作用;操作人员违章操作或误操作,在塔机正回转时急打反转造成冲击扭矩过大;摆线针轮减速器油不足或其它原因引起不良等。
(4)变幅机构故障
变幅机构起重小车钢丝绳卷筒绕绳方式有种,一种是正反双向钢丝绳绕法,另一种是单方向丝绳绕法。钢丝绳单向绕法常出现小车不走而其正常的故障。产生原因是钢丝绳松,这时拧动螺拉紧钢丝绳即可。
3 塔式起重机状态参数监测方法
塔式起重机的安全按至关重要,因此需要对塔式起重机的参数进行检测,实现更加人性化的安全保障[3]。
起重量的监测
通过利用轴销电阻应变片式传感器时刻检测钢丝绳的张紧力变化,轴销式传感器是专门用来测量钢丝绳张力或者滑轮、轴承等一些构件径向载荷的传感器,销定轴式传感器既能安装咋机构中作径向力的测量,还可以代替定滑轮原有轴的作用,起到称重测力传感器的作用,从而使机械部件的传动系统大大的简化,起升钢丝绳通过绕过几个定滑轮,在每个定滑轮上产生一定的合力。
(2)变幅小车位置及速度的监测
在变幅小车处装有增量式光电编码器,来判断编码器的反转和正转,在变幅小车上实现的动作是后退或者前进,用编码器的角位移代替钢丝绳的线位移,变幅小车位置采用增量式光电编码器,先后判断编码器的正转或反转。反映在变幅小车的动作上即是前进或后退,即将钢丝绳的线位移转换为编码器的角位移。行程脉冲信号由变幅小车行程编码器获得,单位时间的脉冲计数即可得到小车行走速度。
回转角度及速度的监测
大齿圈的转动速度决定了回转速度,通过测量小齿轮速度来提高测量的精度,必须保证塔式起重机的回转部分在非回转状态下可以自由的旋转,也就是所谓的随风转状态,此时所有的电气系统与设备均处于停机的状态,并不能测出塔式起重机的回转角度,为此利用旋转可调电位器轴安装齿轮与小齿啮合,系统上电,由PLC模拟量单元获得当前电位器分得电压输入,利用电压与角度的数值对应关系,即可由电位器的分压值电压得到当前的工作角度。
4 力矩测量的必要性
为了详细地、准确地反映塔机的实时工作状态,为塔机司机作业提供良好的
运行信息,从而实现主动式的,具有一定预警能力及动态范围的塔机自动安全监控系统,必须掌握塔机详尽的工作参数。但从实际的角度出发,应用中完全使用这些参数是不现实的,塔式起重机的运行具有几个关键参数:吊钩高度、速度信息、小车变幅、塔机转角、转速信息,特别重要的是与起重量信息密切相关的起重力矩信息[4]。
塔式起重机有一个很重要的安全保护装置即力矩限制器,有效防止塔式起重机由于超力矩而引起的倒塔事故,在以往所用的力矩保护装置中一般用机械限位开关,但作用受到很大的局限,即只能在重力矩达到最大值的时候才能起到保护作用,存在可靠性差、精度低、重复性差、不能连续直观显示起重力矩值等缺点,因此驾驶员在驾驶过程中不了解塔机起重力矩的具体状况。为了进一步提高塔机的安全性能、减轻劳动强度、提高劳动效率,增加起重力矩在线监测显示装置成为必要,因此,找出实时准确测量起重力矩方法的研究就成了在线监测的关键。
5 结论
本文根据现场经验,对塔式起重机的故障分析做了全面描述,并介绍了塔式起重机参数的监测方法以及力矩测量的必要性,对现场的故障诊断与检测有重要意义。
参考文献:
关键词 汽车起重机;故障监测;诊断技术
中图分类号:TH213 文献标识码:A 文章编号:1671-7597(2013)18-0151-01
1 汽车起重机的常见故障与诊断方法简介
在汽车起重机中,液压系统、起升系统和伸缩系统是其最为重要的几个组成部分,一旦这些系统出现故障,将会对起重作业的造成严重影响,同时也会间接引起经济上的损失。对于汽车起重机故障而言,难点并不是如何进行维修,而是要准确确定出故障的部位和原因,这样可以给维修带来极大的方便。为此,对汽车起重机故障进行快速定位和诊断就显得尤为重要。汽车起重机最为常见的故障有以下几种,下面对具体的故障现象和故障诊断方法进行介绍。
1.1 液压系统故障与诊断
1)压力失控。在汽车起重机的液压系统中,压力失控是最为常见的故障之一,其主要表现在系统无压力、压力不可调或是卸荷失控等几个方面。针对此类故障,可以采取以下方法进行诊断:先对液压油箱进行检查,看油位是否正常以及液压油有无变质或是污染等情况、油温是否过高,然后按照具体诊断结果,选择补充或是更换液压油的方法对故障进行处理;如果液压油无异常,则应对液压泵进行检查,看其转速是否正常,零部件有无磨损情况,并根据实际情况进行修理。
2)液压泵异响。先检查液压油箱看液压油是否正常,然后检查液压泵看螺栓是否存在松动现象,最后检查内部零件看是否存在磨损比较严重的情况,并根据具体情况采取相应的方法进行修理。
1.2 起升系统故障与诊断
比较常见的起升系统的常见故障是卷绳动作异常,主要表现为卷绳动作缓慢或是根本不动作。针对此类故障可以采取如下方法进行诊断。
1)对整个液压系统进行检查,看是否存在故障,然后对溢流阀进行检查,看是否因为调节螺栓松动造成压力降低,或是阀座表面受损导致阀门无法正常打开,并根据实际情况进行维修。
2)对起升机构的齿轮进行检查,看是否存在轮齿破裂的情况。
3)检查制动装置,看其参数设置是否合理,并酌情进行调整。
1.3 伸缩系统故障与诊断
常见的伸缩系统有以下几个方面。
1)吊臂无法正常伸出或回缩。检查液压系统和溢流阀是否存在故障(同上);检查手动控制阀看阀杆是否磨损严重,并根据磨损情况选择更换或是修复;检查吊臂看是否存在弯曲的现象,滑板是否调整到位;检查回转接头,看活塞是否弯曲,并视情况进行更换或维修。
2)控制手柄处于中间位置时吊臂回缩。检查伸缩油缸看O型圈是否磨损引起漏油;检查焊接位置,看是否存在焊接缺陷,按照具体情况进行更换或维修。
2 汽车起重机故障监测与诊断技术研究
上文中对汽车起重机的一些常见故障和诊断方法进行了简要介绍,这些诊断方法都是以人工为基础,由于汽车起重机的系统组成比较复杂,加之作业环境十分恶劣,从而使得故障发生几率较高,这给故障诊断和维修造成了极大的困难。如果一味地采用人工方式进行诊断,不但工作效率较低,而且一些潜在的故障隐患也无法全部排除。为此,本文提出一种基于多Agent的智能故障监测与诊断系统,该系统的应用不但能够减轻诊断人员的工作压力,而且还能使故障诊断更加准确、可靠。
2.1 模型构建
本文以分布式体系结构和智能运作机制为基础,并以系统集成思想为核心,构建汽车起重机故障监测诊断多Agent模型。整个系统由以下几个部分组成:设备Agent、管理Agent、故障诊断Agent、接口Agent以及决策Agent等等。
2.2 诊断系统的具体工作过程
当开通远程故障监测诊断服务的汽车起重机处于工作状态时,车上安装的设备Agent便会对起重机上各个子系统的状态信号进行感知,此时若是发现某个子系统出现异常信息或是与监测诊断平台断开连接,便会及时向管理Agent发出故障诊断请求,而管理Agent收到该请求信息之后,会将这部分信息经过整理后传给诊断Agent,然后借助接口Agent将诊断结果传给设备Agent,该结果便会在起重机的显示屏上显示出来。当设备完成所有工作并要关闭之前,设备Agent则会向管理Agent发出结束故障诊断的信息,并与其断开连接,此时诊断Agent重新转为待命状态。故障监测诊断系统中的各种Agent的设置数量,可按照平均数进行确定,当开通远程服务的汽车起重机超出设计数量时,管理Agent会自行创建出一个新的诊断Agent,这样即便再多的汽车起重机接入系统,也不会对系统的正常运行造成影响。
3 结论与展望
总而言之,随着科学技术的不断发展和进步,汽车起重机故障诊断技术应当从以往传统的以人工诊断为主逐步向智能诊断技术发展,这也将是故障诊断技术的主流发展趋势。在工程建设项目不断增多的前提下,汽车起重机的工作量越来越大,这使得起重器上各个系统的故障愈发频繁。为此,确保起重机的正常工作显得尤为重要。近年来,我国在汽车起重机故障诊断技术方面的研究获得了业界人士的关注和重视,针对各种系统的故障诊断技术层出不穷,这在极大程度上降低了汽车起重机的故障发生几率。在今后一段时期内,应当将研究的重点放在开发新的诊断方法上,并对以往的诊断技术进行逐步完善,可能的话,最好将多种故障诊断技术有机地结合到一起,研制开发出一种集成化较高的故障监测与诊断系统,这不但能够使故障诊断工作量大幅度减少,而且还有助于促进汽车起重机故障监测与诊断技术的发展。
参考文献
[1]杜文辽.状态监控与智能诊断关键技术研究及其在汽车起重机主泵中的应用[D].上海交通大学,2013.
[2]王世明.工程机械液压系统故障监测诊断技术现状和发展趋势[A].第十一届全国设备故障诊断学术会议论文集[C].2008.
关键词:电力系统 状态监测 故障诊断
0 引言
在国内电力系统设备状态监测与故障诊断技术的实际应用中,虽然某些厂家能够生产出各种检测装置。但是,现在在实际的应用中还是有局限的,在进行状态监测以及诊断某些故障时,还是做的不够完美,在某些问题的分析上缺乏透彻的分析。本文主要是从电力系统设备状态监测与故障诊断内容和任务方面展开研究,关于其在以后的发展空间进行了进一步的探讨,同时针对其目前的不足提出了一些建设性的意见,从内容上来讲主要有状态监测与故障诊断,以此来保证电力系统安全、经济、稳定运行。
1 状态监测与故障诊断技术的含义
电气设备故障是由于设备的某些劣化积累到一定程度后所产生的。特别是大多为有机材料制成的电气设备绝缘介质,在外界因素作用下容易发生老化。组成电力系统的基本元件是电气设备,局部或广大范围的停电会因它的失效而产生,必将导致巨大的经济损失,并造成不良的社会影响。
为了特殊的目的而进行的注视、观察与校核即为监测。设备的状态监测就是通过使用各种传感器,运用各种测量手段,来检测一些物理、化学量,他们能够反映设备的运行状态,监测是为了使我们能够知道设备是在正常运行,还是出现了某些的异常。设备的“故障诊断”是指根据状态监测,设备故障的严重程度及类型、部位都需要专家用所得到的各测量值、运算处理结果所提供的信息后结合掌握的有关设备的知识和经验进行推理判断,并根据此判断提出维修处理设备的建议。简单的说就是特征量收集后的分析判断过程是故障诊断,状态监测是特征量的收集过程。
2 在线状态监测系统
2.1 状态监测的概念和任务
故障预报、故障诊断和状态监测等几个内容虽然相近,但在实际应用中却存在差别。所采用的很多方法都是一样的,在内容上它们没有严格的界限,在线检测和数据分析工作都要进行,而且防患于未然是它的最终目标。而在任务方面却有所相同,这里加以区分,以确保能进一步明确状态监测的任务。
故障预报就是预测设备可能出现的各种故障,具体来讲要预测故障发生的时间、位置及程度。故障诊断是针对已经发生的各种故障而言的,是对这些故障进行诊断,首先要找出故障的特征,然后做出正确的定位,而且还要分析故障程度,最后进行诊断。
状态监测包含如下工作内容:
①建立设备运行的历史档案,为设备的运行情况积累资料和数据。
②判断设备运行状态是异常还是处于正常应根据已出现的故障特征或征兆、历史档案、运行状态等级,并判断故障的程度和性质。
③应对设备运行状态进行评估并分类。状态检修的实施在一定的标准形成后便可提供依据。在进行状态监测评估时,要体现出对设备异常状态的预测以及以后可能发生的某种变化的估计,同时还可以创造一些更有利的条件,使这种评估达到最高的水平。
2.2 状态监测的关键技术
2.2.1 信号采集
电力设备在线监测系统,其作用主要是持续的检查设备的运行情况,预测设备状态发展趋势的系统。通常我们是在了解设备的运行状态的情况下,更清楚的认识设备的运行,因此,我们首先要了解电力设备的电压、频率、局部放电量等信号,在此基础上工作人员才能更准确的掌握设备是否在正常运行,或者是否出现了某些异常状况,以此对对象的状态信息进行诊断。采用不同的信号采集方法应根据表征设备状态量的各种信号的不同特性而定,有如下几种常用的采样方法:
①一次性采样就是每次只采集一个足够的数据,然后处理所需长度的信号样本。
②采样时要遵循之前制定的周期。
③可从设备产生的随机故障表现的信号自动采样。
④特殊采样方式包括转速跟踪、峰值采样等。
监测方法因电力设备和任务要求的不同所采用的状态也不相同。
2.2.2 数据传送
在传输过程中通常由于信号处理系统距监测设备较远,所以数据易受干扰且容易损失,受周围环境因素的影响较大。首先,应对数据进行模数转换,经过预处理后压缩打包,而后传输到处理控制中心。光纤传输数字信号能较好地保证信号的质量,因为它能抑制干扰,所以电力领域目前已广泛应用通信设备。
2.2.3 处理数据
在通信线路的协助下,数据处理中心可以接受到状态量数据包,之后会很快的在不同的数学方法的帮助下解包处理这些数据。搜索另一个信号可以在时域中由两个信号之间相关性采用相关分析的处理数据;小波分析;人工智能。数字信息技术的广泛应用,以及智能技术的应用,都对电力设备在线监测系统的数据处理时的实时性和准确性起到了良好的作用。
3 故障诊断
3.1 选取故障信号特征量
将有用的信息量从错综复杂的信号中提取出来,这就是信号处理技术要完成的工作,当设备运行时提供的信息更加精细的时候,设备进行诊断就会表现出更佳的灵敏度。一个故障特征量可能不仅仅是由于某一种故障状态引起的,但是通常情况下,许多的故障特征量反映的是同一种故障,因此,我们要解决的一个困难就是如何争取的选择故障特征量。常因特征量选取不恰当,而在识别运行中电力设备的故障状态和正常状态时出现误诊或漏诊,正常状态和故障状态的特征参量有交叉的部分,这样可能会出现不正确的判断,即故障特征量中具有模糊性。所以我们要选择典型的而且是行之有效的故障特征参量。
3.2 故障诊断