HI,欢迎来到好期刊网!

对人工智能的思考

时间:2023-06-30 16:08:07

导语:在对人工智能的思考的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

对人工智能的思考

第1篇

 

1.关于人工智能

 

什么是人工智能呢?在 1956 年 Dartmouth 学会上,人们初次提出了“人工智能”这一术语。尽管人工智能没有确切的定义,但基本概念就是人工智能(Artificial Intelligence),英文缩写为AI。是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是计算机科学的一个分支。就人工智能的本质而言,就是运用目前的人工智能技术去模拟实现人脑基本的思维,也就是模拟人脑处理信息的过程。但目前的人工智能仍大都是在电脑中储存众多的解决办法,然后通过分析面对的问题以及当前的环境信息,通过计算机得到最优的解决办法,其核心思想在于具有优越的算法。

 

2.人工智能发展现状以及驱动因素

 

目前,所有国家都十分看重人工智能这个产业,因为人工智能可以利用它自身快速准确的运算能力以及惊人的记忆力和巨大的存储空间等,为人类提供各种各样的服务。虽然我们生活中的人工智能机器正在逐渐增多,但是其应用方法仍十分原始。

 

正因为人工智能的前景十分广阔,也使得各种因素持续推动着人工智能的发展。当然,最核心的因素在于算法,人们的不断思考与努力持续推动着语法的进步。

 

3.人工智能与人类智能的关系

 

关于人工智能与人类智能的关系,知道什么是人类智能是了解人工智能与人类智能关系的前提条件。人类智能是人类与生俱来的自然智能,它主要包含感知能力、思维能力和行为能力三个方面。

 

现在我们从哲学的角度去理解人工智能与人类智能的关系。两者是对立统一的关系,因为人工智能是人类智能的实际体现,人类智能又凭借人工智能的优点而加强,所以人类智能与人工智能相互依存,谁也离不开谁,并且两者相互促进,共同推动人类社会的发展。人工智能和人类智能之间又存在对立的关系,正是通过这种对立的关系,人们才能够不断地对人智能加以创新,促其发展。

 

4.人工智能与人类智能的区别

 

人工智能与人类智能两者的关系十分密切。且这两者之间的区别也非常大:第一,两者的优点十分不同,比如人工智能计算能力强,而且拥有人脑无法涉及的计算速度,另外,人工智能机器可以在特殊环境条件下正常地工作。但是人脑能提出新问题,对新事物进行分析研究,得到解决新事物的办法。第二,两者起源不同。人类是自然界长期发展的结果,人工智能是由人类创造的。第三,两者思维方式不同。人类智能拥有自己跳跃性的思维,但人工智能要严格遵循所设计好的思维程序。第四,两者语言形式不同。人类拥有自己的自然语言,而人工智能只能依靠人类去创造人工语言。

 

5.人工智能能否超越人类智能

 

关于人工智能能否超越人类智能这个问题,人们的看法都大不相同,而且每个人的看法都有自己的合理解释。但我认为,在整体上人工智能是不可能超越和代替人类智能的。因为人工智能是由人类所创造,只是人类智能的拓展和实现途径。它没有办法去替代人类智能,更不可能像电影里的情节一样,由人工智能来统治人类。

 

从社会环境来看,人工智能无法像人脑一样去面对现在复杂的社会环境。从实际应用来看,人脑拥有超强的容错率,而且可以在众多信息中提取关键信息,并且耗能低,但目前的人工智能需要有完全正确的程序才能正常运行,而且需要投入的资源量巨大。

 

由此,我认为,人工智能是无法超越人类智能的,但我们要承认人工智能给我们的生活带来了许多方便。虽然人工智能帮助我们在很多方面解决了依靠人力解决不了的很多问题,而且因为人工智能的快速发展,使人类智能可以无视时间和特殊环境进行研究和实践。但是,如果因为科学技术的发展和电脑的广泛应用,就认为人工智能可以代替和超越人类智能,这是没有依据的。

第2篇

社会的快速进步和人们对生活质量的要求不断提高,都对智能化水平产生了迫切需要,从而节省宝贵的时间,提高生产力,也极大的方便了人们的生活,提高舒适度和生活质量。电气工程自动化的领域中若想进行改革,就需要人工智能的广泛参与,在此过程中,人工智能在电气工程自动化控制方面的优势也得到了极大的发挥,不仅促进了自动化的发展和创新,也推进了人工智能理论在自动化控制领域中的应用,并大量解决了以往的传统技术难以解决的问题。本文中所提到的人工智能主要包括一下三个方面,即思维能力、行为能力、感知能力,人工智能主要是由人们创造出来的机器、设备等传递出的智能化技术,为人们提供便捷服务、帮助计算机做辅助工作、为企业的电气设备做自动漏洞修复等,充分体现了电气工程自动化的优点和特征。

1人工智能概述

人工智能的概念早在1956年就以问世,并随着经济和科技的快速发展得到越来越多的关注和重视,形成了以计算机为主题,以自动化技术、控制论、信息论、生物学科、仿生学科、心理学科、语言学科、数理逻辑学科、哲学论、医学等为主要内容的综合性技术,以方便人们的生活和设备的生产力为主要目的。在人工智能领域中,其技术可以使研制的机器设备拥有与人类的大脑智力和思考过程相近或一部分规定的技能的系统,从而帮助人们去完成一些辅助工作,方便人们的生活,提高整体生产力。人工智能是主要用于开发和研究如何更好的延伸和模仿人类的智能的理论。作为计算机科学技术的新兴起的一个分支,人工智能技术更好的诠释了智能的本质,并在此基础上研究生产出一类具有部分或相近的人们的智能的机器或设备,现已研究出的领域较多并已开始广泛应用,其中主要包括:图像识别、语言识别、机器人、专家系统、自然语言处理分析等多种系统。电气工程自动化技术领域涉及面较宽,主要研究的是自动控制技术、系统运行技术、信息处理技术、电子技术、研制开发技术、信息处理技术、计算机与电子应用技术等。随着我国在自动化领域研究课题的不断增加和发展,人工智能技术已开始应用在人们生活中的方方面面。

2人工智能技术应用于电气工程的优点

人工智能技术较传统技术更不容易受到其他因素的影响。在电气工程中,传统的控制器在运行中非常容易受到不利因素的影响,而人工智能技术由于具有一定的智能,从而具有一定的自身调整能力,并具有自身修复和抗压能力,因此受其他因素的总体影响较小。人工智能技术具有操作简便,效率较高。近年来的研究显示,电气工程自动化中的人工智能技术的应用主要有三种方法,即模糊控制、神经网络控制、家电系统控制。这三种技术的应用使设备能够自动对开关量、模拟量等数据进行收集,并快速进行相应的处理,并将数据进行存档。另外,人工智能技术可以使设备具有良好的界面显示功能,并帮助使用者完整的了解电气设备的整体运行状态,同时,也使设备带有了自动报警功能,提示工作人员进行处理,而不需要时刻进行检测,节省了人力物力。

3电气工程自动化中人工智能的运用

人工智能是利用计算机技术去完成以往只能由人们去完成的技术,可以说是对以往仍能够操作的颠覆。人工智能随着应用的广泛已家喻户晓,不再陌生,也经常出现在寻常百姓家,其工作的原理也较为简单,主要是通过对人的智能和思考规律进行摸索总结,找到关键点,再对设备或机器安装程序,使其具有与人类相同的感知能力、思维能力以及行为能力,进而达到模仿甚至代替人类进行工作或操作某项活动的目的。随着电气工程自动化的快速发展,计算机在电气工程领域的应用越来越广泛,人工智能作为新兴的技术也开始投入到电气控制领域,在电气工程中帮助人类进行信息的采集、数据的处理以及信息的反馈等功能,实现电气工程领域中某些设备的自动化生产,另外,由于投入了人工智能设备,使人们可以根据需要来随时调整和控制其运行的程序参数,达到低成本、低人力投入的成本最小化初衷,并实现提高生产力,获得最高的经济效益的目标。目前,我国的电气工程自动化的许多环节中都应用了人工智能技术,并得到了良好成效。本文主要对人工智能在电气设备的控制、故障诊断两大方面具体描述人工智能在电气工程自动化中的运用。在电气工程自动化中,为了充分实现信息的传递、交换、数据处理和提高生产力,就需要使用人工智能来进行设备控制,从而降低人力、物力和财力的投入,增强设备的运行质量以及工作效率。例如:食品公司的一体化生产流水线,它从食品的材料压制磨碎,到食品的烘焙和制作,以及成品的分块、包装等,都充分利用计算机编程软件,使设备达到自动化运行的目的,在此过程中,设备可以根据固定的参数和定值对食品材料进行选择和城中,减少了人为失误,提高了生产效率。由此可见,人工智能在电气设备的控制中具有良好的应用前景。

4结束语

第3篇

随着人口红利的快速消失,中国急需寻找新的增长引擎。基于人工智能的自动化可以提升生产力,帮助中国实现其经济发展目标。

在这一背景下,理解人工智能的发展及其对中国的影响尤为重要。本文将涵盖以下内容:

第一部分简要介绍人工智能的发展历程、现有技术水平及未来展望。

第4篇

基于4MAT系统模式案例设计

4MAT系统模式又称为自然学习模式,它是由美国“学习公司”总裁麦卡锡博士在1979年创立的一个新型有效的学习框架。该模式将学习风格与脑科学研究结合起来,并根据人们感知和处理信息的方式,形成一种独特的、顺应个性学习需求的教学模式。图1为学习者以4MAT学习的一个简单实例。

第一阶段,Johnny看到他的哥哥们是骑自行车去学校。他注意看他们是怎样骑自行车的,骑自行车看上去很容易;第二阶段,他请他的哥哥们(骑自行车的专家)展示他是怎样骑自行车的;第三阶段,Johnny骑上自行车,并尝试骑行,他发现骑自行车并不像看上去那么容易;第四阶段,他调整了自己,回过来再次尝试骑自行车。在上述学习过程中,学习者的大脑经历观察反映、抽象假设、行动试验、形成具体经验四个阶段,即4MAT模式的四个象限,整个学习过程组成一个循环圆圈。

4MAT模式以关注学习者为出发点,结合左右脑的不同特点,将教学分解为八个环节(如图2所示),可较好地为学习者提供有意义的学习内容,学生有足够的练习机会,且可“灵活调整”学习内容,并在这一过程中发掘所学在生活中的应用价值。高中信息技术课程内容大致可分为“动手做、如何做、为何做及做了何”四个方面,与4MAT模式四个象限的特点较切合。现以高中信息技术必修模块中“信息的加工与表达――用智能工具处理信息”为主题,进行4MAT模式教学环节设计。

1.本课时教学目标。人工智能研究处于信息技术发展的前沿,它的研究、应用和发展在一定程度上决定着计算机技术的发展方向。高中人工智能课程目标的基本点定位在了解和体验上,让学生了解信息技术发展的前沿,体验若干典型人工智能技术的应用,感受人工智能对学习和生活的影响,激发对信息技术未来的追求。

2.本课时教学任务。《信息加工与表达》课程标准对应要求:通过部分智能信息处理工具软件的使用,体验其基本工作过程,了解其实际应用价值。通过课堂讨论、观看媒体资料、网络搜索、操作实践、学习教材等手段,学生能够:①了解人工智能技术的含义及智能工具的应用范围;②列举人工智能技术在社会、生活中的应用实例;③按功能对常见的智能应用进行分类;④在操作实践活动中,了解智能工具的基本工作原理及其应用价值;⑤树立辩证思想,客观看待人工智能技术对社会的影响,培养正确的信息技术运用观。

3.本课时教学内容:①人工智能、模式识别、自然语言理解、机器翻译;②智能工具的应用范围;③常见智能工具的操作(“小灵鼠”软件、OCR软件、在线翻译软件、机器人小I等);④人工智能对人类生活、社会的影响及存在问题。

4.本课时教学安排见图3。

①联系,即让学习者将学习内容与相关生活经验建立联系。设计活动来表明人工智能就在我们身边以及它与信息技术学科前沿研究的联系。活动内容:以小组为单位研讨我们身边的人工智能应用例子。通过讨论,说明人工智能对人类生活、社会的影响。这个讨论有助于让学生将身边的经验与学习内容联系起来。教师提供自主学习资源网站,引导并帮助学生联系各人的经历了解人工智能的应用范围;通过让学生观看相关应用视频,让他们获得直观的感性认识。

②注意,即让学生注意个人体验以及与其他同学的经验分享。分析经验,小组讨论并将经验绘制成图表。分小组分享经验并用概念图示描述人工智能的含义。

③想象,即在向学生传授呈现概念时,让学生先将自己的理解描述出来。整合经验:在学习日记中描述人工智能对你及社会生活环境的影响。每个学生要在自己的日志中说明某一人工智能应用如何对个人生活和环境造成影响。

④告知,即由教师告知内行知识,学生接受内容并进行研究。学习内容:教师通过演示文稿介绍图灵测试及人工智能小故事,帮助学生了解人工智能含义。教师带领全班学生利用前面活动中获得的信息,创建人工智能思维导图,其中要包括人工智能含义、应用领域及它对人类社会产生的正面及负面影响。学生通过看视频、听讲、课堂讨论及小组研究等学习形式学习新知识。思维导图会逐渐发展为一个动态的图示。学生可随时添加其他信息和实例。比如,随着对人工智能技术的深入了解,其他内容也可以被添加到思维导图中,在不断形成的过程中,学生将学会如何有条理地收集信息。

⑤练习,即让学生通过练习来学习,以达到对知识、技能的熟练掌握。实践拼接活动:以“它”怎样看、“它”如何懂两组活动,制作设计新的思维导图。归纳智能工具的工作原理和存在的不足。各小组通过实践操作智能工具,分享有关知识和体验,以思维导图的形式描述模式识别及自然语言理解的工作原理并提出技术改进建议。教师在整个过程中对学生的表现给予反馈和建议。

⑥延伸,即是学生创新的开始,学生对所学的灵活调整,迁移运用。设计“人工智能会取代人类吗”游戏中要用的问题。在课堂内外以学习小组的形式开展活动收集更多信息。每个小组根据他们了解的情况设计10个问题,在“人工智能会取代人类吗”游戏中使用。比如,未来你心中的人工智能是什么样、机器人具有真正的智能吗、未来的智能工具将具备怎样的功能,等等。

⑦提炼,即学生进行自我适应、调整、修改和评价其学习是否适当。学生复习课堂记录、个人日志、实践体验、互联网上学习到的内容等,小组完成研究报告,为最后阶段做准备。

⑧展现,即让学生表现自己。帮助学生将所学与更广泛的知识联系起来。设计一个总结主要观点的演示文稿(用例子和视觉画面对人工智能应用作出说明)。为学校设计一个普及人工智能知识的网站。撰写一份“智能工具应用启示”的研究的可行性报告,并设计完成一个未来智能工具或提出一个智能应用的想法。

基于Feden-Vogel教学模式的案例设计

普莱斯顿・D・费德恩,罗伯特・M・沃格尔结合信息加工论,在4MAT系统及教师实践经验的基础上,提出了Feden-Vogel教学设计模式。该模式包含三个不同的工具:计划组织图、教学计划模板、教案格式。其教学分五个步骤进行设计:步骤一,引起学生注意并激活先前知识;步骤二,教授陈述性知识,不仅包含课时内容,还应涉及一些核心概念等;步骤三,给学生提供足够的时间和实践机会,形成程序性知识;步骤四,让学生运用所学知识解决不同问题,帮助他们以新的或不同的方式运用所学;步骤五,结束当前教学并启发学生关注知识和连续性,过渡到下一教学主题。在Feden-Vogel模式中,是从步骤二开始教学设计(即在课程目标与学习标准中让学生学习的陈述性知识),教学实施从步骤一开始。现仍以高中信息技术必修模块中“信息加工与表达”为主题,进行Feden-Vogel模式教学设计,课时教学目标与上例同。

1.《用智能工具处理信息》Feden-Vogel计划组织图(见图4)。

2.《用智能工具处理信息》Feden-Vogel教学五步骤设计。

步骤一,呈现先行组织图,让学生回顾先前的知识,提问前面几类信息加工与表达的特征及应用价值。这个练习可以让学生准备好学习下一个主题,即用智能工具处理信息。让学生联系和此问题相关的现实生活情境:如果你在写一份研究报告时,需要一本资料书上的三页内容,或者你想通过录音将你说的话转化成文字时,你将采用什么办法来完成?向学生提出这个问题,让他们设想解决的方案。通过这个问题可以将情境与新主题联系在一起。为了帮助学生解决此问题,可展示触屏手机手写输入信息的过程,让学生上网搜索相关资料。同时为学生提供多种体验工具软件(“小灵鼠”软件、OCR软件,语音识别软件等)。

步骤二,播放有关我们身边人工智能应用的视频,让学生上网查找人工智能应用领域及实例。介绍图灵测试,向学生提问,人工智能的含义是什么?学生建立人工智能概念图,并添加智能应用领域及实例。

步骤三,将学生异质分组,提出小组体验计划。当学生制定好计划后,就可以开始试着用智能处理工具(模式识别)进行操作实践。等他们完成体验后提问学生:识别的准确率高吗?影响识别率高低的主客观因素有哪些?接下来,引导学生思考分析模式识别工具处理信息的工作原理,引导他们针对体验中存在的问题提出改进建议。在建立模式识别思维导图过程中,通过提问学生生活中或未来还有哪些信息可以通过模式识别来处理,进一步加深学生对相关内容的了解。

步骤四,让全班一起讨论在进行模式识别智能工具体验中的感受。教师使用提问策略来帮助他们进入下一人工智能应用领域:自然语言理解。比如,可以问学生是否能通过工具将一段中文诗词翻译成其他语言,或者和机器人聊天时应该怎样设计智能处理工具。学生讨论,形成小组设计报告,并通过上网查找出相关工具软件名称。学生选择教师提供的工具软件进行体验操作,总结出其工作原理及存在的问题。

第5篇

关键词:人工智能 机器学习 机器人情感获得 发展综述

中图分类号:TP18 文献标识码:A 文章编号:1003-9082 (2017) 04-0234-01

引言

人类自从工业革命结束之后,就已然开始了对人工智能的探索,究其本质,实际上就是对人的思维进行模仿,以此代替人类工作。人工智能的探索最早可以追溯到图灵时期,那时图灵就希望未来的智能系统能够像人一样思考。在20世纪五十年代,人工智能被首次确定为一个新兴的学科,并吸引了大批的学者投入到该领域的研究当中。经过长时间的探索和尝试,人工智能的许多重要基本理论已经形成,如模式识别、特征表示与推理、机器学习的相关理论和算法等等。进入二十一世纪以来,随着深度学习与卷积神经网络的发展,人工智能再一次成为研究热点。人工智能技术与基因过程、纳米科学并列为二十一世纪的三大尖端技术, 并且人工智能涉及的学科多,社会应用广泛,对其原理和本质的理解也更为复杂。 一、人工智能的发展历程

回顾人工智能的产生与发展过程 ,可以将其分为:初期形成阶段,综合发展阶段和应用阶段。

1.初期形成阶段

人工智能这一思想最早的提出是基于对人脑神经元模型的抽象。其早期工作被认为是由美国的神经学家和控制论学者 Warren McCulloch与Walter Pitts共同完成的。在1951年,两名普林斯顿大学的研究生制造出了第一台人工神经元计算机。而其真正作为一个新的概念被提出是在1956年举行的达茅斯会议上。由麦卡锡提议并正式采用了“人工智能”(Artificial Intelligence)砻枋稣庖谎芯咳绾斡没器来模拟人类智能的新兴学科。1969年的国际人工智能联合会议标志着人工智能得到了国际的认可。至此,人工智能这一概念初步形成,也逐渐吸引了从事数学、生物、计算机、神经科学等相关学科的学者参与该领域的研究。

2.综合发展阶段

1.7 7年, 费根鲍姆在第五届国际人工智能联合会议上正式提出了“知识工程”这一概念。而后其对应的专家系统得到发展,许多智能系统纷纷被推出,并应用到了人类生活的方方面面。20世纪80年代以来,专家系统逐步向多技术、多方法的综合集成与多学科、多领域的综合应用型发展。大型专家系统开发采用了多种人工智能语言、多种知识表示方法、多种推理机制和多种控制策略相结合的方式, 并开始运用各种专家系统外壳、专家系统开发工具和专家系统开发环境等等。在专家系统的发展过程中,人工智能得到了较为系统和全面的综合发展,并能够在一些具体的任务中接近甚至超过人类专家的水平。

3.应用阶段

进入二十一世纪以后,由于深度人工神经网络的提出,并在图像分类与识别的任务上远远超过了传统的方法,人工智能掀起了前所未有的。2006年,由加拿大多伦多大学的Geoffery Hinton及其学生在《Science》杂志上发表文章,其中首次提到了深度学习这一思想,实现对数据的分级表达,降低了经典神经网络的训练难度。并随后提出了如深度卷积神经网络(Convolutional Neural Network, CNN),以及区域卷积神经网络(Region-based Convolutional Neural Network, R-CNN),等等新的网络训练结构,使得训练和测试的效率得到大幅提升,识别准确率也显著提高。

二、人工智能核心技术

人工智能由于其涉及的领域较多,内容复杂,因此在不同的应用场景涉及到许多核心技术,这其中如专家系统、机器学习、模式识别、人工神经网络等是最重要也是发展较为完善的几个核心技术。

1.专家系统

专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。对专家系统的研究,是人工智能中开展得较为全面、系统且已经取得广泛应用的技术。许多成熟而先进的专家系统已经被应用在如医疗诊断、地质勘测、文化教育等方面。

2.机器学习

机器学习是一个让计算机在非精确编程下进行活动的科学,也就是机器自己获取知识。起初,机器学习被大量应用在图像识别等学习任务中,后来,机器学习不再限于识别字符、图像中的某个目标,而是将其应用到机器人、基因数据的分析甚至是金融市场的预测中。在机器学习的发展过程中,先后诞生了如凸优化、核方法、支持向量机、Boosting算法等等一系列经典的机器学习方法和理论。机器学习也是人工智能研究中最为重要的核心方向。

3.模式识别

模式识别是研究如何使机器具有感知能力 ,主要研究图像和语音等的识别。其经典算法包括如k-means,主成分分析(PCA),贝叶斯分类器等等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的基于统计学习的识别方法。图形识别方面例如识别各种印刷体和某些手写体文字,识别指纹、癌细胞等技术已经进入实际应用。语音识别主要研究各种语音信号的分类,和自然语言理解等等。模式识别技术是人工智能的一大应用领域,其非常热门的如人脸识别、手势识别等等对人们的生活有着十分直接的影响。

4.人工神经网络

人工神经网络是在研究人脑的结构中得到启发, 试图用大量的处理单元模仿人脑神经系统工程结构和工作机理。而近年来发展的深度卷积神经网络(Convolutional neural networks, CNNs)具有更复杂的网络结构,与经典的机器学习算法相比在大数据的训练下有着更强的特征学习和表达能力。含有多个隐含层的神经网络能够对输入原始数据有更抽象喝更本质的表述,从而有利于解决特征可视化以及分类问题。另外,通过实现“逐层初始化”这一方法,实现对输入数据的分级表达,可以有效降低神经网络的训练难度。目前的神经网络在图像识别任务中取得了十分明显的进展,基于CNN的图像识别技术也一直是学术界与工业界一致追捧的热点。

三、机器人情感获得

1.智能C器人现状

目前智能机器人的研究还主要基于智能控制技术,通过预先定义好的机器人行动规则,编程实现复杂的自动控制,完成机器人的移动过程。而人类进行动作、行为的学习主要是通过模仿及与环境的交互。从这个意义上说,目前智能机器人还不具有类脑的多模态感知及基于感知信息的类脑自主决策能力。在运动机制方面,目前几乎所有的智能机器人都不具备类人的外周神经系统,其灵活性和自适应性与人类运动系统还具有较大差距。

2.机器人情感获得的可能性

人脑是在与外界永不停息的交互中,在高度发达的神经系统的处理下获得情感。智能机器人在不断的机器学习和大数据处理中,中枢处理系统不断地自我更新、升级,便具备了获得情感的可能性及几率。不断地更新、升级的过程类似于生物的进化历程,也就是说,智能机器人有充分的可能性获得与人类同等丰富的情感世界。

3.机器人获得情感的利弊

机器人获得情感在理论可行的情况下,伴之而来的利弊则众说纷纭。一方面,拥有丰富情感世界的机器人可以带来更多人性化的服务,人机合作也可进行地更加深入,可以为人类带来更为逼真的体验和享受。人类或可与智能机器人携手共创一个和谐世界。但是另一方面,在机器人获得情感时,机器人是否能彻底贯彻人类命令及协议的担忧也迎面而来。

4.规避机器人情感获得的风险

规避智能机器人获得情感的风险应预备强制措施。首先要设计完备的智能机器人情感协议,将威胁泯灭于未然。其次,应控制智能机器人的能源获得,以限制其自主活动的能力,杜绝其建立独立体系的可能。最后,要掌控核心武器,必要时强行停止运行、回收、甚至销毁智能机器人。

三、总结

本文梳理了人工智能的发展历程与核心技术,可以毋庸置疑地说,人工智能具有极其广阔的应用前景,但也伴随着极大的风险。回顾其发展历程,我们有理由充分相信,在未来人工智能的技术会不断完善,难题会被攻克。作为世界上最热门的领域之一,在合理有效规避其风险的同时,获得情感的智能机器人会造福人类,并极大地帮助人们的社会生活。

参考文献

[1]韩晔彤.人工智能技术发展及应用研究综述[J].电子制作,2016,(12):95.

[2]曾毅,刘成林,谭铁牛.类脑智能研究的回顾与展望[J].计算机学报,2016,(01):212-222.

[3]张越.人工智能综述:让机器像人类一样思考

第6篇

如何应对人工智能时代的转型?人工智能的商业价值地图中,哪些产业将最先享受技术红利?

“智造”并不是一个新词,几年前,我们可以看到数字技术从虚拟世界向实体世界渗透。3D打印、激光切割等一系列数字制造设备的发明让制造变得民主化,所以诞生了创客这个群体,让普通人也可以通过智造来实现想法。而今天,我们都看到“智”的含义又进化了。

人工智能正在全球范围内掀起产业浪潮。从去年开始,腾讯研究院就对人工智能的产业发展有一个持续的跟踪。我今天将从一个更广的维度,不限于制造业来与大家分享关于人工智能如何融合产业,创造万亿实体经济新动能的一些观察。

人工智能认知差距存在:已走入平常生活

在另一阵营,包括扎克伯格、李开复、吴恩达等在内的多位人工智能业界和学界人士都表示人工智能对人类的生存威胁尚且遥远。这其中主要的争议就来源于对“人工智能”定义的区别。人工智能学家马斯克等人所述的人工智能,是指可以独立思考并解决问题,具有思维能力的“强人工智能”,目前,科学界和工业界对何时发展出“强人工智能”并无定论。

现在处于全球热议中的“人工智能”,并不完全等同于以往学院派定义的人工智能。你可能没有意识到,我们日常生活中已经用到了许多人工智能技术:早在2011年,苹果就率先将人工智能应用Siri放进了大家的口袋里;拍照、签到时用到的人脸识别技术,智能音箱的语音对话系统,以及我们现在主流的新闻推荐引擎,也都用到了深度学习的算法。

人工智能算法存在于人们的手机和个人电脑里,存在于政府机关、企业的服务器上,存在于共有或者私有的云端之中。虽然我们不一定能够时时刻刻感知到人工智能算法的存在,但人工智能算法已经高度渗透进我们的生活之中。

人工智能的商业潮起:九大领域形成热点

人工智能的历史已经有60年的时间,但它作为一个商业化浪潮是最近几年爆发的。与以往几次人工智能浪潮不同,此次的人工智能革命跨越了技术商业化的临界点。

下图为腾讯研究院的《中美人工智能产业报告》,人工智能领域的投资金额从2012年起呈现出了非常陡峭的增长趋势,转折点就是深度学习技术的突破。

IT产业经过数十年的发展,在存储、运算和传输能力上都有了几何级的提升,使深度学习最终有了质的飞跃。互联网积累了20年的数据终于有了用武之地——训练数据。机器学习和深度学习的飞速发展直接引领了此次人工智能产业浪潮。

截至目前,美国在融资金额上人工达到了938亿,中国仅次于美国达到了635亿。人工智能产业发展出了九大热点领域,分别是芯片、自然语言处理、语音识别、机器学习应用、计算机视觉、智能机器人、自动驾驶。

另一个明显的趋势是中美科技巨头的集体转型。从互联网到移动互联网的历次转换历程中,把握技术革命带来的商业范式革命是屹立不败的关键。技术革命将带来基础设施、商业模式、行业渠道、竞争规则变化的涟漪效应。

谷歌最早意识到机器学习的重要性,从2012年开始从搜索业务积累数据。从2012年到2017年短短的5年时间已经渗透到了超过1200个谷歌的服务中。业务发展战略从“移动优先”转为“人工智能优先”。除此以外,美国的FAAMG (Facebook, Amazon, Apple, Microsoft, Google)以及中国的BAT无一例外投入越来越多资源抢占人工智能市场,有的甚至转型成为AI公司。他们纷纷从四方面从基础到全局打造AI生态:

第一,通过建立AI实验室,来建立核心的人才队伍。第二,持续并购来争夺人才和技术。第三,建立开源的生态,占领产业核心。今天,大多数技术进步都不是封闭的创造发明。技术的指数级增长,受益于底层技术的共享。今年,腾讯向外输出了两大AI开源项目ANGEL和NCNN。第四,最好的人工智能服务将可能化为无形,即与云服务结合。工具AI将大幅降低企业使用AI的门槛,越来越多科技巨头选择将自己的服务“云端化”来赋能全行业。正如马化腾所说的未来的企业都是在云端用AI处理大数据。并且在一些领域开始试水消费级人工智能的场景。

认识人工智能的能力与局限

认识人工智能的能力与局限AI要在商业上取得成功,首先要理解人工智能的真实能力。AI的爆发对商业的塑造也许与互联网彻底颠覆传统行业不同,在很大程度上会不动声色地嵌入到商业中。应用场景不再是新奇的概念展示,而是融入现有的生产中,进入垂直领域,创造直接的经济价值。

认识人工智能的能力与局限从认识物理世界到自主决策,目前人工智能已经具备以下几种能力:

认识人工智能的能力与局限感知智能:在语音识别、图像识别领域已经有很深入的应用,赋予了机器“看”和“听”的能力。甚至情感也能被机器理解 ;语音识别和图像识别都有了显著的提升。

认识人工智能的能力与局限理解能力:自然语言理解成为隐形的标配植入到产品中。配合计算机视觉可用于理解图像,来执行基于文本的图像搜索、图像描述生成、图像问答(给定图像和问题,输出答案)等。

认识人工智能的能力与局限数据智能:机器学习、深度学习让机器能够洞察数据的秘密,并且不断自动优化算法,提升数据分析能力。

认识人工智能的能力与局限决策能力:本质是用数据和模型为现有问题提供解决方案。棋类游戏是一种典型的决策能力,人类在完美信息博弈的游戏中已彻底输给机器,只能在不完美信息的德州扑克和麻将中苟延残喘。在更广泛的领域,例如如何自动驾驶汽车,如何将投资收益最大化等丰富的场景都将是决策能力的用武之地。

人工智能的价值地图:产业融合正在加速

与互联网时代一夜颠覆的渠道革命不同,人工智能的带来的商业变革正在不动声色地渗入到各行各业。一大批AI应用的先导者正在将AI能力赋能产业,涉及吃住行、工业医疗等各个领域。下面将用三个例子来说明正在发生的“AI+”产业增强革命。

首先是零售行业。上图是亚马逊推出的无人超市Amazon Go。在亚马逊的蓝图中,顾客从货架上取下货品,无需再经过收银台便可自动完成结算过程。从顾客进店开始,通过人脸识别验证顾客身份,在顾客购物时,通过图像识别和对比技术判断商品种类,自动生成购物订单完成自动结算。

现在,各种形式的无人零售商店在国内也如雨后春笋般兴起。当然,无人收费只是零售智能化的第一步,人工智能不同能力的应用将全面改变现在的零售模式。比如开一家店选址、到底在哪开、开多大、覆盖多少人群、卖多少东西?时装周采购设计师的衣服,买那些今年会畅销?以前这些都靠零售人的经验做决策,但在信息时代,这些都可以用精准的算法做决策。

第二个例子是医疗行业,医疗在任何国家都是最大的行业之一,我们经济发展和科技进步追求的最终目标也是增进健康。

人工智能在医疗行业的应用很广泛。用人工智能来辅助医疗影像诊断大家已经比较熟悉了。我想说的是人工智能对精准医疗的推动。所有遗传密码的信息都是非常非常多的一个大数据,对任何人在他没有得病的时候我们测量他的组学数据,分析组学大数据,那么就可以对他未来健康发展的危险因素做出评估,根据评估进行适当干预,这样的话有些疾病不发展,有些疾病减轻他的程度,提高他的生活质量,这样就把整个医疗健康体系的关口前移,在没有病之前就提出评估与保证。

第三个例子来自制造业。波士顿有家著名的机器人公司叫Rethink Robotics,顾名思义就是重新思考机器人。这个公司开发了一款名为Baxter的智能协作机器人。这个机器人的特点是和人的交互不再是机械的。Baxter 采用顺应式手臂并具有力度探测功能,能够适应变化的环境,可“感知”异常现象并引导部件就位。你只要挪动它的手臂就能进行训练,完成特定的任务。其次,对于制造业来说人工智能不仅仅意味着完成某项工任务的机器人,也是未来制造业智能工厂、智能供应链等相互支撑的智能制造体系。通过人工智能实现设计过程、制造过程和制造装备的智能化。

人工智能的经济影响

人工智能在经济层面的影响,主要有三个方面:

第一,生产效率的提升。人工智能创造了一种虚拟的劳动力,能够解决需要适应性和敏捷性的复杂任务。

第二,交易成本的下降。互联网的平台模式通过降低信息不对称,降低了交易成本。随着机器学习的引入,可以实现更精准的服务匹配,进一步优化资源的分配。

第三,人工智能将带来数据产业的蓬勃。机器学习需要数据的“喂养”,海量的数据需求催生了多种类型的数据交易模式。数据的需求会产生很多数据经纪商,有B2B模式,C2B模式,B2B2C模式等,促进数据在个人、企业及产业链层面流通。数据的来源不单单来自于用户,也来自于政府公开数据、商业渠道、博客等公共资源等。

转型之路:五要素坚实人工智能基础

人工智能将一切变化都带入了超高速发展的轨道。创新科技公司已集体转型,传统行业又改如何应对即将到来的人工智能时代?实现人工智能的转型,需要从几个方面并行:

数据、算法和算力是我们常说的人工智能的“三驾马车”,是人工智能得以应用的基础。

第一是数据,我们对数据的认识不应该停留在统计,改进产品或者作为决策的支持依据。而应该看到它导致机器智能的产生。但首先,数据是有条件的。垂直行业的数据,高质量的数据。在国家层面,也有许多数据开放计划。

第二是算法,人工智能的人才仍然是很稀缺的。高校和企业的人才流动越来越频繁。但同时,企业通过开放生态,降低开发门槛。可以让更多中小企业享受AI能力。

第三是算力,现在的人工智能系统通过成百上千个GPU来提升算力,使深度学习能够走向生产环境。但随着数据的爆发式增长,现有算力将无法匹配。

除了这三驾马车,从实验室到行业应用,在人工智能的应用过程中还需要加入两个元素:

■ 首先是场景。理解场景是人工智能应用的核心。人工智能必须落到精准的场景,才能实现实在的价值。理解人工智能能力可落地的场景及对应的流程,将AI纳入决策流程。

■ 其次是人机回环,即human-in-the-loop。“人机回圈”的第一层含义是人工智能应用中需要用户,即人的反馈来强化模型。更进一步,机器学习是一种尝试创建允许通过让专家与机器的一系列交互参与到机器学习的训练中的系统工作。机器学习通常由工程师训练数据,而不是某个领域的专家。“人机回圈”的核心是构建模型的想法不仅来自数据,而且来自于人们怎样看待数据。专家会成为垂直领域的AI顾问,把关模型的正确性。

人工智能并不是静态的东西,训练出来的模型要用到某个业务场景里,业务场景里产生新的数据,这些数据进一步提升人工智能模型的能力,再用到场景中,形成一个闭环和迭代。

总结

本轮人工智能浪潮是基于深度学习的发展,将快速渗透到数据密集行业。

人工智能目前从感知智能、理解智能、数据智能和决策智能四方面发挥在各行各业的能力。

第7篇

2017年7月,国务院印发《新一代人工智能发展规划》,不仅对人工智能的发展做出了战略性部署,还确立了“三步走”的政策目标,力争到2030年将我国建设成为世界主要的人工智能创新中心。[1]值得注意的是,此次规划不仅仅只是技术或产业发展规划,还同时包括了社会建设、制度重构、全球治理等方方面面的内容。之所以如此,是由于人工智能技术本身具有通用性和基础性。换句话说,为助推人工智能时代的崛起,我们面对的任务不是实现某一个专业领域或产业领域内的颠覆性技术突破,而是大力推动源于技术发展而引发的综合性变革。

也正因为如此,人工智能发展进程中所面临的挑战才不仅仅局限于技术或产业领域,而更多体现在经济、社会、政治领域的公共政策选择上。首先,普遍建立在科层制基础上的公共事务治理结构,是否能够适应技术发展和应用过程中所大规模激发的不确定性和不可预知性?再者,长久以来围绕人类行为的规制制度,是否同样能够适应以数据、算法为主体的应用环境?最后,如何构建新的治理体系和治理工具来应对伴随人工智能发展而兴起的新的经济、社会、政治问题?

应对上述挑战并不完全取决于技术发展或商业创新本身,而更多依赖于我们的公共政策选择。本文试图在分析人工智能发展逻辑及其所引发的风险挑战的基础上,对人工智能时代的公共政策选择做出分析,并讨论未来改革的可能路径,这也就构成了人工智能治理的三个基本问题。具体而言,人工智能本身成为治理对象,其发展与应用构成了治理挑战,而在此基础上如何做出公共政策选择便是未来治理变革的方向。

全文共分为四个部分:第一部分将探讨人工智能的概念及特征,并进而对其发展逻辑进行阐述。作为一项颠覆性技术创新,其本身的技术门槛对决策者而言构成了挑战,梳理并捋清人工智能的本质内涵因而成为制定相关公共政策的前提;第二部分将着重分析人工智能时代崛起所带来的治理挑战,主要包括三个方面,即传统科层治理结构应对人工智能新的生产模式的滞后性、建基于行为因果关系之上的传统治理逻辑应对人工智能新主体的不适用性,以及人工智能发展所引发的新议题的治理空白;面对上述挑战,各国都出台了相关政策,本文第三部分对此进行了综述性对比分析,并指出了其进步意义所在。需要指出的是,尽管各国的政策目标都试图追求人工智能发展与监管的二维平衡,但由于缺乏对人工智能内涵及其发展逻辑的完整认识,当前的公共政策选择有失综合性;本文第四部分将提出新的治理思路以及公共政策选择的其他可能路径,以推动围绕人工智能治理的相关公共政策议题的深入讨论。

一、人工智能的概念及技术发展逻辑:算法与数据

伴随着人工智能技术的快速发展,尤其是其近年来在棋类对弈、自动驾驶、人脸识别等领域的广泛应用,围绕人工智能所可能引发的社会变革产生了激烈争论。在一方面,以霍金[2]、马斯克[3]、比尔-盖茨[4]、赫拉利[5]为代表的诸多人士呼吁加强监管,警惕“人工智能成为人类文明史的终结”;在另一方面,包括奥巴马[6]在内的政治家、学者又认为应该放松监管,充分释放人工智能的技术潜力以造福社会。未来发展的不确定性固然是引发当前争论的重要原因之一,但围绕“人工智能”概念内涵理解的不同,以及对其发展逻辑认识的不清晰,可能也同样严重地加剧了人们的分歧。正因为此,廓清人工智能的概念内涵和发展逻辑不仅是回应争论的需要,也是进一步提出公共政策建议的前提。

就相关研究领域而言,人们对于“人工智能”这一概念的定义并未形成普遍共识。计算机领域的先驱阿兰-图灵曾在《计算机器与智能》一文中提出,重要的不是机器模仿人类思维过程的能力,而是机器重复人类思维外在表现行为的能力。[7]正是由此理解出发,著名的“图灵测试”方案被提出。但如同斯坦福大学计算机系教授约翰·麦卡锡所指出的,“图灵测试”仅仅只是“人工智能”概念的一部分,不模仿人类但同时也能完成相关行为的机器同样应被视为“智能”的。[8]事实上,约翰·麦卡锡正是现代人工智能概念的提出者。在他看来,“智能”关乎完成某种目标的行为“机制”,而机器既可以通过模仿人来实现行为机制,也可以自由地使用任何办法来创造行为机制。[9]由此,我们便得到了人工智能领域另一个非常重要的概念——“机器学习”。

人工智能研究的目标是使机器达到人类级别的智能能力,而其中最重要的便是学习能力。[10]因此,尽管“机器学习”是“人工智能”的子域,但很多时候我们都将这两个概念等同起来。[11]就实现过程而言,机器学习是指利用某些算法指导计算机利用已知数据得出适当模型,并利用此模型对新的情境给出判断,从而完成行为机制的过程。此处需要强调一下机器学习算法与传统算法的差异。算法本质上就是一系列指令,告诉计算机该做什么。对于传统算法而言,其往往事无巨细地规定好了机器在既定条件下的既定动作;机器学习算法却是通过对已有数据的“学习”,使机器能够在与历史数据不同的新情境下做出判断。以机器人行走的实现为例,传统算法下,程序员要仔细规定好机器人在既定环境下每一个动作的实现流程;而机器学习算法下,程序员要做的则是使计算机分析并模拟人类的行走动作,以使其即使在完全陌生的环境中也能实现行走。

由此,我们可以对“人工智能”设定一个“工作定义”以方便进一步的讨论:人工智能是建立在现代算法基础上,以历史数据为支撑,而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算系统。这一概念尽管可能仍不完善,但它突出了人工智能技术发展和应用的两大基石——算法与数据,有助于讨论人工智能的治理问题。

首先,算法即是规则,它不仅确立了机器所试图实现的目标,同时也指出了实现目标的路径与方法。就人工智能当前的技术发展史而言,算法主要可被划分为五个类别:符号学派、联接学派、进化学派、类推学派和贝叶斯学派。[12]每个学派都遵循不同的逻辑、以不同的理念实现了人工智能(也即“机器学习”)的过程。举例而言,“符号学派”将所有的信息处理简化为对符号的操纵,由此学习过程被简化(抽象)为基于数据和假设的规则归纳过程。在数据(即历史事实)和已有知识(即预先设定的条件)的基础上,符号学派通过“提出假设-数据验证-进一步提出新假设-归纳新规则”的过程来训练机器的学习能力,并由此实现在新环境下的决策判断。

从对“符号学派”的描述中可以发现,机器学习模型成功的关键不仅是算法,还有数据。数据的缺失和预设条件的不合理将直接影响机器学习的输出(就符号学派而言,即决策规则的归纳)。最明显体现这一问题的例子便是罗素的“归纳主义者火鸡”问题:火鸡在观察10天(数据集不完整)之后得出结论(代表预设条件不合理,超过10个确认数据即接受规则),主人会在每天早上9点给它喂食;但接下来是平安夜的早餐,主人没有喂它而是宰了它。

所有算法类型尽管理念不同,但模型成功的关键都聚焦于“算法”和“数据”。事实上,如果跳出具体学派的思维束缚,每种机器学习算法都可被概括为“表示方法、评估、优化”这三个部分。[13]尽管机器可以不断的自我优化以提升学习能力,且原则上可以学习任何东西,但评估的方法和原则(算法)以及用以评估的数据(数据)都是人为决定的——而这也正是人工智能治理的关键所在。算法与数据不仅是人工智能发展逻辑的基石,其同样是治理的对象和关键。

总而言之,围绕“人工智能是否会取代人类”的争论事实上并无太大意义,更重要的反而是在廓清人工智能的内涵并理解其发展逻辑之后,回答“治理什么”和“如何治理”的问题。就此而言,明确治理对象为算法和数据无疑是重要的一步。但接下来的重要问题仍然在于,人工智能时代的崛起所带来的治理挑战究竟是什么?当前的制度设计是否能够对其做出有效应对?如果答案是否定的,我们又该如何重构治理体系以迎接人工智能时代的崛起?本文余下部分将对此做进一步的阐述。

二、人工智能时代崛起的治理挑战

不同于其他颠覆性技术,人工智能的发展并不局限于某一特定产业,而是能够支撑所有产业变革的通用型技术。也正因为此,其具有广泛的社会溢出效应,在政治、经济、社会等各个领域都会带来深刻变革,并将同时引发治理方面的挑战。具体而言,挑战主要体现在以下三个方面。

首先,治理结构的僵化性,即传统的科层制治理结构可能难以应对人工智能快速发展而形成的开放性和不确定性。之所以需要对人工智能加以监管,原因在于其可能成为公共危险的源头,例如当自动驾驶技术普及之后,一旦出现问题,便可能导致大规模的连续性伤害。但不同机、大型水坝、原子核科技等二十世纪的公共危险源,人工智能的发展具有极强的开放性,任何一个程序员或公司都可以毫无门槛的进行人工智能程序的开发与应用。这一方面是由于互联网时代的到来,使得基于代码的生产门槛被大大降低[14];另一方面,这也是人工智能本身发展规律的需要。正如前文所提到,唯有大规模的数据输入才可能得到较好的机器学习结果,因此将人工智能的平台(也即算法)以开源形式公开出来,以使更多的人在不同场景之下加以利用并由此吸收更多、更完备的数据以完善算法本身,就成为了大多数人工智能公司的必然选择。与此同时,人工智能生产模式的开放性也必然带来发展的不确定性,在缺乏有效约束或引导的情况下,人工智能的发展很可能走向歧途。面对这一新形势,传统的、基于科层制的治理结构显然难以做出有效应对。一方面,政府试图全范围覆盖的事前监管已经成为不可能,开放的人工智能生产网络使得监管机构几乎找不到监管对象;另一方面,由上至下的权威结构既不能传递给生产者,信息不对称问题的加剧还可能导致监管行为走向反面。调整治理结构与治理逻辑,并形成适应具有开放性、不确定性特征的人工智能生产模式,是当前面临的治理挑战之一。

再者,治理方法的滞后性,即长久以来建立在人类行为因果关系基础上的法律规制体系,可能难以适用于以算法、数据为主体的应用环境。人工智能的价值并不在于模仿人类行为,而是其具备自主的学习和决策能力;正因为如此,人工智能技术才不能简单地理解为其创造者(即人)意志的表达。程序员给出的只是学习规则,但真正做出决策的是基于大规模数据训练后的算法本身,而这一结果与程序员的意志并无直接因果关联。事实上也正由于这个特点,AlphaGo才可能连续击败围棋冠军,而其设计者却并非围棋顶尖大师。也正是在这个意义上,我们才回到了福柯所言的“技术的主体性”概念。在他看来,“技术并不仅仅是工具,或者不仅仅是达到目的的手段;相反,其是政治行动者,手段与目的密不可分”。[15]就此而言,长久以来通过探究行为与后果之因果关系来规范人的行为的法律规制体系,便可能遭遇窘境:如果将人工智能所造成的侵权行为归咎于其设计者,无疑不具有说服力;但如果要归咎于人工智能本身,我们又该如何问责一个机器呢?由此,如何应对以算法、数据为核心的技术主体所带来的公共责任分配问题,是当前面临的第二个治理挑战。

最后,治理范围的狭隘性,即对于受人工智能发展冲击而引发的新的社会议题,需要构建新的治理体系和发展新的治理工具。人工智能发展所引发的治理挑战不仅仅体现在现有体系的不适应上,同时还有新议题所面临的治理空白问题。具体而言,这又主要包括以下议题:算法是否能够享有言论自由的宪法保护,数据的权属关系究竟如何界定,如何缓解人工智能所可能加剧的不平等现象,以及如何平衡人工智能的发展与失业问题。在人工智能时代之前,上述问题并不存在,或者说并不突出;但伴随着人工智能的快速发展和应用普及,它们的重要性便日渐显著。以最为人所关注的失业问题为例,就技术可能性来说,人工智能和机器人的广泛应用代替人工劳动,已是一个不可否定的事实了。无论是新闻记者,还是股市分析员,甚至是法律工作者,其都有可能为机器所取代。在一个“充分自动化(Full Automation)”的世界中,如何重新认识劳动与福利保障的关系、重构劳动和福利保障制度,便成为最迫切需要解决的治理挑战之一。[16]

上述三方面共同构成了人工智能时代崛起所带来的治理挑战。面对这些挑战,各国也做出了相应的公共政策选择。本文第三部分将对各国人工智能的治理政策进行对比性分析。在此基础上,第四部分将提出本文的政策建议。

三、各国人工智能治理政策及监管路径综述

人工智能时代的崛起作为一种普遍现象,其所引发的治理挑战是各国面临的共同问题,各国也陆续出台了相关公共政策以试图推动并规范人工智能的快速发展。

美国于2016年同时颁布了《国家人工智能研究与发展战略规划》和《为人工智能的未来做好准备》两个国家级政策框架,前者侧重从技术角度指出美国人工智能战略的目的、愿景和重点方向,而后者则更多从治理角度探讨政府在促进创新、保障公共安全方面所应扮演的角色和作用。就具体的监管政策而言,《为人工智能的未来做好准备》提出了一般性的应对方法,强调基于风险评估和成本-收益考量的原则以决定是否对人工智能技术的研发与应用施以监管负担。[17]日本同样于2016年出台了《第五期(2016~2020年度)科学技术基本计划》,提出了“超智能社会5.0”的概念,强调通过推动数据标准化、建设社会服务平台、协调发展多领域智能系统等各方面工作促进人工智能的发展和应用。[18]

尽管美国和日本的政策着力点不同,但其共有的特点是对人工智能的发展及其所引发的挑战持普遍的包容与开放态度。就当前的政策框架而言,美日两国的政策目标更倾斜于推动技术创新、保持其国家竞争力的优势地位;当涉及对人工智能所可能引发的公共问题施以监管时,其政策选择也更倾向于遵循“无需批准式(permissionless)”的监管逻辑,即强调除非有充分案例证明其危害性,新技术和新商业模式默认为都是被允许的。[19]至于人工智能的发展对个人数据隐私、社会公共安全的潜在威胁,尽管两国的政策框架都有所涉及,却并非其政策重心——相比之下,英国、法国则采取了不同的政策路径。

英国政府2016年了《人工智能:未来决策制定的机遇与影响》,对人工智能的变革性影响以及如何利用人工智能做出了阐述与规划,尤其关注到了人工智能发展所带来的法律和伦理风险。在该报告中,英国政府强调了机器学习与个人数据相结合而对个人自由及隐私等基本权利所带来的影响,明确了对使用人工智能所制定出的决策采用问责的概念和机制,并同时在算法透明度、算法一致性、风险分配等具体政策方面做出了规定。[20]与英国类似,法国在2017年的《人工智能战略》中延续了其在2006年通过的《信息社会法案》的立法精神,同样强调加强对新技术的“共同调控”,以在享有技术发展所带来的福利改进的同时,充分保护个人权利和公共利益。[21]与美日相比,英法的公共政策更偏向于“审慎监管(precautionary)”的政策逻辑,即强调新技术或新的商业模式只有在开发者证明其无害的前提下才被允许使用。[22]

在本文看来,无论是“无需批准式监管”还是“审慎监管”,在应对人工智能时代崛起所带来的治理挑战方面都有其可取之处:前者侧重于推动创新,而后者则因重视安全而更显稳健。但需要指出的是,这两种监管路径的不足却也十分明显。正如前文第二部分所指出,一方面,快速迭代的技术发展与商业模式创新必将引发新的社会议题,无论是算法是否受到言论自由的权利保护还是普遍失业对社会形成的挑战,它们都在客观上要求公共政策做出应对,而非片面的“无需批准式监管”能够处理。更重要的是,“无需批准式监管”的潜在假设是事后监管的有效性;然而,在事实上,正如2010年5月6日美国道琼斯工业指数“瞬间崩盘”事件所揭示的,即使单个电子交易程序合规运行,当各个系统行为聚合在一起时反而却造成了更大的危机。[23]在此种情形下,依赖于合规性判断的“事后监管”基本上难以有效实施。另一方面,人工智能本身的自主性和主体性使得建立在人类行为因果关系基础上的“审慎监管”逻辑存在天然缺陷:既然人类无法预知人工智能系统可能的行为或决策,开发者又如何证明人工智能系统的无害性?

正如本文所反复强调的,人工智能与其他革命性技术的不同之处,正是在于其所带来的社会冲击的综合性和基础性。人工智能并非单个领域、单个产业的技术突破,而是对于社会运行状态的根本性变革;人工智能时代的崛起也并非一夜之功,而是建立在计算机革命、互联网革命直至数字革命基础上的“奇点”变革。因此,面对人工智能时代崛起所带来的治理挑战,我们同样应该制定综合性的公共政策框架,而非仅仅沿袭传统治理逻辑,例如只是针对具体议题在“创新”与“安全”这个二元维度下进行艰难选择。本文在第四部分从承认技术的主体性、重构社会治理制度、推进人工智能全球治理这三方面提出了政策建议,并希望以此推动更深入地围绕人工智能时代公共政策选择的研究与讨论。

四、人工智能时代的公共政策选择

《新一代人工智能发展规划》明确提出了到2030年我国人工智能发展的“三步走”目标,而在每一个阶段,人工智能法律法规、伦理规范和政策体系的逐步建立与完善都是必不可少的重要内容。面对人工智能时代崛起的治理挑战,究竟应该如何重构治理体系、创新治理机制、发展治理工具,是摆在决策者面前的重要难题。本文基于对人工智能基本概念和发展逻辑的梳理分析,结合各国已有政策的对比分析,提出以下三方面的改革思路,以为人工智能时代的公共选择提供参考。

第一,人工智能发展的基石是算法与数据,建立并完善围绕算法和数据的治理体系与治理机制,是人工智能时代公共政策选择的首要命题,也是应对治理挑战、赋予算法和数据以主体性的必然要求。(1)就算法治理而言,涉及的核心议题是算法的制定权及相应的监督程序问题。算法作为人工智能时代的主要规则,究竟谁有权并通过何种程序来加以制定,谁来对其进行监督且又如何监督?长久以来公众针对社交媒体脸书(Facebook)的质疑正体现了这一问题的重要性:公众如何相信脸书向用户自动推荐的新闻内容不会掺杂特殊利益的取向?[24]当越来越多的人依赖定制化的新闻推送时,人工智能甚至会影响到总统选举。也正因为此,包括透明要求、开源要求在内的诸多治理原则,应当被纳入到算法治理相关议题的考虑之中。(2)就数据治理而言,伴随着人工智能越来越多地依赖于大规模数据的收集与利用,个人隐私的保护、数据价值的分配、数据安全等相关议题也必将成为公共政策的焦点。如何平衡不同价值需求、规范数据的分享与应用,也同样成为人工智能时代公共政策选择的另一重要抓手。

第二,创新社会治理制度,进一步完善社会保障体系,在最大程度上缓解人工智能发展所可能带来的不确定性冲击。与历史上的技术革命类似,人工智能的发展同样会导致利益的分化与重构,而如何保证技术革命成本的承受者得到最大限度的弥补并使所有人都享有技术发展的“获得感”,不仅是社会发展公平、正义的必然要求,也是促进技术革命更快完成的催化剂。就此而言,在人工智能相关公共政策的考量中,我们不仅应该关注产业和经济政策,同时也应该关注社会政策,因为只有后者的完善才能够控制工人或企业家所承担的风险,并帮助他们判断是否支持或抵制变革的发生。就具体的政策设计来说,为缓解人工智能所可能带来的失业潮,基本收入制度的普遍建立可能应该被提上讨论议程了。“基本收入”是指政治共同体(如国家)向所有成员不加任何限制条件地支付一定数额的收入,以满足其基本生活的需求。尽管存在“养懒汉”的质疑,但有研究者已指出,自18世纪就开始构想的基本收入制度很有可能反过来促进就业。[25]芬兰政府已经于2017年初开始了相关实验,美国的一些州、瑞士也做出了一定探索。在人工智能时代尚未完全展现其“狰容”之前,创新社会治理机制、完善社会保障体系,可能是平衡技术创新与社会风险的最佳路径。

第三,构建人工智能全球治理机制,以多种形式促进人工智能重大国际共性问题的解决,共同应对开放性人工智能生产模式的全球性挑战。人工智能的发展具有开放性和不确定性的特征,生产门槛的降低使得人工智能技术研发的跨国流动性很强,相关标准的制定、开放平台的搭建、共享合作框架的形成,无不要求构建相应的全球治理机制。另一方面,跨境数据流动在广度和深度上的快速发展成为了人工智能技术进步的直接推动力,但各国数据规制制度的巨大差异在制约跨境数据流动进一步发展的同时,也将影响人工智能时代的全面到来。[26]故此,创新全球治理机制,在承认各国制度差异的前提下寻找合作共享的可能性,便成为人工智能时代公共政策选择的重要考量之一。就具体的机制设计而言,可以在人工智能全球治理机制的构建中引入多利益相关模式;另一方面,为防止巨头垄断的形成,充分发挥主权国家作用的多边主义模式同样不可忽视。作为影响深远的基础性技术变革,互联网全球治理机制的经验和教训值得人工智能发展所借鉴。

上述三方面从整体上对人工智能时代的公共政策框架做出了阐述。与传统政策局限于“创新”与“安全”之间做出二维选择不同,本文以更综合的视角提出了未来公共政策选择的可能路径。就其内在联系来讲,建立并完善围绕算法和数据的治理体系是起点,其将重构人工智能时代的规则与制度;创新社会治理机制并完善社会保障体系是底线,其将缓解人工智能所带来的影响与波动;构建全球治理机制则成为了制度性的基础设施,推动各国在此之上共同走向人工智能时代的“人类命运共同体”。

五、结语

在经历了60余年的发展之后,人工智能终于在互联网、大数据、机器学习等诸多技术取得突破的基础上实现了腾飞。在未来的人类生活中,人工智能也必将扮演越来越重要的角色。对于这样的图景,我们自不必惊慌,但却也不可掉以轻心。对于人工智能的治理,找到正确的方向并采取合理的措施,正是当下所应该重视的政策议题。而本文的主旨也正在于此:打破长久以来人们对于人工智能的“笼统”式担忧,指出人工智能技术发展的技术逻辑及其所引发的治理挑战,并在此基础上提出相应的政策选择。人工智能治理的这三个基本问题,是重构治理体系、创新治理机制、发展治理工具所必须思考的前提。伴随着我国国家层面战略规划的出台,我国人工智能的发展也必将跃上新台阶。在此背景下,深入探讨人工智能治理的相关公共政策议题,对于助推一个人工智能时代的崛起而言,既有其必要性,也有其迫切性。(来源:中国行政管理 文/贾开 蒋余浩 编选:中国电子商务研究中心)

[参考文献]

[1]国务院关于印发新一代人工智能发展规划的通知[EB/OL]. http://gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

[2]霍金. AI可能成就或者终结人类文明[EB/OL].http://raincent.com/content-10-7672-1.html.

[3] Elon Musk. Artificial Intelligence is Our Biggest Existential Threat. https://theguardian.com/technology/2014/oct/27/elon-musk-artificial-intelligence-ai-biggest-existential-threat.

[4] Microsoft's Bill Gates Insists AI is A Threat. http://bbc.com/news/31047780. 2017-8-14.

[5] [以]赫拉利.人类简史[M].北京:中信出版社,2014.

[6] The President in Conversation With MIT’s Joi Ito and WIRED’s Scott Dadich. https://wired.com/2016/10/president-obama-mit-joi-ito-interview/. 2017-8-14.

[7] Turing,A. M. Computing Machinery and Intelligence. Mind,1950,59(236).

[8] [9][10] McCarthy,J.What is Artificial Intelligence. URL:http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.

[11] [12][13] [美]佩德罗-多明戈斯.终极算法:机器学习和人工智能如何重塑世界[M].黄芳萍译.北京:中信出版社,2016.

[14] Benkler,Y. The Wealth of Networks:How Social Production Transforms Markets and Freedom. Yale University Press,2006.

[15] Foucoult,M. Discipline and Punish. A. Sheridan,Tr.,Paris,FR,Gallimard,1975.

[16] Srnicek,N.,& Williams,A. The Future isn't Working. Juncture,2015,22(3):243-247.

[17] Preparing for the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. 2017-8-14.

[18]薛亮.“日本推动实现超智能社会‘社会5.0’”[EB/OL]. http://istis.sh.cn/list/list.aspx?id=10535.

[19] Thierer,A. Permissionless Innovation:The Continuing Case for Comprehensive Technological Freedom. Mercatus Center at George Mason University,2016.

[20] Artificial Intelligence:Opportunities and Implications for the Future of Decision Making.https://gov.uk/government/uploads/system/uploads/attachment_data/file/566075/gs-16-19-artificial-intelligence-ai-report.pdf.

[21]周衍冰.大数据产业在法国的发展及应用[N].学习时报,2014-11-03.

[22] Thierer,A. D.,& Watney,C. J. Comment on the Federal Automated Vehicles Policy,2016.

[23] [美]杰瑞·卡普兰.人工智能时代:人机共生下财富、工作与思维的大未来[M].杭州浙江人民出版社,2016.

[24] Marcel Rosenbach. How Google and Facebook Can Reshape Elections.http://spiegel.de/international/germany/google-and-facebook-could-help-decide-2017-german-election-a-1120156.html.

[25] Van Parijs,P. Basic Income:A Simple and Powerful Idea for the Twenty-first Century. Politics & Society,2004,32(1).

第8篇

前不久,一场围棋大战吸引了全世界的目光。这场大战在韩国首尔上演,共5轮。大战之所以举世瞩目,是因为对战的双方是韩国九段棋手李世石与围棋人工智能程序AlphaGo。令人惊叹的是,整个比赛过程中,AlphaGo的表现都堪称完美,最终以4:1击败李世石。

这个战胜人类世界围棋冠军的AlphaGo程序到底是何方神圣?它为什么如此厉害?人工智能对人类来说到底意味着什么? 从“深蓝”到AlphaGo

人工智能是计算机科学的一个分支,它企图了解人类智能的实质,并生产出一种新的、能以与人类智能相似的方式做出反应的智能机器。人工智能是对人的意识、思维的信息过程的模拟,使得机器能像人那样思考,甚至超过人的智能。自1956年这个概念被提出并确立以来,该领域就被视为人类最高的梦想之一。

1997年,IBM的超级计算机“深蓝”以2胜1负3平的成绩战胜了当时世界排名第一的国际象棋大师加里・卡斯帕罗夫,一时间全球轰动,而“深蓝”的设计者们当时就畅想:何时计算机也能下围棋呢?

而现在无疑又是一个人工智能历史上最重要的时刻。围棋和国际象棋在复杂程度上不属于一个量级,围棋是一种变数极多、充满不确定的竞技,每一步棋的可能性都是一个几乎无法穷尽的量级,一回合有250种可能,而一盘棋可以多达150回合。

此外,下围棋的过程中还会出现“吃子”情况,加剧了其复杂性。曾任职谷歌公司的李开复说,当年“深蓝”与卡斯帕罗夫的对局,实际上使用的是人工调整的评估函数,并用特殊设计的硬件和“暴力”的搜索征服了国际象棋级别的复杂度,围棋则不行。“因为它的搜索太广,每一步的选择有几百而非几十;也太深,一盘棋有几百步而非几十步。”李开复在知乎上如此回答。

此外,围棋问题与现实生活中的问题相通,国人甚至将下围棋视为洞悉人性、参悟人生的过程。然而,现在下围棋的却是一个机器,意味着这个机器除了拥有超强的记忆能力、逻辑思维能力,还要拥有创造力甚至个性。

“感觉就像一个有血有肉的人在下棋一样,该弃的地方会弃,该退出的地方退出,非常均衡的一个棋风,真是看不出出自程序之手。”围棋排名世界第一的柯洁说,AlphaGo有好几次落子极其“非常规”,许多专业棋手都表示看不懂。而“棋圣”聂卫平甚至表示自己想要对AlphaGo的“惊人一手”脱帽致敬,因为它“用不可思议的下法辟立了围棋常识之外的新天地”。也就是说,这不是AlphaGo从既往棋局中复制过来的,而是自己创造的战术打法。 人工智能进入实用阶段

实际上,AlphaGo是通过蒙特卡洛树搜索算法和两个深度神经网络合作来完成下棋。在与李世石对阵之前,谷歌首先用人类对弈的近3000万种走法来训练AlphaGo的神经网络,让它学会预测人类专业棋手怎么落子。然后更进一步,让AlphaGo自己跟自己下棋,从而又产生规模庞大的全新棋谱。谷歌工程师曾宣称AlphaGo每天可以尝试百万量级的走法。

“它们的任务在于合作‘挑选’出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在计算机可以完成的范围内。在本质上,这和人类棋手所做的一样。”中科院自动化研究所博士研究生刘加奇说。

“传统的棋类软件一般采用暴力搜索,包括深蓝计算机,它是对所有可能结果建立搜索树,根据需要进行遍历搜索。这种方法在国际象棋、跳棋等方面还具有一定可实现性,但对于围棋就无法实现。”中科院自动化研究所研究员易建强说,“ AlphaGo利用深度学习的方法降低了搜索树的复杂性,搜索空间得到有效降低。比如,策略网络负责指挥计算机搜索出更像人类高手该落子的位置,而估值网络负责指挥计算机搜索出后续更有可能获胜的一个落子位置。”

刘加奇进一步解释,深度神经网络最基础的一个单元就类似人类大脑的神经元,很多层连接起来就好比是人类大脑的神经网络。AlphaGo的两个神经网络“大脑”分别是策略网络和估值网络。

“策略网络主要用来生成落子策略。在下棋的过程中,它不是考虑自己应该怎么下,而是想人类的高手会怎么下。也就是说,它会根据输入棋盘当前的一个状态,预测人类下一步棋会下在哪里,提出最符合人类思维的几种可行的下法。”

然而,策略网络并不知道自己要下出的这步棋到底下得好还是不好,它只知道这步棋是否跟人类下的一样,这时就需要估值网络来发挥作用。

刘加奇说:“估值网络会为各个可行的下法评估整个盘面的情况,然后给出一个胜率。这些值会反馈到蒙特卡洛树搜索算法中,通过反复如上过程推演出胜率最高的走法。蒙特卡洛树搜索算法决定了策略网络仅会在胜率较高的地方继续推演,这样就可以抛弃某些路线,不用一条道算到黑。”

AlphaGo利用这两个工具来分析局面,判断每种下子策略的优劣,就像人类棋手会判断当前局面以及推断未来的局面一样。在利用蒙特卡洛树搜索算法分析了比如未来20步的情况下,就能判断在哪里下子赢的概率会高。 “奇点”正在临近?

人工智能越来越近。显然,它并不会只用来下棋,实际上它正掀起一轮轮产业变革、经济变革甚至社会变革。

“人工智能将有助于人类解决疾病、医疗、气候、能源、数据、游戏等多个领域的问题,我们将与各领域最顶级的研究人员合作,促进人工智能与创业、产业领域的有机结合。” AlphaGo开发者德米什・哈萨比斯表示。

哈萨比斯当然不想把人工智能局限于棋盘上,他将目光投向了更为广阔的世界,力争开发出可以用于多个领域的通用型学习机器,制造出可以像人类一样从白纸状态通过自主学习找到问题解决方案的人工智能。他将这一目标比喻为实现人类登月梦想的“阿波罗计划”。哈萨比斯还说,未来将开发在任何地方都能使用的通用人工智能。也就是说,从硬件到软件、从个别商品到系统的统合,这种趋势将会改变产业和人们的日常生活。

同哈萨比斯一样,全球顶级企业也将“赌注”压在了人工智能之上。全球科技商业预言家、畅销书《失控》作者凯文・凯利认为,未来20年,全球最重要的技术就是人工智能。英国帝国理工学院的人工智能学者马克・戴森罗克说:“如果人工智能以这种速度发展下去,我们或许在未来10年到20年里就能看到电影《钢铁侠》中那个人工智能助手贾维斯。”

韩国《中央日报》的报道称,人工智能的威力正在进入实用阶段,因为像谷歌、IBM、微软、苹果、Facebook这种世界级的信息通信技术企业,把与大数据相结合的人工智能技术陆续在医疗、金融、体育、社交网络领域实现实用化。人工智能技术与制造业的接轨也在变快。有人预测,如果人工智能与无人驾驶汽车接轨,那么将没有交通事故,保险公司也将无需存在。如果让人工智能与无人机接轨,毫无疑问这将使得商业化如虎添翼,也将给武器系统带来影响。

此外,2015年,专注于初创企业的市场调查公司“风险扫描”追踪分析了全球855家人工智能初创企业,发现这些企业横跨13个门类,总估值超过87亿美元,其中计算机深度学习和视觉图像识别两个方向最受投资者青睐。

在科幻电影《超验骇客》中,约翰尼・德普饰演的科学家因为研发人工智能而被恐怖组织暗杀,临死之前仓促地将自我意识上传至电脑。最后,这名科学家成为一个能够不断进化的结合生物智慧和人工智能的“超级计算机”。

AlphaGo战胜李世石之后,人工智能通过自我进化增加智慧已变为现实。搜狗CEO王小川认为,人工智能能做到随着时间推移变得越来越聪明,正如金庸小说中老顽童让自己的左手和右手“互搏”,从而练就绝世武功。

“在下棋这个领域,AlphaGo这样一台在算法上没有天花板的机器,将有机会登峰造极。”王小川评价说。

并非所有人都对人工智能抱以乐观的态度。早在1993年,美国科幻作家弗诺・文奇在《即将到来的技术奇点》一文中写道:“在未来30年间,我们将有技术手段来创造超人的智慧。不久后,人类的时代将结束。”在他的描述中,所谓“技术奇点”是指在未来的某个时期,当机器达到“强人工智能”时,智商将超过人类,从而对人类社会造成巨大冲击。

而自称美国未来学家的库兹韦尔则在他2005年出版的《奇点临近》一书中,把“技术奇点”进一步转述为“奇点理论”。他描述道:“2045年将出现‘奇点’时刻,人类文明走到终点,生物人将不复存在,取而代之的是一个叫做‘奇点人’的新物种。”

霍金也对人工智能表示极度担忧:“人工智能开发成功将会是人类历史上最大的事件。但不幸的是,这可能也会是最后一个大事件。”去年,霍金还与特斯拉创始人伊隆・马斯克、苹果计算机共同创办人史蒂夫・沃兹尼克等数百名顶尖精英发表联署公开信,表示人工智能对人类生存的威胁更甚于核武器。

霍金认为,特别是高科技军事装备的普及,如美军在战场上大量使用无人机远程杀敌,或多或少印证了这种忧虑。

第9篇

AI生长

人工智能新近的发展似乎显得太快,超出了人们的预期和适应能力。2014年6月7日,正好是阿兰・图灵逝世60周年纪念日,聊天程序“尤金・古斯特曼”有争议地通过了图灵测试。此后宣称通过图灵测试的计算机频频出现。人们普遍相信,计算机模仿人类谈话而不被察觉,彻底实现的一天即使现在还没有到来,也为时不远了。

神经元网络理论、控制、深度学习和大数据的进步在不同侧面加强了人工智能,使它在一些特定的任务上打败了人类。特斯拉的联合创始人、CEO马斯克说,计算机比人更适合开车,“当所有的车都知道自己该怎么开的时候,让人来操控两吨重的致命机械太危险了”。理智上我们不得不赞同他,但情感上似乎难以接受――世界的方向盘是否也和汽车的方向盘一样,从此交到了计算机的手里?计算机冷笑一声:“当然是我们来控制世界,连方向盘都不需要。”

波普(K. R. Popper)的话在耳边响起――客观知识的世界,是人类创造的,却是自主的,也会具有创造性。尽管他是在50年前(确切地说是1967年)说这番话的,此刻我们面对人工智能这一存在,“细思恐极”。

强人工智能――会自主行动的机器人,会学习、自我改进、像生物一样进化的机器人是迫在眉睫的现实吗?对人工智能的担心究竟只是精神自虐,还是伴随着符合事实与逻辑的预测?如果是前者,不需要AI恐惧的人可以松一口气,如果是后者,早早想出应对之策才行。

两种恐惧

分析起来,AI恐惧无非两种,可以称为“AI的客观后果恐惧”和“AI的主观意图恐惧”。在两种恐惧之前还有一种失落,因为机器比人能干,未来的电脑可能比人还聪明,人之为人的部分荣誉感被剥夺了。但这种失落很快就能适应,人们早有经验――起重机比人力气大,望远镜比人看得远,计算器比人算得快,飞机还会飞呢。超越人能力局限的东西很多很多,只要它们被人掌握着,就不仅仅是对人能力的超越,而且是对人能力的延伸,能力再大也不用害怕。电脑真比人聪明了,就算有点失落,只要它们为我们所用,听我们安排,总归好处多多。况且“聪明”定义模糊,解微分方程,下棋,电脑都比人厉害,是不是就比人聪明了呢?也不能简单地下结论。

在客观后果一侧,讨论的比较多的是就业问题,担心机器人或者软件把人的工作岗位一批一批地抢走。工业生产不用说,流水线工人是最先被机器人替代的,无人工厂不是什么科幻,而是既成事实。之后是服务业,有餐馆尝试用小型无人机上菜,也有机器快递小哥,各种智能机器发明出来之后,大量留给人的服务岗位就会消失。如果你现在是仓库管理员,或者坐在高速公路入口发卡,赶紧准备下一份工作吧。之后是企业中层,启用各种交流软件和自动工作流程软件,企业内部上传下达的事情少了,启用商业智能软件,辅助决策的参谋岗位也少了。之后是创造性工作,包括媒体工作,做主持人、做研究员、做建筑师,虚拟角色和软件胜任愉快,连写文章、作曲、画画、导致失业不是人工智能负面后果的全部,担心还包括健康问题、非对称战争等等。家里有了机器人服务员,人们衣来伸手饭来张口,只用当一个沙发土豆就可以了。大量无人飞机和机器士兵,改变了战场的伦理――优势一方没有面对活人敌手的心理压力,打起仗来点点鼠标,像打游戏;劣势一方面抵御机器的进攻,连敌人的面都见不着,愤怒的情绪可能导向更多恐怖极端手段,把战火引向敌方非军事人员。

这些对人工智能改变社会的推测大体合乎逻辑,但并不带来太大的困扰。人工智能造成的负面后果会被它带来的好处抵消,人们相信积极影响远远大于消极影响,毕竟危险的、繁重的和乏味的工作由机器人来承担更合适。

在主观意图一侧,AI恐惧的程度会高出几个级别。人们担心的是机器产生压迫人、奴役人、消灭人的意图和行动。尽管这种担心非常严肃,也不见得是杞人忧天,但此刻还不到真正需要恐惧的时候。就像看电影不能代替学物理一样,面对AI发抖也不能代替冷静的分析。确实没有论据证明,只有生物才能产生意识,因此假设机器可能产生意识在科学上是“合法”的,但反过来,证实机器可能产生意识这个假设的论据,现在也还没有出现。何必被一种可能性有多大都不知道的想法吓破胆呢?除非你喜欢这种恐惧感,就像喜欢看鬼片一样。

以“坏”自保

最近有三个“牛人”聊到这个话题。2016年4月,《三体》作者、科幻作家刘慈欣,百度首席科学家吴恩达,对话“未来人工智能20年”。梁冬主持对话,扮演对人工智能的发展忧心忡忡的人。按照“AI的客观后果恐惧”和“AI的主观意图恐惧”分类法梳理三个人的观点,先说主观意图一侧。吴恩达的意见用一句歌词就概括了,“一千年以后……”,他的意思是机器表现得像人一样,成为有意识的物种,还早着呢,究竟会不会也不知道,何必担心?梁冬说,模仿鸟造飞机不成功,人类造出飞行机器其实用了和生物界不同的方案,因此造出思考机器也不必了解人脑,对人脑的无知根本不是人工智能的发展障碍。吴恩达和刘慈欣都表示同意。三位一致认为,如果机器真成了物种,那也是人类的孩子,一开始会模仿父母(即人类)的行为,如果机器变成了坏孩子,人类也没别人可埋怨。刘慈欣说,他特别“相信”人的“坏”,足以防范一个机器物种伤害人类自己。