HI,欢迎来到好期刊网!

节能降耗分析

时间:2023-07-31 17:01:07

导语:在节能降耗分析的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

节能降耗分析

第1篇

关键词:油气生产;集输系统;环节;节能降耗

油田油气集输系统指油气生产过程中原油及天然气的收集、处理和输送。从油井到计量站、接转站,再到联合站,形成了相互联系、成龙配套的地面工程系统。油气在集输过程中的许多环节,有节能降耗的潜力可挖。本文通过对油气集输系统能耗影响因素及存在主要问题分析,提出了变频器节能降耗,利用单管循环流程优化节能,密闭集输流程改造降低油气损耗等措施,并分析了在生产中的应用效果。

1集输工艺概述

油气集输的主要作用是分别测得各单井的原油、天然气和采出水的产值后,汇集、处理成出矿原油、天然气、天然气凝液,经储存、计量后输送出去。油气集输生产环节大致分为6个方面,油气集输过程各个生产环节形成相应的单元工艺,根据各油田的地质特点、采油工艺、油气物性及自然条件等方面的不同,将油气各单元工艺合理组合,形成不同的油气集输工艺流程。各单元工艺组合原则是:油气密闭输送、密闭处理;操作平稳可靠,产品质量稳定;化学助剂相互配伍;尽量利用自然能量。油气集输工艺流程按油气输送的形式分为油气分输流程、油气混输流程;按油气集输系统的布站方式可分为一级半、二级和三级布站集输流程;按油井集输方式可分为单管加热(或不加热)流程、双管掺热水流程和三管热水伴随流程。油气集输系统分为集输、脱水、稳定和储运4个过程,根据目前集输生产的能耗统计分析,这4个过程中集输能耗约占集输总能耗的60%-80%,因此,降低集输过程能耗是集输系统节能的关键。

2油气集输系统能耗影响因素及存在主要问题分析

2.1集输系统效率低下。集输系统效率主要由电动机运行效率、泵运行效率和管网运行效率三部分组成。现有的机泵多为离心泵,离心泵存在着水力损失、容积损失和机械损失,不可能将所有的机械能都转换成有效功,降低了离心泵的效率。离心泵的工况和输油管网是否匹配,是影响集输系统效率重要因素。

2.2工艺流程不合理。减少油井至计量间散热损失,是集输过程节能的主要环节。降低集输管道热传媒温度值,可以减少热损失,管道热传媒温度与油井的输油温度有关。总热阻与管道直径、管道的埋深及保温有关。

2.3开式流程油气储存损耗大。原油在集输过程中开式流程,油气与空气直接接触,油气蒸发损耗严重,平均油气损耗0.8%左右。油气进入储油罐,又从储油罐放油,这个装卸过程中,储油罐不能充分密闭,存在油气蒸发损耗。油气在储存过程中,由于液位的变化,罐内气体容积的变化,油气向外排出的油气损耗叫大呼吸损耗。油品静止储存过程中,由于外界大气温度(或压力)变化而产生的油气蒸发损耗叫小呼吸损耗。这两部分统称呼吸损耗。

3油气集输系统节能降耗技措与实践

3.1应用变频调速器降低输油泵耗电

(1)交流电变频原理。变频调速系统由整流器、滤波系统和逆变器三部分组成。在其工作时,首先将三相交流电经桥式整流为直流电,脉动的直流电压经平滑滤波后,在位处理器的调控下,用逆变器将直流电在逆变为电压和频率可调的三相交流电源,输出到需要调速的电动机上。因电机的转速与电源频率成正比,通过变频器可以任意改变电源输出频率从而任意调节电机转速,实现平滑的无极调速。

(2)离心泵变频调速节能原理。离心泵变频调速是通过变频器的频率来控制输油泵电机的转速,从而达到改变泵的排量目的:变频器频率增大,电机转速增大,泵排量上升;变频器频率减小,电机转速降低,泵排量下降。在使用变频调速装置后,流量调节时泵出口阀门处于全开状态,使原来消耗在阀门上的泵管压差消除了,以降低输油泵电机运行电流,达到节能降耗的目的。

离心泵的相似定律:

Q/Q1=n/n1

N/N1=(n/n1)3

式中Q――泵的排量,m3;N――泵的功率,Kw;n――泵的转速。

在使用变频调速装置后,流量调节时泵出口阀门处于全开状态,使原来消耗在阀门上的泵管压差消除了,以降低输油泵电机运行电流,达到节能降耗的目的。

(3)外输油泵,通过更换安装变频控制柜,系统设置工频、变频切换功能。一旦变频出现出现故障,手动切换到工频档,在变频维修期间可以保证输油泵的运行,满足生产需要。使用变频后,电动机的工作电流,由70安降为40安年节电10.8万kwh,收到了明显的效果。

3.2改变泵的叶轮直径节能

在输油过程中,油量变化频繁,造成管压与泵压不匹配,出口阀门大量节流,浪费电能,通过切削叶轮或更换大小不同的叶轮,达到管压与泵压相匹配,降低能耗。叶轮直径(D)不宜切削过多,否则影响泵效。外径允许切削量与比转数Ns的关系如表所示。油田接转站主要在修泵更换叶轮时曾用过,效果良好。

3.3单管循环集输流程应用

单管循环流程就是计量间(或分水器)掺水到达第一口油井后,与单井产液混合,然后流向下一口井,接着与下一口井产液混合。依次类推,最后回到计量间(或分水器),单井的掺液,以串联方式连接于环上。该工艺采用单井不加热,减少天然气消耗。该流程与传统流程相比,使用管线短,管网散热少。

第2篇

经上级主管部门最终审核确认,2006年至2008年我市单位gdp能耗分别降低4.99%、3.47%、二、2012年我市节能降耗工作现状

三、建议与对策

节能降耗目标考核是一把双刃剑,一边是单位gdp 能耗,一边是单位gdp 电耗,任何一项不达标,节能目标就不算完成。从目前的现状看,我市的节能工作最主要就是节电,在做好节能降耗工作的同时要将电量的控制放在首要位置。

1、我们在继续稳步发展一些高耗能的支柱产业的同时,必须以产业结构调整为抓手,严格控制新建高耗能项目,提高规模企业准入门槛;利用区域优势,通过招商引资引进一些污染小、附加值高的项目,逐步优化产业结构,推进结构节能。

2、加强对重点能耗企业的监测预警。耗能大户在全市的能源消费总量中占比大,是节能的重点所在,节能降耗主管部门要密切关注重点用能企业的能耗变动趋势,加大检查、监督力度,发现问题,及时预警;同时要进一步挖掘重点能耗企业节能潜力和空间,督促企业加强自身组织领导,落实节能目标责任制;建立健全能源计量、统计制度,督促企业加强能源计量管理,配备合理的能源计量器具、仪表,特别是年耗能5000吨以上的4家企业要加强能源统计,建立健全原始记录和统计台账,通过直观的台账数据可以让企业分析现状,查找问题,采取切实可行的节能措施,做到自我监测和自我调控。

3、加快企业节能技改项目的实施,提升能源利用技术水平。要积极督促高耗能企业增加节能项目的资金投入,保证淘汰落后产能、技术改造和节能项目的顺利开展,加大节能项目的建设力度,使之尽快对企业的节能降耗发挥作用。

4、节约用电,控制电力消费。全社会电

力消费的控制重点在二、三产业,针对我市用电过快增长的现状,应鼓励和引导低电耗高产出企业多生产,适当限制高耗能低产出企业的生产;加大宣传力度,增强商业、服务业、机关事业单位和居民生活的节电意识,挖掘节电空间,为完成节能降耗目标添砖加瓦。

第3篇

[关键词]火电厂 节能

中图分类号:TK25 文献标识码:A 文章编号:1009-914X(2015)16-0009-01

我国是煤炭大国,其总量约为5.6万亿吨,占据世界总煤炭储量的11%左右。长期以来,我国的一次能源生产和消费中,煤炭的产量和消费量高达70%左右。虽然国家加大了新能源投资力度,也出台了一系列的法律法规保证新能源的使用,但是鉴于我国的能源结构组成和长较缓慢,资源不足仍是我们面临的问题。我国容量300MW机组火电厂设计普遍存在系统设计有缺陷,用电率高等问题。当前,在我国能源供应日趋紧张的态势下,无论是从国家节约资源的角度还是从电力企业降低自身发电成本的角度看,节能降耗是一项极其重要的工作。

1、锅炉方面

(1)锅炉应该加强燃烧调整,锅炉的完全燃烧除合理的燃烧调整外,应加强对风量的配比,合理的过剩空气,对燃烧过程至关重要,过量空气系数过大或过小都将造成锅炉效率降低。过量空气系数越大,排烟热损失也就越大。当过量空气系数太小时,部分煤粉颗粒不能与空气充分混合。(2)在正常运行中,在负荷增加过程应先将风量适当加大,然后增加燃料量。而在减负荷过程中,应先减燃料量而后减风量,使风量滞后于燃料量的调整。这样可保证燃料的完全燃烧,降低燃料的不完全导致的燃烧热损失。(3)在锅炉运行当中还应加强受热面吹灰。排烟热损失是锅炉各项损失中最大的一项,一般为4%-8%,锅炉机组的排烟温度越高,排烟热损失越大。排烟处的烟气容积越大,排烟热损失也越大。为了减少排烟损失,应经常保持锅炉各受热面的清洁,应按设计工况合理地进行吹灰次数的确定,并严格执行,以保证锅炉在最佳工况下运行,使锅炉效率提高,从而提高经济效益。(4)在火电厂里还有大的损失是工质损失,而且往往伴随能量的损失。补给水是一项重要的指标,节省补给水可降低工质损失,提高经济性,使机组安全可靠的运行,是节能降耗的重要方面。(5)对于节能降耗,节省厂用电率也是重要一方面。为降低厂用电率,可采取的措施有:1、对于循环水泵,当汽机低压缸排汽温度已降至40以下,高压内上缸壁温也降至规定以下,就可以停止运行。对于凝结水泵,在没有减温水需要的情况下,低压缸排汽温度降至规定值也应该及早停运。只有这样将设备在合理的工况及时停运,以降低厂用电的用量,降低发电成本、节能增效。2、根据情况调整凝结水泵运行方式。3、全厂厂房照明白天没必要亮的地方应采用光控等方式控制用电率。(6)降低排烟温度,确定飞灰、煤粉细度、氧量最佳匹配值。优化制粉系统调节,找出真正的经济细度点,找出最低氧量。加强空预器管理,调整间隙,减少漏风系数,利用停机时期进行对空预器清灰,保障运行。

2、在汽轮机组方面

(1)提高真空系统严密性,增强机组做功能力,减少燃料是提高经济性的重要方面,可以坚持每月一次真空严密性试验,加强真空泵运行检修维护,确保最佳运行状态运行。运行中要经常检查负压系统,发现漏泄应及时处理。(2)充分利用调停时间,定期清理循环泵入口滤网和凝汽器水室杂物等,检查凝汽器不锈钢管或铜管结垢情况并根据情况安排冲洗。摸索循环泵经济运行方式,确保最佳循环水量。检查循环泵效率,提高循环泵效率。(3)保持凝汽器水位正常,凝汽器水位在正常运行中一般保持凝汽器最下一排钢管或铜管以下。防止部分冷却管被淹没在凝结水中,将处于饱和状态的凝结水继续冷却,造成过冷致使机组冷源损失加大。(4)加强阀门内漏管理。简化疏放水系统,对排污等系统的疏水和汽轮机缸体的疏水阀门定期测温,以监视疏水阀的严密性,便于及时发现疏水系统的泄漏,及早采取措施消除缺陷。这是治理和防止热力系统泄漏的有效手段。同时要优化热力系统布置,简化疏水系统,最终达到方便疏水系统的维护,降低疏水系统的泄漏量的程度。例如选择可靠性强的高压阀门消除阀门内漏从而达到降低煤耗的目的。(5)优化系统,提高节能改造潜力。大修理时检查调整主气门和门杆装配间隙。?凝结水泵改变频调节,给水泵密封水扩大节流孔增加适应能力。减少入口蒸汽管道阻力,必要时加粗进汽管道,提高蒸汽参数。调整小机隔板汽封间隙到下限,减少漏汽损失。,确定水泵实际运行效率,以确定检修治理方向。和水泵效率,加强再循环阀门的定期检查以防内漏。

我国能源资源丰富,但人均占有量却仅为世界平均数的1/2,同时,一次能源的利用率较低。节能即可缓和能源供需矛盾,又是改善环境,提高经济效益的有力措施。我国新投产的300MW火电机组普遍存在能耗较高的问题,其中有些问题是带有普遍性的,如节水综合利用流程存在缺陷等问题,要针对不同的机组配置及系统设计认真研究后具体确定解决的措施,各电站情况不同,可采用的节能降耗方法也各异。而提高电厂经济效益,降低能耗是各个发电厂提高经济效益所要面对的主要问题,电力工业资源节约主要是提高能源转换效率,包括节煤、节油、节水、节电等,降低输送损耗。火电厂作为耗能大户,更应增强节能降低耗用。总结分析火电厂在运行过程中可采取的切实可行的节能降耗措施,进一步提高企业竞争力,增强企业的利润意识,是企业经营的最终目标。只有通过强化生产和经营管理,降低成本,使企业立于不败之地。因此我们必须进一步加强节能管理,加快节能技术改进,提高全员的节能意识,把节能工作推向新的高度。以300MW燃煤机组为研究对象,分析机组能耗损失的部位及原因,提出改造的方法,最终通过提高机组效率实现节能降耗的目的。 随着电力市场改革的不断深入,如何提高发电机组的经济性,降低机组供电煤耗,日益显得重要。因此从保证机组安全经济运行的角度出发,结合必要的技术措施,对影响机组经济性的因素及改善措施进行分析,对影响机组供电煤耗的主要因素及其影响程度进行分析,从而直观地反映出采取这些节能降耗措施的效果。

参考文献

[1] 蒋渝嘉.浅谈300MW燃煤机组节能降耗措施与方法[J].中国电业 2012.

[2] 施静.基于300MW燃煤机节能降耗的分析[J].中国电子商务 2010。

第4篇

【关键词】锅炉房;节能降耗;措施;探讨

0.引言

我国“十一五”规划提出了具有重要战略意义的节能减排的目标。节能降耗关系到经济社会的可持续发展,是全面贯彻落实科学发展观,转变经济增长方式,进一步增强我国综合竞争力的重大举措。为确保锅炉房热力设备安全、经济运行,增强节能降耗效果,完成节能降耗目标任务,本文分析了目前导致锅炉房能耗较高的主要因素,并介绍几种锅炉房节能降耗的可行措施。

1.锅炉房能耗及其主要影响因素

1.1锅炉房能耗与能耗指标

锅炉房是指设有锅炉及其附属设备、水处理设施、水泵及分汽(水)缸等相关承压设备的厂房。其任务主要是将燃料燃烧放出的热量转换成蒸汽和水,为相关用户提供热能。因此,可以将锅炉房看作一个能量转换系统划定边界,按照能量平衡的准则,来评价其能量的有效利用率,以考核锅炉房的能耗经济性。

锅炉房能耗是指在统计期内锅炉房消耗的一次能源、二次能源和能耗工质水等折算为标准煤量的综合能耗。统计水、电耗量时,应以整个系统为对象,包括锅炉房及其辅助设备房、以及附属锅炉房的热交换站,软水站、煤场、渣场等的水、电用量。

锅炉房能量单耗是指锅炉房每生产一吨标准蒸汽所耗用的千克标准煤量。锅炉房能耗指标JB/T50158《工业锅炉房能耗分等》标准中列出了评定锅炉房能耗等级的指标。单耗指标达不到三等指标的属于等外。

1.2影响锅炉房能耗的主要因素

1.2.1锅炉实际运行参数与设计参数不符、炉型和燃料配置不匹配等原因,造成能耗过高

通常锅炉选型时,应通过合理计算确定锅炉容量,并根据供应的燃料种类选择炉型,但实际应用时较难做到。目前我国在用工业锅炉中约85%是燃煤锅炉,主要是链条炉排锅炉,普遍存在运行负荷较额定负荷低的状况,且运行状况欠佳,炉渣含碳量高。过量空气系数较大,排烟温度高,因此热效率一般均低于设计效率。

1.2.2控制系统自动化程度低

工业锅炉运行自动化程度较低,现有自控系统主要起保证锅炉安全运行的作用,如高低水位报警及联锁保护、超压报警装置等,且不少小型锅炉的这些功能也因维护保养不足而常处于非正常状态。

1.2.3锅炉房蒸汽管道和耗能设备保温差

在用工业锅炉炉体、蒸汽管道及耗热设备大多数采取简易保温,加之维修不力,散热损失严重;各种管道、阀门漏汽漏水,浪费严重,导致大量热量在传输过程中散失。

1.2.4锅炉房给水质量较低,冷凝水回收较差

目前不少锅炉房不注重水质处理,锅炉水质处理工作形同虚设,锅炉结垢,直接影响锅炉传热及热效率;冷凝水的回收利用更差,大多直接排放,既浪费了燃料,又浪费了高质量的锅炉给水。

1.2.5锅炉房管理人员及司炉人员技术素养不高

多年来,企业配备专职技术人员从事工业锅炉运行管理较欠缺,且司炉人员的文化水平偏低。

2.锅炉房系统节能降耗的有效措施

从能源利用的观点来看,锅炉房的节能降耗应从锅炉设备、热力系统和综合管理等方面全面考虑。

2.1锅炉设备节能降耗技术

锅炉设备节能降耗从根本上讲是要应用节能新技术开发先进的锅炉产品,但是,目前在用工业锅炉量大面广,运行相对落后的情况,在较长的时间内不会改变,因此,对工业锅炉进行节能改造极为重要。

2.1.1燃煤锅炉煤斗改用分层给煤装置

分层给煤装置主要是改进锅炉的给煤技术,一般是在落煤13安装给煤器,达到落煤疏松和控制加煤量的目的,通过筛选装置将煤按粒度分档,使炉排上的煤按不同粒径范围有序地分成二层或三层,即将原煤中的块、末自下而上松散地分布在炉排上,以利于配风均匀、合理,提高燃烧效率,减少灰渣含碳量,可获得5%~10%的节煤率。

2.1.2燃油(气)锅炉加装余热回收节能装置

佘热回收节能装置(余热节能器)是安装在燃油(气)锅炉给水泵与锅筒之间的利用尾部烟气余热加热给水的一种设备,其工作原理与燃煤锅炉中的省煤器基本相同。它有承压式和常压式两种,均能降低排烟热损失,有效提高锅炉热效率。

2.1.3燃气锅炉选用冷凝式锅炉

冷凝式锅炉是指能够从锅炉排放的烟气中吸收水蒸气所含的汽化潜热的锅炉。这类锅炉利用低温水将排烟温度降到很低,可至50℃~70℃,因此不仅烟气将显热传递给水或蒸汽,而且还将其中所含水蒸气冷凝后释放的汽化潜热传递给它们。以供有效利用,冷凝式锅炉的热效率比传统的锅壳锅炉高10%~17%,不仅节能,而且在烟气中水蒸气冷凝的同时,可以除去烟气中的有害物质,达到了提高热效率、减少污染的节能环保双重效应。冷凝式锅炉采用高性能的外壳保温和密封材料。

2.2锅炉房系统节能降耗技术

锅炉房系统是指热能发生、输送和再利用的综合系统,除了热能发生系统即锅炉外,还包括辅机系统、管道系统、工质回收系统等,这些系统的运行情况与锅炉房的节能降耗有直接关系,在某些情况下,其节能潜力比锅炉本身要大得多。因此,应予以充分重视。

2.2.1锅炉房辅机系统的节能改造

泵和风机是锅炉房的主要辅机,也是锅炉房的主要耗电设备,其运行参数与锅炉房耗能量和热效率直接相关。泵和风机选型时都以额定负荷为依据,但在运行中给水量和风量均随锅炉负荷而变化,采用变频调速技术,按负荷需要调节风量与水量,维持锅炉运行的最佳工况,既可节约燃煤,又可节约耗电量,实现计算机实时全程控制。这类改造,在锅炉负荷变化较大较频繁时,节能效果尤为明显。采用变频技术,泵和风机普遍可节电30%~40%。此外,炉排电机采用变频调速装置,也可根据需要控制炉排的速度,从而达到最佳燃烧工况,以提高锅炉的热效率,同时可减少CO、SO2等的排放,以保护环境。采用实时计算机全程控制管理,有效利用了能源,节能率可达7%左右。

2.2.2锅炉房热力管道系统的节能改造

热力管道系统是锅炉房与热用户连接的桥梁,节能潜力很大,采用热力管道直埋技术,有效降低运行费用,对于架空和地沟敷设的供热管道,也应使用新型保温材料。此外,必须重视对法兰、阀门及各类管道附件采取的保温措施,以降低整个供热管网的热损失。“跑冒滴漏”是供热管网的老问题,必须提高供热管网的日常维护保养和定期检修的质量,这对提高锅炉房的效率起着重要的作用。

2.2.3锅炉房工质回收系统的节能改造

蒸汽经过用热设备后生成的冷凝水水质好,且温度可达60—100℃ ,但90%以上在用工业锅炉的用户未对冷凝水进行回收,而当废水排掉了。若能对凝结水采用多区段过滤附加锅内加药法进行综合回收利用,不仅减轻了水处理的负荷,节省了水处理费用,同时提高了给水温度,降低了燃料耗量,通常给水温度每提高6℃ ,可节约燃料1%。节能可达10%~12%。为降低锅炉排污热损失,应加强锅炉给水品质控制,并尽可能减少锅炉排污量,同时应采取措施回收排污热量。锅炉房热力系统的排污量应控制在5%以下,最好为2%左右。此外,可采用加装排污扩容器及换热器来回收部分排污热量,以起到节能降耗的作用。

第5篇

【关键词】配电网;节能降损;机理;对策

0.引言

随着我国国民经济的飞速发展,电力负荷和电网容量的迅速增加,电网的经济运行问题日益受到电力部门的重视。电能损耗作为供电企业的重要经济指标,综合反映了电网规划、运行、经营管理、生产技术管理水平。在目前能源短缺的形势下,利用科学方法降低电网电能损耗,发展配电网节能技术,对提高供电企业经济效益和节能工作的发展具有十分重要的意义。

1.配电网网损产生机理分析

1.1输电线损耗

网架是配电网的重要部分,是连接变电站和配电及用户的唯一渠道。而网架中最重要的成分是输电导线,电力线路最简单的模型是连接两节点间的一条阻抗支路。设R+jX为线路阻抗,P+jQ为节点j负荷的一相功率。

通过线路输送的负荷在线路电阻电抗上产生的功率损耗就是线路的功率损耗:

S=P+jQ=3I(R+jX)=(R+jX)

当负荷较重时,线路损耗占总损耗的大部分,采用正确的措施有效地降低线路损耗是十分必要的。

1.2变压器损耗

在配网计算中,双绕组变压器近似等值电路通常是将二次绕组的电阻和漏抗折算到一次绕组侧并和一次绕组的电阻和漏抗合并,用等值阻抗RT+jXT来表示;变压器的励磁支路一般前移到电源侧,用等值导纳GT-jBT来表示,变压器的功率损耗如下式所示:

P=R+UG

Q=X+UB

S=P+jQ

从上面的式子可以看出,变压器的有功损耗和无功损耗都是由两部分组成,一部分为与负荷无关的分量,另一部分是与通过负荷的电流平方成正比的损耗。

1.3运行因素

除了线路损耗和变压器损耗外,电网运行状态变化也会产生附加损耗,这些附加损耗主要包括:

(1)三相不平衡造成的附加损耗。低压配网普遍采用三相四线制供电方式,由于单相负荷的接入及其开关的随意性,配电网三相不平衡状况不同程度的存在,而且不平衡度越大,损耗越严重。

(2)负荷分布不均衡造成的附加损耗。对于不同的配电线路,当各配电线路参数一致时,即电流(负荷)均匀分布时,各线路损耗之和最小。这同时也说明,当负荷分布不均匀时,必将产生一定的附加损耗。

(3)设备老化、接触不良造成的附加损耗。配电变压器、线路、开关、电容器等设备老化货接触不良将导致电网的等值电阻增大,从而导致配电网损耗增大。

还有其他因素,例如谐波损耗等,这里不一一列举。

2.配电网节能降耗难点

2.1负荷密度大,发展速度过快

以惠阳淡水镇为例。淡水面积为83km2,2013年最大负荷达到25万KW,从节能降耗的角度来看,这种大密度用电负荷需要更多的变电站布点、更多的出线间隔、更多的线路(电缆)走廊。但由于受到土地资源约束和城镇规划的局限,目前要进一步增加变电站布点、出线间隔和走廊难度极大。如何解决配电网的空间需求是目前最为头痛的难题。

2.2配变无功补偿最佳容量难以确定

配变低压无功动态补偿是降低配网有功损耗的有效措施,目前惠阳新增200kVA及以上的公用变压器均要求进行无功补偿。然而无功补偿的分组容量和总容量的确定是一个相对复杂的优化问题,与配变容量、负荷曲线、功率因数等因素密切相关,并涉及到电压水平问题。目前对所有配变均按30%容量左右来配置补偿容量不尽合理,造成部分补偿度不足、部分补偿容量过剩浪费的情况,且电压合格率还有提升空间。另外,无功补偿如何分组未能结合各配变负荷的实际,造成无功补偿效率较低、降损效果远达不到理论估算值。

2.3电网运行管理落后,强调安全运行,忽视经济运行

配电线路的管理损失,指的是供电企业在安全生产、合理调度及市场营销过程中造成的电能损失,如计算设备误差,抄表核算过程中漏抄、错抄、错算及窃电等产生的损失。

安全运行是电网运行的主要前提和目标,但在目前的电网管理中,往往是牺牲电网的经济性来换取电网的安全性。其实,在科学发展观的背景下,提高电网的经济性是非常迫切的要求。

2.4电力设备老化

变压器作为电力生产过程的主要设备,其数量多,容量大。但是仍然在运行的高损耗变压器还占有相当大的比重。由于配电变压器容量和实际用电负荷不匹配,配电变压器没有运行在经济区。一些配电变压器三相负荷不平衡,中性点发生偏移。这些因素都造成配电网损耗偏大。

3.配电网节能降耗对策

3.1降低变压器损耗

(1)变压器降耗改造。变压器数量多、容量大,总损耗不容忽视。因此降低变压器损耗是势在必行的节能措施。若采用非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的五分之一,且全密封免维护,运行费用极低。因此,应在输配电项目建设环节中推广使用低损耗变压器。

(2)变压器经济运行。变压器经济运行指在传输电量相同的条件下,通过择优选取最佳运行方式和调整负载,使变压器电能损失最低。变压器经济运行无需投资,只要加强供、用电科学管理,即可达到节电和提高功率因数的目的。每台变压器都存在有功功率的空载损耗和短路损耗,无功功率的空载损耗和额定负载损耗。变压器的容量、电压等级、铁芯材质不同,故上述参数各不相同。因此变压器经济运行就是选择参数好的变压器和最佳组合参数的变压器运行。

3.2增大导线截面

选择大截面导线可以降低线路阻抗,从而在输送负荷不变的情况下实现降损节能。比如,一个二级城市的主干线线路截面可参考以下原则选型:架空线的主干线截面为240mm2,次干线选用150mm2,分支线选用70mm2;电缆主干线截面为300mm2,次干线截面为150mm2。

3.3电网规划优化

城市电网可通过合理的电网规划来降低损耗,综合考虑近、远期地区负荷密度和电源的受电通道等情况,因地制宜的建设高压配电网。

在电网规划中调整电网的运行方式,不同的运行方式对应于系统的不同负荷水平,随着系统负荷的周期性变动,功率损耗也会有很大的不同,因此应根据负荷预测的结果重构网架结构;有效利用并合理分配现有变压器及线路容量,并根据负荷水平动态调(下转第8页)(上接第6页)整运行方式,使设备运行在经济负荷水平,这对降低设备的功率损耗也有显著效果。

3.4电网无功配置优化

大量无功电流在电网中会导致线路损耗增大,变压器利用率降低,用户电压跌落。无功补偿是利用技术措施降低线损的重要措施之一,在有功功率合理分配的同时,做到无功功率的合理分布。无功优化的目的是通过调整无功潮流的分布降低网络的有功功率损耗,并保持最好的电压水平,无功优化补偿一般有配电线路最优补偿和配电变压器低压侧最优补偿。由电能损耗公式可知,当线路或变压器输送的有功功率和电压变小时,线损与功率因数的平方成反比。功率因数越低电网所需无功就越多,线损就越大。因此,在受电端安装无功补偿装置,可减少负荷的无功功率损耗。

4.结语

近年来我国经济高速增长,伴随着负荷也持续快速上升,电网建设与改造相对滞后,特别是配电网中许多线路,线损偏高,因此推进配电网节能降耗改造势在必行。 [科]

【参考文献】

[1]张安华.中国电力工业节能降耗影响因素分析[J].电力需求侧管理,2009,8(6).

[2]李婷婷.10kV配电网节能降损研究[D].华南理工大学,2010.

[3]徐强,曹俊华.提高农村配电网节能经济运行措施探讨[J].中国电力教育,2012(12).

[4]许金杰.浅谈配电网节能降耗[J].科技信息,2008(29).

第6篇

氯碱是氯碱工业的简称,具体是指用饱和食用盐水生产氯气氢气烧碱的方法,它是最基本的化学工业之一,其产品不但可以应用于化学工业本身,而且还能应用于其他行业,如轻工业、冶金、纺织、石油化学等等。我国的氯碱工业已有多年的历史,主要采用的生产工艺有两种,一种是隔膜法,另一种是离子交换膜法。这两种工艺虽然性质不同,但却都要进行电解,换言之,生产过程中需要消耗一定的电能,这是导致氯碱生产中能耗较高的主要原因。目前,氯碱行业已经被列为三高行业,即能耗高、物耗高、污染高,其主要能耗有电耗、煤耗、天然气耗、水耗等等,相关数据显示,电耗所占的比例最高约为60%左右,煤耗次之,约为20%,水耗为7%。因此,氯碱行业必须将节能降耗作为一项重要工作来抓,通过生产过程中各个环节进行研究分析,并采取合理可行的节能技术措施,以此来降低生产能耗,推动我国氯碱工业的持续、稳定发展。

2氯碱生产中节能降耗的有效方法

(1)节水技术措施

①在氯碱生产中,对循环水处理工艺配方进行改进,最大限度地提高循环水的浓缩倍率。同时,根据生产实际情况,结合季节变化特点,对循环水量和冷却塔运行工况进行调整,从而实现节水目标。②对于尚未加装除水器的冷却塔而言,在循环水量中因风吹而损失的水量占0.3%~0.5%,而对于加装除水器的冷却塔而言,因风吹而损失的水量会降至0.1%,能够有效减少循环水损失。③为了提高补给水的水质,应对补给水进行预处理,用以减少循环水系统的排污损失。④由于循环水水质极易发生变化,对循环效果造成负面影响,所以应当安装旁滤砂滤器,有效控制循环水水质变化,达到减少新鲜水补充量的目的。新鲜水投入量可减少34.65万t/a,污水排放量可减少12万t/a。

(2)降低电耗的途径

由于废旧设备的电能消耗较大,所以可将此类设备停用,或是对其进行技术改造,以此来减少电能消耗。同时,还可以将电解与干燥工段进行有机结合,并将管道设置在室内,这样既可以节约压缩空气,又能确保碱液输送作用的发挥,由此能使一些机组停止使用,进而达到节能的目的。

(3)合理运用新型节能设备

①氧阴极电解槽。这是一种新型的电解槽,其主要是采用氧气电极还原反应,由于阴极没有氢气析出,所以可以有效降低电压和电解过程的能耗。这种电解槽适用于既消耗氯气又副产氯化氢产品的工厂,如5万吨/a氯乙酸和2万吨/a甘油法环氧氯丙烷装置,采用此类电解槽之后,与离子膜电解槽相比,每年大约可以节省电能3000万kWh,同时,由于环氧氯丙烷能够对副产物氯化氢进行有效利用,总的生产成本也随之大幅下降,节能效益十分显著。②膜极距电解槽。目前,国内大部分氯碱生产中,采用的都是离子膜工艺,这种生产工艺的发展进一步推动了离子膜电解槽的发展,膜极距电解槽便是较具代表性的产品之一。这种电解槽最为显著的应用优势在于较低的槽电压和电耗,它的节电效果十分显著,现阶段已有部分氯碱企业进行了成功应用,取得了一定的成效。

(4)余热再利用

在氯碱生产中,当合成HCl时,热水的送出温度一般会高于要求温度,多余的热水则可作为其他机组的动力源,这样可以使余热获得有效利用。同时可适用不同型号的蒸汽炉,对蒸汽进行回收再利用,以此来补给厂区供热。此外,在转化器运行过程中,氯乙烯热水的余热可以确保溴化锂机组的正常运转。

(5)减少污染物排放的技术措施

在氯碱生产中会产出大量的盐酸,为了提高这种副产物的利用价值,应当将其高效合成有机氯化物。如,开发高效催化剂,以空气作为氧化剂,将盐酸转化为有机氯产品;将氯气作为氯源,使氯转移到有机氯产品中,降低氯产品生产成本。此外,还可以联合使用MVR与高回收率的反渗透装置,降低废水预热能耗,有效处理含盐量高的水质,大幅度提升水回收率,从而降低氯碱装置运行成本,实现废水零排放。

3结语

第7篇

关键词:芳烃联合装置 能耗

一、芳烃联合装置概况

本项目是中国石油四川石化1000万吨/年炼油与80万吨/年乙烯炼化一体化工程中新建的65万吨/年对二甲苯芳烃联合装置,本联合装置以直馏石脑油、加氢裂化重石脑油以及乙烯裂解汽油为原料,生产对二甲苯、邻二甲苯和苯等芳烃产品,以充分发挥炼油化工一体化的优势,综合利用炼油和乙烯的芳烃资源,实现资源的优化配置和产品的增值。

本联合装置由预加氢、连续重整、催化剂连续再生、芳烃抽提、歧化及苯-甲苯分馏、吸附分离、异构化、二甲苯分馏和PSA九个装置及相应的公用工程部分组成。其中芳烃抽提装置由CPE东北分公司负责设计。装置主要产品公称规模为65万吨/年对二甲苯、5万吨/年邻二甲苯,和90000Nm3/h纯氢气,相对应的各装置设计规模如下:

1. 100单元:预加氢装置 170万吨/年;

2. 200单元:连续重整装置 200万吨/年;

3. 300单元:催化剂连续再生装置 2041公斤/小时;

4. 400单元:芳烃抽提装置(CPENE范围)90万吨/年;

5. 500单元:歧化及苯-甲苯分馏装置 95万吨/年;其中苯-甲苯分馏部分 136万吨/年;

6. 600单元:吸附分离装置 347万吨/年(单系列);

7. 700单元:异构化装置 281万吨/年;

8. 800单元:二甲苯分馏装置 420万吨/年;

9. 900单元:PSA装置 90000 Nm3/h(产品气)及公用工程。

年开工时间∶8400 小时;装置操作弹性60~110%。

二、芳烃联合装置能耗

1.芳烃联合装置能耗

按照《石油化工设计能耗计算标准》 (GB/T 50441-2007)的规定进行全装置能耗计算,其计算结果列于下表。

装置总能耗为2172320.5MJ/h,对每吨PX的能耗为674.94kg标油/t。(41.86777 MJ/ kg标油)

2.能耗分析

对于某一特定装置来说,其原料来源、产品方案及产品质量要求的不同会导致装置流程长短的差异,使装置能耗差别很大。

本联合装置产品品种齐全,除生产对二甲苯、邻二甲苯外还生产高辛烷值汽油、苯、重芳烃、戊烷、液化气、纯氢、含氢气体等产品。因此,流程长、设备多、需加热和冷却的过程多,这些对装置能耗都有影响。

连续重整装置为深加工装置,重整反应为吸热反应,重整苛刻度越高即反应深度越深,吸热量就越大。装置的能耗除与反应苛刻度及原料性质等有关外,还与产品方案及压缩机驱动方案有很大关系,所以即使同类型装置也会因上述原因能耗相差较大。

将200单元、800单元和其余100、300、400、500、600、700、900、PSA单元消耗公用工程介质量进行绘图比较如下:

由上图可以看出,整个芳烃联合装置中连续重整(200单元)和二甲苯分馏装置(800单元)在整个芳烃联合装置的能耗中所占比例最大,分别是35.2%和32.9%,共计68.01%。因此,连续重整和二甲苯分馏装置的能耗控制是我们重点关注的装置。

以下分别将这两个装置的公用工程介质消耗进行比较。

装置各公用工程介质消耗分析

芳烃联合装置各公用工程介质消耗情况如下:

各装置燃料气消耗情况图

各装置4.0MPa 蒸汽消耗情况图

装置内重要设备消耗公用工程情况具体数据如下:

连续重整装置四合一炉每小时消耗燃料气13.342t/h(645449MJ/h),占总能耗的29.7%;芳烃抽提装置中的抽提蒸馏塔、溶剂回收塔和溶剂再生塔再沸器每小时消耗4.0MPa蒸汽合计41.47t/h(152780.5 MJ/h),占总能耗的7.0%;异构化装置中的循环氢压缩机每小时消耗4.0MPa蒸汽64.1t/h(236144.4 MJ/h),占总能耗的10.9%;二甲苯分馏装置二甲苯塔底重沸炉每小时消耗燃料气12.85 t/h(621181.9 MJ/h),占总能耗的28.6%。以上所述消耗的能耗合计1655555.8 MJ/h,占整个芳烃联合装置总能耗的76.2%(2172320.5MJ/h)。可以说,控制好上述公用工程介质的消耗是能耗控制关键所在。

三、 节能降耗措施

1.充分利用加热炉烟气余热

本装置中重整“四合一”反应炉由于其操作温度高,且为纯辐射炉,烟气排放温度高,为回收余热,在加热炉顶对流段用来发生4.0MPa(g)蒸汽,使加热炉总效率达91%以上。

为了有效的利用烟气余热,提高加热炉热效率,联合装置其余的加热炉设置了四套烟气余热回收系统:甲苯塔重沸炉、歧化反应进料加热炉、异构化进料加热炉共用一套烟气余热回收系统;二甲苯塔重沸炉采用两套烟气余热回收系统;预加氢进料加热炉、预加氢汽提塔重沸炉共用一套烟气余热回收系统。加热炉对流室烟道出口气体,进入空气预热器,预热后的空气做为加热炉的燃烧空气,使加热炉的整体计算热效率达到91%以上。

2.重整“四合一”炉采用立式炉,以降低重整临氢系统压降,降低能耗。

3.重整进料换热器、歧化进料换热器及异构化进料换热器采用纯逆流板式换热器,以提高传热效率,减小冷热端温差,减少进料加热炉的热负荷,降低装置能耗。

4.二甲苯塔、甲苯塔、重芳烃塔均采用加压操作方案,回收塔顶冷凝热量,二甲苯塔顶冷凝热用作抽出液塔、抽余液塔、成品塔、邻二甲苯塔、脱庚烷塔等塔底重沸器的加热热源,甲苯塔顶的冷凝热用作苯塔塔底重沸热源,重芳烃塔顶的冷凝热用作重整油塔部分重沸热源,该流程的主要特点是能显著的降低装置能耗。

5.吸附分离装置采用性能更好的ADS-37吸附剂,降低了解吸剂用量,且吸附塔操作温度降低至156℃,与以前采用ADS-27吸附剂,吸附塔操作温度178℃比较。能耗降低很多。

6.选用高效塔板,提高分离效率,降低回流比,减少塔底加热炉或重沸器的热负荷,以达到节能的目的。C-6001和C-8002塔盘均采用高效塔盘即MD塔盘。

第8篇

关键词:三多硅晶;生产;节能降耗

由于当前太阳能光伏产业的迅速的崛起,它的市场空间优势和发展前景吸引了国外大量的资金雄厚的大型企业和大型电子生产企业纷纷投入发展太阳能光伏产业队伍当中。而这种市场环境的发展就会使中国太阳能光伏产业在资本和技术方面巨大的挑战,市场优势地位也在遭遇危机。据有关统计指出,发展成熟的多晶硅企业的扩展生产规模和刚加入的多晶硅企业的生产能够在将来的2年里多增加的产能达到了二十多万t/a;与此同时在关于太阳能电池的生产新兴技术和新型产品方面发展也是非常快的,这也就促成了太阳能光伏市场竞争异常激烈的局面。要想在激烈的市场环境中占据有利位置,太阳能光伏制造企业必须具有核心竞争力,而企业要拥有这一竞争力就必须不断的创新生产技术和研发新的产品。而就在冶金技术和流化床技术等方面的技术发展已成为太阳能光伏产业市场的发展能够取得新的成果的关键。当前几乎所有市场都是技术和成本的竞争,因此,光伏制造企业的发展就必须要在多晶硅的制造成本上做出努力。降低多晶硅的生产成本,不仅能够促进多晶硅制造产业和太阳能光伏产业的发展,同时还能够加快国内太阳能光伏运用的普及。

1 副产物循环综合利用

多晶硅的生产过程中,它所需要的原料成本费用占有多晶硅制造总成本的百分之三十至百分之四十。在运用改良西门子工艺和以氯硅烷为原材料的硅烷流化床生产粒状多晶硅工艺的过程中都制造出非常多的副产物;而要想在这些工艺制备过程中能够降低多晶硅的生产成本就必须对这些副产物进行有效的循环再利用。同时能够进行循环再使用的技术是核心问题,譬如把四氯化硅氢化转化为三氯氢硅的方法。三氯氢硅是生产多晶硅所需的基本原料中的一种,在市场上购买其原料的费用是比较高的,而且他的价格变化幅度也是非常频繁的。如果能够将四氯化硅采用氢化技术将其分解为三氯氢硅,就可以有效的解决多晶硅生产过程中副产物的综合利用问题,同时还可以节省购买原料的成本,从而就能够减少多晶硅生产的总成本费用。在当前的四氯化硅采用氢化技术中的等离子氢化方面的技术发展还不够完善。但是目前的热氢化技术和氯氢化技术已经发展的成熟和完备,形成了产业链,而且与四氯化硅氢化技术相比较来说,热氢化技术的转化成功的可能性要更高,处理的副产物的规模也较大,同时它还不需要配套尾气回收装置等方面的优势,因此,在减少多晶硅生产成本上优势也是很大的。

2 完善升级沉积工艺,降低还原电耗

多晶硅在生产过程中的单位沉积电耗会受到很多方面因素的影响,譬如:H2和SiCl3之间的摩尔比;在还原的过程中产生的压力以及硅棒表面温度等方面;但是可以在生产过程中多加 的使用量,从而能够提升沉积的速度,达到降低电耗的目的。

在多晶硅生长工艺中,在最初阶段的还原过程中电耗是最高的,因为当开始沉积时,多晶硅的电耗状态是急速的下降。在当硅棒生长到20h至40h时,还原过程中电耗开始缓慢降低。在到多晶硅沉积的最后阶段,多晶硅的还原电耗就几乎不再下降了。优质的沉积工艺是能够时效的降低单位电耗的,而且在此期间它还可以优化多晶硅棒的致密度,从而有效的提升多晶硅的质量。

3 完善和创新研发新型沉积装置

3.1 多晶硅还原炉大型化

在将多晶硅还原炉大型化后能够充分的利用热量,从而可以减少热量的流失。当前我国多晶硅生产企I主要利用的大型还原炉是18对棒;24对棒以及36对棒,有些多晶硅生产企业在资金充裕的条件下加大对48对棒研发的资金投入。在国外多晶硅生产企业采用的还原炉规格是在12对棒以上,譬如CentrothermPhotovoltaicsAG ,它所供应的的还原炉大多是18对棒和24对棒两种规格;而Poly Plant Project Inc,它所供应的还原炉是18对棒和27对棒两种规格。因此,Centrotherm供应的18对棒型号的还原炉,它的一个炉的产能至少是175t/a,在制备多晶硅的过程中,生产1kg的多晶硅的能耗在70kWh左右;而PolyPlantProjectInc 供应的27对棒型号的还原炉,它的一个炉的产能至少是500t/a,在制备多晶硅的过程中,生产 1kg多晶硅的能耗是低于50kWh。

由此可见,还原炉规格越大,在节能方面的优势就越突出。在还原炉中,一般它的电极的分布与沉积工艺对在生产多晶硅的过程中的电耗意义很大的影响,但是通常来说,采用更大型的还原炉生产多晶硅的能耗更低。

3.2 新型高反射涂层技术

在还原炉的炉筒内壁,它的辐射指数会对在多晶硅的制备过程中的电耗造成很大程度上的影响。由于金、银等金属他们的辐射指数是很低的,因此可以把辐射到金、银表面的大量的热量反射了。鉴此,可以在还原炉的炉筒内壁覆盖金、银等低辐射指数的金属,从而能够有效的降低在多晶硅生成过程中的电耗。能够在相同的状态下,使还原炉筒内壁的辐射指数从0.7降至0.2,在12对棒型号的还原炉制备1kg多晶硅的电耗可从70kWh左右降至45kWh左右。但是由于当前的金、银制作的涂层价格是非常高昂的,同时金、银制作的涂层还使用期间容易脱落。

由于制备多晶硅还原炉,它辐射热量的流失关键部位是在红外光波段。因此,可以在红外范围开发出具有高反射系数的新型涂料,将其用于还原炉的炉筒内壁涂层上,从而能够达到与金、银涂层一样的节能效果,而且还可以减少使用成本和后期维护成本。这就可以在节能和设备两个方面上达到降低多晶硅生产成本的目的。

第9篇

【关键词】电厂汽轮机;运行;节能降

0.前言

目前全球能源趋紧张局势,节能降耗成为电能中的主流。电厂作为我国经济发展的重要支柱,近年来面临着日益增长的用电需求以及不断上涨的能源价格所造成的巨大压力,因此节能降耗成为一个重要的课题。在电厂发电全部过程中,汽轮机起到相当重要的作用,在汽轮机运行过程当中如果采取措施适当,降低能源消耗,可以说整个电厂的节能降耗都起到关键意义。这就要求发电厂在汽轮机的运行过程当中采取相应的技术措施,减少能源的消耗,同时对汽轮机进行适当的技术改造,降低能耗。

1.电厂汽轮机能耗分析

1.1汽轮机组能耗较高

汽轮机是电厂的原动机,汽轮机组能够实现电能、热能和动能的转化,汽轮机一般和发电机、加热器、凝汽器以及锅炉和泵配套使用,汽轮机组能耗较高主要包括两个方面的原因。首先,汽机本体方面,喷嘴室和外缸容易变形,隔板汽封和轴端汽封漏气严重,低压缸出汽边水蚀严重,调节阀油动机的提升力不足、气阀压损大、热力系统很容易发生泄漏,汽轮机组本体泄露严重。其次,机组运行调整方面,冷却水的温度过高、凝汽器的真空偏高、参数和实际运行负荷不对应、未采取优化运行方式以及未采取运行技术等都会加大运行能耗,加大电厂成本支出。

1.2空冷凝汽器存在的问题

首先,凝汽器性能受到风和沙尘影响,在我国西北部地区,沙尘会积聚在翅片管,增加爱翅片管热阻,恶化凝汽器传热性能,堵塞机器的通道。在负风压地区,风机吸入空气量较少,凝汽器热气流动不畅。其次,凝结水的溶氧超标,直接空冷汽轮机组传热效率降低,管道和设备腐蚀加剧,空冷凝汽器很容易在冬季出现流量不均、气体凝集成死区等问题,影响汽轮机运行效率。

2.机组汽轮机节能运行的可行性

2.1经济方面

在对汽轮机进行改造之前应该对改造之后的成本收益进行计算,不能盲目追求所谓的节能,而忽视改造的成本,最后导致得不偿失。根据当前改造成功的实践来看,对现有汽轮机进行改造投入资金要远远低于采购新式汽轮机的成本,此外改造之后的汽轮机能耗大大降低,从长远看也符合电厂的经济效益,因此改造具有经济上的可行性。

2.2技术方面

经过我国对老式汽轮机的几十年技术改造经验,国内对于汽轮机节能改造的技术相对比较成熟。经过改造之后的汽轮机的热效率获得了较大程度的提升,大部分上都可以减少了能源的消耗,提升可能源转化的效率,另外,经过改造之后的汽轮机的安全性和可靠性全面提高。所以,当前我国对汽轮机进行节能改造在技术方面是完全具备的。

3.维持凝汽器最佳真空

为了使汽轮机保持较高的效率,应该保持凝汽器处于最佳的真空状态,这样在一定程度上可以大大的减少燃料的消耗量,从而使整个机组的经济效益获得很大的提升。因此应该采取以下几个方面的措施来确保凝汽器的最佳真空状态。

(1)做好射水泵的维护工作,对于蛇水池的水位定期进行检查,同时应该及时的了解水温,如果出现水温过高的情况应该及时的进行换水。

(2)保证机组的密封性良好,应该定期对机组的密封性进行检查,为了防止凝汽器存在泄漏,应该利用大修的机会对漏洞进行检查,及时做好相应的处理。

(3)为了减缓凝汽器的铜管出现水垢,应该对循环水的品质进行严格的控制,并且定期对铜管的水垢进行清理,从而保证铜管具有较高的热交换效率。

(4)应该确保凝结水位位于合理的位置,如果水位过高,就会造成空间过小而导致冷却的面积不足,最后造成凝汽器的真空下降。

4.提高给水温度

给水温度的高低对于锅炉所需要的燃料的数量具有直接的影响。如果给水的温度低,那么就需要多消耗更多的煤来进行升温,而在这个过程当中大量的热量随着锅炉排烟而损失,导致锅炉的热效率降低。

4.1保证高加投入率

机组滑启、滑停、严格应控制给水温升率符合规程规定;机组启停严格按照规程规定及时投入或解列高加;加强高加运行维护,防止运行操作不当,造成高加保护动作解列。保持高加水位稳定;清洗高压加热器换热管,可以清除管内沉积物,降低换热管积垢部位内外,的温差应力和热应力,减少换热管泄漏机会,进而提高高加投入率。

4.2加热器经常保持正常水位运行

正常水位的维持是保证回热的经济性和主、辅设备安全运行的重要环节。

4.3机组大小修时对加热器进行检漏

检查加热器钢管有无漏点,检查水室隔板密封性,检查高加筒体密封性,发现漏点应及时予以消除。如果水室隔板焊接质量不过关,势必导致部份高压给水“短走旁路”,而不流经加热钢管。这样这部份给水未与蒸汽进行热交换,造成给水温度编低;如果加热器受热面的筒体密封性不好,导致部份蒸汽短路现象,致使给水与蒸汽的热交换效率下降,影响给水温度。

5.汽轮机的启动、运行及停止

5.1汽轮机的启动

降低冲转参数,冷态汽轮机的冲转参数为:主汽压力2.5~3.5MPa,主汽温度为300℃以上,具有50℃以上过热度,且不高于420℃,凝汽器真空在60KPa以上。但根现有的运行情况来看,每次启动机组时主汽压力都高于2.5~3.5MPa,真空都高于80~90KPa,每次在启动后都需要长时间暖机,从而加长了并网时间,增加了启动时的厂用电率,每次锅炉启动后汽轮机方面暖管的时间长,暖管的质量不高,从而每次启动汽轮机前主汽压力均偏高,针对此种情况特提出以下措施:主汽压力高采用开高低旁的方法将压力维持在2.5MPa~3.0MPa左右,适当手动开启真空破坏门维持汽轮机真空在65~70KPa,以增加进入汽轮机的蒸汽量,提高暧机速度而且还有利于胀差的控制,缩短并网时间。

5.2汽轮机的运行

汽轮机采用定-滑-定的运行方式,即在极低负荷时为了保持锅炉的水循环工况和燃烧的稳定性、给水泵轴临界转速的限制,因而采用低水平的定压调节;在高负荷区域采用喷嘴调节,用改变通流面积的方法(定压)以保持机组的高效率;在中间负荷区采用一个现(或两个)调节汽门关闭处于滑压运行状态,此时通过锅炉调整压力来加减负荷。且定-滑-定适应负荷变化能力强,能满足机组一次调频的需要,此种方式也由于只有一个调节汽门未全开从而减少了节流损失。在高负荷运行时汽轮机的主汽压力,主汽温度适当提高,保证加热器有高的投入率,合理调整加热器水位,减少加热器端差提高给水温度。

5.3汽轮机的停机

汽轮机机组在正常停机或在非计划停机时宜采用(下转第163页)(上接第55页)滑参数停机,这样即可以利用锅炉余热发电,也可以降低锅炉、汽轮机设备的温度以利于设备的检修。

6.结束语

汽轮机作为电厂的主要耗能设备,可以提高电厂经济效益,促进我国电业的发展。节能降耗手段应是多样的,不局限于运行调整方面,关键在于我们平时的细心观察及运行经验的总结。节能降耗也是一项长期任务,电厂工作人员要细心观察汽轮机组运行,总结机组运行经验,将节能降耗作为长期的任务来抓,最大限度的降低发电成本,为电厂创造可观经济效益。

【参考文献】

[1]李纯磊.浅析电厂汽轮机运行的节能降耗[J].才智,2011(32).

[2]王金锋.电厂汽轮机运转的节能降耗措施分析[J].机电信息,2012(15).

相关期刊