HI,欢迎来到好期刊网!

欧姆定律之间的关系

时间:2023-08-15 17:19:54

导语:在欧姆定律之间的关系的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

欧姆定律之间的关系

第1篇

关键词:全电路;欧姆定律;实验教学;感性教学

中图分类号:G712 文献标识码:A 文章编号:1672-5727(2012)08-0098-02

欧姆定律是《电工基础》中最常用的基本定律之一,技工院校现在使用的《电工基础》教材(中国劳动社会保障出版社出版,第四版)中把欧姆定律分为部分电路欧姆定律和全电路欧姆定律两部分。对于部分电路欧姆定律,由于中学物理课本已作详细介绍,学生容易接受,但对于全电路欧姆定律,由于其涉及的概念较多且各物理量之间的关系复杂,再加上教材未附相应的实验,学生缺乏感性认识。因此,学生很难理解和接受,也是其成为教师教学中重点和难点的原因。笔者针对学生在学习过程中容易产生的困惑和疑问,借助实验来帮助学生理解,收到了较好的效果。

明确教学目标是教师组织

全电路欧姆定律教学的关键

掌握全电路欧姆定律对于学好《电工基础》这门课程来说至关重要。因为后续章节中多处电路的分析和计算要应用到这一定律。教学是一个教师与学生双向互动的过程,作为教师,要组织好全电路欧姆定律教学,必须先明确教学目标,做到心中有数,才能更好地开展教学。

知识目标:(1)理解电动势、内电阻、外电阻、内电压、外电压、端电压、内压降等物理量的物理意义;(2)掌握全电路欧姆定律的表达形式,明确在闭合电路中电动势等于内、外电压之和;(3)掌握端电压与外电阻、端电压与内电阻之间的变化规律;(4)掌握全电路欧姆定律的应用。

能力目标:(1)通过实验教学,培养学生的观察和分析能力,使学生学会运用实验探索科学规律的方法;(2)通过对端电压与外电阻、端电压与内电阻之间的变化规律的讨论,培养学生的思维能力和推理能力。

理解各物理量的物理意义是

学生掌握全电路欧姆定律的基础

全电路欧姆定律的难点在于概念较多,且各物理量之间的关系复杂。因此,首先,应让学生准确理解各物理量的含义。

全电路是指含有电源的闭合电路,如图1所示。其中,R代表负载(即用电器,为简化电路,只画一个),r代表电源的内电阻(存在于电源内部),E代表电源的电动势。整个闭合电路可分为内、外两部分,电源外部的叫外电路(图1中方框以外的部分),电源内部的叫内电路。外电路上的电阻叫外电阻,内电路上的电阻叫内电阻。当开关S闭合时,电路中就会有电流产生,I=,该式表明:在一个闭合电路中,电流强度与电源的电动势成正比,与电路中内电阻和外电阻之和成反比,这个规律称为全电路欧姆定律。

要理解这个定律,要先理解以下几个物理量的物理意义:第一个是电动势,它是指在电源内部,电源力将单位正电荷从电源负极移到正极所做的功。这个概念比较抽象,涉及知识面较广,要使学生全面、深刻地理解它是有困难的。考虑到学生的接受能力和满足后续知识的需要,需向学生讲清两个问题:一是电动势的值可用电压表测出——电动势等于电源没有接入电路时两极间的电压;二是电动势的物理意义是描述电源把其他形式的能转化为电能的本领,是由电源本身的性质决定的。第二个是电源的端电压(简称端电压),它是指电源两端的电位差(在图1中指A、B两点之间的电压,也等于负载R两端的电压)。需要注意的是,端电压与电动势是两个不同的概念,它们在数值上不一定相等。第三个是内压降,它是指当电流流过电源内部时,在内电阻上产生的电压降。全电路欧姆定律也可表示为:“在闭合电路中,电动势等于内、外电压之和。”

掌握各物理量的变化规律是

掌握全电路欧姆定律的重点

全电路欧姆定律的难点在于各物理量之间的变化规律,也是学生容易产生疑惑的地方。可以利用演示实验来验证各物理量之间的变化规律,以增加学生的感性认识,提高学生的逻辑推理能力。

第一,验证电源内电阻的存在并计算其大小。对于电源的内电阻,由于存在于电源的内部,既看不见,也摸不着,学生对此存在质疑。为此,可用图2进行实验,不但可以证明内电阻的存在,还可测出内电阻的大小。在图2中,用1节1号干电池作电源,电阻R为已知值(可根据实际情况选定)。开关闭合前,记下电压表的读数U1(此值即为干电池的电动势),开关闭合后,记下电压表的读数U2,发现U2比U1小(见表1),就是因为电源内部存在内电阻的缘故。

根据公式r=R可算出该电池的内电阻。再用不同型号的干电池(如5号干电池、7号干电池)进行重复实验,发现它们的电动势虽然相等(为了后面实验的需要,尽量选用电动势相等的电池,并保留这些电池),但内电阻不一定相同。

第二,端电压U跟外电阻R的关系。

实验电路如图3所示,用1节1号干电池作为电源,移动滑动变阻器的滑动片,观察电流表和电压表的读数变化,并将它们的读数记录到表2中。通过观察发现:当滑动片从左向右移动时(为保证实验设备安全,滑动片不要移到最右端),电流表的读数慢慢变大,电压表的读数慢慢变小;当滑动片从右向左移动时,电流表的读数慢慢变小,电压表的读数慢慢变大。由此得出结论:端电压随外电阻上升而上升,随外电阻下降而下降。根据表2中的数据可绘成曲线(如图4所示),即电源的端电压特性曲线。从曲线上可以看出:电源端电压随着电流的大小而变化,当电路接小电阻时,电流增大,端电压就下降;当电路接大电阻时电流减少,端电压就上升。

思考:如果滑动片移到最右端,电压表、电流表的读数将为多少?

第三,端电压与内电阻r的关系。

根据公式U=E-Ir分析可知:当电流I 不变时,内阻下降,端电压就上升;内阻上升,端电压就下降。实验电路同图3,只需将电路中的电源用前面已测过内阻值的不同型号的电池代替即可,观察电流表、电压表的读数,上述结论即可得到验证。

应用规律,解决实际问题

首先向学生提出问题:你是否注意到,电灯在深夜要比晚上七八点钟亮一些?这个现象的原因何在?在回答这个问题之前,可先通过实验验证这一现象的存在,如图5所示。图中5个灯泡完全相同,先将开关全合上,使灯泡发光,再逐个断开开关,发现灯泡逐渐变亮,原因分析:随着开关的断开,外电阻增大,导致干路电流减小,使得内压降下降,从而端电压增大,即灯泡两端的实际电压增大,故灯泡变亮了。上述问题也得到了解决。

在教学过程中,如果尽可能地增加一些实验,通过生活中的实验记录其数据并指导学生得出规律,提高感性认识,不但可以提高学生的学习兴趣,也会提高教学效果。

参考文献:

[1]李书堂.电工基础(第4版)[M].北京:中国劳动社会保障出版社,2001.

[2]毕淑娥.电工与电子技术基础(第2版)[M].哈尔滨:哈尔滨工业大学出版社,2004.

[3]王兆良.关于“全电路欧姆定律”的教学[J].福建轻纺,2007(2).

第2篇

一、寓培养学生实事求是的科学态度于学生实验操作之中

欧姆定律是一个实验定律,因此在教学“欧姆定律”一节时,教师必须在学生对“电流与电压、电阻”之间关系进行猜想假设的基础上,引导学生设计实验方案,精心组织学生进行实验。在实验前指导学生:(1)根据电路图准确连接电路;(2)仔细检查电路及电表、滑动变阻器等连接是否准确;(3)在确认无误时,动手实验,并认真观察、精确记录数据;(4)明确滑动变阻器在两次实验中的作用:使定值电阻两端电压成整数倍变化和保持电阻两端电压不变;(5)分析实验中可能出现的数据差异原因,重复实验,直至准确。对于在实验中怕麻烦、凑数据的学生及时用科学家尊重事实、刻苦钻研及时教育他们,端正他们态度,帮助他们用实验得出准确结果。通过实验,使学生得到了欧姆定律实验所需要的数据,也培养了学生观察实验能力和实事求是、客观、细致的科学态度,从而激发学生勤奋求真的热情。

二、寓培养学生科学方法于分析实验数据和归纳出实验结论之中

在得出实验数据之后,就着手组织学生分析数据、归纳出结论。在引导时,引导学生回忆“探究影响导体电阻大小的因素”的实验方法,并要学生用之中方法研究电流跟电压、电阻两个因素的关系,即(1)固定电阻不变时,研究电流跟电压的关系;(2)固定电压不变时,研究电流跟电阻的关系。最后将两次结论综合起来,应用数学函数知识得出电流跟电压、电阻的关系。接着,根据学生实验数据组织讨论,并分析归纳实验结论。(1)分析“研究电流跟电压关系”表格:电流随电压增大而增大,且电压增大几倍电流也增大几倍。得出结论1:当电阻一定时,电流与电压成正比。(2)分析“电流与电阻关系”表格:电流随电阻的增大而减小,且电阻增大几倍,电流就减小到原来的几分之一。得出结论2:当电压一定时,电流与电阻成反比。归纳结论1、2,即得欧姆定律。在整个研究、分析、抽象,归纳过程中,使学生潜移默化地学会了:(1)研究问题的方法――控制变量法;(2)对实验数据的综合――分析――抽象――归纳的处理方法,从而学到了由特殊、个别推到一般的逻辑推理方法。这些方法都是学生终生受益的科学研究方法。在得出实验结论――欧姆定律后,教师接着就组织学生用他们已学过的数学知识推导欧姆定律的计算公式:(1)把电流与电压成正比表达成I∝U;(2)把电流与电阻成反比表达成I∝1/R,把(1)、(2)结合起来得出计算公式:I=U/R;通过公式推导使学生了解到不同学科之间的联系,它不仅开阔了学生的视野,也可使学生学到物理公式常用的科学的数学方法。

三、寓培养学生科学思想于理解、应用定律之中

对于实验定律――欧姆定律,在理解其内容时,引导学生讨论:能不能把定律叙述的导体的电流与导体两端电压成正比、与导体两端电阻成反比改叙述成导体两端电压与导体电流成正比、导体电阻与导体电流成反比?让学生在讨论中明白:叙述定律时只能按课本那样叙述,否则是错误的。这是因为事物内部矛盾的双方有主有次,这里电压、电阻是矛盾的主要方面,是事物变化的依据,对事物变化起决定作用的;而电流则是矛盾的次要方面,它是随电压、电阻变化而变化的,在事物变化中处于服从地位;这样使叙述在讨论中理解了定律,在理解定律过程中获得了一次科学的认识教育。

在讲解定律公式的应用时,如教师通过P111教材例1的讲解,强调了定律的应用是有条件的,即(1)同体性:只能适用于同一段电路中的电流、电压以及电阻之间的关系的运算;(2)同时性;(3)计算时数字代入单位必须是国际单位制中主单位。引导学生认识到真理是有局限性的,是离不开特定条件的。又如教师通过课本例2讲解,强调了定律的应用性,即通过欧姆定律可以求出导体的电阻值,也就是可用伏安法测未知电阻,使学生体会到:理论的实践性以及理论与实践的一致性。此外取平均值可以减小实验误差;表格可以得到实验结论1等。

四、寓培养学生的科学精神于介绍科学家的事例之中

结合课本中“信息库”介绍,使学生了解德国的物理学家欧姆发现了电路中遵循的基本“交通规则”,但他幼年家贫,曾中途辍学,后全凭自己努力,完成学业。他为了得到欧姆定律,花费了十年心血。当时的实验条件非常差,他自制了测电流的电流扭秤,花五年时间才找到电压稳定的电源。经过长期细致的研究,终于取得了成果。在教学中把欧姆的对学习勤奋刻苦,对科学知识的执著追求,在科学研究道路上勇于探索、百折不挠的献身精神及对人类社会的贡献,展现在学生面前,使学生从中接受了热爱科学、追求真理的科学接受教育。

教育者在实施科学素养教育时不是生硬的说教,应有机结合教材适时适量地渗透;科学素养教育是素质教育的核心,在实施时教师还应当有意识、有目的地进行,同时联系教材中其他素质教育因素如能力、智力、科学美等全方位地开展,并做到主、次得当,这就需要安排好教学过程和节奏,从而使素质教育得到全面培养。

【参考文献】

第3篇

[关键词]串联电路 并联电路

对于初中生刚开始接触电学,特别是学习了欧姆定律之后,很多同学由于不熟悉电流、电压、电阻他们之间的关系,常常遇到很简单的计算题却无从下手,更多的时候是张冠李戴。给自己的电学学习带来了很多障碍,让很多学生误认为电学的计算陷阱多多,困难重重。其实,只要能好好的理顺各个物理量之间的规律和关系,电学计算是很简单的。这里我将介绍一种运用“小方格”的方法,帮助你顺利解决电学的计算,

(一)“小方格”的建立以简单串联电路为例:

在上面的右图中,有两个电阻R1和R2串联,每个电阻两端的电压分别为U1和U2,通过它们的电流分别为I1和I2,再加上电路的总电压U、总电流I和总电阻R,一共就有了九个物理量,将九个量填入上面左边的表格之中,“小方格”就建好了。

(二)“小方格”的特点:

在上面的小方格中,我们能够很明显的看出:每一纵行的物理量都是对于同一段电路而言,它们之间的关系通过欧姆定律便可以解决。每一横行的物理量之间的关系由串联电路中,电流、电压、电阻的特点得出:即1、串联电路两端的总电压等于各部分电路两端电压之和,即U=U1+U2;2、串联电路中的电流处处相等,即I=I1=I2;3、串联电路的总电阻等于各串联电阻之和,即R=R1+R2,那么在这9个小方格中,无论是横行还是纵行只要知道任意两个,就可以求出第三个物理量。

(三)运用“小方格”解决实际问题:

[例]:已知两个电阻R1和R2串联(电路图与上面所用之图相同),电源电压U=10V且恒定不变,R2=5,通过的R1电流I1=0.5A,求R1。

将小方格建立好,并将题目中的已知条件在小方格的对应位置填好。我们会发现要想求电阻R1,时。即可依靠第三横行或者是第二纵行。所以这道题有两种解法,下面就将这两种解法简单的介绍一下:

解法一(走横行):因为串联电路中电流处处相等,由第二行规律可得I=I1=I2=0.5A,想求R1只能通过R=R1+R2,而R2,已知,所以求R1已经转化为求R。根据欧姆定律,由第一列规律可得R=U/I-10V/0.5A=20又根据串联电路的总电阻等于各串联电阻之和,由第三行可得R1=R-R2=20-5=15。

解法二(走纵行):看表格可知最终要通过欧姆定律计算得出。通过题目中的已知条件,只要我们能得出U1,R1便可求。因为串联电路中电流处处相等,由第二行规律可得I=I1=I2=0.5A再根据欧姆定律,由第二列规律可得U2=I2R2=0.5A5=2.5V又根据串联电路的总电压等于各部分电路两端电压之和,由第一行规律可得:U1=U-U2=10V-2.5V=7.5V,再根据欧姆定律,由第三列规律可得R2=U2/I1=7.5V/0.5A=15注意,如果是并联电路,纵列的规律没有什么变化,而每一横行的规律就有变化了,并联电路相应的规律是:1、并联电路各支路两端的电压相等,即U=U1=U2;2、并联电路干路电流等于各支路电流之和,即I=II+I2;3、并联电路总电阻的倒数等于各并联电阻的倒数之和,即1/R=1/R1+I/R2

[例]:已知两个电阻R1和R2并联,电源电压U=10V且恒定不变,R2=5,干路电流I=3A,求R1

建立小方格的方法与串联电路相同,只是需要遵循的规律有所变化,同学在计算时只要稍加注意就可以了,这里我将不再进行详解。同学可以自己动手试一试。

第4篇

【关键词】线性元件;非线性元件;纯电阻;非纯电阻元件;欧姆定律

About linear, nonlinear element and pure resistance, impure resistor’s discussion

Zhang Feng

【Abstract】Linear, the mis alignment and the pure resistance, the impure resistor’s concept is separately from two different angles the classification which carries on to the electricity component, between them not direct relation.

【Key words】Linear element; Nonlinear element; Pure resistance; Impure resistor; Ohm’s law

在欧姆定律一章的教学过程中常常会遇到有些资料或者一线教学的教师,对线性、非线性元件及纯电阻、非纯电阻元件和欧姆定律的适用关系出现一些概念上的混乱。所以在此我们就这个问题做一些专门的讨论。

人们对通过导体的电流与电压关系的实验研究中,发现温度变化不大时,常见的金属导体中所通过的电流与其两端所加的电压是成正比的,即电压与电流的比值是确定的;而对不同的金属导体这个比值是不同的。看来电压与电流的比值可以反映导体本身的一种性质,于是物理学中将其比值定义为导体的电阻。但是在后来的研究中发现也有一些导体所通过的电流与加在其两端的电压并不成正比,于是人们把电压与电流成正比的导体材料叫做线性元件(伏安特性曲线是直线),而把不成正比的导体材料叫做非线性元件。实验表明常见的线性元件除金属外还有电解质溶液。而常见的气态导体、半导体材料都是非线性元件。

我们知道物理学中的欧姆定律是实验定律,其内容表述是:导体中的电流跟导体两端的电压成正比,而跟导体的电阻成反比。这是由于欧姆当初实验是用常见的金属导体来做实验所得出的该结论。由此看来欧姆定律是只对线性元件而言的,或者说欧姆定律的适用范围只是线性元件。需要注意的是I=U/R这个公式对非线性元件仍然是成立的,对非线性元件I=U/R是在某一个工作状态下所对应的数学关系。

人们对用电器工作中能量转化问题的研究中,注意到有一类用电器所消耗的电能是全部转化为内能的,即电流做功用来全部产生焦耳热。所以电流所做的功W=UIt和焦耳实验定律中得到的电热Q=IR2t二者是相等的,即UIt=IR2t。化简得到U/I=R,可以理解为这种用电器对电流的阻碍作用全部来自于电阻,所以这种用电器被称之为纯电阻元件。相反,有些用电器所消耗的电能并没有全部转化为内能,即电流所做的功是大于所产生的焦耳热的,由UIt>IR2t可化简得到U/I>R,可以理解为这种用电器对电流的阻碍作用不纯粹来自于电阻而是还有其它的阻碍作用(将来可由反电动势、感抗、容抗等概念予以解释),所以这种用电器被称之为非纯电阻元件。

所以对纯电阻元件,其电压、电流、电阻之间还是具有等量关系的,U/I=R I=U/R U=IR都是成立的。而对非纯电阻元件因为U/I>R,所以I,U,R之间也就不再具有等量关系了。

总之,线性、非线性元件与纯电阻、非纯电阻元件的概念是分别从两个不同的角度对电学元器件所进行的分类,他们之间无直接的联系。纯电阻元件可能是线性的也可能是非线性的,而对非纯电阻元件则通常都是非线性的,当然从概念上讲也不排除将来会发现或人为合成出线性的非纯电阻元件。非线性元件不适用于欧姆定律是由于电流与电压不成正比;非纯电阻元件不适用于欧姆定律则是对电流的阻碍作用不仅有电阻还有感抗或容抗等作用,所以U/I>R。

下面我们来看两个涉及线性、非线性元件与纯电阻、非纯电阻元件的电学问题;

例题1. 要描绘某电学元件(最大电流不超过6 mA,最大电压不超过7 V)的伏安特性曲线,设计电路如图1-1所示。图中定值电阻R为1 kΩ,用于限流;电流表量程为10 mA,内阻约为5 Ω;电压表(未画出)量程为10 V,内阻约为10 kΩ;电源电动势E为12V,内阻不计。

(1)实验时有两个滑动变阻器可供选择:

a.阻值0~200 Ω,额定电流0.3 A

b.阻值0~20 Ω,额定电流0.5 A

本实验应选用的滑动变阻器是(填“a”或“b”)。

(2)正确接线后,测得数据如下表:

a. 根据以上数据,电压表是并联在M与(填“O”或“P”)之间的。 b.根据以上数据,在图1-2中画出该元件的伏安特性曲线。

(3)画出待测元件两端电压UMO随MN间电压UMN变化的示意图(无需数值)。

【答案】(1)a (2)a. P b.见解析中图1-4

(3)见解析中图1-5

【解析】(1)由于电源内阻不计,所以若使用变阻器b时,流过其电阻丝的电流(触头右侧部分)I>12/20 A=0.6 A>0.5 A,会烧毁变阻器,故只能用变阻器a。 (2)a. 由题表格数据知,被测元件的电阻R=U/I在不同电压下都在1 kΩ以上,与电压表内阻很接近,故为减小实验误差,电流表应采用内接法,即电压表应接在M与P两点之间。b. 以纵轴表示电流,以横轴表示电压建立坐标系,在纵轴上以5小格(1大格)表示1 mA,在横轴上以5小格(1大格)表示1 V,将表格中各组数据对应的点描绘在坐标系中,然后用平滑的曲线将描出的各点连接起来,即得伏安特性曲线。 (3)UMO随MN间电压UMN的变化如图1-5所示。

例题2 抽油烟机是现代厨卫不可缺少的用具,下表是“惠康牌”家用抽油烟机说明书中的主要技术参数表.用多用表测量得两只电动机的线圈电阻均为R=90 Ω.若保险丝的熔断电流是保险丝允许通过的电流的1.5倍,启动时电动机当作纯电阻处理,则

(1)这种抽油烟机保险丝的熔断电流不得低于多少?

(2)两电动机每分钟消耗的电能为多少?

(3)两电动机每分钟所做的有用功是多少?

(4)这种油烟机的机械效率是多少?

思维引导 电动机启动过程和工作过程有何不同?启动过程中电功的作用是什么?工作过程中电功分为几部分?电动机的有用功部分是做什么工作?效率的计算方法是什么?

解析 (1)电动机启动时通过的电流大于正常工作时的电流,所以保险丝的熔断电流应以启动时通过的电流来确定.I=UR×2+P灯U=5.1 A.所以保险丝的熔断电流至少:I′=1.5I=7.7 A.

(2)两电动机每分钟消耗的电能E=2Pt=22 200 J

(3)电动机所做的有用功是用于排风的,故两电动机每分钟所做的有用功为:

W=PΔV=300×15 J=4 500 J

(4)该抽油烟机的效率η=WE×100%=20.3%

第5篇

一、利用心理相容理论,培养师生间的深厚感情,激发和发展学生的课堂学习兴趣

所谓心理相容,是指双方举止言谈,思想观点等方面能互为对方心理所接受、所认可。师生间的心理相容、关系和谐,可消除学生的逆反心理,可引起学生对教师的肯定反应,并在课堂教学中配合默契,使双边活动积极,课堂气氛活跃,课堂上下主动,课堂组织井然有序,从而最大限度地发挥教师的主导功能和学生的主体功能,并从中激发学生课堂学习的兴趣。

二、把握优质课教学诸要素及环节,力求全方位激发学生的学习兴趣

1.复习检查提问,采用“单兵操练”。复习检查提问不吃“大锅饭”,采用多种形式、多种渠道,对不同层次的学生进行“单兵操练”,能调动动全体学生的学习积极性,使之动脑、动耳、动手、动口。教师可根据上节课的重点内容和新援课的需要,提出若干问题,使学生带着问题、带着疑难、带着求知的企盼心情听、看、记、想。

2.课堂引入引人入胜。教师为讲授新课,设计引人人胜的课堂引入,可使学生产生强烈的好奇心,从而激起学生课堂学习的浓厚兴趣。例如我讲《闭合电路的欧姆定律》时,是这样引入新课的:先用提问的方法复习了电动势的物理意义和数值的计算公式;又复习了部分电路欧姆定律的内容,并板书了一道题目让同学们思考。接着我说:部分电路欧姆定律只是研究一段纯电阻电路上的问题。如果研究的对象是包括电源在内的闭合电路,那么电路中的电流强度又跟什么有关呢?关系如何呢?黑板上的这个题目该如何计算(黑板上出现图示)请同学们思考后计算一下电路中的电流强度是多少?同学们静静地思考后,有的互相交流眼神,似有疑难,有的欲翻书。就在此时,我说:解决上述问题,需要闭合电路的欧姆定律。好,这节课我们学习这一定律,并运用它解决一些具体问题。这时同学们把目光投向了我。

第6篇

1 结合专业实际特点利用以下手段促进课程改革

1.1 贴近生活。各种家用电器的大量使用,为物理教学提供了丰富的感性材料。如电压、电流、电磁炉等,学生在日常生活中,观察和接触的电现象和应用电的知识的事例,恰当地利用学生已有的感性认识及生活经验,通过举例引导学生提取储存在头脑中的印象。教师在课堂上应密切联系生活实际,注意身边的科学,如学生普遍对现代电子信息技术比较感兴趣,教师可以针对这一问题,有意识地讲述物理知识在电子信息技术中的重要作用等。以日常生活中的电学概念教学,可以增加学生学习的主动性。

1.2 注重实验。物理学是一门以实验为基础的自然学科,物理规律和理论是以实验为基础并验正的。在物理学里,某些性质不同的物理现象都是要通过实验来验证的,运用演示实验或学生亲自做实验来获得感性认识,容易更好的集中学生的注意力,培养学生的观察力,激发学生的学习兴趣。新颖的实验往往更能吸引学生注意,恰当地将教材中的实验加以发展、变化,可以增加学生的好奇心和求知欲。采用演示教学法,在整个教学过程中,教师边演示、边提问、边解答,学生边观察,边考虑问题,把抽象的理论变得具体、生动。使学生在愉悦的教学环境中,深深感受到学习的趣味性和有用性。

1.3 利用多媒体课件模拟演示。物理概念和原理是比较抽象的,有些现象在传统的实验中也是无法展示的,所以仅靠形象、表象和想象对初学者来说是不容易理解和掌握的。但是,利用多媒体课件可以较好地解决这一难点。例如“电流”概念比较抽象,可以利用多媒体模拟电路中电流的流动,看到正电荷从正极向负极运动,这样将电流转换成电荷的流动,让本来看不见的电流变成动态的画面,将课本中不动的图形变为电荷不断流动的动画。遵循学生的思维由浅入深、由表及里,从具体到抽象,由现象到本质的循序渐进的思维过程,可以比较容易地解决这一教学难点。加深学生对电流的感观认识,从而为建立电流概念打下基础。

1.4 在公式分析。讲解公式时,注重公式推理、得出过程,注重公式的使用条件,主要学习公式的如何使用。这是物理式正确使用的前提,前期学不好,后期无法正确应用。中职学生在初中物理中已学过的部分电路欧姆定律,它只适用于电路中某个导体或某一部分电路的电压、电流和电阻三者之间的关系。《电工基础》中引入了全电路欧姆定律新知识,进一步完善电路中内、外电路的电流、电压(电动势)和电阻间的关系,使知识由“部分电路”向“全电路”深化和发展。教学中可以充分利用部分电路欧姆定律的概念和相关知识,引入全电路欧姆定律的概念。如在课本电路中,将全电路分解为外电路和内电路两部分,在外电路中,根据部分电路欧姆定律可知负载R两端的电压降为:U=IR.在内电路中,电源电动势E与内阻r的电压降Ur和电源端电压的关系是:U=E-Ir。在全电路中,负载两端电压U与电源端电压U相等,且内外电路电流相等,则可得:I=E/R+r即为全电路欧姆定律。通过实例的讲解,注意强调部分电路欧姆定律和全电路欧姆定律两种概念的共同点、不同点以及相互联系,使学生对新知识能进一步理解和掌握。

2 提高基础学力,促进科学素养可持续发展

学力,是指通过学习获得的能力。物理教育在提高学生科学素养的同时,还要提高学生的学力水平,并使更多的学生对物理产生兴趣。学力是教育的内核,是学校课程设计的前提。任何一门学科教学的目标大体有四个组成部分:①知识、理解;②技能;③思考力、判断力;④关系、动机、态度。前两部分为显性学力,后两部分为隐形学力。就犹如浮在水面上的冰山,浮出水面的仅仅只是冰山一角,而更多的、隐匿在水面下的才是支撑浮出水面部分的基础,四部分做为一个整体反映了一种学力观。

3 结合学生、学校或专业的特定环境和特点,开展适合专业特点和学生实际的校本课程开发,是培养学生专业素养的必要补充

第7篇

[中图分类号]G633.7

[文献标识码]C

[文章编号]1004-0463(2012)06-0081-01

物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题,每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,逐个加以分析,最后再综合解决,这种方法叫控制变量法。在人教版的物理教册中,有许多探究实验中都用到了控制变量法。例如,声音的响度和音调、理想斜面实验、力与运动的关系、影响滑动摩擦力大小的因素、影响压力的作用效果的因素、影响浮力大小的因素、影响滑轮组的机械效率的因素、影响重力势能大小的因素、影响导体电阻大小的因素、验证欧姆定律、影响电流做功多少的因素、影响电磁铁磁性强弱的因素等等。

一、用控制变量法探究影响滑动摩擦力大小的因素

1 控制接触面的粗糙程度不变,改变物体对长木板的压力,探究压力与滑动摩擦力之间的关系。两次采用相同的平面即可保证接触面的粗糙程度不变:改变物体列长木板的压力,可采用在物体上面加砝码的办法,当在物体上加一砝码时物体对木板的压力增大。通过实验得出:当物体接触面的粗糙程度相同时压力越大滑动摩擦力越大。

2 控制压力的大小不变,改变物体接触面的粗糙程度,探究接触面的粗糙程度和滑动摩擦力的关系。两次用同一个物体即可保证物体对长木板的压力大小不会改变。改变接触面的粗糙程度可以在长木板上铺上毛巾,当在木板上铺上一条毛巾时可以增大接触面的粗糙程度。通过实验得出:当物体所受的压力相同时,接触面越粗糙,滑动摩擦力越大。

二、用控制变量法探究欧姆定律

欧姆定律是电学的基础和重点,处于电学的核心位置。学生通过之前的学习掌握了电路的三个基本部分:电流、电压、电阻。它们之间有怎样的关系呢?根据新课程标准的要求,教材安排了一个比较完整的探究活动,涵盖了探究的七个要素。其中重点是如何运用控制变量法来设计整个实验,明确用什么方法保证某一物理量不变,用什么方法改变一物理量。

1 控制电阻R不变,改变导体两端的电压u,探究电流I与电压u之间的关系。采用定值电阻,即可保证定值电阻R不变。改变导体两端的电压,可用两种办法:改变电源两端的电压,即可改变导体两端的电压U。用这个电路,学生能够较为轻松地运用控制变量的方法直接研究电流与电压的关系,易于学生理解和掌握:通过调节滑动变阻器,改变电阻R两端的电压。要使学生明确研究对象是定值电阻这部分电路,滑动变阻器的作用是使定值电阻两端的电压发生改变。

2 控制导体两端的电压U不变,改变电阻R,探究电流与电阻的关系。换用不同的定值电阻即可改变电阻R。改变电阻R的同时要保证导体两端的电压不变,可以采用以下两种方法:一是使用同一个电源,即可保证导体两端的电压不变,更换不同的电阻。可直接得出电流与电阻的关系,降低了探究的难度。但如果实验中使用的是干电池,电池有内阻,外接电阻R变化时,电阻R两端的电压也会随之有所变化,会给实验带来误差。二是换用阻值不同的电阻R时,若滑动变阻器的滑片不动,定值电阻两端的电压会发生变化。电压、电阻都改变,就不能确定究竟是什么因素影响了电流。这一点学生在实验中非常容易忽视,教师要注意引导学生观察电压表,使其示数保持不变。

第8篇

         一、辨析概念,夯实基础

         任何知识的学习掌握都离不开基础知识。电学部分的基础知识多、散、要辨析清楚、固记脑中。

         (一)、关于电路

         1、串联、并联

         初中物理中要求学生掌握最基本的两种连接方式:串联、并联。能否正确分析辨别他们对后面内容的学习至关重要。识别电路的类型,可以根据定义:“逐个顺次连接”为串联,各元件“首首相接、尾尾相接”并列地连在电路的两点间,(“首”为电流流入用电器的哪一端,“尾”指电流流出用电器的那一端)此电路为并联电路。

         2、通路、开路、短路

         电路中出现的这三种状态,其中通路为处处相通的电路,开路为电路中有处断开的电路,这两种状态易于接受,便于分清。但是学生对于短路的分辨显得力不从心,不知道何处短路,为什么短路。其实只要注意分析的要点即可辨出何处短路。电流具有走捷径的特点,捷径是指这条路径中电阻很小,小到可以忽略不计、即为空导线,当一根空导线,或开关、或电流表(电阻小到可以认为没有)与某个用电器并联时,电流只走空导线,开关或电流表而不走用电器,使该用电器被短路,从而不能工作。

         (二)三个重要的物理量—电流、电压、电阻

         1、概念辨析

         电荷的定向移动形成电流,这是电流的形成定义,简单便于理解;电压是形成电流的原因,没有电压就没有电流;电阻是指导体对电流的阻碍作用,即阻碍作用越大,电流越小。

         2、表示符号

         电流、电压、电阻三物理量分别用i、u、r表示,而单位表示字母分别为a(安培)、v(伏特)、ω(欧姆)。

         3、工具的使用

         电流表是测量电流的工具;电压表是测量电路两端电压的工具;调节电路中的电流和用电器两端的电压,可以使用滑动变阻器。

         (三)电功(w)、电功率(p)

         物理学中电功没有确切的定义,只是描述性的,当电能转为其它形式能时,就说做了电功。即电功就表示有多少电能转化为其它形式的能,如果知道了电功的多少,就知道了消耗多少电能。而用电器单位时间内消耗的电能叫做电功率。电功率的大小不仅取决于消耗电能的多少,也取决于所用的时间的长短。

         二、理解规律,把握关键

         (一)三个物理量在串、并联电路中的特点

         在串联电路中:电流处处相等;电路两端的总电压等于部分电路两端电压之和;总电阻等于各导体的电阻之和。在并联电路中:干路中电流等于各支路电流之和;各支路两端的电压相等;并联电路总电阻的倒数等于各并联导体的电阻倒数之和。

         (二)欧姆定律

         一段导体的电流,跟这段导体两端的电压成正比,跟这段导体的电阻成反比。这个定律非常重要,一定要加强理解,熟记其使用的条件及注意事项。

         (三)电功定律

         某段电路上的电功,跟这段电路两端的电压、电路中的电流以及通电的时间成正比。物理学中用电路两端的电压u,电路中的电流i,通过的时间t,三者的乘积来计算电功。

         (四)焦耳定律

         导体中有电流通过时,导体就要发热,此现象称为电流的热效应。英国物理学家焦耳经过多年的研究,做了大量的实验,精确地确定了电流产生的热量与电流、电阻和时间的关系:电流流过某段导体时产生的热量跟通过这段导体的电流的平方成正比,跟这段导体的电阻成正比,跟通电的时间成正比。

         三、疏通关系,构建框架

         在掌握了上述理论知识的基础上,还要想法疏通各个物理量之间的关系,熟悉各物理量的单位及换算关系,能够快速选择相应的计算公式,列式解答。

         (一)重要的计算公式

         1、三个物理量的关系公式

         串联时:i=i1=i2;u=u1+u2;r=r1+r2(若有几个等阻值为r0的电阻串联则r=nr0)

         并联时:i=i1+i2;u=u1=u2;1/r=1/r1+1/r2(若有几个阻值为r0的电阻并联则总电阻r=ro/n)

         2、欧姆定律:i=u/r

         此公式中只有电流、电压、电阻三个物理量,但它的作用非常重要。在使用公式时要注意:①三个物理量都要针对同一段导体,或同一个电路而言;②三个物理量的单位都要使用国际单位,即分别为a、v、ω;③已知其中的任意两个量都可以求出第三个量。

         3、电功公式:w=uit;电功率公式:p=ui

         电功、电功率这两个物理量的计算由于欧姆定律及其变形公式的影响,使计算电功率公式特别多,在选择使用时很难选择,所以要注意选取的技巧和方法,要求的问题所在电路为串联时:电功选用公式:w=i2 rt,电功率选用p=i2 r;而当要求所在的电路为并联时,则分别选用w=u2/r.t,p=u2/r,这样的选择都利用了所在电路的特点(电流相等或电压相等)加快解题。

         4、焦耳定律:q=i2 rt

         焦耳定律的公式与电功公式的形式基本一样,使用时同样要注意公式的选择问题,当所求问题的电路为纯电阻(除了电能转化为内能外,别无其他形式的能产生)电路时,几个公式可以任意选取;若不是纯电阻电路只可使用公式q=i2 rt不然的话计算有误。

         (二)单位的换算

         单位换算的前提条件有两个:一是记住每个物理量的单位及表示符号;二是要牢记各单位之间的换算进率。其中电流、电压、电阻这三个物理量的单位较多,注意每个物理量的任何两个相邻的单位间的换算进率都为1000。还要注意一点,由于欧姆定律及其变形公式的影响,电功、电功率,焦耳定律的公式较多,产生的单位同样很多,使用时各物理量均使用国际单位。

         四、善于总结,归纳要领

         下面的这些要领非常重要。

         (一)串、并联电路的识别

         上面已经提到区别它们的方法,在做题中要选取适当的方法,迅速作出判断。

         (二)短路的辨别

         把握短路现象的真正含义——电流不经过用电器回到电源的负极。注意电流的特性——电流走捷径。当在电路中发现有空导线,开关或电流表等元件与用电器并联时,相应的用电器被短路不工作。

         (三)串、并联电路中的三个物理量的关系

         两种电路中的三个物理量的大小关系,前面已说得较为详细,但这一点要特别重视,牢记串联时电流相等,并联时电压相等,这一点解题时作用特别大。

第9篇

一、欧姆表测电阻的本质

电池使用一段时间后,由于电动势减小,内阻变大,但仍然能调零,则重新调零后满足Ig=E′R内′,可见欧姆表的内阻减小;根据公式R内=(R0+r+Rg)和内阻r增大可知内部的可变电阻R0的有效阻值增大.由于表盘上所标注的电阻阻值满足关系式: R=(n-1)R内,所以当电动势减小导致欧姆表内阻减小后将导致各个刻度值对应的电阻阻值减小,由于电动势变化后我们并不会在表盘上重新进行标注,所以我们仍然按照原来标注的数值读数,读出的数值比实际值偏大.

说明由于内阻的增大可以通过适当减小R0来进行补偿,所以并不会对读数造成影响,读数造成的影响全部来自于电动势的变化.

3.利用规律解决挡位比较问题

解析在使用欧姆表时,如果指针指到某一位置对于不同的挡位,读出的数值不同,根据关系式R=(n-1)R内可知不同挡位对应的欧姆表的内阻不同,根据Ig=ER内可知,要改变欧姆表的内阻就必须改变欧姆表内置电源的电动势(或等效电动势)或者是改变欧姆表的最大电流.

从高挡位调到低挡位时,欧姆表内阻减小,我们有两种途径可以实现欧姆表内阻的减小.第一种:减小电动势,可以通过切换电路更换连入电路的电源;或者是通过改变电路来减小其有效输出电动势,比如给电源并联一个和它内阻相当的电阻,这样就可以达到减小电动势的目的.第二种:增大欧姆表的电流,可以增大和表头串联的电阻阻值,也可以减小和表头并联的电阻阻值,从而增大分流电路所能分得的电流,增大欧姆表的总电流.

在图3和图4中,将单刀双掷开关在不同的触点之间进行切换时,电源提供的电动势都不会发生变化,那么不同挡位之间只能靠改变电流来实现内阻的改变.图4中将单刀双掷开关在不同的触点之间进行切换时,电流不变,所以欧姆表的量程不变.图3中将单刀双掷开关从b掷到a时,欧姆表内的总电流增大,欧姆表内阻减小,倍率变小,所以开关和b相接触时,表示选用了高挡位.

反思

1.欧姆表的常规改装和使用方法是将待测电阻和表头串联形成回路,简单地说欧姆表的常规使用方法是串联使用.本题中欧姆表的改装和使用方法是将待测电阻和表头并联形成回路,简单地说本题中欧姆表是并联使用的.首先要认真审题发现这一区别,然后还要求熟悉欧姆表的常规测量原理,才有可能正确解题.

2.认识两种改装、使用方式下的欧姆表在测量原理上的异同.

用R0表示可变电阻的有效阻值、r表示内置电源的内电阻、Rg表示表头的阻值.

(1)待测电阻和表头为串联关系的欧姆表

欧姆表使用的第一步就是欧姆调零,调零后满足Ig=ER0+r+Rg,把(R0+r+Rg)称为选择该挡位时的欧姆表内阻,即R内=(R0+r+Rg).当将欧姆表与一个电阻R串联时,根据闭合电路的欧姆定律得1nIg=ER内+R,n表示满偏电流和实际电流之间的比值,也就是满偏时的偏转角和实际偏转角之间的比值.将Ig=ER0+r+Rg,R内=(R0+r+Rg)和1nIg=ER内+R联立得R=(n-1)R内,表盘上所标注的数值是依据这一关系来确定的,也就是表盘上所标注的数值必须满足这一规律.我们读出的数据总是内阻的一个倍数,这就是欧姆表测量电阻的一个基本规律.

(2)待测电阻和表头为并联关系的欧姆表