HI,欢迎来到好期刊网!

工程结构设计概况

时间:2023-08-28 16:54:16

导语:在工程结构设计概况的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

工程结构设计概况

第1篇

1.1本项目的基本情况

工程位于湛江市开发区的某小区。总用地面积17062.13m2,总建筑面积82351.57m2(其中地下建筑面积为12829.25m2,地上建筑面积为69522.32m2)。另外本工程设计使用年限为50年,结构安全等级为二级,抗震设防类别为丙类。

1.2场地自然条件

(1)风荷载:基本风压按50年重现期取0.8kN/m2,地面粗糙度B类。(2)本工程设计地震分组为第一组,抗震设防烈度为Ⅶ度,设计基本地震加速度值0.1g,地类别为Ⅲ类,属于中软场地土。

2结构设计

2.1地基基础

由于业主未提供详细地质资料,基础设计待业主提供详细地质资料后确定。本院根据当地工程经验,本工程拟采用桩基础。

2.2上部结构设计

根据建筑使用功能的要求并结合本工程的特点,本工程结构形式为:1~3栋采用框架-剪力墙结构;4栋采用剪力墙结构,其中剪力墙及框架抗震等级均为二级。本工程混凝土强度等级为C50~C30,钢筋采用HRB400级钢筋。

2.3PKPM系列结构软件分析

在本次湛江市开发区的某小区的结构设计中采用PKPM系列结构软件进行结构分析。具体来讲本设计所采用的计算机程序为中国建筑科学研究院PKPM-SATWE,版本型号是2010版,这也是在目前设计院住宅结构设计中较为常用的一款软件,并且该转件的结构计算结果较为可靠。本次住宅的结构采取较为常用的框架加剪力墙结构,目前这种结构在现有的高层住宅设计中被广泛的应用,这种形式结合了框架和剪力墙两种结构的优点,具有受力稳定,造价相对经济的特点。同样的为了保证整个结构的稳定性,在住宅建筑的-1~3层对结构进行了加强。整体结构的嵌固位置为地下室的顶板。每个建筑的结构在计算的过程中都会对灾害进行预估,提前计算其所受的荷载,并在设计过程中采取相应的措施。在本次住宅小区的结构设计中,对于五十年一遇的大风,预估的基本风压值为Wo=0.8kN/m2,建筑物地面的粗糙程度按照B类设计,以一号住宅楼为例,其承载风荷载效应时的放大系数为1.1,最终建筑物的体型系数采取1.4来进行计算。其次,对于地震灾害中的受力,在建筑结构的整体设计中也是应当考虑的,本项目的所处的地质环境要求建筑物按照Ⅶ度抗震烈度进行设防,所以在结构设计中按照其相应的抗震烈度设防地震分组为第一组,场地的类别为三类,建筑物的抗震设防类别为丙类,并且需要考虑在地震作用下构的偏心问题,以及双向地震作用力的问题。在地震作用下:计算振型个数为15,重力荷载代表值的活载组合值系数为0.5,周期折减系数为0.75,结构的阻尼比为5%,特征周期Tg为0.45,地震影响系数最大值为0.08。具体来讲混凝土框架的抗震等级为二级,剪力墙的抗震等级为二级,综合来讲其抗震结构措施为二级设计。最后在计算的过程中还需要对一些系数进行调整和修改:梁端负弯矩调幅系数为0.85;梁活荷载内力放大系数为1;梁扭矩折减系数为0.4;托墙梁刚度增大系数为1;实配钢筋超筋系数为1.15;连梁刚度折减系数为1.0(注:风荷载控制),0.6(地震荷载控制);梁刚度放大系数按2010规范取值;并且柱配筋的计算按照双偏压来进行设计。

3本工程的结构计算

本工程位于湛江市开发区的某小区,在进行结构计算的过程中采用的活载标准值按照《建筑结构荷载规范》(GB5009-2012),取值见表1。

4展望

对于实际的居住区工程来说,好的结构设计往往是整个项目成功的关键所在,合理的结构设计不仅可以使形体优美的建筑得以成为现实,更是为建设的设计者提供新的构思机会,因为合理的结构设计通常与美学的要求不谋而合。所以本文通过对实际项目结构计算过程中的地基基础、上部结构设计、PKPM系列结构软件分析等重要步骤的解析,探讨住宅小区在结构设计的过程中应当注意的关键点,对居住小区结构设计的方法进行了验证,希望可以对实际的居住区的建筑的结构设计提供一些灵感。

作者:潘伟朝 单位:广东省建科建筑设计院有限公司

参考文献

[1]梅丽娜.浅谈结构设计的几项基本原则[J].黑龙江科技信息,2010(15).

[2]梁兴泉.结构设计的体会[J].山西建筑,2009(27).

第2篇

【关键词】 土木工程 结构设计 抗震

前言:目前人类对于地震还没有科学的预报体系,因此在地震无法预测的情况下,只有尽可能使土木结构建筑设计对地震具有一定的抵抗力,才可以最大限度的减小地震对生命财产的危害,早期土木工程建筑在其设计之初没有考虑抗震因素;或者有的将抗震因素囊括设计中,但是由于年久失修或者所在地基土质强度的减弱而造成建筑物和土木结构在地震中的毁坏,因此加强土木工程建筑结构设计初期抗震性,对其以后长期使用有着积极的作用。

1土木结构设计中抗震要求概况

众所周知,地震的发生具有很强的随机性和瞬时性,即使最精密的测量仪器也不可能精确的预报地震的到来,土木工程建筑设计的预案是建筑物的建设基本框架,在地震时其自身的结构会出现无法计算的形变。因此,在土木工程结构设计中加强抗震性的环节中,要根据土木结构抗震理论和土木结构设计抗震的实际经验,来对土木结构的抗震能力及反应状况进行分析,土木结构设计人员要根据土木结构的毁坏过程灵活的创新抗震设计方法,各个击破的解决土木结构设计所出现的一系列问题,在设计过程中不仅要考虑土木结构的整体布局,还要兼顾衔接位置的构造,以达到从根本上提高土木结构的抗震性能。

2土木结构设计的现状

近几年来建筑物的层数及其高度日益增加,出现了许多的新式框架结构包括筒体刚性结构,多筒嵌套结构及巨型结构等,高层土木结构的抗震性能,承载能力,材料耗费量,造价高低,与其自身采用何种结构有着直接的联系,不同的土木结构体系,适用于不同高度,使用功能的建筑物。在土木结构的设计之初,水平力对其的影响最大,尤其是在地震的高发地区,剪切力承重墙结构因为其施工周期短,刚度大,抗震性能优越在土木结构设计中广泛的应用。此外悬挑和悬挂结构在土木结构设计中采用较少,是因为土木领域对其分析研究不够准确深入。

2.1土木结构设计的特点

在一定的建设用地中,建造层数较多的建筑可以容纳更多的居民,土木结构要承载建筑物自身及附属物的全部重量,对于层数较少的土木结构仅需要承载上述的重量,但是层数较多的土木结构承载除了上述的重量外,还需要承载风力等自然因素的水平力,这就要求土木结构具有较强的抗侧力,在高层的土木结构设计中,对抗侧力应放第一位,水平荷载其次。对于高度一定的土木结构,风荷载和地震的共同作用会随着土木结构抗震性的不同而又明显差异。

2.2土木结构抗震要求更加苛刻

在土木结构设计之初对其抗震性作出要求时,要顾及到其正常使用时的承载能力,还要使土木结构具有优良的抗震能力,这样才可以使土木结构遇小震不坏,大震不倒。对土木结构延性的计算是一项繁琐的工作,唯一简单的方式是通过土木结构的构造措施来预算。在高层土木结构的设计中,为了使其结构有良好的延性,其结构构件的规格,材料及配筋率有着严格的要求,此外,土木工程结构的剪力墙的横截面积往往很大,所以在土木结构的设计中其变形是不可忽略的。

3土木工程建筑的主要抗震措施

土木工程的抗震设计,指的是对建筑的地基进行特殊的处理,对建筑的不同结点设置抗震措施,对建筑的薄软部分进行防震处理。在本文中,笔者根据土木工程建筑中抗震技术类型,并且结合大量的资料,提出了几点具体的土木工程建筑的抗震措施,笔者根据技术方向的不同,对防震措施进行了以下几点的分类。

3.1在土木工程的地基中使用特殊的防震材料

使用隔震材料对土木工程建筑进行隔震处理,指的是主要对土木工程建筑的地基进行抗震处理,降低地震发生时强大的地震能量对建筑物造成的损害。在传统的方法中,主要是在建筑地基的底部铺设上砂子和黏土等等,在一定的程度上降低了地震的负面影响。近年来,随着我国在建筑事业上不断加大投资,有关部门在土木工程建筑防震上已经取得了很大的进展,就比如在建筑地基处铺上一层沥青,减震的效果相比于砂子或黏土更好。在建筑物的围栏,墙体等等材料的选用上,尽可能的选取材质比较轻的材料,降低地震来临时的危害。

3.2在建筑物的结点处设置隔震装置

在土木工程关键的结点处设置特殊的隔震材料,降低地震来临时的危害。地震在发生的时候,能量是呈不断上升趋势的,会从建筑的底部传递到建筑的顶部。而在建筑物的结点上,设置隔震装置,对极大的影响地震能量的传递效率,但是这种隔震装置不适合高层建筑使用,因为高层建筑使用这种装置会加强楼层的自震周期,起到的效果不大,所以这种在建筑的结点处设置的隔震措施只适合一些楼层数少或者高度比较低的建筑。这种隔震措施在组成上也比较简单,橡胶垫与混合隔震措施是比较常见的材料,隔震方法主要有摩擦隔震、粘性隔震、设置隔震支座等等,其中隔震支座能够稳定的支撑建筑物,并且具有一定的自我恢复力,在地震能量吸收上起到的作用比较大。

3.3土木工程建筑的设计走向

地壳运动是地震产生的主要原因之一,地震的发生与当地的地质结构有很大的关系。所以施工单位在选择建筑地址的时候,一定要对当地的地质环境进行考察,并且通过计算分析出当地震发生时的可能走向,使建筑物的走向尽可能与地震的走向垂直。通过对汶川和玉树地震的研究显示,倒塌的建筑物中,与地震走向平行的较多,这就证明了与地震走向平行的建筑在地震发生时损害的程度比较大。

结束语

随着我国在土木建筑行业上投入精力的增多,其地位也在不断的上升。在土木工程建筑的设计中,实现建筑的稳定和抗震性能也是当前必须要重点关注的话题,所以相关部门要加强建筑行业抗震技术的关注度,促进抗震技术进一步应用于土木工程建筑行业。

参考文献

[1] 任宇霞,唐玉娇,张静等.浅谈土木工程结构设计中的抗震研究[J].城市建设理论研究(电子版)

第3篇

关键词 建筑设计 结构设计 安全度对策

中图分类号:TU318 文献标识码:A

随着我国经济的快速发展,建筑业也呈现出了快速发展的趋势,然而建筑业的发展也带来了一系列的问题,其中建筑安全问题成为一大核心问题。建筑安全问题产生的根源在于建筑结构设计的不合理性,由此如何保证建筑结构设计的水平将直接关系到建筑的稳定性和功用性,直接关系到建筑是否能够满足使用群体的需求。

1建筑结构设计中存在的安全问题

1.1建筑结构设计不合理

建筑安全问题发生的原因之一即为建筑结构设计的不合理性。在设计过程中,一些建筑设计人员过分注重建筑的外观艺术效果,而忽视建筑实践,这就导致建筑很难发挥功用性,极易由于外部环境的改变而导致结构的变形,由此导致安全隐患的发生。除此之外,针对高层建筑,在建筑结构设计过程中较易忽视地震和巨大风力可能带来的水平侧向力。在建筑结构设计过程中对于这些问题的忽视或者是设计的不合理,都会直接导致建筑安全问题的发生,降低建筑的稳定性。

1.2建筑结构设计中的偷工减料问题

建筑安全问题发生的另一重要原因即为建筑结构设计中存在的偷工减料问题。一些商家由于利益的驱使往往会在建筑结构设计中通过偷工减料来节约成本提高效益,由此就会严重威胁到建筑的安全性和稳定性。比如说钢筋的配筋率问题。国家对钢筋的配筋率有明确的规定,并要求建筑结构设计人员对配筋率严格控制,从而保证建筑建设的质量,但是在实际工程建设过程中,偷工减料问题时有发生,这就导致建筑的稳定性差,由此严重威胁建筑使用群体的生命财产安全。

2提高建筑结构设计安全度对策

2.1加强建筑各有关单位的沟通

建筑结构设计工作不能独立的由设计单位进行操作,需要各相关部门之间的沟通,由于设计人员对建筑工程概况了解的局限性,由此在设计的过程中需要各领域人员的相互配合,共同参与结构设计的全程,由此可以防止建筑设计与实际操作间的误差,增强设计的效用和准确度,从而最大限度的保证建筑结构设计的安全性。结构工程师要积极组织并参加各专业的协调会议,从而确定建筑设计的核心问题,由此可以更为透彻的把握建筑设计的意图,避免设计出图后造成的返工问题。

2.2严格遵守建筑结构设计相关规范

建筑结构设计工作是一个高度规范化的工作,不论在建筑设计过程中对设计图样做出什么样的创新,都必须以建筑结构设计基本规范作为着手点。近年来,为了提高建筑的使用质量,相关政府机构推出了各项技术规范,这些技术规范具有强制性,目的就在于规范设计人员行为,从而最大限度的保证建筑结构设计的合理性和安全性,最大限度的降低建筑安全隐患的发生。相关规范主要包括:《混凝土结构设计规范》《建筑地基基础设计规范》《高层建筑混凝土结构设计规程》《建筑抗震设计规范》,只有明确了相关规范的各项要求并且严格对建筑结构设计按此规范执行,才能保证结构设计的合理性和安全性,充分保证建筑效用水平的发挥。

2.3加大建筑结构设计安全度细节考虑

在建筑结构设计的过程中,除了要选择优秀的设计团队并遵循建筑设计相关准则,最重要的就是要考虑建筑结构设计的细节问题,只有对细节问题进行考虑,才能保证建筑结构设计的稳定性。具体说来,在建筑结构设计过程中要考虑最小配筋率问题,如果配筋率达不到要求,则混凝土的延性会很差,由此可能会导致结构的裂缝,影响建筑的稳定性。

其次,要考虑混凝土的保护层厚度问题。保护层是指混凝土构件中,起到保护钢筋避免钢筋直接的那一部分混凝土,其厚度为纵向钢筋(非箍筋)外缘至混凝土表面的最小距离。保护层最小厚度的规定是为了使混凝土结构构件满足耐久性要求和对受力钢筋有效锚固的要求。混凝土结构中,钢筋混凝土是由钢筋和混凝土两种不同材料组成的复合材料,两种材料的良好粘结性能才能保证它们能够共同工作,由此要从钢筋粘结锚固角度对混凝土保护层提出要求;从耐久性方面考虑,钢筋在大气或者其他介质中,容易受蚀生锈,使得钢筋的有效截面减少,影响结构受力,因此需要考虑保护层厚度问题以保证构件在设计使用年限内钢筋不发生降低结构可靠度的锈蚀。除此之外,对有防火要求的钢筋混凝土梁、板及预应力构件,为了保证构件在火灾中按建筑物的耐火等级确定的耐火限的时间段里构件不会失去支持能力,也要考虑保护层厚度问题。混凝土保护层厚度大,构件的受力钢筋粘结锚固性能、耐久性和防火性能越好。但是,过大的保护层厚度会使构件受力后产生的裂缝宽度过大,就会影响其使用性能。由此,要综合考虑保护层厚度,以便在建筑结构的各个角度合理安排混凝土厚度。《混凝土结构设计规范》82.1条规定纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,一般设计中采用最小值。

最后,要充分考虑建筑结构的抗震性能。在建筑结构设计中,要保证建筑结构布置的合理性,从而从根本上保证建筑物的抗震性能,从经验来看,简单、规则、对称的建筑物抗震能力更强,更易经受地震的破坏作用。由此基于抗震考虑,在建筑设计中,建筑平面和立面就应尽可能设计规整和简洁,要避免严重不规则的设计方式,避免由于建筑盲目的创新性对建筑安全性的忽视。

3结语

建筑结构设计安全度问题是建筑业应该特别关注的问题,当下,由于结构设计问题导致的建筑安全事故造成的损失巨大,所以提高建筑结构设计水平有助于提高建筑稳定性和安全性,有助于发挥建筑功用性和效益性。作为现代化发展的重要标志,建筑业的健康发展已不能仅仅局限于建筑数量的增多,而更多的要关注建筑的安全性水平,只有这样,才能满足人们对建筑的要求,加快我国现代化建设的步伐,同时更好的促进建筑业向着更快更好的方向发展。

参考文献

第4篇

关键词:高层结构;结构设计;结构布置;计算分析

中图分类号:S611文献标识码:A 文章编号:

项目概况

本工程使用功能为商业及住宅,房屋高度地上99.95米,地下17.25米。最大建筑层数地上28层,地下4层。设3条抗震缝将整个建筑分为4个独立的结构单元,分别为1号,2号,3号,4号楼。1~3号楼为部分框支剪力墙结构,4号楼为框架结构。建筑主体结构设计使用年限为50年。本地区基本风压为0.45kN/m2;本地区抗震设防烈度为6度。

上部及地下室结构设计

2.1结构布置设计

本工程在各塔楼周围设置抗震缝将整个建筑分为4个独立的结构单元,分别为1号,2号,3号,4号楼。各单元结构选型与结构布置采取如下 1~3号楼为部分框支剪力墙结构,转换层位于第7层,上部塔楼为矩形规则平面。结构转换层为薄弱层,在设计中,采用加厚薄弱层板厚并采用整体现浇、提高转换层梁柱混凝土等级、加强转换层板配筋、加厚落地剪力墙截面等措施对薄弱层进行加强。4号楼为框架结构,结构平面为矩形规则平面,竖向构件均连续落地。

在对本工程的4栋建筑采取结构设计时,充分利用到抗震概念设计理念。采取的抗震概念设计如下,根据《建筑抗震设计规范》GB50011-2010中概念设计的要求,本工程建筑平面布置较规则,本工程1~3号楼为竖向不规则,设计中采用加强转换层(加厚转换层板并采用整体现浇、提高转换层梁柱混凝土等级、加强转换层板配筋、加厚落地剪力墙截面等)的措施,保证地震力能有效传递给落地竖向构件。从结构计算结果表明,设计均满足规范限值的要求。

对于本工程中主要结构构件材料采取如下,柱、剪力墙砼等级取值见表1所示。主要梁板砼等级为C30,转换层梁为C60。砌体材料及强度等级:内隔墙采用烧结页岩空心砖(密度等级≤1000kg/m3,强度等级MU5.0),M5混合砂浆砌筑;外隔墙采用烧结页岩空心砖(密度等级≤1000kg/m3,强度等级MU5.0),M5混合砂浆砌筑;厨房、卫生间及地下室等较潮湿房间的墙体采用M5水泥砂浆、MU10烧结页岩多孔砖(20孔及以上)砌筑。

表1项目结构柱、剪力墙砼等级一览表

2.2结构计算分析

本工程采用中国建筑科学研究院PKPM工程部开发的SATWE(2008年10月版)软件进行整体计算分析,采用广东省建筑设计研究院和深圳市广厦软件有限公司联合开发的广厦建筑结构CAD(GSSAP模块)进行复核对比。主要计算参数的取用为1~4号楼计算参数采用振型组合方法CQC(耦联);计算振型个数24(15)个;地震烈度6度;场地类别Ⅱ类;设计地震分组为第一组;特征周期0.35s;多遇地震影响系数最大值0.04;活荷载质量折减系数1~0.55;周期折减系数0.9(0.7);结构阻尼比为5%;计算中考虑偶然偏心;嵌固点位置布置建筑负二层。其计算结果见表2所示。

表1结构计算结果

根据表1所示,计算结果分析1~4号楼在周期比、位移比、层间位移角、楼层侧向刚度比、构件轴压比等方面均满足规范要求。计算结果合理性判别:从力学概念和工程经验等方面分析判断,认为本工程计算结果合理、有效,可作为工程设计的依据。

地下室抗浮专项设计

本工程地下室为框架结构,建筑负二层为上部结构嵌固层,局部覆土300mm。同时考虑到本工程离江河较近,共有四层地下室。相邻滨江路标高为187.800m,设计负四层地面标高为180.400m,负二层地面标高为188.200m,基本平滨江路。根据建设单位提供的本工程防洪标准为工程措施按50年一遇执行,设计水位为195.05m。当遇到洪水水位高于滨江路时,不采取其他措施抵挡,允许洪水流入负三、负四层地下车库。由此确定抗浮最不利设计水位为负二层地面标高188.200m,设计水头为188.200-180.400=7.80m。

本工程地下室抗浮设计主要分为整体抗浮设计和局部抗浮设计两部分。整体抗浮设计,根据《建筑结构荷载规范》GB50009-2001(2006版)第3.2.5条第3款,对结构抗浮验算时,荷载分项系数应按有关结构设计规范的规定采用。结合《砌体结构设计规范》GB50003-2001第4.1.6条,当砌体结构作为一个整体,验算整体稳定性时(倾覆、滑移、漂浮等),对起有利作用的永久荷载标准值效应的分项系数取0.8,对起不利作用的可变荷载标准值效应的分项系数取1.4。本工程分为1、2、3、4四个塔楼,四个塔楼重力荷载标准值(PM竖向导荷)分别为1#楼914074KN、2#楼795609KN、3#楼692204KN、4#楼459718KN。负四层总建筑面积为14638.38m2。7.8m水头浮力标准值为78KN/ m2。0.8x(914074+795609+692204+459718)/14638.38=156.40KN/ m2 >78x1.4=109.2 KN/ m2 。整体抗浮满足要求。

局部抗浮设计,经过分析比较,取4#楼部分L轴交22轴柱作为研究对象(此位置桩顶只有2层地下室荷载,抗浮相对不利)。柱底重力荷载标准值(PM导荷)为4702KN。柱距为8.4x8.4m,柱下桩所受浮力标准值为78x8.4x8.4=5504 kN。重力与浮力的标准值差值为4702-5504=-802KN,重力与浮力的设计值差值为0.8x4702-1.4x5504=-3944 kN。需要进行桩基抗拔设计,现设计桩身直径1.2m,嵌岩深度1.2m(1d),扩大头直径为2.2m。根据地勘报告,中风化泥岩桩基极限侧阻力标准值为450KPa。参照《建筑桩基技术规范》(JGJ94-2008)公式5.4.5-2,桩基抗拔极限承载力标准值Nk=(0.5x450x3.14x2.2x1.2)x0.5=932>802KN(岩石抗拔系数λ取0.5)。桩身与土体的摩擦力作为安全储备。桩身单轴抗拉设计,现设计直径1.2m桩配3622(钢筋间距为105),参照《混凝土结构设计规范》(GB50010-2002)公式7.4.1桩身正截面抗拉承载力设计值N=360x36x314=4069KN>3944KN。通过桩身设计,局部抗浮能满足要求。

考虑到洪水浮力的偶然性,应注意施工顺序,待上部主体结构施工完成(包括砌体隔墙),即有利永久荷载完全加载后,最后施工地下室底板。避免洪水来临时未加载完全而导致结构整体漂移。时应注意底层楼板防水处理。

结语

文章通过结合笔者从事高层结构设计的实践体会,通过结合实例,提出了一些值得结构设计上注意的问题及相应的处理方法,可供工程设计人员参考。

参考文献:

[1] 张强.小高层结构设计实践[J].科技传播,2012,28(04):118~119.

[2] 陈天华.洛阳科技大厦高层结构设计[J].安徽建筑,2011,27(07):31~33.

第5篇

关键词:高层建筑;结构体系;基础体系;设计方法

中图分类号: TU97 文献标识码: A 文章编号:

随着城市化进程的不断加快,高层建筑在城市建设当中所占的比例逐渐上升,建筑的内部结构设计方面的变化愈加明显,许多新兴的结构设计方案逐渐应用于城市高层建筑的建设当中。目前建筑的类型与使用功能越来越复杂,结构体系日趋多样化,对高层建筑的结构设计要求提出了更高的要求。然而,在实际的设计过程中,工程设计人员容易出现一些概念性的错误,影响到建筑工程的建设。因此,如何做好建筑结构设计工作成为了当前工程设计工作的难点和重点。本文通过探讨高层建筑工程结构设计方法,达到提高建筑结构设计的水平的目的,以期充分发挥出建筑的综合效益。

1 工程概况

开平市翡翠名珠G1,G2幢,地下1层,建筑高度57.1m,建筑面积19900m2。抗震设防烈度6度,设计使用年限为50年。

2 结构设计

2. 1 结构主体设计

本建筑主体结构采用现浇钢筋混凝土框架―剪力墙结构体系,剪力墙抗震等级二级,框架抗震等级二级。结合建筑使用功能,作为主要抗侧力构件的剪力墙布置在建筑中部,并形成筒体,筒体周围设框架柱。因受层高及使用功能的限制,地上部分楼层主次梁均沿Y 向布置,以便减小主梁高度,增加使用净高,标准层楼板厚110 mm。本工程结构嵌固端位于地下室顶板,考虑其承受并传递由地震作用产生的水平力,故其板厚为180 mm,板配筋双层双向满布。主要竖向构件截面变化见表1,混凝土强度等级见表2

表1 主要竖向构件截面变化

表2 混凝土强度等级

本建筑结构采用多层及高层建筑结构三位分析与设计软件SATWE( 墙元模型) 进行分析计算,计算结果比较合理并符合现行规范要求,有关结构位移和地震力等电算结果见表3~5。

表3 结构周期

表4 结构位移

表5 底层地震剪力、弯矩、剪重比

2.2 地下室部分

混凝土结构按照规范要求一般长度超过45m~55m即需设伸缩缝,地下室结构更是30m即要求设伸缩缝。但是,这些变形缝的设置,一方面对于防空地下室来说,很难满足现行《人民防空地下室设计规范》(GB50038―2005)第4.11.4条关于“在防护单元内不宜设置沉降缝、伸缩缝”的要求;另一方面,伴随着变形缝的出现往往要设置双梁、双柱、双墙,使得结构变得复杂,工程造价增大,甚至增加了建筑布局和使用上的困难,而且变形缝防水处理较为复杂,易产生渗漏水的现象。因此,我们对该项目超长地下室混凝土结构采用了无缝设计。

新浇混凝土在硬结过程中会收缩,已建成的结构温度变化时会热胀冷缩,当这两种应力分别超过混凝土抗拉强度时就会导致混凝土开裂而形成收缩裂缝或温度裂缝,引起渗漏。在不设置永久沉降缝的情况下,有效控制混凝土收缩应力和温度应力影响是工程设计重点,为了确保地下室结构安全、正常使用,采取了以下措施:

(1)设置纵横向温度后浇带

设置温度后浇带是传统的做法,大约隔30m~40m左右设置1道,以消化收缩变形,减少混凝土收缩产生的温度应力。温度后浇带在其两侧结构施工完成60d后,采用比后浇带两侧混凝土强度等级高一级的微膨胀混凝土进行浇筑。浇筑前应把后浇带内垃圾清理干净,混凝土浇筑过程中要避免新老混凝土结合不紧密,有效处理好后浇带处渗漏现象。

(2)适当提高构件的配筋

①基础底板及地下室顶板的最小配筋率不小于0.3%左右,并采用双层双向配筋。

②顶板梁的腰筋配筋率,控制在每侧0.2%;钢筋“细而密”设置,间距不大于150mm。

③由于地下室外墙养护较困难,受温度影响大,水分蒸发速率大,容易开裂。为了控制温差和干缩引起的垂直裂缝;适当提高墙体的水平钢筋配筋率,控制在每侧0.25%左右,钢筋间距100mm~150mm。

④添加防裂膨胀剂

地下室侧墙及顶板混凝土内添加JM-Ⅲ改进型抗渗防裂多功能增强剂,侧墙和顶板中JM-Ⅲ的掺量为6~8%,后浇带和膨胀加强带中的掺量为12%~14%,施工中也可采用0.8kg/m3左右的聚丙烯纤维代替JM-Ⅲ。

(3)材料和施工质量控制

混凝土原材料采用低收缩、低水化热水泥,控制水泥用量,掺入适当的粉煤灰和外加剂,控制水灰比,控制砂石骨料含泥量和级配,合理选择混凝土配合比。施工应注意控制混凝土外加剂的品种、质量和剂量。

控制混凝土的浇筑时间和浇筑温度,采取措施减少水化热对混凝土构件的影响,确保混凝土振捣密实并加强养护,以减少混凝土收缩和温度应力对结构带来的不利影响。

3 局部设计的几点考虑

( 1) 本建筑的外框架与内筒间距较大,为14. 5 m,框架梁端在内筒处负弯矩较大,按常规做法此梁在筒内宜贯通,以平衡梁端的负弯矩,但建筑设在筒内的楼电梯间以及通风和水专业的管道井均使框架梁不能正常贯通,这样在筒体剪力墙上产生较大的平面外弯矩,为此采取以下措施:

①加大设于筒体墙内楼层处暗梁截面及配筋,形成加强环梁( 见图1) ,通过此环梁,将作用于X 向墙体上的平面外弯矩分别传递到Y 向各墙上;

②与框架梁相交的墙体节点处均设置暗柱,并通过计算配置暗柱内的纵筋和箍筋;

③因剪力墙厚450 mm,按如图2 所示进行改进,增加梁端凸出部分,以便提高梁端在抗震时的锚固。

(2) 为减小框架梁的荷载以便减小梁的截面高度,本建筑的次梁均沿Y 向布置,这样就加大了次梁的跨度,为控制次梁的挠度和裂缝,在结构布置时尽量将次梁在筒体内贯通,形成三跨连续梁,并通过计算配置梁下部纵筋,满足正常使用的要求。

(3) 在设计计算过程中发现,X 向轴,轴与剪力墙相交的框架梁,因在同一平面内的剪力墙刚度相对很大,在地震力作用下,与剪力墙相交部位的梁端配筋均超筋,为解决此问题,设计中采取两条途径分别计算: ①在不考虑地震作用时,梁与剪力墙相交处按固结考虑,计算后按结果配置梁端负筋; ②在考虑地震作用时,假设梁与剪力墙相交处出现塑性铰,计算后按结果配置梁跨中正筋。这样既能满足正常使用时的强度要求,又能保证地震作用下的

安全。

4 结语

高层建筑结构设计是一项系统性的工作,涉及内容繁多且复杂。因此,工程设计人员要进一步深入研究建筑结构设计的技术问题,选择合理的结构方案,同时提高结构设计水平,以完善建筑的各项功能。本工程交付使用后未出现任何问题,结构设计与建筑功能符合性良好,取得了较好的经济效益。

参考文献

第6篇

【关键词】高层住宅结构设计;存在的问题;处理对策

现代土地资源日渐匮乏,在工程建设中为了节省土地面积,各施工企业大都采用高层住宅结构设计,这样既能减少土地资源的浪费,实现人口数量的有效集合,还能避免建筑施工材料的浪费,达到节约资源的目的。然而,在实际的高层住宅结构设计中,部分设计人员的设计方案和建筑施工实际情况存在较大差距,这种情况的出现严重影响了高层住宅的安全性能和实用性能。正因如此,如何保证高层建筑结构设计水准对于高层住宅的建设施工来说显得尤为重要[1]。

一.高层住宅结构设计案例分析

(一)高程住宅结构设计的工程概况

某一高层住宅区位于某市的中心地段,该地区的建筑总面积大约为20万立方米,是一项非常浩大的建筑工程。该高层住宅区域的楼位设计是一个五幢高层住宅楼层结合而成的建筑工程,分布为地下两层、地上三层的设计模式。该建筑工程中采用的建筑结构是平面体型比较不规则结构。

(二)高层住宅结构设计中所遇到的问题和解决措施

1.高层住宅结构设计中所遇到的问题

该高层住宅工程从规模上来讲属于大型的工程建筑,尤其是五幢楼层采用的是一体化的连接方式,针对这种情况,设计人员应该对高层住宅的建筑设计有一个全方位的认知。在对该建筑工程进行各种因素分析后,再进行高层建筑的设计工作,使设计比较贴合实际工程的标准要求。然而,在实际的高层住宅施工中,其可能会受到各种因素的影响,使得工程质量及工期难以得到保证。这些因素主要包括:首先,高层建筑结构的承重力和地下室连为一体的结构设计以及采用框架剪力墙建筑结构设计需要考虑实际施工问题。其次,高层建筑结构设计中,居民对建筑结构功能的要求以及抗震能力的要求也是设计人员需要考虑的重点问题。再次,建筑结构的计算分析也是高层建筑结构设计工作的一大重点。最后,建筑物周围的环境因素也会对施工造成影响干扰[2]。

2.高层住宅结构设计中的处理措施

该高层住宅属于住宅类型中较为复杂的一种设计,一般情况下,对于这种连体形的住宅结构设计,为了保证其结构的稳定性,除了采用框架剪力墙结构之外,还应该增加建筑结构的水平方向和垂直方向的钢筋结构,同时在建筑底部增加底层柱。针对高层住宅结构设计中的稳定性要求,应该采用"L"型剪力墙设计,这样一来能增强建筑结构的稳定性,另一个方面还能增强整个建筑物的承载力。其次,在高层住宅的施工设计中,各类数据的计算问题也是干扰结构设计的一大影响因素。因此,一般在高层住宅结构设计计算分析上多应该采用PKPM系列的SATWE程序。

二.高层住宅结构设计中出现的问题影响因素

(一)高层住宅结构的部分设计不合理

对如今的高层住宅建筑来讲,其住宅结构的不合理多半是设计人员对建筑结构关联性忽视,以致于造成住宅结构的承重性差、建筑物的抗地震倒塌能力不强以及建筑物本身的安全性能差等问题。例如,高层住宅结构的抗地震倒塌能力的延性问题,以及屋面温度应力设置问题等。这一系列的问题因素的集合极有可能导致高层住宅结构稳定性和质量安全性问题[3]。

(二)抗震结构设计不合理

抗震结构设计是高层住宅结构设计中一个非常重要的环节,同时也是比较复杂的一个环节,抗震结构的设计除了设计整体的框架以外,对于承重墙设计以及底层柱等局部结构设计,甚至是建筑材料的选择使用,都关系到整个建筑结构的抗震性能。由于我国并不属于地震频发的国家,所以一些高层住宅建筑结构设计人员并没有高度重视建筑的抗震设计,所以高层住宅结构的抗震设计中存在很多的漏洞和不足。

三.高层住宅结构设计中存在的问题的处理对策

(一)针对部分结构设计不合理的解决措施

针对以上出现的各种问题,归根结底是设计人员在对高层住宅结构设计的认知上还存在很大的不足之处,以致于设计的住宅结构不符合居民对建筑物本身功能的需要或者不符合有关建筑物建设施工的标准要求。针对以上情况要先确立好整体性设计,并根据整体性的设计要素进行局部结构设计。这样既能保证建筑结构整体性不受破坏,还能为局部结构设计提供一个可靠的依据。在此基础上,再进行建筑构件和屋面温度应力的设计,就可以最大限度的避免因构件标准不合格而导致的建筑结构稳定性下降问题以及因温度应力设计值过大或是过小而造成的墙体开裂现象[4]。

(二)高层住宅结构的抗震设计

高层住宅结构抗震设计的要点:首先要求设计人员对建筑结构抗震性能的重要性有一个正确的认知。其次,需要专业抗震结构设计人员对高层住宅的结构特点以及可能发生地震的情况进行全方位的分析,同时满足抗震设计规范。再次,对建筑物的抗震结构进行科学的规划设计,并严格控制建筑物的高宽比例。最后,为了提高建筑物本身的抗震性能还应该在高层住宅上加入抗震墙设计从而增强建筑物的稳定性以及抗震能力。这样即便发生地震也能保护好居民的人身安全,并且将地震对建筑物体的伤害减小到最低。

结语:

综上所述,高层住宅的结构设计是建筑施工人员在满足国家对建筑工程施工结构的标准前提之下,对高层住宅结构进行的加强设计,能有效提高高层建筑的抗震性能以及使用安全性,从而维护居民的生命财产安全。然而,在高层住宅结构设计工作中,我们仍需要重视影响结构设计及建筑施工的问题因素。对此,文章结合某高层建筑设计实例,简要探讨了影响高层住宅结构设计几点因素,并阐述几点解决这些问题的举措,以期为高层建筑住宅结构设计提供借鉴。

参考文献:

[1]郑全楼.关于高层住宅结构设计的研究[J].城市建设理论研究(电子版),2014,(36):7277-7278.

[2]贺伟莲.某超限高层住宅结构设计[J].工程建设与设计,2015,(2):46-50.

第7篇

论文摘要:文章针对人防设计的平战结合问题,从人防荷载的确定、荷载组合和内力分析及构造要求等方面介绍了人防结构的设计要点。在防空地下室结构设计中也经常会遇到防空地下室的平战转换设计问题,协调好防空地下室在平战两种状态下的不同使用要求,已成为结构设计中的一个重要课题。

中图分类号:TU927文献标识码:A文章编号:1009-2374(2009)18-0029-02

人防工程是战时防空、保障人民生命安全的重要措施,随着城市的发展,人防工程的建设越来越引起人们的重视。防空地下室是人防工程的重要组成部分。与其它类型人防工程一样,它具有国家规定的防护能力和各项战时防空功能,是实施人民防空最重要的物质基础。如何设计好人防工程,使人防工程在战时能真正起到防空及保障人民生命安全的功能,这就要求我们设计人员深刻理解并严格执行《人民防空地下室设计规范》(GB50038-94),并以此为依据进行人防工程的设计工作,而且要求建筑结构设计人员对于结构物在核爆动荷载作用下的作用机理及对结构的反应比较了解。根据《人民防空工程设计规范》(GB50225-95)及《人民防空地下室设计规范》(GB50038-94),结合已设计建成的大量人防工程,现将防空地下室设计中常见的问题进行分析和探讨。

一、人防结构设计的特点及原则

(一)人防结构设计的特点

1.人防地下室水平荷载作用及变形特征。(1)风荷载计算均扣除地下室的高度。地下室是否约束、约束的程度与风荷载计算无关。(2)设计设定地下室部分的基本风压为零;在地上部分的风荷载计算中,自动扣除地下室部分的高度,地下室顶板作为风压高度变化系数的起算点。结构在地震作用下的反应受地下室外的回填土约束程度的影响。(3)由地下室质量产生的地震力,主要被室外的回填土吸收。

2.人防地下室竖向荷载作用及变形特征。对于一般结构而言,地下室外的回填土约束对竖向荷载作用几乎没有影响。当地下室出现悬挑结构,则地下室外的回填土约束对竖向荷载作用有一定影响。所以,地下室不应有悬挑结构。首选地下室与上部结构整体分析。因为竖向变形的协调是非常重要的。当地下室体量、面积很大时,与上部结构所占面积差异太大,如超大地下室、底盘等,此时可以根据上部结构的底面积取外伸2~3跨作为地下室,并与上部结构共同分析。

(二)人防结构设计的原则

人防工程依据其对冲击波的防御能力可分为四个抗力等级:6级、5级、B4级和4级。其中4级防御能力最强,等级最高。B4级仅次于4级。按照人防工程“长期坚持、平战结合、全面规划、重点建设”的建设方针,必须使结构设计做到安全可靠。设计荷载应全面考虑动荷载以及土体作用力、水压力、结构自重静荷载及地震荷载的作用,人防工程抗力等级是按照抗核爆炸冲击波超压的大小来划分的。人防工程除战时受到核爆炸和常规武器爆炸荷载作用外,在平时使用时,还会受到地震作用。随着人防工程建设规模的日益扩大,人防工程结构安全性评价已成为亟待解决的重要问题。

二、人防结构工程设计内容与方法

(一)人防工程结构设计概况

某甲类防空地下室总建筑面积7350m2,局部配电房、水泵房、消防水池为非人防区,其余大部分为人防区。地下室人防区分设A、B、C、D共4个六级人防单元,人防单元A为912m2,人防单元B为1580m2,人防单元C为1450m2,人防单元D为1973m2,共计5915m2。本工程抗震设防烈度为7度,地震加速度为0.1g,采用框架剪力墙结构,框架抗震等级为三级,剪力墙抗震等级为二级。地下室不考虑风荷载作用。地下室梁、板混凝土强度等级均为C30,柱混凝土强度等级按上部结构整体计算所得,采用C40混凝土。

(二)人防地下室底板设计

1.地下室底板人防荷载确定。本工程采用先张法高强预应力管桩,属有桩基钢筋混凝土底板,且为饱和土,底板人防荷载取值为25kNm2。

2.地下室底板反向荷载确定。依据建筑总平面布置图及室外道路标高系统,本工程设计抗浮水位标高9.2米,即相对标高为-1.05米。底板标高-4.550,底板厚度为0.3米,计算水深3.8米。底板疏水层为100~200mm,以均厚150mm计算,底板自重0.3×25+0.15×20=10.5kNm2,计算反向荷载扣除底板自重为(1.35×38-10.5)1.35=30.5kNm2。

3.底板截面设计。按人防要求,底板最小厚度250mm,因板跨、荷载较大,本工程取底板厚度为300mm,保护层厚度50mm,可满足底板承载力及裂缝宽度0.2mm的要求。最大水头H为3.8米,底板厚h为0.3米,依据《高规》表12.1.9基础防水混凝土的抗渗等级确定办法,Hh=3.80.3=12.7,地下室底板设计抗渗等级为0.8MPa。底板设计采用PKPM结构设计软件进行计算,考虑人防荷载、水浮力的反向荷载并扣除底板自重的倒楼盖模型进行设计,反向荷载以恒载计算,底板自重为对结构有利恒载,取分项系数1.0,人防荷载为等效静荷载,分项系数为1.0。

(三)人防地下室顶板设计

1.地下室顶板概况。顶板为小区花园,覆土700mm厚,设计恒载为14kNm2。小区内设有消防车道,消防车荷载按荷载规范取值,顶板人防等效静荷载标准值为70KNm2。地下室车库为6×8米,经与设备专业配合后,地下室净高应不小于2.8米,即梁高最大为800mm。

2.顶板截面设计。顶板设计采用PKPM结构设计软件进行计算,考虑人防荷载、覆土荷载,消防车荷载,活载等的单层楼盖模型进行设计。有限制的梁高,按通常的做法无法满足大跨度下的大荷载。采用降低底板标高以增加地下室层高为增大梁高拓展空间,这势必增加地下室的开挖深度,增加工程造价。加大梁宽可以解决配筋率过大的问题,但又造成梁截面过大,形成典型的肥梁胖柱型结构,这也是结构经济性要求所不容许的。最后经过研究采用框架梁端加掖的构造措施,梁中间高度为800,支座处高度为1100,这既解决了配筋率超限的问题,又满足地下室净高的要求,既节约了工程造价,又为各设备专业提供了足够的空间,实现了工程的可行性。

3.嵌固及后浇带设计。主楼部分地下室顶板作为上部结构的嵌固端,即要满足人防荷载,覆土荷载及本层活荷载的要求,又要满足本层结构的侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍的要求,所以在地下室顶板主楼部分的设计中,按主楼整体计算的结果进行截面设计。本工程总长度达到136.8米,总宽度为70.4米,如何解决温度应力引起的收缩裂缝则是不容忽视的问题。传统的做法,地下室顶板底板以30~40米的间距设置800宽的后浇带,同时注意后浇带避开坡道及人防口部,后浇带在顶板覆土之前封闭,并加以养护。传统的做法也是最有效的做法,经验证明这种做法是防止超长结构温度应力导致裂缝的最经济的措施。

4.人防口部、人防隔墙及外墙的结构设计。地下室层高3.8米,口部大样均可套用国标07FG04图集,人防隔墙及外墙采用单向板模型计算,上部支座为简支端,下部支座为固定端,人防隔墙按弹塑性模型计算.外墙按弹性模型计算,控制裂缝宽度0.2mm。在外墙施工中施工方反映出一个问题,主楼外侧的柱与外墙整浇在一起,且主楼为小柱网,多为3米多的柱距,柱混凝土强度等级为C40,外墙混凝土强度等级为C30,施工中必然会造成外墙大部分都是C40的混凝土,大面积的高强度混凝土是必然造成大量的水化热,容易产生大量的收缩裂缝。为解决这一问题,有两种做法:一是外墙及柱都采用C30混凝土,通过柱轴压比的等效换算加大主楼柱截面;二是外墙及柱都采用C30混凝土,柱截面不变。以柱两侧的250厚外墙作为柱截面的翼缘,可以看做是增大了柱截面。以500×500柱为例计算,C40混凝土强度设计值为18.91Nmm2,C30混凝土强度设计值为15.4Nmm2,500×500柱的两侧可增加翼缘面积为400×250,理论上这种做法是可行且安全的。最终决定施工中采用第二种做法,即不改变柱截面直接降低混凝土强度等级至C30。但由于剪力墙所增加的翼缘面积相对比例较小,无法达到等效轴压比的要求,故剪力墙部分还是按C40混凝土施工。这种做法亦有其局限性,混凝土强度等级不宜相差大于10,柱截面面积不宜大于500×500。

第8篇

关键词:房屋建筑、结构设计、基础设计

中图分类号:TU2文献标识码: A

1、前言

随着房建工程的不断发展,房屋建筑一直趋向于复杂化,这使得结构设计成为了影响房屋建筑工程质量的重要因素,而基础部分的设计尤为关键。基础设计关系到房屋建筑的整体质量,也影响建筑后续工作,无论新技术如何应用,建筑业如何发展,基础设计作为房屋建筑安全稳定的根本,其重要性都是一成不变的。

2.房屋建筑结构设计的重要性

从大的意义上说,房屋建筑结构主要指两个方面的内容,一方面指的是房屋的建筑结构,一方面指的是房屋的户型结构。而房屋建筑工程进行房屋建筑结构设计的根本出发点主要是为了保证工程建筑物结构的安全性、可靠性,在能够保证工程建筑物的使用功能的发挥的同时保证工程建筑物的使用寿命,提高工程建筑物的性价比。

3.房屋建筑结构设计过程中需要遵循的原则

设计人员在对房屋建筑工程进行结构设计时需要遵循几个原则,首先设计人员在进行结构设计的过程中一定要从整个房屋建筑工程的整体着手,需要与业主进行良好的、有效的、及时的沟通,确保房屋建筑结构设计既符合客观方面的需要,也符合主观方面的需求;其次,设计人员在设计过程中要有提前量,现代的房屋建筑工程在进行基础设计的过程中,将重点都放到了房屋建筑工程的地基、基础、以及一些上部结构的构件(例如梁、板、柱、楼梯、雨篷等)方面,但是还是有一定的弊端,因为很多的房屋建筑结构设计中的基础设计并没有完全的结合实际情况,所以在施工过程中很容易遇到设计与实际情况不符的问题。

4.房屋建筑结构设计中的基础设计过程中需要注意的问题

虽然目前我国的房屋建筑结构设计的发展现状总体上还是十分不错的,但是,在目前我国的房屋建筑结构设计发展的还不够成熟和完善,还需要在不断的发展过程中进行适当的补充和完善,尤其是在房屋建筑结构设计中的基础设计过程中,还需要注意以下几个方面的问题。

4.1结构平面图的绘制问题

绘制结构平面图属于房屋建筑工程施工前期的准备工作,设计人员在绘制房屋建筑工程的结构平面图时,需要从整体出发,从大局出发,需要把国家利益和人民群众的生命财产安全放到首位,在设计过程中需要充分的考虑房屋建筑工程的防火等级、抗震等级、防水等级以及保温等级,其中,抗震等级最为重要,同时,设计人员在设计过程中还需要充分的考虑到房屋建筑工程的整体及局部的受压性。

4.2屋面结构图的设计问题

一般而言,房屋建筑工程的屋面都为坡形,当建筑板之间的空隙过大,就采用梁板式的楼板;如果建筑板之间的空隙不大,就采用折板式的楼板,确保屋面结构图的设计与房屋建筑工程的整体设计能够相融合。

4.3大样详图的设计问题

设计人员在绘制房屋建筑工程的大样详图时,需要确保图纸的细致性和全面性,设计人员在绘制过程中,需要从提高房屋建筑工程的整体的受力性的角度出发,同时,力争在最大程度上保证房屋建筑工程外形、结构以及尺寸的一致性。

4.4楼梯方面的设计问题

设计人员在对房屋建筑工程的楼梯结构进行设计的过程中,主要需要考虑的就是楼梯板的挠度问题,需要保证上下层之间楼梯梁位置的一致性和精准性,同时,设计人员还要注意首段的楼梯板的基础沉降问题,如果在房屋建筑工程需要的情况下,可以在一定程度上对楼梯梁进行统一的、规范的设置。

4.5基础方面的设计问题

设计人员在对房屋建筑工程的基础进行设计的过程中,需要结合房屋建筑工程的实际情况进行设计,做到具体问题、具体分析,保证基础设计的科学性和合理性,在对混凝土的选用方面,还需要注意考虑到结构的适用性和耐久性,以荷载为参考依据对基础的宽度进行及时的、适当的调整,为房屋建筑工程整体的结构的合理性提供保障。

5.房屋基础设计的要求

5.1高层建筑

高层建筑的特点是层数多,上部结构荷载大,使得基础埋置深度大、在材料的使用上也耗费量大、施工周期较长、工程总造价较高。因此,高层建筑设计时应注意满足以下几点要求。一是基础的总沉降量和差异沉降量应严格遵守规范规定的允许值;二是对复合地基或天然地基承载力及桩基承载力的要求要满足;三是地下结构做好建筑防水满足规定要求;四是不仅对基础本身的耗材和造价进行考虑,还要对土方、降水、施工条件与工期长短等因素进行考虑,对经济效益进行综合考虑。

5.2多层建筑

一般砌体结构建筑,应该严格按照建筑的抗震设计的规范要求,并在行动中真正的做到:要优先的采用横墙承重或者是纵横墙共同承重的结构体系,纵横墙在布置上最好能够均匀的对称,并且沿着平面进行对齐,沿竖向的面也应该上下进行连续。钢筋砼多层建筑结构的布置,应该尽量的采用规则的结构。如果结构比较复杂,可以预先设置好防震缝,并且将防震缝两侧分割成为各规则的结构,单元为单位,结构布置以少设缝为宜。这样就能够有效的使防震缝的设置以及伸缩缝、沉降缝可以得到统一。

6.加强房屋建筑结构基础设计的主要措施

6.1对软弱地基基础设计

局部软弱地基的基础设计,采用不同的处理方式时应在满足地基承载力及土层不发生整体破坏的前提下,以基础的沉降量为控制条件,满足使用要求和地基规范允许的沉降量是可以做到经济合理的。在改变地基条件的情况下,还需配合改变基础的设计,一般情况下,变更基础的尺寸,可以有效地调整基底附加压力的分布和大小从而改变地基变形值。当基底附加压力相同时地基的变形是随基底尺寸的增大而增大,而在确定的荷载下若增大基底面积,将会使地基的变形量减小。当然在验算地基变形,调整基底尺寸时还应考虑其它因素的影响。在软弱粘性土中采用卵石桩可以提高地基承载力,加速固结沉降,改善地基的整体稳定性。有关软弱土地基,处理的方式方法也有多种,同样又受各种诸多因素的影响很难用一种固定模式确定某种处理形式好,因此在场地条件不同的情况下,须经过分析研究再做决定。

需要注意的是,对每个建筑工程都要求设计人员认真编制方案比较说明书,综合评定基础类型,因此应加强对设计人员的管理。一个好的基础工程必须具备能安全地支承上部结构并能巧妙地将荷载传递到下部地基中,它在能满足规范要求的前提下,必须具有最小埋深,良好的稳定性能,又能将沉降和差异沉降控制在允许范围内,同时还要具有造价经济、施工简便、对周围环境污染小等特点。因而,要求设计人员在基础设计中,对所建工程的地质性质和地貌概况、周围环境进行综合分析;在设计计算中,对其参数、理论的精确度和适应性要进行研究,经多方案比较和调整偏差后,才能确定技术上合理、经济效果最佳的基础类型。在这一过程中,设计人员必须提出明确合理的观点,并形成书面文件。

6.2做好屋顶结构图设计

由于近年来各地“平改坡”的呼声较为严重,为符合客户需要,目前很多房屋建筑大都采用坡屋面的结构形式。这一结构形式主要有梁板式与折板式,若建筑板的跨度较大且建筑平面不规则,屋脊线的转折和屋面坡度复杂,因而基于此种坡屋面大都选择梁板式。反之,则采取折板式。它们的共同点就是这两种板都是偏心受拉构件。板配筋时,为有效抵抗拉力,应拉通部分或全部板负筋。板厚度应根据构件而定,通常不低120mm,并在梁板折角处布置钢筋大样示意图。

在设计屋坡面板时,为确保施工操作人员更好的理解图纸,应采取大样详图与剖面示意图相结合的表现方式。因而作为房屋建筑结构设计人员,必须具备空间感,就房屋建筑的整体构造做到心知肚明。以整体的视角掌握房屋建筑结构大局,以细微的设计体现其实用价值,坚持这一设计理念,所设计的图纸方能使施工技术人员一目了然的明白设计者的意图。但需要注意的是,由于屋面起坡会导致阁楼层的部分墙体超过高度,因而在设计时就应与门窗顶相结合设置圈梁,从而降低墙体计算高度。

6.3强化楼梯样图设计

在绘制楼梯样图时,应注意楼梯板挠度的控制,楼梯梁梁下的净高度必须满足建筑要求,确保楼梯梁位置上下层互相统一。若局部不符合则应采用折板楼梯,并注意折板楼梯钢筋,尤其是内折角处应断开并分别锚固,从而预防局部应力的集中,注意楼梯板的宽度和梁下净空要求,如果是首段梯板,应充分考虑基础带来的沉降,并在必要时设置梯梁。

6.4做实基础设计

在设计基础时,应注重混凝土标号的选择,并确保与结构耐久性要求相符。基础配筋必须确保与最小配筋率相关要求相符,条基交接处的钢筋设置必须选用标准图或详图,且条基交叉处的基底面积不能重复利用,并注意基础宽度的调整。若局部墙体的局部荷载较大也应就基础宽度进行调整,对于基础图中的构造柱,若定位不明确应进行精准定位。

结束语

总之,房屋建筑结构设计中的基础设计是一项较为系统复杂的工作。作为设计人员,做好房屋建筑结构设计中的基础设计是确保房屋建筑工程质量的关键,在设计工作中做好每一个细节的设计,尽可能的提高房屋建筑的功能,从根本确保房屋建筑结构设计质量,进而确保房屋建筑工程质量。

参考文献:

[1] 刘建鑫:《高层建筑结构地下室和基础设计应注意的问题》,《山西建筑》,2011年04期

[2] 宋春霞 张玉忠:《高层住宅局部框支结构设计要点》,《城市建设理论研究》,2011年23 期

[3] 杨国先:《房屋建筑结构设计基本原则与几个常见问题的探讨》,《城市建设理论研究》, 2012年19期

[4] 李剑波:《建筑结构设计中的异形柱节点受力特点分析》,《价值工程》,2011年01期

第9篇

关键词:大跨度网架;框架结构;屋盖

中图分类号:TU7文献标识码:A文章编号:

前言

随着我国经济的迅速发展,人们对生活、工作空间的要求越来越高,结构设计人员面临的挑战也越来越大。结构设计人员经常会遇到这样的工程:为了满足建筑上大空间的要求,钢筋混凝土框架结构顶层屋盖为大跨度的网架,如职工文化体育活动中心、燃气锅炉房等大型工业与民用建筑。下面笔者结合某锅炉房煤改气工程的结构设计,介绍一下自己的处理方法。

1 工程概况

该煤改气锅炉房抗震设防烈度为8度,设计基本地震加速度值为0.2g,属高地震烈度区,占地面积1600m2,建筑总高度为13.2米,为单层的框架结构,屋盖为大跨度网架,网架支撑在周边的框架柱上,网架的平面尺寸为:30m×53米,网架厚度约为2.5m。

2 PMCAD中建模(网架层)

2.1 相关规范的规定

现行的

《建筑抗震设计规范》(GB50011-2010)第3.6.6条第一款规定:计算模型的建立、必要的简化计算与处理,应符合结构的实际工作状况。

2.2 现行的《网架结构设计与施工规程》(JGJ7-91)第3.3.1条规定:由平面桁架系组成的网架结构和正防四角锥网架结构,经过惯性矩的折算,可简化为相应的交叉梁系,用差分法进行内力、位移计算。梁的折算惯性矩I可按下式计算:

式中:At、Ab―分别为网架上、下弦杆截面面积

h―网架高度

因此,在进行框架结构计算时,可将网架简化为等惯性矩的交叉梁系。

3 模型的简化处理

根据以上相关规范的规定,PMCAD中模型的建立应符合以下两个条件:

1)、应保证模型中网架平面内的刚度与实际情况基本一致。

2)、应保证网架的荷载能按实际受力情况传递到相应的框架梁、柱上。

图PMCAD中网架简化示意图

基于以上两点的要求,顶层网架屋盖在PMCAD中模型处理方法为:按网架按等惯性矩的原则换算成交叉工字型钢梁(或等代虚梁,梁材料类别为刚性杆)输入,并且输入网架对框架产生的荷载。网架部分则单独采用专业的网架设计软件(建研院的网架设计软件MSGS或3D3S)计算。网架部分荷载的输入,这里考虑以下两种方法。

1)、在PMCAD中按面荷载输入网架恒荷载标准值及活荷载标准值,软件自动倒算到

各受力杆件。

2)、直接读取MSGS计算出网架各支承点的反力(轴力、剪力、及弯矩),然后在PMCAD中按集中荷载输入到框架梁、柱上。

当实际的工程中,为了提高结构设计人员的效率,结构设计人员可先用第1)种荷载输入方法初步确定框架梁、柱的截面大小,待网架设计完后,再用地2)种荷载输入方法,进行精确的配筋计算。

4 用SATWE计算时应注意的问题

1、由于网架自身的荷载在PMCAD中已经按面荷载或集中荷载输入,这里就不应考虑工字形钢梁的自重(本工程跨度较大,工字形钢梁产生的自重占网架恒荷载的比重较大,造成较大的浪费)。因此,在SATWE分析与设计参数补充定义中将钢材容重改为0.001。这样就可以忽略钢梁自重产生的荷载。

2、由于支承网架的框架柱较高,网架的跨度较大,为了防止网架对框架柱产生较大的弯矩,将网架与框架柱的支承条件设为铰接(用MSGS计算时,网架支承条件应与PKPM模型保持一致);并且《网架结构设计与施工规程》第3.1.4条规定:网架结构的支承条件,可根据支承结构的刚度、支座节点的构造情况,分别假定为二向可侧移、一向可侧移、无侧移的铰接支座或弹性支座。因此,在SATWE特殊构件补充定义里,将工字形钢梁与框架柱的连接改为铰接,如下图所示(局部),这样使计算结果更加真实合理。另外对于跨层柱,应按实际高度确定计算长度,复核柱计算长度系数。

3、为了确保结构的安全,在进行PKPM抗震计算时,笔者建议分别采用按集中荷载(板厚为0)输入和按面荷载(板厚为200)输入两种计算模型进行,两种模型除了网架荷载的输入方法不一样,,其它各参数及梁柱截面均相同。在两种计算模型结果(地震力、周期、位移等)都满足相关规范时,框架梁、柱实配钢筋应取两模型计算结果的较大值。

以上是笔者在设计相关工程的经验之谈,如有错误之处,还望大家批评指正。

参考文献:

[1]《建筑抗震设计规范》(GB50011-2010)