时间:2022-10-11 21:23:48
导语:在传动技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
大家下午好!
全国艺术院校院(校)长高峰论坛在经过连续六届的成功举办后,今天又以分论坛的形式移师杭州,并且得到了在座各位专家、学者、领导的大力支持。在此,我代表中国文化传媒集团,向前来参加论坛的仲呈祥先生、董长侠先生、陈汗青先生,以及各位院校长和各位朋友们、同志们表示热烈的欢迎和衷心的感谢!
去年,我和在座的各位一同参加了第六届“全国艺术院校院(校)长高峰论坛”,给我留下了非常深刻而难忘的印象。作为当代有作为的艺术家,应该有一种历史的责任感和使命感,应该敢于担当、善于担当。我们的艺术家要用眼睛去观察,用笔去书写、记录,给历史、给后人留下宝贵的精神和文化财富。我们的作品,无论水平高低,应是对生动的社会现实的记录,它的价值就在这里。百年以后,我们在研究这些作品时,就能够从中得到一些启示,能够对当时所处历史的政治、经济、文化有所体悟。这是我们对历史的贡献。历史上有影响的文学作品,同样都是对当时政治、经济、文化的深刻记录,这是文学作品的价值所在。我们的艺术工作者、文化工作者为什么要“三贴近”?为什么要进行“走转改”?就是要让我们的文化艺术工作者深入的体验生活,反映鲜活的内容,这些鲜活的内容正是人民群众平凡的生活的凝练和积累。我们可以从中吸收营养,成为我们创作的源泉。所以,作为一个艺术工作者和文化工作者,就要善于观察,善于总结,善于提炼,用我们的笔,用我们的眼进行剖析、提升,来反映社会。我们这个论坛、包括杭州发展基地,就是要给各位艺术家搭建一个平台,给大家营造一个宽松的、和谐的、融洽的、开放的氛围,让大家的思想和意识无限奔驰,给大家一个广阔的空间,激发艺术家们的创作灵感,为社会、为人类留下宝贵的财富。正常的文艺批评是允许的,正常的文艺批评是激发我们改进和创作的基础,激发着我们如何深入生活,反映最鲜活的生活当中的精华,是帮助我们提高的一个重要手段。我们提供这样一个环境,就是要吸引大家的参与,大家的参与就是对我们工作的最大支持。对我们艺术工作者来说,责任感和担当非常重要,我希望通过我们的基地,能够有一大批传世佳作,若干年以后,我们这里创作出的作品应该是对国家、对杭州当今政治、经济、文化的反映。希望我们的艺术家能够利用好这个基地,成就艺术创作生涯中辉煌的一段。
党的十六大特别是十七大以来,文化建设的地位和重要性不断凸显。从国家层面来看,文化建设逐渐成为与经济建设同步发展的基本国策,有利于文化蓬勃发展的宏观环境不断得到优化和提升,文化建设在国民经济中所占的比重在逐年提高。从大众层面来看,文化建设所取得的丰富而巨大的成就正在改变着我们的物质生活和精神生活。众所周知,被历代文人誉为“人间天堂”的杭州,原本是长江三角洲经济圈中心城市之一,也是一座全球闻名的旅游城市,近几年来,因为拥有了“天堂硅谷”“动漫之都”等文化名片而享誉全国。杭州在文化建设上出奇制胜,成为国内众多城市学习效仿的对象。一踏进这座城市,你就会发现,这里的老百姓对文化有着一种深厚的感情,衣食住行,无处不在。我想,这才是一座城市真正的魅力所在。如果用我们艺术家的眼光去观察,可能会更加深刻。
文化建设也在影响着我们在座的每一位同志的事业。去年年初,在以仲呈祥先生为代表的一大批专家学者的长期呼吁下,国务院学位委员会审议通过了将艺术学科独立为“艺术学门类”的决议,使原属“文学门类”的艺术学科成为新的单独的学科门类。这为艺术教育的发展提供了更加广阔和美好的前景。而美术学科也由以往的二级学科提升为一级学科,美术教育发展的条件不断完善和优化。我们今天的论坛,正是在这种背景下举办的,其主要目的在于深入学习十七届六中全会关于推动社会主义文化大发展大繁荣,支持文化产业和艺术教育产学研融合以及公共文化服务平台建设的重要精神,总结交流全国艺术院校产学研发展的经验,推动全国艺术院校在国家文化创意产业发展中发挥更加积极的作用。
关键词:齿轮传动系统振动特性
中图分类号:U223.5+13文献标识码:A
1齿轮传动振动国内外研究概况
研究表明:机械的振动和噪声,其中大部分来自齿轮传动工作时产生的振动,因此机械传动中对齿轮动态性能的要求就更为突出。要满足这一要求,人们开始把越来越多的注意力转向齿轮传动的动态性能研究。具体地说,就是研究齿轮传动系统的动载荷、振动和噪声的机理、计算和控制。就需要从振动角度来分析齿轮传动装置的运转情况,并按动态性能最佳的目标进行设计。
为了解决上述问题,以研究齿轮传动和噪声特性为主要内容的齿轮动力学十多年来得到了较广泛的重视和研究,日本机械工程学会1986年对齿轮实际调查与研究表明,评价齿轮高性能化的前两项分别为低噪声和低振动。1992年在美国机械工程协会主办的第六届机械传动国际学术会议(6th Intenational Power Transmission and Geartng Conference)上,齿轮动力学研究得到了普遍的重视,宣读论文占总数的21%,列数的第一位,突出表明了齿轮传动向高速、重载方向发展后,其动力学研究的紧迫性。我国于1984年成立了机械工程学机械传动分会齿轮动力学会组,并成功地举行了三次全国齿轮动力学学术会议,促进了我国学者在这一领域内的发展。
对于齿轮轮齿的误差激励,早在1958年,Harris就认为它是引起齿轮振动的三种主要内部激励之一。七十年代许多学者(W.D.Mark,A.W.Lee,D.B.Welbowrn等)研究过传递误差的统计性质及其对齿轮振动和噪声的影响。其中T.Tobe研究过齿轮动载荷的统计特性,首先建立了直齿轮系统的非线性Fokker-Planck方程,并由此推出了矩方程,然后用统计线性化方法求解,从而得到响应的前二阶矩。在分析中,他们把静传递误差分解为确定性分量和随机分量,并将随机分量表示成“经滤波的白噪声”。1985年,A.S.Kumar等分析了直齿轮动载系数的统计特性,随机输入是传递误差,处理成经时不变的成形滤波器滤波的高斯白噪声。推出了等效离散时间状态方程和均值,方差波动方程,以确定啮合位置随机误差幅值和运转速度等对动载系数均值和方差的影响。
2齿轮传动动态特性研究现状
齿轮传动动态特性的研究大体上可分为两大部分:齿轮传动系统振动特性的研究和齿轮结构振动的研究。
2.1齿轮传动系统振动特性的研究
齿轮传动系统振动的主要激励为随时间变化的啮合刚度、齿轮误差和不稳定载荷,它是一个参数自激振动系统,齿轮传动的振动包括径向、周向和轴向的振动。关于直齿轮刚度计算已有比较成熟的Weber―Banaschek公式。由于斜齿轮接触线沿齿宽是倾斜的,因此在计算斜齿轮啮合刚度时,首先需要研究斜齿轮的载荷分布及轮齿变形。受计算手段的限制,早期的研究是把斜齿轮轮齿假设成由大量独立的法向薄片所组成(即“薄片”理论),各薄片的变形是独立的。建立在这种模型下的斜齿轮载荷分布计算,忽略了各片之间的相互影响,进一步的研究是将斜齿简化成一刚性或弹性夹持的悬臂扳。由于悬臂扳几何形状与轮齿相差较大,因此所得结论很少校用来研究载荷分布,大多以此研究由载荷引起的变形及齿根弯矩。Monch和Roy用冻结法对环氧树脂齿轮的载荷分布做了光弹性实验。Conry和Seireg用线性规划技术计算了斜齿轮接触线上的载荷分布,其轮齿变形被分成弯曲变形,接触变形、支承变形等,用材料力学和赫兹变形公式计算各变形分量。Mathis和Simon用三维有限元研究了斜齿轮的载荷分布和变形。Nicmann和BhthBe及Nicmann和winter是将接触线的总长度变化用来估计齿轮的刚度波动。著名齿轮动力学专家、日本东京工业大学Umezawa用齿轮的有限差分模型对斜齿轮沿接触线的裁荷分布等作了理论分析后,对一对有限齿宽齿轮的载荷分布和啮合刚度特性进行了一系列的研究,并根据齿轮端面重合度εα和轴面重合度εg的大小判断齿轮啮合刚度波动的幅值(即计算振动幅)大小[8][9]。由于Umezawa是通过一等效悬臂梁的有限差分模型总结出的斜齿变形公式,因而他的研究尚无法考虑齿轮结构尺寸的影响。
Umezawa通过实验和仿真计算研究认为在相同误差情况下,端面重合度εα和轴面重合度εg相同的齿轮副的振动水平是一样的。在国内,齿轮系统动态方程求解的方法主要有状态空间法、复富氏系数法和富氏级数(Fourier serics)法。这些方法都不同程度地简化了齿轮传动系统振动特性的求解,保留了系统的参变和整体特性。为了设计出具有良好动态降性和低噪声齿轮传动系统,近年来人们对影响齿轮传动系统动态特性的因素做了不少理论计算和实验研究。采用柔性辐板齿轮结构是降低齿轮传动噪声,提高齿轮传动乎稳性的又一主要措施,Berestnev的实验研究表明,通过改变轮体结构尺寸,可使齿轮的弯曲、接触疲劳强度增加1.2~1.4倍,寿命增加1.5~2倍,振动噪声减小6~8dB。国内对钢轮毂、橡胶轮辐的柔性幅板齿轮系统的降噪特性进行了实验研究,结果表明在模数较大的场合,其降噪效果在7dB左右,减振效果为50%,高频噪声可下降6~18dB。
2.2 齿轮结构振动的研究
齿轮结构固有频率及振型、动态响应和动应力的研究是建立在一般结构振动计算方法基础上的。为了避免共振,防止颤振,或者是研究其响应问题,一般都要求先计算结构的模态,目前在计算结构动力学问题中虽为有效的数值方法是有限单元法。
然而,随着结构日益复杂化、大型化的发展,使人们不得不将眼光放在各种节省计算内存的求解方法上。这些促进了各种降阶技术和动态子结构技术的兴起和发展。如果将求解静力问题的波前法用于子空间迭代法中,就能使一般工程结构问题可以在微机上求解。由于在国内外曾发生多起齿轮轮体的共振导致的破坏事故,所以齿轮轮体固有振动特性的研究得到国内外的普通关注。这在对齿轮传动安全运行要求很高的航空工业来说尤其重要。美国波音费托尔公司(Boeing Vetrol)就是用有限元法来预测齿轮结构的共振频率。国内外对盘形圆锥齿轮结构固有振动特性进行了大量的理论和实验研究,取得了一批非常有价值的结论。Oda用Miller公式计算了具有不同福板支承形式的薄轮缘直齿轮结构的固有频率,研究了其传动系统的振动加速度。国内外的理论和实验研究表明,齿轮结构的行波共振会造成齿轮的成块断裂。
参考文献:
[1]陈予恕.非线性振动.天津:天津科技出版社,1983,251
参考文献:
[1]肖人济.利用CAD实现参数化设计[J].机械设计,2007(4).
[2]郑清燕.基于CAD的快速设计的若干关键技术研究[J].机械制造,2008(2).
[3]陈炜,董洪.实现智能化CAD的汽车覆盖件模具结构设计[J].机械设计于研究,2009(4).
[4]纪陈恳.在CAD开发中实现参数化设计模式研究[J].机械设计,2010(5).
[5]陈卫伟.CAD参数化设计在机械制造中的应用[J].机械设计与制造,2009(14).
[6]段约光.基于工程数据库的CAD系统参数设计研究[J].模具工业,2008(2).
[7]韩冠宇.智能化机械传动装置CAD系统[J].机械设计,2009(5).
参考文献
[1]国土资源部.第二次全国土地调查培训教材[M].北京:中国农业出版社,2007.
[2]马俊海,吕长广.全野外数字测图技术的现状与发展趋势[J].测绘与空间地理信息,2006,29(5):15—17.
[3]佟士懋.AutoCADActiveX/VBA二次开发技术基础及应用实例[M].北京:国防工业出版社,2006.
[4]梁雪春,崔洪斌,吴义忠.AutoCAD实用教程[M].北京:人民邮电出版社,1998.
参考文献
[1][美]DonaldA.Neamen著,赵桂钦,卜艳萍.译,电子电路分析与设计.电子工业出版社,2003.
[2]ConnellyJA,ChoiP.MacromodelingwithSPICE,Prentice-Hall,1995.
[3]FenicalLH.Pspice:ATutorlal>Prentice-Hall,1992.
[4]谢嘉奎主编,电子线路.高等教育出版社,2000.
[参考文献]
[1]金映丽,王继军,顾宏民,蜗轮蜗杆传动CAD系统的研究与开发[J.沈阳工业大学学报,2004。26(2):124-126。
[2]乔桂玲,吕莉,蜗轮蜗杆的参数化设计与绘图[J],煤矿机械,2007,28(2):85-88。
[3]机械设计手册编委会,机械设计手册[M],北京:机械工业出版社。2004。
论文摘要:文章对数控机床的爬行与振动故障原因作了简单分析,指出一些诊断排故的方法和策略
数控机床是集机、电、液、气、光等为一体的自动化机床,经各部分的执行功能,最后共同完成机械执行机构的移动、转动、夹紧、松开、变速和换刀等各种动作,实现切削加工任务。工作时,各项功能相互结合,发生故障时也混在一起,故障现象和原因并非简单一一对应。一种故障现象可能有几种不同的原因,大部分故障以综合形式出现,数控机床的爬行与振动就是一个明显的例子。
数控机床进给伺服系统所驱动的移动部件在低速运行时,出现移动部件开始不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,如此周而复始,这种移动部件忽停忽跳,忽快忽慢的运动现象,称为爬行;而当其高速运行时,移动部件又出现明显的振动。这一故障现象就是典型的进给系统的爬行与振动故障。
造成这类故障的原因有多种可能,可能是因为机械部分出现了故障所导致,也可能是进给系统电气部分出现了问题,还可能是机械部分与电气部分的综合故障所造成,甚至可能因编程有误也会产生爬行故障。
一、分析机械部分原因与对策
因为数控机床低速运行时的爬行现象往往取决于机械传动部分的特性,高速时的振动又通常与进给传动链中运动副的预紧力有关,由此数控机床的爬行与振动故障可能会在机械部分。
如果在机械部分,首先应该检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果导轨间隙调整不好,仍会造成爬行或振动。对于静压导轨副应着重检查静压是否到位,对于塑料导轨可检查有否杂质或异物阻碍导轨副运动,对于滚动导轨则应检查预紧措施是否良好。关注导轨副的也有助于分析爬行问题,导轨副状态不好,导轨的油不足够,致使溜板爬行。这时,添加油,且采用具有防爬作用的导轨油是一种非常有效的措施。这种导轨油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性防止爬行。
其次,要检查进给传动链。因为在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。定位精度下降、反向间隙增大也会使工作台在进给运动中出现爬行。通过调整轴承、丝杠螺母副和丝杠本身的预紧力,调整松动环节,调整补偿环节,都可有效地提高这一传动链的扭转和拉压刚度(即提高其传动刚度),对于提高运动精度,消除爬行非常有益;另外传动链太长,传动轴直径偏小,支承座的刚度不够也是引起爬行的因素。因此,在检查时也要考虑这些方面是否有缺陷,逐个排查。
二、分析进给伺服系统原因与对策
如果故障原因在进给伺服系统,则需分别检查伺服系统中各有关环节。数控机床的爬行与振动问题属于速度问题,与进给速度密切相关,所以也就离不开分析进给伺服系统的速度环,检查速度调节器故障一是给定信号,二是反馈信号,三是速度调节器自身故障。根据故障特点(如振动周期与进给速度是否成比例变化)检查电动机或测速发电机表面是否光整;还可检查系统插补精度是否太差,检查速度环增益是否太高;与位置控制有关的系统参数设定有无错误;伺服单元的短路棒或电位器设定是否正确;增益电位器调整有无偏差以及速度控制单元的线路是否良好,应对这些环节逐项检查、分类排除。
三、其它因素
有时故障既不是机械部分的原因,又不是进给伺服系统的原因,有可能是其它原因如编程误差。如FANUC6M系统数控机床在一次切削加工时出现过载爬行。经过仔细核查,发现电动机故障引起过载,更换电动机过载消除,可爬行还是存在。先从机床着手寻找故障原因,结果核实传动链没问题,又查进给伺服系统确认无故障,随后对加工程序进行检查,发现工件曲线的加工,采用细微分段圆弧逼近来实现,而在编程中用了G61指令,也即每加工一段就要进行一次到位停止检查,从而使机床出现爬行现象,将G61改为G64指令连续切削,爬行消除。
如果故障既有机械部分的原因,又有进给伺服系统的原因,很难分辨出引起这一故障的主要矛盾,这是制约我们迅速查出故障原因的重要因素。面对这种情况,要进行多方面的检测,运用机械、电气、液压等方面的综合知识,采取综合分析判断,排除故障。
数控机床是技术密集和知识密集的设备,故障现象是多样的,其表现形式也没有简单的规律可遵循,这就要求维修的技术人员要有电子技术、计算机技术、电气自动化技术、检测技术、机械理论与实践技术、液压与气动等较全面的综合技术知识,还要求具有综合分析和解决问题的能力。
参考文献:
汽车底盘四轮驱动新技术
越来越多的新电子控制设备被应用于汽车上。其中许多新的底盘控制技术设备在汽车的安全性、动力性、操作稳定性等方面起着重要的作用。它包括全电路制动系统(BBW,Brake-by-Wire)、汽车转向控制系统(RWS、ESP等)、汽车悬架控制系统(ADC、ARC等)以及现在发展起来的汽车底盘线控技术(线控换档系统、制动系统、悬架系统、增压系统、油门系统和转向系统等)。再加上汽车CAN总线的应用,42V电压技术的研究,电动汽车的研究都会带动汽车底盘控制技术向更高层次的发展。如今汽车底盘控制技术正向电子化、信息化、网络化、集成化方向发展。下面该论文就分别对汽车底盘的构造技术以及这些新技术的发展状况及应用作一一分析
汽车底盘的构造介绍
底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。
(1)传动系。传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
(2)制动系。汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路條件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
(3)转向系
汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。
转向系统的基本组成:转向操纵机构、转向器和转向传动机构
(4)行驶系
行驶系由汽车的车架、车桥、车轮(注意)和悬架等组成。
汽车底盘最新技术的发展现状
(1)汽车底盘的电子化技术。主要包括全电路制动系统(BBW)、汽车转向控制系统和汽车悬架控制系统。
(2)汽车底盘的线控技术
所谓线控就是用电子信号的传送取代过去由机械、液压或气动的系统连接的部分,如换档连杆、油门拉线、转向器传动机构、刹车油路等。它不仅是取代连接,而且包括操纵机构和操纵方式的变化,以及执行机构的电气化。这将改变汽车的传统结构。
(3)汽车底盘集成化技术
现代汽车底盘电子控制系统正从最初单一控制发展到如今的多变量多目标综合协调控制,这样可以在硬件上共用传感器、控制器件、线路,使零件数量减少,从而减少连接点,提高可靠性,在软件上实现信息融合、集中控制,提高和扩展各自的单独控制功能。
(4)汽车底盘的网络化技术
目前汽车上每个总成几乎是机械、电子和信息一体化装置。在系统中电子和信息部分所起的作用也越来越重要,汽车工电子装置的增加使连接的电子线路迅速膨胀,线束越来越复杂。在汽车设计、装配、维护中的负担甚至到了无法承受的程度。而且线路接头的增加引起安全隐患。另外线的重量和占用空间也是值得考虑的问题,重量的增加意味着降低效率。线路体积(直径)太大在相对运动的部分之间过线非常困难,所以在电子装置不断增加的情况下,减少线束成为一个必须解决的问题,而使用传统的点到点平行连接方式显然无法摆脱这种困境,因而基于串行通信传输的网络结构成为一种必然的选择。基于汽车底盘的电子化技术、线控技术的应用、汽车底盘的网络化技术成为必然。如何建立局域网将汽车底盘的各种电子设备的传感器、执行机构、ECU的数据和信息通过一个总的ECU进行集中控制成为急需解决的问题。
目前汽车底盘中采用的新技术
(1)主动悬架系统
在汽车上使用的统悬架是由弹簧、减震器、导向机构和推力杆等组成的,悬架的功能是减弱由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统振动.由于这种悬架作用是外力引起的,所以称为从动悬架。
所谓主动式悬架系统,是控制环节中的执行元件能针对外力的作用,产生一个力来主动控制车身的移动和车轮受到的载荷(路面的作用力)。当汽车行驶在凹凸不平的路面时,执行元件抑制了输入方向的力,使悬架产生抽动。因此,主动悬架能够有效地抑制车身的侧倾,并使高度一致。
(2)四轮转向系统(4WS)
目前,世界上各汽车厂商都在积极开发4Ws车,主要出于两点考虑:一是可以提高车辆高速稳定性。尤其是在紧急换道行驶时;二是可以提高车辆在密集排放的停车场上进出的灵活性。但不管在哪种场合,都依靠高速时同相位转向来提高操纵稳定性.低速时采用逆相位转向提高操纵性。
(3)四轮驱动系统(4WD)
四轮驱动能够根据前后轴的转速,控制并分配其驱动力,使汽车具有防滑能力及良好的加速性和行驶稳定性,基于这些优点,四轮驱动已由7O年代以前主要用于“吉普车”发展到目前以轿车为中心迅速普及开来。
(4)防抱死制动系统(ABS)
防抱死制动系统(ABS)是一种开发时问最长、推广应用最为迅速的部件.也是目前最有效的安全部件,并已经成为汽车的标准装备。
(5)牵引控制系统(ASR)
1987年,宝马公司在其系列豪华车上用了一种牵引控制装置,由于效果不错.到了90年代,销往美国的宝马车也装上了这一系统,几乎同时,卡迪拉克也在90款联盟牌轿车上应用了这一系统,并且是标准装备。从那时起,牵引控制系统获得了广泛的应用,总计有23个厂家50余种车型应用了这一装置。
【关键词】 动力传动系统 液力变矩器 齿轮传动 仿真剧本
引言
动力传动系统是一个典型的多体、多工况、多激励系统,其组成包括发动机、液力变矩器、齿轮传动、离合器等子系统,各子系统仍是复杂的多刚体-柔体系统,其工作过程包括起步、换挡、制动、加速、减速等工况,其受力包括发动机的周期性激励,路面的随机激励,齿轮系统内部激励等。如何建立动力传动系统的动态模型并仿真其工作过程,对动力传动系统的匹配计算、强度校核、优化设计、疲劳分析、一体化控制具有十分重要的意义。本文根据MSC.ADAMS提供的各种建模方法,结合其它软件,实现了动力传动系统的虚拟仿真。
1 发动机
在MSC.ADAMS中利用Akima曲面拟合技术,将某型号柴油发动机的一组部分特性曲线拟合为部分特性曲面。根据部分特性曲面,插值出任意油门开度和发动机转速下的指示转矩值:式中ωe为发动机转速,α为油门开度,surface_engine为发动机特性曲面,0表示输出插值点坐标值。当把曲轴系简化为一当量转动惯量时,可采用多刚体系统模型,如图1所示,其各刚体质量、质心位置及转动惯量通过在CAD软件(如Pro/E)中建立精确实体模型得到。
2 液力变矩器
采用广泛应用于车辆上的三元件向心涡轮液力变矩器作为研究对象,忽略液力变矩器在偶合器工况下工作时的导轮惯性力矩,则其动态系统力学模型,如图2所示。
图2中、、、为非稳定工况下的泵轮轴动态转矩、泵轮动态液力转矩、泵轮构件当量转动惯量、泵轮转速;、、、为非稳定工况下的涡轮轴动态转矩、涡轮动态液力转矩、涡轮构件当量转动惯量、涡轮转速。
根据图2建立数学模型:
,
忽略循环圆内液体循环流量变化、忽略泵轮和涡轮中工作液体转动惯量以及机械损失,则:
=,=
式中λ为泵轮动态力矩系数,ρ为工作液体密度,为循环圆直径,k为动态变矩比。
当液力变矩器非稳定工况下的泵轮转速变化在-52rad/≤dω/dt≤52rad/时,液力变矩器的动态特性与静态特性的相对偏差在4.5%以内,可以用静态特性代替动态特性。此外,假定液力变矩器原始特性在各种工况下保持不变。因此,在进行仿真时,根据液力变矩器的原始特性曲线,直接利用Akima插值方法确定当前速比下的动态和值。
通常,发动机与液力变矩器通过结合共同工作,可视为一种新的动力装置,其模型框图如图3。在MSC.ADAMS中,用固定铰连接液力变矩器的泵轮和发动机的飞轮,利用MSC.ADAMS中的runtime function、data elements和system elements定义模型,采用仿真剧本控制各开关。利用此模型进行某全程调速柴油机和某正透穿液力变矩器共同工作仿真,能方便得出全程调速柴油机与液力变矩器共同工作的一些动态特性。
3 齿轮系统
齿轮系统是一个复杂的动力学系统,是建立动力传动系统模型的重中之重,直接采用MSC.ADAMS中的齿轮副不足以仿真齿轮系统工作时的动态特性。为此,作者探索出一套基于MSC.ADAMS的齿轮系统建模方法,可以生成齿轮实体,综合考虑时变啮合刚度、轮齿误差、啮合初相位、传动轴柔性对齿轮系统的影响。
3.1 齿轮副模型
传统的齿轮副扭转振动力学模型如图4所示。
设齿轮副的重合度在1-2之间,由图4可推得齿轮副扭转振动分析模型为:
在齿轮传动中,主动齿轮和被动齿轮上的轮齿不断进入啮合,啮合齿对不断发生变化以进行连续动力传递,在MSC.ADAMS中难以采用传统的齿轮副扭转振动模型描述这一过程。为此,对图4所示的齿轮副扭转振动力学模型进行变换,添加一无质量刚性辅助齿轮。无质量刚性辅助齿轮与主动齿轮组成一虚拟齿轮副;被动齿轮不再与主动齿轮啮合,而是通过扭簧与无质量刚性辅助齿轮连接。工作时,动力由主动齿轮通过虚拟齿轮副传递给无质量刚性辅助齿轮,再通过扭簧传递给被动齿轮。
上述齿轮副旋转模型可以在MSC.ADAMS中方便地实现:无质量刚性辅助齿轮可以通过定义一个密度足够小的齿轮来代替;虚拟理想齿轮副可以直接采用MSC.ADAMS中的齿轮副;扭簧可以通过定义一个如下的力矩来实现,该力矩作用于被动齿轮,反作用于无质量刚性辅助齿轮,其大小由无质量刚性辅助齿轮和被动齿轮之间转角、等效扭簧刚度、阻尼、等效扭簧初始角位移变动量决定。
3.2 多齿对啮合的初始相位
对于复杂的多级齿轮传动系统,同时有多对齿轮啮合,当考虑时变刚度、时变阻尼、时变误差时,各啮合齿对的初始刚度、阻尼、误差是各不相同的。在利用3.1所述齿轮副旋转模型定义多级齿轮的啮合时,需要确定各参数的啮合初始相位。鉴于啮合初始相位与齿轮的各实体参数和位置参数密切相关,把多齿对啮合的初始相位问题同3.3齿轮实体模型结合考虑。
3.3 齿轮实体模型
考虑到MSC.ADAMS/View齿轮实体建模功能缺乏,多齿对的啮合初始相位与齿轮的各实体参数和位置参数密切相关,作者基于齿轮滚齿加工过程,结合VC++编程及MSC.ADAMS/View二次开发技术,编制了渐开线直齿圆柱齿轮三维造型模块。它包括一个VC++程序文件、两个对话框、两个宏。利用该模块,可以生成任意精度的齿轮,并通过输入方位确定啮合关系及初相位。
3.4 刚度、阻尼与误差
阻尼、轮齿啮合误差多采用经验公式;齿轮啮合的时变啮合刚度、阻尼、轮齿啮合误差是在定义齿轮副旋转模型的等效扭簧时考虑的,可通过拟合曲线或函数给定;轴的柔性效应可采用折算法加以考虑,或通过同建立曲轴柔性体相同方法确定。
至此,便可实现对复杂多自由度齿轮系统的仿真,方便地得到齿轮系统在内部激励(时变啮合刚度、啮合阻尼、轮齿啮合综合误差)、外部激励(原动机、负载动态输入)共同作用下的动态响应。该齿轮系统可以同其它子系统相连,作为动力传动系统的一部分;亦可以作为独立的系统,通过仿真研究其动态特性。
图5是进行某齿轮系统仿真时第三对齿轮的动态啮合力曲线图。仿真时设时变啮合刚度按正弦变化,动力为恒转矩输入,负载为直线负载(阻力矩与转速成正比),不考虑啮合阻尼、轴的柔性效应。
4 离合器
以湿式多片式动力换档离合器为例。离合器的结合油压一般由液压缓冲阀控制,其充油压力特性可由试验结果给定[6]。亦可利用MSC.ADAMS/Hydraulics建立液压缓冲阀模型,作为离合器模型的子模型。在MSC.ADAMS中,离合器的摩擦力矩可通过作用在主动边和被动边的力矩表示,具体过程同液力变矩器的建模相似。
5 总体仿真
动力传动系统一般可分为上述几个子系统,对于某一具体的动力传动系统,按照上述方法建立各子系统模型,确定各模型的相对位置并采用固定铰连接,即可组成动力传动系统总体仿真模型。对于动力传动系统在不同工况下的工作过程,可以通过仿真剧本切换不同的负载条件、油门操作、换档离合器操作来实现。
现代动力传动系统已经发展到智能自动换档、一体化控制阶段,电子控制技术得到广泛应用。采用上述方法建立的动力传动系统模型实际上是一个机械-液力-液压模型,其工作过程受预先编写的仿真剧本的控制,相当于一个动力传动系统虚拟试验台。
6 结语
本文以MSC.ADAMS作为多体动力学仿真平台,结合Pro/E实体建模、ANSYS模态分析、VC++编程,根据动力传动系统的组成及工作原理,给出了各子系统建模及总体模型仿真方法。所建立的动力传动系统模型具有如下特点直观性好、仿真精度高、可扩展性强等特点。
参考文献:
[1]钟再敏.液压次级调节车辆传动系仿真试验系统研究〔博士学位论文〕.北京:北京理工大学,2000.
[2]覃文洁,廖日东.运用ADAMS进行发动机曲轴系的动力学分析.美国MDI公司2001年中国用户年会论文集,2001.
[3]项昌乐.车辆传动系轴类零件疲劳设计与变矩器动态特性研究:〔博士学位论文〕.北京:北京理工大学,2001
英文名称:Advanced Technology of Electrical Engineering and Energy
主管单位:中国科学院
主办单位:中国科学院电工研究所
出版周期:季刊
出版地址:北京市
语
种:中文
开
本:大16开
国际刊号:1003-3076
国内刊号:11-2283/TM
邮发代号:82-364
发行范围:国内外统一发行
创刊时间:1982
期刊收录:
SA 科学文摘(英)(2009)
CBST 科学技术文献速报(日)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(1992)
期刊荣誉:
Caj-cd规范获奖期刊
联系方式
关键词:轧辊,磨削,加工
1.引言轧辊磨床是现代工业生产中不可缺少的一种重要生产设备,轧辊主要用于冶金、造纸等行业,它的磨削机理具有一般大型外圆磨床特点,但又不同于一般的外圆磨床的运动复杂得多,除砂轮与工件(轧辊)作相对回转运动(主运动)外,还要求砂轮、工件二者作相对纵向运动的同时,作一定的径向相对位移,而且这个径向位移是不同于磨削锥度的复合运动。因此,它的传动机构比较复杂,机床工作精度要求也较高。
轧辊磨削精度和表面质量除了依靠精良的轧辊磨床工作精度之外,主要还取决于对特定的加工轧辊选用与之相匹配的砂轮、冷却液和磨削工艺参数。
2.磨削加工基础知识及工艺
2.1 磨削加工的基础知识 近几年来,磨床加工有很大的发展,已广泛地应用于机械加工行业,磨削的机械零件有很高的精度和很细的表面粗糙度。论文参考。随着机制造的精度提高,一个国家的磨削工艺水平,往往地反映了国家机械制造的水平。磨床除能磨削外圆,内圆,平面、成型面外,还能磨削螺纹、齿轮、刀具、模具等复杂零件表面加工。
磨床—磨床在磨削工件时,按加工要求不同,工作台纵向运动的速度必须可以调整,能实现无极变速,并在换向时有一定的精度要求,磨床要具备这些条件,磨床的纵向往复运动采用了液压传动,液压传动在磨床的工作台驱动及横向快速进退等方面已广泛应用。
液压传动工作原理—在机床上为改善液压传动的性能,以满足生产加工中的各种要求,磨床工作的液压传动系统是由以下四部分组成:
执行部分—液压机(液压缸、液压马达)在压力油的推动下,作直线运动或回转运动,即将液体的压力能转换为机械能。
控制部分—压力控制阀,流量控制阀,方向控制阀等,用以控制液压传动系统所需要的力速度方向和工作性能的要求。
辅助部分—油箱滤油器,油管和油管接头等。其作用是创造必要的条件以保证液压系统正常工作。机床的液压传动系统能实现工作台的自动往复运动,砂轮架快速进退运动,砂轮架周期进给,尾架套筒的缩回,车轨以及其它一些动作。
2.2 磨削加工及先进的工艺方法 为了适应各类零件的磨削,磨床和砂轮的品种,性能也有了进一步的发展,在基本型谱的基础上,又生产出,精密型,高精度型,半自动型及数控型等10个系列,各类磨床的精度适应性和专门化程度均有很大提高,如适于模具制造的坐标磨应酬具有加工精度高使用寿命长等特点,近20年来,在我国超硬磨料,如人造金刚石,立方氮化硼等,已广泛地应用于各种高硬度材料的磨削。
要求精度高的机械零件的加工方法一般分为粗磨—半精磨—精磨—精密磨—超精磨五个阶段。磨削加工一般是属于零件的后道工序,即零件的精加工。困此零件的尺寸精度和相关面的位置精度以及有关表示的形状精度和表示粗糙度,都要在磨削中得到最后控制和保证,所以必须仔细分析和研究零件图及技术要求,根据对零件图的分析研究,就可以初步确定零件的加工顺序和所采用的加工方法。例如:尺寸精度IT6级,表示粗糙度为Ra0.8—0.1um时一般只需要经过粗磨,精磨或粗磨,精磨或粗磨。精磨和精密磨削,尺寸精度在IT6—IT5表示粗糙度为0.1um~Ra0.5um时,一般要经过粗磨,半精磨,精磨,高精度磨削加工。磨削加工所用的机床除特殊机床外,一般采作通用工艺装备,以降低生产成本取得良好的经济效果,成批大量生产时,可以根据零件的加工精度和技术要求,尽量采用专用夹具,专用量具,以满足高生产率的要求,砂轮的选择也应可能按照不同工序的不同要求考虑,磨料,粒度,硬度,尺寸等这样人但能保证工件的加工精度,同时对提高生产率也有利。
大批量的机械零件生产中,零件的产生相当稳定并广泛采用专用机床的自动生产线,生产率极高,整个生产过程按一事实上节拍自动循环,操作工人只是在自动生产线的一端装上毛坯,在另一端卸成品,并监视自动线的正常运转,就可以了,我国已在汽车,拖拉机,轴承等生产中建立了许多自动线,现在的机械制造基本特征是:多品种,中、小批生产占主导地位,工厂生产的产品经常地更换,以适应市场的竞争,目前除采用先进高效,高速磨削,强力磨削外,还逐步采用先进的自动或半自动磨削,数控磨削,适应控制磨削,和成组工艺等新技术,达到较高的生产率和设备负荷率。
3.磨削温度对磨削效果的影响 大量的磨削热将会软化工件表面,使其塑性增加,有利于磨屑的形成。但对被磨工件表面质量、磨削效果和机床等也有不利的影响。
对工件的影响主要表现在工件表面质量和加工精度两方面。
磨削的高温会使工件表面层金相组织发生变化。当磨削温度未超过工件的相变温度时,工件表面层的变化主要决定于金属塑性变形所产生的强化和因磨削热作用所产生的恢复这两个过程的综合作用,磨削温度可以促使工件表面层冷作硬化的恢复;如果磨削温度超过了工件金属的相变临界温度,则在金属塑性变形的同时,还可能产生金属组织的相变。
4.怎样提高轧辊磨床磨削精度4.1磨床的检修4.1.1床身导轨的检测与修刮
床身V形导轨经检修后应达到以下精度要求:垂直平面内直线度≤0.01mm/m;水平面内直线度≤0.01mm/m;对拖板座导轨的垂直度≤0.02mm/250m;接触点要求12~14点/25mm×25mm。
床身平面导轨经检修后应达到以下精度要求:对V形导轨的平行度≤0.02mm/m;垂直平面内直线度≤0.01mm/m;接触点要求12~14点/25mm×25mm。
4.1.2 拖板座导轨的检测与修刮
拖板座V形导轨经检修后应达到以下精度要求:垂直平面内直线度在全部长度上≤0.01mm;接触点要求10~12点/25mm×25mm。
拖板座平面导轨经检修后应达到以下精度要求:对V形导轨的平行度≤0.02mm/m;接触点要求10~12点/25mm×25mm。
4.1.3 砂轮主轴与轴瓦间的间隙调整及检测
动压轴承:在砂轮主轴轴颈上涂色,与轴瓦转研,用刮刀刮研轴瓦表面,使接触点要求达到12~14点/25mm×25mm,然后进行安装调整,将砂轮主轴与轴瓦的间隙调整到0.0025~0.005mm,这样可避免磨削中工件产生棱圆。
静压轴承:检查前后轴承油腔压力是否正常。
4.2砂轮的修整 一般情况下,用只经过金刚笔修整的砂轮在普通磨床上只能磨出Ra0.4~0.8µm的表面粗糙度。为使磨削表面达到Ra0.02~0.04µm的粗糙度要求,就必须对砂轮进行精修和细修两次修整。修整方法可采用以下两种方法之一。
4.2.1用金刚笔精修、再用油石细修
砂轮粒度一般选用46#~80#。首先用锋利的单颗粒金刚石笔以微小而均匀的进给量对砂轮进行精修,以在砂轮磨粒上修整出较多的等高微刃。精修时,砂轮修整器的安装应正确合理(见图2),每次进给量应控制在5µm,纵向进给速度建议选用最低速度。在精修过程中,应注意修整发出声音的变化。论文参考。若发出均匀的沙沙声,说明修整状况正常;若发出的声音忽高忽低或渐高渐低,甚至发出不正常的嘟嘟声,则应立即检查工作台是否出现爬行,冷却是否充分,金刚笔是否锋利等,然后进行适当调整。经金刚笔精修后,再用油石(或砂条)进行细修,以在砂轮磨粒上修整出更多的等高微刃。油石需在平面磨床上磨平。细修时,油石必须与砂轮圆周表面平行,油石与砂轮轻微接触,缓慢地纵向移动2~3次即可。
4.2.2用金刚笔精修、再用精车后的砂轮细修
用金刚笔精修后,先用磨削长度与工件基本一致的芯轴进行锥度调整,然后用精车后的砂轮进行细修。
细修用砂轮可采用TL60#K~L,直径约100mm。精车砂轮时,将砂轮安装在卡盘上,将卡盘夹紧在一根自动定心的芯轴上,然后顶在精密车床的两个顶尖上进行粗、精车外圆,使砂轮外圆无偏摆。然后将精车后的砂轮顶在磨床的两顶尖上即可对磨削用砂轮进行细修。
细修时,头架带动修整用砂轮转动,选用低转速(约80~100r/min)、小进给量(往复一次约2µm),工作台往复速度应低于0.3m/min。需作多次往复修整。修整用砂轮与被修整砂轮的旋转方向应相同,即接触点两者的线速度方向相反。冷却液应充分,以冲走浮砂,防止磨削时砂轮上残留的浮砂拉毛工件表面。
5.结论
以上是对轧辊的磨削方法和加工工艺进行了总结。论文参考。这几种方法的采用有助于高精度的轧辊磨削。以上的工艺方法在实际加工过程中应用比较广泛。轧辊磨床在磨削超精磨削时,选用较好的进给量可以保证磨削精度,表面粗糙度要求选用经验磨削用量一般横向进给一般取5微米左右,纵向磨削用量选用0.3—0.5米/分。在精磨轧辊时机床应开空车30分钟,待机床热平衡稳定和液压油排静空气后,再进行磨削加工大量的磨削热将会软化工件表面,使其弹性增加,有利于磨削的形成,但对轧辊表面质量,磨料和机床有不利于的影响,影响机床的精度,对于精度高的轧辊,在无进给光磨时可以采取一边磨削一边使轧辊慢速范围内不断变换转速,以减少或打乱机床各种频率的振动对磨削圆度和磨削波纹的影响,提高轧辊磨削质量由于采用了上述的许多新技术和新设计,使现代轧辊磨床能够基本满足轧钢技术的发展需要。
参考文献
[1]吴宗泽.机械加工实用手册(第二版).北京:化学工业出版社,2003.
[2]刘超.高速切削磨削技术.机械工程师2005.
[3]刘孝敏.工程材料的微细观结构和力学性能〈M〉.中国科学技术出版社.
用电动机变频调节转速技术替代液力耦合器调速,对2号机组给水泵的调节方式进行改造是必要的。
1 设备运行现状分析
六盘山热电厂锅炉给水系统配置3台半容量液力耦合调速电动给水泵,单台水泵电机额定功率为6300kW,采用两用一备的运行方式。
1.1 给水泵液力耦合器调节存在滑差功耗
液力耦合调速电动给水泵是发电厂生产过程的主要辅机之一,因液力耦合器相对于“定速泵+调节阀”的控制方式有着无级调速的优点,我国在上个世纪八十年代开始从国外引进并逐步实现国产化,一段时期内广泛应用于200MW和300MW等级的机组中,但液力耦合器属于转差损耗型调速装置,在调速的过程中,转差功率以热能的形式损耗在油中,额外增加了能耗,因此其调速转换效率随着转速降低而下降,综合效率相对较低。图1中的液力耦合器效率曲线表明了液力耦合器的这种转换特性,从图中可以清楚地看到即便液力耦合给水泵能够利用转速调节方式控制给水量,但在变负荷工况下,尤其在低负荷时,如给水泵转速在液耦输出转速的60%工作时,液耦的能量损耗可达到42%左右。而社会需求电量的方式决定了发电机组绝无可能始终维持在90%ECR以上负荷运行。因此,在技术可行且不产生安全隐患的前提下降低电泵运行电耗是十分必要的。
1.2 液力耦合器效率特性分析
液耦效率:耦合器在运行中,泵轮转速要稍大于涡轮的转速,只有这样泵轮出口油压才能高于涡轮人口油压,从而完成扭矩传递。泵轮与涡轮的转速差与泵轮转速之比称作液力耦合器的滑差,用S表示:
(1)
(2)
液力耦合器在工作过程中的能量损失主要是液体在工作腔内的流动损失和进人工作轮入口处的冲击损失、工作轮与空气的摩擦损失,以及轴承、密封、齿轮齿等的机械损失,因此液力耦合器的输出功率总是小于输入功率,二者的比值就是耦合器的传动效率式中分别为容积效率、机械效率和液力效率。从泵轮中流出的工质,有很少一部分通过工作轮之间的轴向间隙直接流向泵轮入口以及从涡轮与转动外壳间的间隙流出,而未流入涡轮,这就是容积损失。因容积损失相当小,可忽略,则。
机械效率为工作轮输入扭矩与输出扭矩之比,其中:
(3)
(4)
为泵轮的机械效率,为涡轮的机械效率,为液压效率。因此,式(2)可变为:
(5)
比较式(2)、(5)得由于均趋于1,式(5)变为:
(6)
耦合器传动效率约等于其传动转速比。图2是液力耦合器效率特性曲线,可以看出液力耦合器工作在高传动比时传动效率高。但在较低转速工作时传动效率很低。
2 部门提出改造方案及改造技术实施过程
2.1 通过方案讨论确定
采用“给水泵电动机变频调速、改液力耦合器为增速齿轮箱方案”。技术特点为增加给水泵电动机高压变频器,取消液力耦合器泵轮、涡轮和涡轮套,用鼓形齿联轴器柔性联接小齿轮泵轮轴与涡轮轴,新增外置油泵,保留辅助油泵,封闭液力耦合器工作油系统,取消工作油冷油器,给水泵应用高压变频器调速。
给水泵原工作方式为两台运行一台备用,变频调节拟采用一拖一方式,即机组正常运行时投运两台变频器调节给水泵,另一台给水泵采用工频备用方式。前置泵经核算在给水泵电机最低调频转速下仍能满足给水泵必需汽蚀余量的要求,但为了进一步保证给水泵的安全运行,将前置泵与给水泵电动机分离,增装一台1490rpm、功率匹配的定速电动机。液力耦合器油泵需要外挂,增配恒速驱动电动机。在满足给水泵输入功率不变的情况下,通过变频器改变电机转速来实现给水泵节能目的。
2.2 保留设备
(1)给水泵电机2台;(2)给水泵2台;(3)液力耦合器辅助油泵;(4)液力耦合器油系统及冷油器。
2.3 改造设备
(1)给水泵前置泵2台(需换新泵轴);(2)液力耦合器2台(拆除工作油系统)。
2.4 新增设备
(1)7900kVA高压变频调速系统2套(包括旁路柜);(2)前置泵电动机2套;(3)外挂油泵2套。
2.5 新增设计和项目
(1)前置泵电动机基础;
(2)前置泵电气系统;
(3)液力耦合器传动系统;
(4)液力耦合器油系统;
(5)外挂油泵及管道系统;
(6)外挂油泵电气系统;
(7)DCS控制逻辑(新增锅炉水位控制流量变频调节回路,修改给水泵并列/解列切换,RB和自动联锁等功能);
(8)变频调速系统防尘电气室及冷却系统。
3 改造成果经济性分析
3.1 项目技术目标及技术水平评价
电泵变频节能改造了A、B两台运行泵,C泵作为备用泵(取A、B两段厂用电供电)保留了液力偶合器调速方式,正常运行方式下由A、B泵运行,C泵热备用,运行泵事故情况下,C泵经热控逻辑控制执行“抢水”运行。
A、B电泵变频改造后均实现一次启动成功,泵组设备运行稳定,调节灵敏,达到设计预期,A泵电机电流平均下降151A,最高下降172A,B泵电机电流平均下降155A,最高下降178A,综合节电率达到26.55%,超过预期节电率。
3.2 项目财务经济效益评价
六盘山热电厂#2机组10月10日至10月14日进行性能试验与泵组改造前后参数统计分析,泵组年均运行小时参考2012年按8000小时计算,预计年节电量可达1795.26万kWh,折算标煤约6122吨(按照供电煤耗341g/kWh计算),年节约电费536.1万元(按照六盘山热电厂上网电价0.2986元/kWh)。
计算方法及依据如下:
计算方法:修前电泵电动机输入功率-修后电泵输入功率-前置泵电机输出功率-泵组其余附属设备功耗。 [本文转自DylW.Net专业提供写作物理教学论文和职称论文的服务,欢迎光临Www. DylW.NEt点击进入DyLw.NeT 第一 论 文网]
数据依据:#2机组A级检修前后,均委托宁夏电科院进行了#2机组性能试验,根据改造前后不同运行负荷实际截图情况对比,节电降耗成效明显。
4 项目环境和社会效益评价
环境效益:电泵变频投后,电泵机组运行噪音明显降低,并且节约了的不可再生资源—煤炭,减少了环境污染。
社会效益:电泵变频投运后节约了煤炭资源,减少了污染物的排放。
参考文献