HI,欢迎来到好期刊网!

人工智能教育和培训

时间:2023-08-28 16:54:32

导语:在人工智能教育和培训的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

人工智能教育和培训

第1篇

人工智能即将进入高中课堂。近日,我国第一本面向中学生的AI教材——《人工智能基础(高中版)》正式。

为什么要在中学开设人工智能课程?这本教材有什么特点?对于中学教师和学生而言,应如何准备才能应对人工智能的教与学?记者对此进行了调查。

全国已有40所学校引入教材

据了解,该教材是华东师范大学慕课中心和商汤科技合作,联合全国多所知名中学教师共同编写,由新闻出版总署批准出版并备案。目前,全国已有40所学校引入该教材作为选修课或校本课程,成为首批“人工智能教育实验基地学校”。

“与其他教材不同,该教材以‘手脑结合’为主要学习方式,不仅关注对人工智能原理的介绍,更加重视这些原理在生活中的运用。”华东师范大学教授,博士生导师陈玉琨介绍说,“作为教材的编者,我们特别希望学生能发挥独特的想象力,设计一些在高中阶段有可能完成的项目,并动手将其转化为独具特色的作品。”

记者看到,该教材共分9个章节,以基础普及性的知识为主,分别介绍了图片识别、声音识别、视频识别、计算机写作和深度学习等人工智能技术的原理和应用场景,每一页都配有彩色图表,并引入了大量科普内容和实例。此外,该教材还配套了一个教学实验平台。

香港中文大学教授林达华表示,目前,人工智能人才面临着全球性短缺,在人工智能和基础教育结合方面,各个国家都还处在探索的过程中,该教材的出版,是人工智能教育的一次重大突破,意味着人工智能将由此走出“象牙塔”,进入高中生的知识范畴。

“今天,技术更迭速度太快,谁也无法预计未来的职业选择,我很乐意让我的孩子在中学阶段就了解掌握一些人工智能方面的知识技能。”一位家长这样告诉记者。

目的在于普及原理引发兴趣

作为一门兼具学术含量和技术含量的学科,对高中学生而言,应该怎样去了解人工智能这门学科;对于高中教师而言,又该如何教学呢?

“大多数中学生的最终职业道路都不会是成为人工智能研究者或工程师,但是未来很多行业都将在不同程度上受益于人工智能的赋能。因此,该学科在中学阶段的教学目标应该定位让学生了解掌握人工智能的基本思想、基础知识以及常用算法和工具。”林达华说。

在陈玉琨看来,人工智能的教学和研究经常要用到高等数学的知识,这已经超出了高中生的知识范围,因此,在中学阶段,教师应注重对相关概念、算法、原理进行定性介绍,“定量的部分,可以留待以后再学。”

多位专家表示,教师在教学过程中,要特别重视对人工智能应用场景的介绍,这不仅会让课堂变得更加生动,学生学习的兴趣更加高涨,同时也会提升师生的思维与创造能力。

“总体而言,在中学阶段开展人工智能课程的主要目的在于普及人工智能的原理与技术,引起学生对人工智能学习的兴趣。当然,也期望能为高等学校培养人工智能领域的拔尖人才奠定相应的基础。”

“校企合作”解决人才缺口

也有专家指出,人工智能是一门新兴技术,中学教师在该领域的知识储备是不足的。

“师资是课程的基础。”上海师范大学教授岳龙表示,“开设人工智能课程对教师的知识结构也提出了新的挑战,因此组建专门的师资培训团队非常重要。”

据记者了解,为帮助教师克服知识储备不足的问题,华东师范大学慕课中心与商汤科技将联合举办多期“人工智能教师研修班”——培养一批人工智能的种子教师,在他们带领下,逐步提升我国教师总体的人工智能素养,从而改善中学教师开展人工智能教育教学面临的困难和挑战。

第2篇

一、人工智能机器人

随着信息技术以及人工智能技术的迅猛发展,机器人无论是在技术上还是在外形上都显著提高,并且,不断的进行功能延伸。将具有感觉、思考、决策和动作能力的系统称为智能机器人,这是一个概括的、含义广泛的概念。这一划时代的概念产生,为机器人技术的发展,也为信息技术的发展,拓开了巨大的想象空间和新的创造天地。智能机器人是信息技术发展的前沿领域,是一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,蕴涵着极其丰富的教育资源。

二、机器人教学的教学现状

2000年,机器人教学处于起步阶段,第一届“广茂达杯”中国智能机器人大赛在长沙举行。其目的是刺激机器人新技术的发展;鼓励年轻学生投身机器人技术。2002年,机器人竞赛得到了进一步的发展。2003年,机器人竞赛达到热潮。2004到2009年,机器人竞赛成为了主流,第四届至第九届中国青少年机器人竞赛分别在河南、广西、陕西、云南、重庆、湖南、青海举行,竞赛规模不断扩大,规格不断提高,经验不断丰富,成绩不断攀升。同时,第五届至第十届“广茂达杯”中国智能机器人大赛也取得了丰厚的成绩。2011年广东省的虚拟机器人竞赛,全省共有12个地市和顺德区报名参赛,参赛队伍106支,参赛学生148人。比赛形式新颖,要求学生现场编写虚拟足球比赛和虚拟灭火比赛的程序,然后进行投影演示,所有的同学都可以观看和学习。2012年的“乐博杯”青少年机器人世界杯中国竞赛在西安举行,汇聚了众多的参赛者。同学们秉着重在参与、学习交流的态度,经过两天紧张激烈的比赛,比赛成绩优异,涌现了一大批优秀的编程人员。其中最为突出的是兴围小学代表队,他们突出重围赢得了冠军,即将代表中国队去墨西哥参加世界级机器人大赛。

机器人竞赛已成为国内科技、教育界一致认同的一项青少年科技创新的重要赛事,作为一项富有时代性、创新性、参与性和普及性,适应当代青少年需求,深受当代青少年欢迎的智力开发活动,在全国各地产生了广泛的社会影响。

三、存在的问题

(一)教学方面

1、智能机器人缺少科学、可行、实效的教学目标。按照学制的阶段性划分不明确,存在重复学校相同知识的现象,从而导致机器人教材特色不明显。

2、智能机器人教育往往没有固定的教学设计和规划。导致许多教学只能按照产品使用说明书进行教学,不能按照学生接受能力有秩序的开展知识体系教学。

3、目前学校教育使用的机器人很纷杂,缺少规范。并且绝大部分并不兼容,开放度低。还有就是教学用机器人单机价格偏高原因是销售数量上不去,导致厂商只能太高价格。

(二)教育资源方面。由于我国各省市之间的贫富差距不断加大,从而导致在教育资源投入方面也是参差不齐,很多欠发达地区软硬件教学设备都严重不足,智能机器人的教学活动很难正常开展。

四、改进措施

(一)资源环境建设方面。积极探索信息技术条件下人工智能机器人进课堂教育环境的构建策略。建立完善系统的小学教育人工智能机器人进课堂资源的开发、应用的管理运行机制。同时,应该加大对中小学智能机器人教学资源投入力度,以确保所有孩子都能够享受到同等级的教学资源。

(二)学科教学方面。对于小学的人工智能机器人教学工作来讲,教师的培训工作应该是非常重要的。由于目前该门学科在小学教学当中仍属于一种新型的学科,相关教师之前并没有进行系统的学习过相关理论,同时,实践经验也是严重不足。因此,这就无形中增加了教师的教学难度,因此,对教师进行适当的教学培训是十分必要的。

目前,我国开展的“校校通”工程已经在全国的中小学基本完成,各地区小学已经具备了计算机房,而开展机器人教学工作还需要进一步购置教学使用的机器人,从而建立起以信息技术为核心的现代化教学环境,即“机器人”实验室。另外,教学资源的进一步开发与收集也是一项关键任务。学校可以统一添置一批有关机器人的教学信息资源,例如:教学光盘、教学软件等等。同时,还可以充分利用网络资源收集相关的机器人教学课件,教案等。丰富教师教学参考资料。

第3篇

要实现《中国教育现代化2035》的目标,难点和重点是在农村。面对时代挑战,解决农村教育现代化的问题,需要我们把目光投向农村,充分运用信息技术、人工智能、大数据等手段,帮助农村教师提升信息素养,帮助农村提高教育质量,促进教育公平,让农村的孩子能享有公平而有质量的教育。农村教育和城市教育有相同之处,也有各自不同的优势。在信息技术与教育融合的道路上,农村不能完全套用城市的发展思路和模式,不能盲目追求硬件设备的高大上,而要探索出与自身优势结合的发展路径,解决好人机关系的问题。

第一,始终把提高教育质量放在首位,但要避免重蹈应试教育的覆辙。在技术与教育深度融合的过程中,最重要的问题是要明确目的和手段的关系。教育的根本任务是立德树人,培养德智体美劳全面发展的社会主义建设者和接班人。技术应用到教育中的最终目的,是为了培养人。相较于城市,农村教育的基础较为薄弱,可以充分利用信息化手段,把城市优质资源输送到农村,并且使用技术提高教学效率。但要避免走入技术助长应试教育的误区,要以育人为前提,在实际教育教学中恰当融入信息技术。

第二,要进一步加强农村地区教师队伍建设,提高教师的业务水平和信息素养。免费师范生政策、特岗教师计划及乡村教师支持计划等政策的出台,解决了一些偏远农村教师“下得去、留得住”的问题。

教育部的《全国中小学教师信息技术应用能力提升工程2.0的意见》中明确指出,“信息技术应用能力是新时代高素质教师的核心素养”。要实现“教得好”的目标,可以充分发挥信息技术的优势,一方面通过网络等手段,为他们提供更多进修、培训、同行交流的机会和平台;另一方面帮助农村教师提升信息素养,借助技术手段提高教育教学质量,增强农村教师的成就感和自信心。

第4篇

“大数据”“神经元学习”“人工智能”,这些新潮的名词在我们生活中出现的频率越来越高,尤其是“阿法狗”和李世石的世纪大战,更是把前沿科学结晶带入我们的认知当中。也许有些人会提出质疑:这对我们的生活来说,意义何在?不久前,谷歌采用了新的神经网络算法,来升级其核心产品――谷歌翻译,从一定程度上回答了这个疑问。

在培训和管理领域,相似的颠覆性局面是否也会发生?新的技术、交互与呈现形式,是否会改变未来的培训过程,颠覆管理的方法?基于我们多年来的人工智能培训研究和实验型项目,发现这样的改变已经在悄然发生。

“岗位胜任力模型自动生成系统”便是典型的代表――只需要输入某岗位的工作内容和系统提出的简单问题,这个系统就能自动给予使用者此岗位的胜任力模型,提供结构化的面试建议,还能和企业的评价中心对接,给予招聘人员多视角的评价建议。通过这种方式选拔出的员工,其离职率明显下降。这些简单而基础的应用,已经开始润物无声地渗入企业的管理领域,酝酿着未来翻天覆地的变革。

数据建模

预测员工心理状态趋势

计算机自主学习的强大,在于无止尽地自我完善,具有无与伦比的适应性和自生长性。事实上,人工智能看似神秘,其实充满了大量的数学计算的研究过程。在人才发展方面,人工智能可以帮助我们预测员工的心理状态趋势,从而激发员工的热情。

我们曾启动了管理环境对人类心理的影响研究,旨在寻找那些激发员工工作热情的最佳管理环境方面的实践。目前已积累了3414个管理环境样本,并针对每个样本持续采集了约5年的员工心理及行为数据,调研不同企业所采取的管理战略以及具体的执行方案。通过运用人工智能,我们进行了大量的建模和验证工作,发现不同的管理方式下的员工心理状态变化趋势,尤其是工作动机,在一定程度上都是可预测的。事实上,在分类或趋势预测的背后,是庞大的数据演算,建模和预测的过程包含了繁复的统计过程,包括描述统计与推断统计。

与此同时,“预测”这一点对于人工智能应用而言很重要,因此,我们设计了沙盘工具“员工激励与动机管理”――既然动机和行为是可预测的,那么就可以通过计算机模拟,用物理形式呈现在人们眼前。通过人工智能将各种管理环境中发生的事件融入其中,沙盘能够围绕动机水平高低、绩效程度好坏两个维度,对虚拟的企业员工进行分类,并让沙盘参与者针对各类管理事件作出虚拟的处理选择。根据学员的选择,计算机可以预测并反馈其心理及行为的变化。这种运用了人工智能的沙盘工具,其预测准确性高达84%,置信水平0.95。这就意味着,如果一个参与者做了决策后,沙盘将能准确地预言各类员工的心理及行为变化趋势。

运用人工智能进行“无责任的”开放式推演,在培训过程中能允许参与者不断试错。学员根据自身的管理环境,可以实验出合适的管理方法,并对培训中所获得知识进行实时验证。

技术迭代

展开更高效的自主学习

随着90后员工踏上工作舞台,传统的人工智能数据建模思路和方法被打破了。之前的模型设计思路通常是建立一个个假设,比如,正向激励与负向激励的抵消性、个人得失与他人得失的对比性、个人得失与环境公平性关系等,在此基础上,通过数据集的分类统计来验证假设的科学性,并调整参数来观察预测的可靠性。但是新的数据集所具备的特点,极大地颠覆了先前的结果,寻找新的解决方案迫在眉睫。

此时,基于神经网络的计算机自学习技术,即神经元自学习,是一个不错的解决方案。相比以前的人工智能培训工具,神经元自学习更为繁杂。为了让计算机高效地自主学习、识别行为模式,我们需要将调研结果解构成更基本的参数“告诉”计算机,从而得出对应的结果。

展开神经元自学习具有一个明显的优点,每当调研和统计结果有所更新,计算机就会自动对这些数据进行新的学习,对模型进行修正。这个过程是动态的,不需要人为干预。而且,当计算机再次遇到一个新世代富有特色的信息集合,甚至可能自主地之前的模型设计,重新构建新的统计描述方式。神经元学习不仅节省了时间和精力,更能为沙盘推演参与者提供更深入的信息――通过选择处理事件,能够归纳出参与者的管理风格倾向性。这是传统培训和沙盘工具做不到的。

超越培训 为管理带来新思路

作为培训产品来说,人工智能培训工具已经足以彰显其魅力,它允许学员在虚拟环境中试错,让工作效率得以改进。我们认为,它更重要的意义在于,对现实世界的指导。

以我们的沙盘工具为例,一个实际使用者能从这个工具中得到许多培训之外的有价值的信息。他可以在遇到“员工要求加薪”“员工消极怠工”“员工集体离职”“员工寻求晋升”“办公室政治”等各种管理事件时,让系统给出各种模拟的结果,评估各种行为的可行性,尽量做到趋利避害。这个工具超脱了培训范畴的桎梏,真正在工作中产生价值。

第5篇

关键词:人工智能;全英文教学;教学内容改革;教学模式改革

1 实施全英文教学的必要性

随着国际学术交流的日益活跃以及国际化办学的趋势发展,借鉴国外著名大学的办学理念和管理模式,利用世界优质教育资源,提升教育教学水平,造就具有国际竞争能力的复合型创新人才,正成为我国教育改革与发展的新方向。

智能化是人类社会技术发展的必然趋势。作为计算机科学与技术专业课程体系中的核心课程之一,人工智能的地位正随着该学科的不断发展和其技术的广泛应用迅速提高,而且在非计算机领域,具有不同专业背景的学者也通过这个年轻的领域发现新思想和新方法。由于人工智能课程内容涉及计算机科学以及边缘学科的新理论、新方法与新技术,因此在该课程中开展全英文教学不仅可以让学生充分了解人工智能日新月异的发展,还可以促进本科教学与国际接轨,在培养国际化创新人才方面具有十分积极的现实意义。

2 当前国内全英文教学存在的主要问题

笔者对当前国内高校人工智能课程全英文教学的现状进行调查分析,调查对象为软件工程专业本科三年级学生,调研问卷共58份。调查项目、内容及结果见表1。

从项目1和2的调查结果看,大部分学生认为开展全英文教学有必要,其在提高英语应用能力、增强自己的就业竞争力以及了解国际前沿等方面有很大帮助。然而,由于全英语教学在我国尚处于起步阶段,进行全英语教学的效果并不十分理想,其教学试点与实践尚存在一些亟待解决的问题,主要表现在如下几个方面。

(1)对全英文教学的理解存在偏差。从项目3~5的调查结果看,教师不能正确处理好全英文教学与专业英语课教学的关系,使全英文教学变为纯英语课教学或专业英语课的翻版。大部分学生还是希望教学授课语言以双语为主或以中文为主、英文为辅,多媒体课件形式为中英文相结合。

(2)全英文教学达不到预期的教学效果。从项目6和7的调查结果看,虽然一些大学花了很大代价邀请国外一流教授专家讲授课程,但由于人工智能课程理论性强、难度大,学生很难适应全英文课程教学。

(3)缺乏内容全面和难度适中的教材。从项目8和9的调查结果看,一些大学在实施人工智能课程全英语教学时直接引进原版英文教材,但这对本科生来说,原版英文教材内容偏多、难度较大,学生学习时不免有诸多畏难情绪。

(4)师资匮乏。从项目10的调查结果看,学生对承担全英文教学教师的满意程度普遍不高。实际上,全英文教学对承担课程教学的教师要求很高,他们不仅需要具备专业知识,而且还要掌握英语应用技能,而现阶段国内高校中能承担全英语教学的师资仍然十分匮乏。

综上所述,如何改革全英文教学模式,讲授哪些教学内容,采用何种科学的教学方法与手段,是值得我们思考和关注的教学改革重点和难点。

针对以上这些问题,我们深入研究人工智能课程的特点,对现有教学模式、内容及方法进行全方位探索和改革,制订全英文教学计划,对促进教学工作、提高教学质量、培养国际创新型人才起重要作用,其重要意义具体体现在以下3个方面。

(1)探索如何将理论知识传授、综合能力培养与英语交流运用三者有机结合,建立全英文教学的新型模式,这将对更新教学理念和探索适合于计算机软件人才培养的教学方法产生深远影响。

(2)全英文课程教学能够让学生掌握最先进的人工智能国际前沿技术,开阔国际视野,有利于培养复合型、实用型、具有国际竞争力的高层次创新人才。

(3)全英文教学改革的探索与实践能够促进国内教育向国际教育迈进。

3 全英文教学内容改革

建立完善的全英语教学体系,需要有系统而完整的教学内容。我国计算机科学与技术本科专业人工智能课程课时一般只有36学时,因此我们需要考虑从什么角度组织教学内容,才能让学生比较容易地理解、熟悉和掌握人工智能的原理、方法与技术,从而显著提高教学效果。

与国内教学内容相比,国外教学更注重分析问题的思维方法和解决问题的应用能力,对提高学生的学习兴趣以及培养学生的创新能力十分有益,但是原版内容过多,且大多以国外政治、经济、文化、社会和生活为背景,对于我国学生来说,理解某些内容和背景比较困难。因此直接套用原版教学内容往往存在一定问题,我们需要在引进、消化和吸收国外经典教材内容的基础上,有选择性地挑选合适内容。国外经典教材编写思路不尽相同,一些经典人工智能教材及主要内容见表2。

人工智能的基本思想和主要内容是研究人类智能活动规律和用于模拟人类某些智能行为的基本理论、方法和技术。从表2中可以看出它们的共同点,即人工智能应围绕“智能”这个核心,但由于智能本身非常复杂,难以用单一的理论与方法描述,需要从不同的抽象层次刻画智能这个主题。我们认为,人工智能的主要内容可按图1所示划分为不同层次并确定讲授顺序。

在最底层,神经网络与演化计算(适应性原理与仿生机制等)辅助感知以及与物理世界的交互;抽象层反映知识在智能中的角色和创建以及围绕问题求解的知识的抽象、表示和理解;更高层则提出学习、规划、推理的模型和方式;应用层构造智能化智能体以及具有一定智能的人工系统,让计算机实现以往需要人的智力才能完成的工作。除了将人工智能课程的教学内容划分为这4个层次,为保证教学内容的循序渐进性,还可按照抽象层更高层最底层应用层顺序安排教学内容。

4 全英文教学模式改革的实施关键

针对以上国内全英文教学中存在的主要问题,我们提出人工智能课程全英文教学模式改革的实施关键,包括全英文课堂教学模式的重定位,“二三二”模式教学方法的改革,集先进性、前沿性和实用性为一体的教学内容创新以及全专业英语教学团队的打造。

4.1 全英文课堂教学模式的重定位

人工智能课程教学以培养学生掌握专业基础知识、培养实践动手与应用能力以及提高英语交流水平三者相结合为主要目标,分两个阶段进行,国内教师与国外教师共同授课。首先,国内主讲教师讲授人工智能课程的基础原理、模型和方法,可采用集中授课、案例教学和课堂实践等教学方式,使学生掌握人工智能的一般基础知识;在此基础上,再邀请国际知名外籍教师为学生讲授人工智能国际前沿技术,包括集中授课和专题研讨。经过基础学习,学生一般已掌握人工智能基础知识,因此对于外籍教师所讲授的学科前沿等内容能够准确理解和把握。与单纯采用全英文教学或单纯邀请外籍教师授课相比,该模式能收到较好的预期效果。“1+1”全英文双课堂教学模式如图2所示。

4.2 “二三二”模式教学方法的改革

实行全英语教学后,由于使用英文教材及中外教育背景存在差异等因素,我们在教学过程中对教学方法进行一定程度的调整和改进,包括全英文授课形式、案例教学、教学内容以及教学手段等方面;配合“1+1”全英文双课堂教学模式,提出图3所示的“二三二”模式教学方法,培养学生成为具有综合能力、创新能力、国际视野和英语技能的复合型人才。

该教学方法模式包括:(1)过渡式全英文与沉浸式全英语两大英语教学方式;(2)激励自主式、启发互动式、体验学习式三大学习法,激发学生学习兴趣,使学生牢固掌握人工智能基础理论与方法;(3)参与学习式和自我展示式两大学习法,培养学生综合运用知识的能力和创新能力。

在全英文课堂授课过程中,我们需要注重把握英语与专业的比例。首先,不能一味地追求全英文授课的形式而忽视教学效果;其次,还需要为学生提供一个良好的语言学习环境,在实际教学中注重培养学生良好的英语思维习惯,从根本上提高学生的英语水平。

人工智能课程包含大量概念,内容抽象,算法复杂,学生往往难以理解与掌握。将案例教学方法引入课程教学能有效提高学生的学习兴趣,获得较好的预期教学效果,但要达到理想的教学目标,仅仅靠课堂教学远远不够,还需要拓展第二课堂。有计划地邀请国外人工智能专家和教授到大学进行专题讲座,鼓励学生参加相关的课外科研/科技活动,使得学生能够体验式地、自主地学习,更好地了解人工智能新技术,从而进一步激发学生的学习热情。构建案例教学和课堂实践的双课堂教学模式,不仅能够丰富教学内涵,而且可以充实学科前沿知识并拓宽学生的国际视野。

4.3 集先进性、前沿性和实用性为一体的教学内容创新

除了引进、消化和吸收国外经典教材内容以外,我们还需要逐步建立起具有自身特色的教学内容,以保证教学内容集先进性、前沿性和实用性为一体。

(1)先进性。我们提出教学与科研相结合,以科研带动教学发展的新思路。教师可结合自己的人工智能及其相关领域的科研项目,将科研最新研究成果以及学科前沿知识进行梳理与优化并有机融入课程教学中,确保教学内容的先进性,有效提高教学改革的质量。

(2)前沿性。对人工智能发展较快的领域,如智能计算、数据挖掘等,还需更新和补充全英文教学内容,同时可以邀请国际知名大学教授共同研究与探讨教学内容,保证课程内容具有一定的前沿性,通过实现全英语教学保证课程与国际接轨。

(3)实用性。在讲授基础理论知识的基础上,还应注重实践的应用,增强学生的动手操作能力,以符合素质教育必须注重实践的要求。教师可结合教学中的基本理论知识,适当补充案例与实例,使得教学内容与实际相联系,丰富课程内涵并提高教学效果。

4.4 全专业英语教学团队的打造

师资力量直接影响教学效果。师资的匮乏是现阶段全英语教学面临的主要问题之一。虽然一些教师具有较扎实的人工智能学科功底,但不能熟练地运用英语进行授课,而有些教师则知识结构单一,缺少人工智能及其相关学科间的交叉与融合,因此我们需要多渠道、多层次地打造既具备专业知识,又具有学科交叉与融合能力,同时掌握英语技能的全英语教师队伍。将科研与教学相结合,利用与国外人工智能及相关领域学术带头人建立的合作关系优势加强交流与合作,争取申请国际合作科研项目,利用科研提高教师的教学质量、专业水平和英语技能。

5 全英文教学的具体实施

我们在软件工程专业本科三年级学生的人工智能课堂上实施全英文教学,具体实施过程如下。

(1)国际软件学院成立教学主管部门领导小组、从事教学研究的骨干教师组成的全英文教学工作小组以及由教学督导组成的监管小组,三者之间相互配合并共同促进,保障全英文教学工作的顺利推进与落实。领导小组对全英文教学的师资培训、人才引进、多媒体网络资源开发、实验室建设、教材编写等予以政策支持;教学工作小组制订全英文教学工作规划和年度计划;监管小组定期对工作小组的教学完成情况进行评估。

(2)在课程教学中,打破国内常规教学方式,建立开放式全英文教学模式,教学形式多种多样。教学方式以“1+1”双课堂教学模式为核心,以讲授与专题讨论相结合的方式,围绕基本原理、方法与技术展开教学,激发学生自主学习与创新学习的热情。

(3)国际软件学院在人工智能相关领域承担并完成了一批国家与省部级科研课题,而且取得了一些有影响的研究成果,形成了自己的学科特色和优势。2006年,国际软件学院聘请被誉为世界“人工大脑”领域先驱的美国犹他州州立大学计算机系Hugo de Gaffs教授担任武汉大学全职教授和学院国际人工智能研究室主任。

(4)聘请与国际软件学院有合作协议的国立首尔大学计算机科学与工程学院Bob McKay教授专职来校为本科生讲授人工智能技术前沿。同时,利用国外学者来武汉大学顺访的机会,请其为学生作学术报告,使学生了解国际最新人工智能技术,如邀请曾经在麻省理工学院从事过7年博士后研究的宋森研究员进行“理解大脑与仿制大脑”的讲座等。

(5)国际软件学院在遴选教师到与学院有教学和科研合作的国外大学进修时,优先考虑给本科生授课的全英文教师,并将全英文教学能力作为选拔条件,以教师的学术进修带动全英文教学建设,使学科和专业建设与全英语教学队伍打造相结合,全面推进全英语教学工作的开展。

6 结语

人工智能是计算机科学与技术专业的重要课程,目前正面临着知识更新和教学改革的紧迫任务。笔者以实施全英文教学为契机,针对目前国内全英文教学中存在的亟待解决的主要问题,提出人工智能全英文教学内容与教学模式改革的新思路。

(1)以智能为核心,从不同抽象层次刻画智能主题,构造人工智能最底层、抽象层、更高层以及应用层4大模块内容。

(2)突破传统教学模式,对全英文教学模式进行重定位,提出“1+1”全英文双课堂教学模式。

(3)提出“二三二”模式教学方法的改革方案,培养具有综合能力、创新能力、国际视野、英语技能的复合型人才。

(4)提出教学与科研相结合,以科研带动教学发展的新思路,进行集先进性、前沿性和实用性为一体的教学内容创新。

第6篇

2019年7月1日至7月5日,东西部协作2019年大通县信息技术骨干教师能力提升培训在南京市雨花台区教师发展中心进行。信息技术素养观转变。从技术应用能力转向信息素养能力,我们不仅要利用技术,更要利用信息素养和信息技术合作。

人工智能时代的教育变革

一、人工智能驱动智慧教育

当前,以人工智能为代表的技术创新进入到一个前所未有的活跃期。当人类社会迈进信息时代的新阶段——人工智能时代,这种工业化的教育体系已经无法满足未来社会对人才的需求,时展迫切需要一场教育变革。换句话说,教育不是由外而内传递知识,而是由内而外觉悟智慧。这就要求,我们必须打破整齐划一的传统教育形态,构建与人工智能时代相适应的智慧教育体系,利用智能技术对学习环境、学习内容、教学方式、管理模式进行系统化改造,为学生提供富有选择、更有个性、更加精准的智慧教育。

二、智慧教育的理念内涵

综合已有研究,我们认为,智慧教育是指以“人的智慧成长”为导向,运用人工智能技术促进学习环境、教学方式和教育管理的智慧转型,在普及化的学校教育中提供适切的学习机会,形成精准、个性、灵活的教育服务体系,最大限度地满足学生的成长需要。只有把“人”置于教育的最高关注,发掘人的潜能,唤醒人的价值,启发人的智慧,才能从容应对人工智能时代带来的挑战。智慧教育不仅是教育基础设施的信息化、智能化,而且是教育理念与教育方式的转型升级,从注重“物”的建设向满足“人”的多样化需求和服务转变。

智慧教育包括三个组成部分:一是相互融通的学习场景,利用智能技术打通物理空间与网络空间之间的壁垒,让万物互联,让世界互通,所有学生都可以在任何地方、任何时刻获取所需的任何信息;二是灵活多元的学习方式,注重学习的社会性、参与性和实践性,打破学科之间的界限,开展面向真实情境和丰富技术支持的深度学习;三是富有弹性的组织管理,破除效率至上的发展理念,释放学校的自主办学活力,利用人工智能提高教育治理的现代化水平,让学生站在教育的正中央。

虚拟和增强现实(VR/AR)技术在教学中的应用与前景展望

一、虚拟现实和增强现实技术的起源、概念和应用领域

(一)虚拟现实和增强现实技术的起源

虚拟现实(VirtualReality,简称VR)技术描述的就是我们现在熟悉的“虚拟现实”。增强现实(Augmented Reality,简称AR)是指在真实环境之上提供信息性和娱乐性的覆盖。

我国虚拟现实技术的研究起步于20 世纪90 年代初。随着计算机图形学、计算机系统工程等的高速发展,虚拟现实技术得到相当的重视。2016 年3 月17 日全国两会授权的《中华人民共和国国民经济和社会发展第十三个五年规划纲要》中指出:“大力推进先进半导体、机器人、增材制造、智能系统、新一代航空装备、空间技术综合服务系统、智能交通、精准医疗、高效储能与分布式能源系统、智能材料、高效节能环保、虚拟现实与互动影视等新兴前沿领域创新和产业化,形成一批新增长点。”

(二)虚拟现实和增强现实的概念、特征和应用领域

1. 虚拟现实技术

虚拟现实,是一种基于多媒体计算机技术、传感技术、仿真技术的沉浸式交互环境。具体地说,就是采用计算机技术生成逼真的视觉、听觉、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互作用、相互影响,从而产生亲临等同真实环境的感受和体验。

虚拟现实具有特性,即沉浸性(Immersion)、交互性(Interaction)、构想性(Imagination),是一个学科高度综合交叉的科学技术领域。虚拟现实与人工智能 (AI) 技术及其他相关领域技术结合,将会使其还具有智能(Intelligent) 和自我演进演化(Evolution) 特征。头戴式虚拟现实设备,即可观看虚拟现实视频介绍。

虚拟现实涉及门类众多的学科,整合了很多相关技术。虚拟现实是未来科技发展的方向之一,它可以从人的感觉系统上改变现有的空间感。虚拟现实现有的产业链大致可分为硬件设计开发、软件设计开发、资源设计开发和资源运营平台等几种类别。通过虚拟现实关键技术的突破以及“虚拟现实+”的带动,会产生大量行业和领域的虚拟现实应用系统,为网络与移动终端应用带来全新发展,将会推动许多行业实现升级换代式的发展。虚拟现实可以应用于国防军事、航空航天、智慧城市、装备制造、教育培训、医疗健康、商务消费、文化娱乐、公共安全、社交生活、休闲旅游、电视直播等领域中。

2. 增强现实技术

增强现实是在虚拟现实的基础上发展起来的一种新兴技术。增强现实技术基于计算机的显示与交互、网络的跟踪与定位等技术,将计算机形成的虚拟信息叠加到现实中的真实场景,以对现实世界进行补充,使人们在视觉、听觉、触觉等方面增强对现实世界的体验。

增强现实具有三大特点,即虚实结合、实时交互和三维配准。

增强现实具有三种呈现显示方式,按距离眼睛由近到远划分分别为头戴式(head-attached)、手持式(hand-held)、空间展示(spatial)。增强现实智能眼镜,扫描二维码可以观看Magic Leap 增强现实演示视频。

增强现实的应用领域非常广泛。如在教育领域增强现实可以为学生呈现全息图像、虚拟实验、虚拟环境等;在旅游业增强现实可以帮助游客自助游玩景区,以虚拟影像的形式为游客讲解景区概况、发展历史、人文景观等内容;在零售业中增强现实技术可以实现一键试穿,在网上销售中具有极大的应用空间。增强现实在工业、医疗、军事、市政、电视、游戏、展览等领域都表现出了良好的应用前景。

二、虚拟现实和增强现实技术在教学中的具体应用

虚拟现实和增强现实技术在教学中的应用潜力巨大、前景广阔,主要体现在运用虚拟现实和增强现实技术具有激发学习动机、创设学习情境、增强学习体验、感受心理沉浸、跨越时空界限、动感交互穿越和跨界知识融合等多方面的优势。虚拟现实和增强现实技术的应用,能够为教育工作者提供全新的教学工具,同时,能激发学生学习新知识的兴趣,让学生在动手体验中迸发出创新的火花。因此虚拟现实和增强现实技术应用于教育行业是教育技术发展的一个新的飞跃, 它营造了自主学习的环境,由传统的“以教促学”的学习方式演变为学生通过新型信息化环境和工具来获取知识和技能的新型学习方式,符合新一轮教学改革的教育理念,有助于学生核心素养的培养。虚拟现实和增强现实设备有多种,这里分别介绍各种设备在教学中的具体应用。

(一)头戴式虚拟现实和增强现实设备在教学中的应用

头戴式虚拟现实设备一般包含头戴式显示器、位置跟踪器、数据手套和其他设备等,分为移动虚拟现实头盔和分体式虚拟现实头盔。国外有脸谱、谷歌、微软、三星等公司的虚拟现实头盔产品,国内有微视酷、蚁视、暴风魔镜、中兴、乐视、华为、小米等100 多种虚拟现实头盔产品。结合国内外的研究报告以及目前虚拟现实教育实践情况,虚拟现实和增强现实技术在生物、物理、化学、工程技术、工艺加工、飞行驾驶、语言、历史、人文地理、文化习俗等教学中均可应用。

学生使用头戴式虚拟现实设备体验学习时具有置身真实情境的沉浸式感觉,能给学生以绝佳的真实体验, 使人如身临其境,让书本中的内容可触摸、可互动、可感知。例如地理学科讲述关于宇宙太空星际运行的课程时,在现实生活中学生无法遨游太空,如果戴上头戴式虚拟现实设备,就可以让学生从各个角度近距离观察行星、恒星和卫星的运行轨迹,观察每个星球的地表形状和内部结构,甚至能够降落在火星或月球上进行“实地” 考察、体验星际之旅等。虚拟现实头戴设备, 手机扫描二维码观可看虚拟现实效果视频。

(三)手持式虚拟现实与增强现实设备在教学中的应用

手持式增强现实设备多采用移动设备与APP 软件相结合的方式。APP 有视+AR、AR、4D 书城、幻视、视AR、尼奥照照等,另外有多种增强现实图书都有相配套的APP,如《机器人跑出来了》《实验跑出来了》《恐龙争霸赛来了》这套“科学跑出来”系列增强现实科普读物有iRobotAR、iScienceAR、恐龙争霸赛来了等多个APP,它们的原理都是采用手机摄像头获取现实世界影像,通过手机在现实世界上叠加虚拟形象的形式,实现增强现实的特殊显示效果。有的APP 中提供了丰富的教育资源,如安全教育、科普读物、识字卡片、益智游戏等,特别适合儿童教育。使用方法有两种:一种是手机APP 与相配套的纸质图书一起使用,用手机摄像头扫描图书上的图片,在手机屏幕上即可呈现出演示效果;另一种使用方法是运用APP 下载增强现实资源并与外界实景叠加即可呈现出演示效果。增强现实特效非常逼真,利用这些APP 进行学习,学习过程具有真实感、体验感、沉浸感,增强了学生学习知识的兴趣,可以达到寓教于乐的教学效果。

三、虚拟现实与增强现实技术在教学中应用的优势分析

(一)虚拟现实与增强现实技术为学生自主学习提供了有利条件

虚拟现实和增强现实教学资源存在形式多种多样, 根据采用的设备不同,可以将教学资源保存在网络运营平台、桌面式设备、移动设备和纸质图书里,学生可以在不同的地方采用不同的设备调用虚拟现实和增强现实教学资源进行随时随地的自主学习。如果学生在课堂上有些知识点未能掌握,可以重新学习一遍,增加对知识的巩固和理解,有时学生因为特殊原因未能在课堂上学习,也可以课后弥补,同时可以将虚拟现实和增强现实设备作为载体采用“翻转课堂”或“微课导学”教学模式组织教学,为学生提供自主学习条件,教师也可以从繁重的重复性讲解中解脱出来,有针对性地为学生答疑解惑,有助于传统教学方式的变革。

(二)虚拟现实与增强现实技术为学生提供更加真实的情景

在传统的教学课堂上,知识的传输主要通过文字、图片、声音、动画和视频的形式呈现。遇到比较复杂的情况,比如数学课的立体几何、地理课的天体运动、物理课的磁力线和电力线、化学课的微观粒子结构、生物课的细胞结构等,教师用语言很难把这些知识点表达得非常清晰,同时由于每个学生的理解力不同,教学效果也会因人而异,甚至初次学习这些知识的学生会得到“盲人摸象”般的感受。而采用虚拟现实和增强现实技术组织教学,三维立体效果的呈现可以弥补这样的缺憾,能够把知识立体化,把难以想象的东西直接以三维形式呈现出来,让学生直观感受到文字所表达不出来的知识,真实的情景可以帮助学生对知识的理解和记忆,使学生的想象变得更加丰富。

(三)虚拟现实和增强现实技术能提高学生的学习兴趣

由于虚拟现实和增强现实技术具有视觉、听觉和触觉一体化的感知效果,学生具有真实情境体验、跨越时空界限、动感交互穿越的感受,能身临其境般在书海里遨游,让书本中的内容可触摸、可互动、可感知。身临其境的感受和自然丰富的交互体验不仅极大地激发了学习者的学习动机,更给学习者提供了大量亲身观察、操作以及与他人合作学习的机会,促进了学生的认知加工过程及知识建构过程,有利于实现深层次理解。传统的学习方式让很多学生觉得枯燥乏味, 为了应付考试不得不去死记硬背,但很多知识学生考完之后很快会忘得一干二净,而采用虚拟现实和增强现实技术组织教学,新颖的学习方式和丰富多彩的学习内容能够极大地提升课堂教学的趣味性,生动形象的场景会加强学生的记忆,激发学生的学习兴趣。“兴趣是最好的老师”,兴趣也是学生学习新知识的不竭动力。

(四)虚拟现实和增强现实技术应用能促进优质资源均衡化

我国幅员辽阔,地区之间贫富差距较大,存在教学资源分配不均的情况。经济发达地区无论是软硬件配置, 教学师资和教学资源都非常丰富,而经济落后、地域偏远的山村学校学生连接受最基本的教育都难以实现。各级政府和教育主管部门都在大力推进教育均衡发展,加大教育投资力度,而虚拟现实和增强现实技术应用将是解决城乡教育资源不均衡问题的一把金钥匙,有利于缓解教育资源两极分化,扩大优质资源的分享范围,能让教育资源不再受限于地区和学校,让教育发达地区的名教师通过虚拟现实和增强现实课堂走进山村学校,能通过整体优化教育资源配置,来缩小城乡差距,实现教育公平,同时这也是教育扶贫的较佳途径。

四、虚拟现实和增强现实技术在教学应用中存在的问题

虽然虚拟现实和增强现实技术在教学中的应用可以改变传统的教学方式、提高学习兴趣、实现教育均衡发展,但虚拟现实和增强现实技术发展还处在初级应用阶段,在技术瓶颈、资源开发、教学内容和推广普及等方面还存在很多问题。

(一)虚拟现实设备应用中的眩晕问题

人们在使用虚拟现实设备时会出现眩晕感,从硬件结构来看,由于现在的科技还无法做到高度还原真实场景,许多用户使用配置达不到要求的虚拟现实产品时会产生眩晕感;虚拟现实界面中的视觉反差较大,实际运动与大脑运动不能够正常匹配,影响大脑对所呈现影像的分析和判断,从而产生眩晕感;虚拟现实设备的内容有相当一部分资源是从PC电脑版上移植过来的,UI 界面不能很好地匹配虚拟现实设备,不同的系统处理上也无法达到协调统一,画面感光线太强或太弱都不能让用户接受;虚拟现实设备帧间延迟跟不上人的运动,会有微小的延迟感,当感官与帧率不同步时也会让使用者产生眩晕感。

(二)虚拟现实和增强现实技术在教学中资源短缺

目前虚拟现实和增强现实产业刚起步,软硬件设施不完备,开发人员技术力量不足,很多学校未配备虚拟现实和增强现实设备;中小学校的很多教师还没有接触过虚拟现实和增强现实,不知道如何在教学中应用,更谈不上如何去开发虚拟现实和增强现实教学资源。因此,针对中小学教学所开发的虚拟现实资源很少,课程资源短缺是虚拟现实和增强现实在中小学推广的最大瓶颈。但随着虚拟现实和增强现实技术的迅猛发展,将虚拟现实和增强现实技术应用于教学势在必行,未来虚拟现实和增强现实技术在教学中的应用势必带来课堂教学方式的颠覆性改变。

(三)虚拟现实和增强现实教学平台和资源的设计重形式轻内容

当前很多虚拟现实教育平台都只是在一个3D 视频或虚拟现实软件游戏的基础上构成虚拟现实教学。虽然学生在虚拟世界玩得津津有味,课堂气氛很活跃,学生互动、交流和讨论很热烈,表面上看学生得到了沉浸式的体验感,但是有些虚拟现实教育平台所提供的知识点讲解还停留在现实世界中,课本内容的单调、枯燥并没有因软件的存在而得到缓解,知识要点的讲解没有变得更加生动、有趣和有针对性,这种只重视形式而不重视内容、教与学完全脱节的虚拟现实课堂只能称为“伪虚拟现实课堂”。

(四)虚拟现实和增强现实设备价格较高和技术条件限制导致普及困难

企业的前期研发成本较高、设备销售量较少,导致多数虚拟现实和增强现实设备销售价格居高不下, 很多学校因资金问题望而却步,无力购买售价高昂的虚拟现实和增强现实设备,进而导致虚拟现实和增强现实技术在学校的推广普及步履艰难。大多数虚拟现实软件普遍存在语言专业性较强、通用性较差和易用性差等问题。受硬件局限性的影响,虚拟现实软件开发花费巨大且效果有限。另外在新型传感应用、物理建模方法、高速图形图像处理、人工智能等领域,都有很多问题亟待解决。三维建模技术也需进一步完善,大数据与人工智能技术的融合处理等都有待进一步提升。以上诸多原因的存在制约了虚拟现实和增强现实技术在中小学教学中的推广和普及。

五、虚拟现实和增强现实技术在教学应用中的前景展望

虚拟现实和增强现实技术发展对未来教学形式的影响

随着科学技术的迅猛发展,在云计算、雾计算、物联网、“互联网+”、大数据、人工智能突飞猛进的新时代背景下,虚拟现实和增强现实技术与人工智能、大数据和物联网融合,将会让虚拟现实和增强现实技术应用如虎添翼。

随着虚拟现实和增强现实软硬件设备的性能提升和价格降低,会有更多的教育投资公司开发出更加丰富多彩的教学资源,让虚拟现实和增强现实技术快速走进中小学课堂,在教学中大面积应用普及。依托其具有的沉浸性、交互性、构想性、虚实结合、实时交互和三维配准等超级体验感的优势,教师的教学方式和学生的学习方式都将会发生改变。虚拟现实和增强现实技术在教学中的应用普及将会颠覆传统的教育方法和教学形式,具有巨大的应用潜力与应用前景。

第7篇

【关键词】人工智能 财务决策 应用

一、财务和人工智能技术应用概述

1987年美国执业会计师协会(AICPA)发表了一份管理指导特别报告“人工智能和专家系统简介”,将人工智能引入到会计和财务管理领域。自此,西方财务和会计界对人工智能技术和专家系统在会计、审计和财务分析与管理等方面进行了广泛探索,开发出了许多实用的专家系统来解决复杂的财务分析和会计决策问题。人工智能技术通过模拟人类专家求解复杂问题的方法,建立相应计算机辅助系统,使财务和经营决策智能化,从而使得现代会计系统在实现信息化和网络化后,向智能化迈进。财务和会计专家系统分成以下四类:

1.财务分析专家系统。成功的财务分析可以确定某个公司的经营状况,如投资或信用评估风险等级。由于会计和财务业务职能的复杂性,有些财务分析专家系统同时跨越多个问题域。例如,根据专家系统的输入和相应的输出建议,解决分类问题的财务分析,专家系统同时可能又属于诊断或纠错问题。

2.合成专家系统。具体包括:(1)在相对较小搜索空间的约束条件下,配置目标集,如管理商业贷款组合计划的MAEBLE专家系统;(2)在相对较大搜索空间的约束条件下,设计目标集,如个人理财设计PLANMAN专家系统;(3)设计采取行动的规划专家系统,如审计规划EXPERTEST系统等。

3.组合专家系统。这类专家系统主要是解决复杂问题的组合分析,如:控制风险估计系统,诈骗检测系统,风险估计系统APX。

4.财会知识传授和职业教育专家系统。如国际上一些大会计公司内部使用的培训专家系统,和辅助会计专业大学生实践的专家系统。实践证明,这些系统可以让没有专业经验的人员有效获得解决某些具体问题的相关知识。

二、财务和会计专家系统基本结构

财务和会计专家系统是一种工作在专家水平上的计算机系统,应用专家的专门知识和推理能力,解决通常情况下难于处理的问题。需要人类领域专家宝贵的经验、智慧与思维方法以及相应的计算机技术的发展。到目前为止,在财务和会计领域,应用最广、最成熟的是基于规则的产生式系统。财务会计专家系统中的解释模块主要是用于推理过程的解释,回答相关财务结论是如何得到的。系统的透明性就是由解释模块来实现,而这种透明性是专家系统所必需的。有了透明的解释功能,由结论可以反过来追踪推理机调用了哪些规则,在分析推理过程中获得了哪些财务数据和特征信息。财务和会计领域的许多问题非常适合利用专家系统来求解,如审计、税务、管理会计和职业教育等。财务分析师、审计专家和金融专家在会计实务中获得许多珍贵的知识和经验,这些知识和经验有的是无法在文献中获得。如果把这些知识通过一定的方式累积、保存在专家系统的知识库中,其在职业教育和帮助非资深财务工作者解决问题的能力方面所产生的作用和意义是不言而喻的。

三、智能财务和会计系统建模步骤

在利用专家系统来描述和解决一个财务和会计问题时,其建模过程有6个步骤。下面以租赁业务为例,介绍其建模过程:(1)列出所有可能的选项。如承租人有两个租赁选择:经营性租赁和资本性租赁。(2)确定相应的规则。区别经营租赁和资本租赁的四条基本规则是:第一,所有权转移;第二,存在采购契约选项;第三,使用大于75%的资产经济寿命;第四,租赁费用的现值超过90%的资本市场公允价值。(3)确定规则应用的程序(推理机)。如租赁业务中,在租赁结束期末,将所有权转让给出租人的是资本性租赁,不管出租人在租赁期内是否使用完75%的资产使用寿命。这样第一条规则应该是判断租赁期内所有权是否转让。(4)每条规则的所有术语必须明晰定义。如租赁期不仅包括租赁初期,还包括其他各自租赁期间,在租赁期间,假设租赁延长是合理的、肯定的。(5)在一个规则应用前,首先按事实匹配,选择何种测试。如要知道租赁期间,必须知道租赁是否有何契约更新选项;计算最小租赁费用的现值时,必须知道是否确保残值,而且承租人是否了解出租人采用的贴现率。(6)用何种计算法,确定一个规则启用,例如,在应用第四个规则时必须计算现值。

四、智能财务和会计系统存在的问题和发展趋势

在开发面向财务管理和会计领域的专家系统时,最主要的问题是没有相应的专家和知识工程师以及规则的提取,在人工智能领域,这个问题称为知识获取。影响专家系统知识库质量的五个主要决定因素是:领域专家;知识工程师;知识表征方法;知识的提取;问题域。由于专家系统在判断问题时,表现出知识的不完备性、知识获取的“瓶颈”以及较差学习能力、推理能力的“脆弱性”等问题。为了克服财务管理和会计专家系统存在的问题和提高系统的智能化程度,随着专家系统研究工作的进一步深入,一方面,人们研究如何通过合理使用专家系统技术本身改善其性能。另一方面,由于专家系统中的知识类型不断增加,单一的知识类型和问题求解方法给专家系统的应用带来很大的局限性,远远不能满足复杂问题的求解要求。为使系统更加有效地工作,同时采用多个问题求解器处理一个复杂问题成为必要。

参考文献

[1]陈文伟.智能决策技术[M].北京:电子工业出版社,1998.

[2]陈佳.信息系统开发方法教程[M].北京:清华大学出版社,1998.

[3]Joyce Bischoff.数据仓库技术[M].北京:电子工业出版社,1998.34-38.

[4]高洪深.决策支持系统(DSS)——理论、方法、案例[M].北京:清华大学出版社,1996.

第8篇

人工智能是具有类人智能甚至超越人类智能的机器,是对人类智能活动的替代、解放和强化。这种智能可以是计算,也可能是思维、意识、情感等。目前,人工智能已经应用在无人驾驶、人脸识别、定理证明、智能控制、博弈、语言识别等众多领域。

比如,美国政府2016年10月份就制定了一个野心勃勃的目标:在30年内把美国的交通事故死亡人数降为零。2015年美国的交通事故死亡人数增长7.2%,死亡人数为35092人。美国国家高速公路交通安全管理局(简称“NHTSA”)表示,人为因素在交通事故中占比达94%,无人驾驶可以完全消除这项因素。

众多学者和企业更是将其视为重新激活世界经济的主要引擎之一。不过,在这之前还有很多技术、法律乃至伦理问题需要解决。

无人驾驶瓶颈

美国当地时间9月23日,谷歌无人车在山景市与一辆商务货车撞在一起,这可能是谷歌汽车遭遇的最严重车祸。谷歌汽车的右侧车门被撞出大面积的凹陷,车窗遭到一定程度的损坏。车祸没有造成人员伤亡,气囊已经弹开。这起事故是货车司机的失误造成。2016年2月14日,谷歌无人驾驶汽车与一辆公交巴士发生轻微碰擦的事故,这是谷歌首次表示无人驾驶汽车应当“承担部分责任”,地点同样位于加州山景市。

特斯拉公司生产的S型电动轿车则已出现数例自动驾驶模式下的交通死亡事故。2016年1月,河北省邯郸市就曾发生特斯拉自动驾驶致人死亡事故,这应是全球首例。另有业内资深人士透露,特斯拉自动驾驶出现的事故其实多数未被报道。

这些事故都不断引发外界对自动驾驶技术是否足够成熟的质疑。

根据美国加州2012年通过的相关法案,允许无人驾驶汽车上路测试,但需要合法驾车人坐在驾驶座位上,在紧急情况时操纵汽车。特斯拉汽车的操作手册也提醒驾驶者,即便在自动驾驶中,也需要把手一直放在方向盘上。但现实中,驾驶员往往喜欢冒险和刺激。

至于技术成熟后的大规模商用,NHTSA表示,没有方向盘和油门的无人驾驶汽车在美国市场销售之前,相关法规必须做大的调整。

在中国,无人驾驶汽车同样面临法律障碍,问题主要集中在牌照和事故责任认定两方面。

无人驾驶汽车一旦在测试或商用时发生事故,就面临责任划分、理赔等问题。无人驾驶系统、司机、对方的责任如何划定?由于无人驾驶汽车是由多家企业集合研制,这些企业的责任又将如何划分?如果无人驾驶和有人驾驶可以切换,责任又将如何划定?

“应当尽快对事故后保险公司的理赔、无人驾驶技术平台与保险公司对于硬件、软件供应商的责任追偿开展立法工作。只有健全理赔体系时,才能够消除无人驾驶技术的测试与研发过程中各方的后顾之忧,切实推动技术的进步与发展。”中国政法大学传播法研究中心副主任朱巍向《凤凰周刊》表示。

中国科学院大学公管学院副教授刘朝表示,由于无人驾驶汽车仍在测试阶段,技术路线等都不确定,国家层面法律的修订和出台应慎重,自下而上的政策法规尝试和探索不失为一条稳妥而高效的路径。另外,在此过程别需要可靠的传播媒体和真正中立的社会组织发挥积极的作用。

人工智能引发失业潮?

2016年1月,IBM公司开发的Jill Watson分析系统开始帮助美国佐治亚理工大学的毕业生解决毕业论文中遇到的各种问题。Watson在回复电子邮件和论坛发帖时,语气随意,与正常人无异,而且会使用很多口语,能在几分钟之内准确地回应问题。

在五个月的试验中,没有学生发现他们的助教是机器人。

类似的人工智能技术已经被应用在法律服务、医疗助理、金融分析等多个领域,与此相应,部分岗位正在被这些智能机器所替代,从蓝领到律师,从医生到华尔街分析师。

人工智能技术最有价值的应用可能是金融业。在金融领域,每提升1%的收益就能获得巨大的财富。毕马威在近期一份报告中预测,到2030年银行及其服务可能“消失”,类似于苹果Siri的人工助手将接管客户的生活与金融服务。传统银行的多数部门或将消失,而专业的服务则将获得更大发展。

一些评论家预测,人工智能会使得某些工人的技能多余化,那些被自动化所取代的工人不得不寻求新的就业机会。即便这部分工人能够找到新工作,也常常是低附加值的,且工作稳定性更低。从这个角度讲,人工智能不仅可能增加社会不公,更会带来永久性的失业以及贫穷。

诺贝尔经济学奖得主斯蒂格利茨就认为,劳动市场正因为技术变化而发生重要转变,要保护劳动力,就必须对人工智能和自动化系统相关的监管和其他政策变化保持高度重视。

真格基金创始人徐小平近年投资了多个人工智能项目。在他看来,人工智能对人类的影响和冲击将是全方位的。

“有人说,在美国除了卡车司机和销售员,其他工作都在被替代。不幸的是,卡车司机也在被替代。高中学历的美国卡车司机年薪7万美金。所以,特朗普崛起了,支持他的多数是没上过大学的白人,他们在全球化和高科技面前成为失意者。”徐小平告诉《凤凰周刊》。

新近涉足人工智能的雅瑞资本联合创始人张瑞君相对乐观,她告诉本刊,目前投资的项目其实主要是代替人们所不愿从事的低端机械化工作,使人们腾出手来,去做更高端、更有创造性的工作,这是一个逐渐的过程。“而且人工智能产业本身也正在吸纳众多高回报的创业与从业者。”

三角兽科技联合创始人马宇驰就正忙于招聘多位工程师。2016年2月,他与曾效力百度度秘、微软小冰的王卓然、亓超合伙创业,目标是打造一套智能聊天对话系统。其产品主要针对物联W设备,让机器听懂人说话,并作出反馈。其公司目前已获得两轮共3000万元融资,产品已经应用在锤子T3手机、Rokid机器人等。

马宇驰向本刊介绍,根据行业预测,2020年全球物联网设备数量将达240亿部,智能终端设备将达到340亿部,产业和就业空间巨大。“如何快速提升劳动者的技能,这需要社会、政府、教育等的努力,而且人工智能也可以作为培训劳动者的工具。”徐小平说。

冲击人类生存与伦理

2016年3月,谷歌公司创造的人工智能程序阿尔法狗以4:1战胜世界围棋高手李世石,这引发了全球对人工智能的再度关注和广泛思考。有评论说,从现在起,如何管控人工智能,应该成为一个严肃课题。

人工智能的失控乃至危及人类并非遥不可及。美军无人机在阿富汗等中东地区已经多次误伤平民。

科技界的一些知名人士正呼吁禁止“杀手机器人”,他们警告称,越过这一界限将启动一场新的全球军备竞赛。尽管“机器人士兵”仍限于设想,但伴随人工智能快速发展,军队可能在未来20年内部署这类机器人。事实上,包括中国在内的各大国都在加紧研发水、陆、空无人作战平台。

根据摩尔定律,计算机的运算能力每两年就翻一倍,假以时日,尤其人工智能具备强大的自进化能力后,其威力可能超出人类想象。也许它将能让人类永生,同样可能的是地球上所有生命的终结。

物理学家史蒂芬・霍金是忧虑派。“人工智能的强力崛起,可能是人类历史上最好的事情,也可能是最糟糕的。”霍金在一次演讲中说,“将来,人工智能可能会发展出来它自己的意志,一个与人类相冲突的意志。”

当然,机器人也可能并不与人类冲突,而是发展出人类的意识与情感。这同样会遭遇棘手的法律和伦理问题。

阿姆斯特丹自由大学罗伯特・哈文教授就指出,应该研究是否需要明确机器人的法律主体地位,并思考从民法、公法、隐私法、知识产权法等维度构建机器人法律框架。就像从婴儿到成人,伴随机器人的进化,它将被不断赋予更多的人权与责任。

第9篇

【关键词】法理学/法律推理/人工智能

【正文】

一、人工智能法律系统的历史

计算机先驱思想家莱布尼兹曾这样不无浪漫地谈到推理与计算的关系:“我们要造成这样一个结果,使所有推理的错误都只成为计算的错误,这样,当争论发生的时候,两个哲学家同两个计算家一样,用不着辩论,只要把笔拿在手里,并且在算盘面前坐下,两个人面对面地说:让我们来计算一下吧!”(注:转引自肖尔兹著:《简明逻辑史》,张家龙译,商务印书馆1977年版,第54页。)

如果连抽象的哲学推理都能转变为计算问题来解决,法律推理的定量化也许还要相对简单一些。尽管理论上的可能性与技术可行性之间依然存在着巨大的鸿沟,但是,人工智能技术的发展速度确实令人惊叹。从诞生至今的短短45年内,人工智能从一般问题的研究向特殊领域不断深入。1956年纽厄尔和西蒙教授的“逻辑理论家”程序,证明了罗素《数学原理》第二章52个定理中的38个定理。塞缪尔的课题组利用对策论和启发式探索技术开发的具有自学习能力的跳棋程序,在1959年击败了其设计者,1962年击败了州跳棋冠军,1997年超级计算机“深蓝”使世界头号国际象棋大师卡斯帕罗夫俯首称臣。

20世纪60年代,人工智能研究的主要课题是博弈、难题求解和智能机器人;70年代开始研究自然语言理解和专家系统。1971年费根鲍姆教授等人研制出“化学家系统”之后,“计算机数学家”、“计算机医生”等系统相继诞生。在其他领域专家系统研究取得突出成就的鼓舞下,一些律师提出了研制“法律诊断”系统和律师系统的可能性。(注:SimonChalton,LegalDiagnostics,ComputersandLaw,No.25,August1980.pp.13-15.BryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.p.2.)

1970年Buchanan&Headrick发表了《关于人工智能和法律推理若干问题的考察》,一文,拉开了对法律推理进行人工智能研究的序幕。文章认为,理解、模拟法律论证或法律推理,需要在许多知识领域进行艰难的研究。首先要了解如何描述案件、规则和论证等几种知识类型,即如何描述法律知识,其中处理开放结构的法律概念是主要难题。其次,要了解如何运用各种知识进行推理,包括分别运用规则、判例和假设的推理,以及混合运用规则和判例的推理。再次,要了解审判实践中法律推理运用的实际过程,如审判程序的运行,规则的适用,事实的辩论等等。最后,如何将它们最终运用于编制能执行法律推理和辩论任务的计算机程序,区别和分析不同的案件,预测并规避对手的辩护策略,建立巧妙的假设等等。(注:Buchanan&Headrick,SomeSpeculationAboutArtificialIntelligenceandLegalReasoning,23StanfordLawReview(1970).pp.40-62.)法律推理的人工智能研究在这一时期主要沿着两条途径前进:一是基于规则模拟归纳推理,70年代初由WalterG.Popp和BernhardSchlink开发了JUDITH律师推理系统。二是模拟法律分析,寻求在模型与以前贮存的基础数据之间建立实际联系,并仅依这种关联的相似性而得出结论。JeffreyMeld-man1977年开发了计算机辅助法律分析系统,它以律师推理为模拟对象,试图识别与案件事实模型相似的其他案件。考虑到律师分析案件既用归纳推理又用演绎推理,程序对两者都给予了必要的关注,并且包括了各种水平的分析推理方法。

专家系统在法律中的第一次实际应用,是D.沃特曼和M.皮特森1981年开发的法律判决辅助系统(LDS)。研究者探索将其当作法律适用的实践工具,对美国民法制度的某个方面进行检测,运用严格责任、相对疏忽和损害赔偿等模型,计算出责任案件的赔偿价值,并论证了如何模拟法律专家意见的方法论问题。(注:''''ModelsofLegalDecisionmakingReport'''',R-2717-ICJ(1981).)

我国法律专家系统的研制于20世纪80年代中期起步。(注:钱学森教授:《论法治系统工程的任务与方法》(《科技管理研究》1981年第4期)、《社会主义和法治学与现代科学技术》(《法制建设》1984年第3期)、《现代科学技术与法和法制建设》(《政法论坛》)1985年第3期)等文章,为我国法律专家系统的研发起了思想解放和理论奠基作用。)1986年由朱华荣、肖开权主持的《量刑综合平衡与电脑辅助量刑专家系统研究》被确定为国家社科“七五”研究课题,它在建立盗窃罪量刑数学模型方面取得了成果。在法律数据库开发方面,1993年中山大学学生胡钊、周宗毅、汪宏杰等人合作研制了《LOA律师办公自动化系统》。(注:杨建广、骆梅芬编著:《法治系统工程》,中山大学出版社1996年版,第344-349页。)1993年武汉大学法学院赵廷光教授主持开发了《实用刑法专家系统》。(注:赵廷光等著:《实用刑法专家系统用户手册》,北京新概念软件研究所1993年版。)它由咨询检索系统、辅助定性系统和辅助量刑系统组成,具有检索刑法知识和对刑事个案进行推理判断的功能。

专家系统与以往的“通用难题求解”相比具有以下特点:(1)它要解决复杂的实际问题,而不是规则简单的游戏或数学定理证明问题;(2)它面向更加专门的应用领域,而不是单纯的原理性探索;(3)它主要根据具体的问题域,选择合理的方法来表达和运用特殊的知识,而不强调与问题的特殊性无关的普适性推理和搜索策略。

法律专家系统在法规和判例的辅助检索方面确实发挥了重要作用,解放了律师一部分脑力劳动。但绝大多数专家系统目前只能做法律数据的检索工作,缺乏应有的推理功能。20世纪90年代以后,人工智能法律系统进入了以知识工程为主要技术手段的开发时期。知识工程是指以知识为处理对象,以能在计算机上表达和运用知识的技术为主要手段,研究知识型系统的设计、构造和维护的一门更加高级的人工智能技术。(注:《中国大百科全书·自动控制与系统工程》,中国大百科全书出版社1991年版,第579页。)知识工程概念的提出,改变了以往人们认为几个推理定律再加上强大的计算机就会产生专家功能的信念。以知识工程为技术手段的法律系统研制,如果能在法律知识的获得、表达和应用等方面获得突破,将会使人工智能法律系统的研制产生一个质的飞跃。

人工智能法律系统的发展源于两种动力。其一是法律实践自身的要求。随着社会生活和法律关系的复杂化,法律实践需要新的思维工具,否则,法律家(律师、检察官和法官)将无法承受法律文献日积月累和法律案件不断增多的重负。其二是人工智能发展的需要。人工智能以模拟人的全部思维活动为目标,但又必须以具体思维活动一城一池的攻克为过程。它需要通过对不同思维领域的征服,来证明知识的每个领域都可以精确描述并制造出类似人类智能的机器。此外,人工智能选择法律领域寻求突破,还有下述原因:(1)尽管法律推理十分复杂,但它有相对稳定的对象(案件)、相对明确的前提(法律规则、法律事实)及严格的程序规则,且须得出确定的判决结论。这为人工智能模拟提供了极为有利的条件。(2)法律推理特别是抗辩制审判中的司法推理,以明确的规则、理性的标准、充分的辩论,为观察思维活动的轨迹提供了可以记录和回放的样本。(3)法律知识长期的积累、完备的档案,为模拟法律知识的获得、表达和应用提供了丰富、准确的资料。(4)法律活动所特有的自我意识、自我批评精神,对法律程序和假设进行检验的传统,为模拟法律推理提供了良好的反思条件。

二、人工智能法律系统的价值

人工智能法律系统的研制对法学理论和法律实践的价值和意义,可以概括为以下几点:

一是方法论启示。P.Wahlgren说:“人工智能方法的研究可以支持和深化在创造性方法上的法理学反思。这个信仰反映了法理学可以被视为旨在于开发法律分析和法律推理之方法的活动。从法理学的观点看,这种研究的最终目标是揭示方法论的潜在作用,从而有助于开展从法理学观点所提出的解决方法的讨论,而不仅仅是探讨与计算机科学和人工智能有关的非常细致的技术方面。”(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)在模拟法律推理的过程中,法学家通过与工人智能专家的密切合作,可以从其对法律推理的独特理解中获得有关方法论方面的启示。例如,由于很少有两个案件完全相似,在判例法实践中,总有某些不相似的方面需要法律家运用假设来分析已有判例与现实案件的相关性程度。但法学家们在假设的性质问题上常常莫衷一是。然而HYPO的设计者,在无真实判例或真实判例不能充分解释现实案件的情况下,以假设的反例来反驳对方的观点,用补充、删减和改变事实的机械论方法来生成假设。这种用人工智能方法来处理假设的办法,就使复杂问题变得十分简单:假设实际上是一个新的论证产生于一个经过修正的老的论证的过程。总之,人工智能方法可以帮助法学家跳出法理学方法的思维定势,用其他学科的方法来重新审视法学问题,从而为法律问题的解决提供了新的途径。

二是提供了思想实验手段。西蒙认为,尽管我们还不知道思维在头脑中是怎样由生理作用完成的,“但我们知道这些处理在数字电子计算机中是由电子作用完成的。给计算机编程序使之思维,已经证明有可能为思维提供机械论解释”。(注:转引自童天湘:《人工智能与第N代计算机》,载《哲学研究》1985年第5期。)童天湘先生认为:“通过编制有关思维活动的程序,就会加深对思维活动具体细节的了解,并将这种程序送进计算机运行,检验其正确性。这是一种思想实验,有助于我们研究人脑思维的机理。”(注:转引自童天湘:《人工智能与第N代计算机》,载《哲学研究》1985年第5期。)人工智能法律系统研究的直接目标是使计算机能够获取、表达和应用法律知识,软件工程师为模拟法律推理而编制程序,必须先对人的推理过程作出基于人工智能理论和方法的独特解释。人工智能以功能模拟开路,在未搞清法律家的推理结构之前,首先从功能上对法律证成、法律检索、法律解释、法律适用等法律推理的要素和活动进行数理分析,将法理学、诉讼法学关于法律推理的研究成果模型化,以实现法律推理知识的机器表达或再现,从而为认识法律推理的过程和规律提供了一种实验手段。法学家则可以将人工智能法律系统的推理过程、方法和结论与人类法律推理活动相对照,为法律推理的法理学研究所借鉴。因此,用人工智能方法模拟法律推理,深化了人们对法律推理性质、要素和过程的认识,使法学家得以借助人工智能科学的敏锐透镜去考察法律推理的微观机制。正是在这个意义上,BryanNiblett教授说:“一个成功的专家系统很可能比其他的途径对法理学作出更多的(理论)贡献。”(注:BryanNiblett,ExpertSystemsforLawyers,ComputersandLaw,No.29,August1981.note14,p.3.)

三是辅助司法审判。按照格雷的观点,法律专家系统首先在英美判例法国家出现的直接原因在于,浩如烟海的判例案卷如果没有计算机编纂、分类、查询,这种法律制度简直就无法运转了。(注:PamelaN.GrayBrookfield,ArtificialLegalIntelligence,VT:DartmouthPublishingCo.,1997.p.402.)其实不仅是判例法,制定法制度下的律师和法官往往也要为检索有关的法律、法规和司法解释耗费大量的精力和时间,而且由于人脑的知识和记忆能力有限,还存在着检索不全面、记忆不准确的问题。人工智能法律系统强大的记忆和检索功能,可以弥补人类智能的某些局限性,帮助律师和法官从事相对简单的法律检索工作,从而极大地解放律师和法官的脑力劳动,使其能够集中精力从事更加复杂的法律推理活动。

四是促进司法公正。司法推理虽有统一的法律标准,但法官是具有主观能动性的差异个体,所以在执行统一标准时会产生一些差异的结果。司法解释所具有的建构性、辩证性和创造性的特点,进一步加剧了这种差异。如果换了钢铁之躯的机器,这种由主观原因所造成的差异性就有可能加以避免。这当然不是说让计算机完全取代法官,而是说,由于人工智能法律系统为司法审判提供了相对统一的推理标准和评价标准,从而可以辅助法官取得具有一贯性的判决。无论如何,我们必须承认,钢铁之躯的机器没有物质欲望和感情生活,可以比人更少地受到外界因素的干扰。正像计算机录取增强了高考招生的公正性、电子监视器提高了纠正行车违章的公正性一样,智能法律系统在庭审中的运用有可能减少某些现象。

五是辅助法律教育和培训。人工智能法律系统凝聚了法律家的专门知识和法官群体的审判经验,如果通过软件系统或计算机网络实现专家经验和知识的共享,便可在法律教育和培训中发挥多方面的作用。例如,(1)在法学院教学中发挥模拟法庭的作用,可以帮助法律专业学生巩固自己所学知识,并将法律知识应用于模拟的审判实践,从而较快地提高解决法律实践问题的能力。(2)帮助新律师和新法官全面掌握法律知识,迅速获得判案经验,在审判过程的跟踪检测和判决结论的动态校正中增长知识和才干,较快地接近或达到专家水平。(3)可使不同地区、不同层次的律师和法官及时获得有关法律问题的咨询建议,弥补因知识结构差异和判案经验多寡而可能出现的失误。(4)可以为大众提供及时的法律咨询,提高广大人民群众的法律素质,增强法律意识。

六是辅助立法活动。人工智能法律系统不仅对辅助司法审判有重要的意义,而且对完善立法也具有实用价值。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)例如,伦敦大学Imperial学院的逻辑程序组将1981年英国国籍法的内容形式化,帮助立法者发现了该法在预见性上存在的一些缺陷和法律漏洞。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)立法辅助系统如能应用于法律起草和法律草案的审议过程,有可能事先发现一些立法漏洞,避免一个法律内部各种规则之间以及新法律与现有法律制度之间的相互冲突。

三、法理学在人工智能法律系统研究中的作用

1.人工智能法律系统的法理学思想来源

关于人工智能法律系统之法理学思想来源的追踪,不是对法理学与人工智能的联系作面面俱到的考察,而旨在揭示法理学对人工智能法律系统的发展所产生的一些直接影响。

第一,法律形式主义为人工智能法律系统的产生奠定了理论基础。18-19世纪的法律形式主义强调法律推理的形式方面,认为将法律化成简单的几何公式是完全可能的。这种以J·奥斯汀为代表的英国分析法学的传统,主张“法律推理应该依据客观事实、明确的规则以及逻辑去解决一切为法律所要求的具体行为。假如法律能如此运作,那么无论谁作裁决,法律推理都会导向同样的裁决。”(注:(美)史蒂文·J·伯顿著:《法律和法律推理导论》,张志铭、解兴权译,中国政法大学出版社1998年9月版,第3页。)换言之,机器只要遵守法律推理的逻辑,也可以得出和法官一样的判决结果。在分析法学家看来,“所谓‘法治’就是要求结论必须是大前提与小前提逻辑必然结果。”(注:朱景文主编:《对西方法律传统的挑战》,中国检察出版社1996年2月版,第292页。)如果法官违反三段论推理的逻辑,就会破坏法治。这种机械论的法律推理观,反映了分析法学要求法官不以个人价值观干扰法律推理活动的主张。但是,它同时具有忽视法官主观能动性和法律推理灵活性的僵化的缺陷。所以,自由法学家比埃利希将法律形式主义的逻辑推理说称为“自动售货机”理论。然而,从人工智能就是为思维提供机械论解释的意义上说,法律形式主义对法律推理所作的机械论解释,恰恰为人工智能法律系统的开发提供了可能的前提。从人工智能法律系统研制的实际过程来看,在其起步阶段,人工智能专家正是根据法律形式主义所提供的理论前提,首先选择三段论演绎推理进行模拟,由WalterG.Popp和BernhardSchlink在20世纪70年代初开发了JUDITH律师推理系统。在这个系统中,作为推理大小前提的法律和事实之间的逻辑关系,被计算机以“如果A和B,那么C”的方式加以描述,使机器法律推理第一次从理论变为现实。

第二,法律现实主义推动智能模拟深入到主体的思维结构领域。法律形式主义忽视了推理主体的社会性。法官是生活在现实社会中的人,其所从事的法律活动不可能不受到其社会体验和思维结构的影响。法官在实际的审判实践中,并不是机械地遵循规则,特别是在遇到复杂案件时,往往需要作出某种价值选择。而一旦面对价值问题,法律形式主义的逻辑决定论便立刻陷入困境,显出其僵化性的致命弱点。法律现实主义对其僵化性进行了深刻的批判。霍姆斯法官明确提出“法律的生命并不在于逻辑而在于经验”(注:(美)博登海默著:《法理学——法哲学及其方法》,邓正来、姬敬武译,华夏出版社1987年12月版,第478页。)的格言。这里所谓逻辑,就是指法律形式主义的三段论演绎逻辑;所谓经验,则包括一定的道德和政治理论、公共政策及直觉知识,甚至法官的偏见。法律现实主义对法官主观能动性和法律推理灵活性的强调,促使人工智能研究从模拟法律推理的外在逻辑形式进一步转向探求法官的内在思维结构。人们开始考虑,如果思维结构对法官的推理活动具有定向作用,那么,人工智能法律系统若要达到法官水平,就应该通过建立思维结构模型来设计机器的运行结构。TAXMAN的设计就借鉴了这一思想,法律知识被计算机结构语言以语义网络的方式组成不同的规则系统,解释程序、协调程序、说明程序分别对网络结构中的输入和输出信息进行动态结构调整,从而适应了知识整合的需要。大规模知识系统的KBS(KnowledgeBasedSystem)开发也注意了思维结构的整合作用,许多具有内在联系的小规模KBS子系统,在分别模拟法律推理要素功能(证成、法律查询、法律解释、法律适用、法律评价、理由阐述)的基础上,又通过联想程序被有机联系起来,构成了具有法律推理整体功能的概念模型。(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)

第三,“开放结构”的法律概念打开了疑难案件法律推理模拟的思路。法律形式主义忽视了疑难案件的存在。疑难案件的特征表现为法律规则和案件之间不存在单一的逻辑对应关系。有时候从一个法律规则可以推出几种不同的结论,它们往往没有明显的对错之分;有时一个案件面对着几个相似的法律规则。在这些情况下,形式主义推理说都一筹莫展。但是,法律现实主义在批判法律形式主义时又走向另一个极端,它否认具有普遍性的一般法律规则的存在,试图用“行动中的法律”完全代替分析法学“本本中的法律”。这种矫枉过正的做法虽然是使法律推理摆脱机械论束缚所走出的必要一步,然而,法律如果真像现实主义法学所说的那样仅仅存在于具体判决之中,法律推理如果可以不遵循任何标准或因人而异,那么,受到挑战的就不仅是法律形式主义,而且还会殃及法治要求实现规则统治之根本原则,并动摇人工智能法律系统存在的基础。哈特在法律形式主义和法律现实主义的争论中采取了一种折中立场,他既承认逻辑的局限性又强调其重要性;既拒斥法官完全按自己的预感来随意判案的见解,又承认直觉的存在。这种折中立场在哈特“开放结构”的法律概念中得到了充分体现。法律概念既有“意义核心”又有“开放结构”,逻辑推理可以帮助法官发现问题的阳面,而根据社会政策、价值和后果对规则进行解释则有助于发现问题的阴面。开放结构的法律概念,使基于规则的法律推理模拟在受到概念封闭性的限制而对疑难案件无能为力时,找到了新的立足点。在此基础上,运用开放结构概念的疑难案件法律推理模型,通过逻辑程序工具和联想技术而建立起来。Gardner博士就疑难案件提出两种解决策略:一是将简易问题从疑难问题中筛选出来,运用基于规则的技术来解决;二是将疑难问题同“开放结构”的法律概念联系在一起,先用非范例知识如规则、控辩双方的陈述、常识来获得初步答案,再运用范例来澄清案件、检查答案的正确性。

第四,目的法学促进了价值推理的人工智能研究。目的法学是指一种所谓直接实现目的之“后法治”理想。美国法学家诺内特和塞尔兹尼克把法律分为三种类型。他们认为,以法治为标志的自治型法,过分强调手段或程序的正当性,有把手段当作目的的倾向。这说明法治社会并没有反映人类关于美好社会的最高理想,因为实质正义不是经过人们直接追求而实现的,而是通过追求形式正义而间接获得的。因此他们提出以回应型法取代自治型法的主张。在回应型法中,“目的为评判既定的做法设立了标准,从而也就开辟了变化的途径。同时,如果认真地对待目的,它们就能控制行政自由裁量权,从而减轻制度屈从的危险。反之,缺少目的既是僵硬的根源,又是机会主义的根源。”(注:(美)诺内特、塞尔兹尼克著:《转变中的法律与社会》,张志铭译,中国政法大学出版社1994年版,第60页。)美国批判法学家昂格尔对形式主义法律推理和目的型法律推理的特点进行了比较,他认为,前者要求使用内容明确、固定的规则,无视社会现实生活中不同价值观念的冲突,不能适应复杂情况和变化,追求形式正义;后者则要求放松对法律推理标准的严格限制,允许使用无固定内容的抽象标准,迫使人们在不同的价值观念之间做出选择,追求实质正义。与此相应,佩雷尔曼提出了新修辞学(NewRhetoric)的法律理论。他认为,形式逻辑只是根据演绎法或归纳法对问题加以说明或论证的技术,属于手段的逻辑;新修辞学要填补形式逻辑的不足,是关于目的的辩证逻辑,可以帮助法官论证其决定和选择,因而是进行价值判断的逻辑。他认为,在司法三段论思想支配下,法学的任务是将全部法律系统化并作为阐释法律的大前提,“明确性、一致性和完备性”就成为对法律的三个要求。而新修辞学的基本思想是价值判断的多元论,法官必须在某种价值判断的指示下履行义务,必须考虑哪些价值是“合理的、可接受的、社会上有效的公平的”。这些价值构成了判决的正当理由。(注:沈宗灵著:《现代西方法理学》,北京大学出版社1992年版,第443-446页。)制造人工智能法律系统最终需要解决价值推理的模拟问题,否则,就难以实现为判决提供正当理由的要求。为此,P.Wahlgren提出的与人工智能相关的5种知识表达途径中,明确地包括了以道义为基础的法律推理模型。(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)引入道义逻辑,或者说在机器中采用基于某种道义逻辑的推理程序,强调目的价值,也许是制造智能法律系统的关键。不过,即使把道义逻辑硬塞给计算机,钢铁之躯的机器没有生理需要,也很难产生价值观念和主观体验,没办法解决主观选择的问题。在这个问题上,波斯纳曾以法律家有七情六欲为由对法律家对法律的机械忠诚表示了强烈怀疑,并辩证地将其视为法律发展的动力之一。只有人才能够平衡相互冲突的利益,能够发现对人类生存和发展至关重要的价值。因此,关于价值推理的人工智能模拟究竟能取得什么成果,恐怕还是个未知数。

2.法理学对人工智能法律系统研制的理论指导作用

GoldandSusskind指出:“不争的事实是,所有的专家系统必须适应一些法理学理论,因为一切法律专家系统都需要提出关于法律和法律推理性质的假设。从更严格的意义上说,一切专家系统都必须体现一种结构理论和法律的个性,一种法律规范理论,一种描述法律科学的理论,一种法律推理理论”。(注:GoldandSusskind,ExpertSystemsinLaw:AJurisprudentialandFormalSpecificationApproach,pp.307-309.)人工智能法律系统的研究,不仅需要以法理学关于法律的一般理论为知识基础,还需要从法理学获得关于法律推理的完整理论,如法律推理实践和理论的发展历史,法律推理的标准、主体、过程、方法等等。人工智能对法律推理的模拟,主要是对法理学关于法律推理的知识进行人工智能方法的描述,建立数学模型并编制计算机应用程序,从而在智能机器上再现人类法律推理功能的过程。在这个过程中,人工智能专家的主要任务是研究如何吸收法理学关于法律推理的研究成果,包括法理学关于人工智能法律系统的研究成果。

随着人工智能法律系统研究从低级向高级目标的推进,人们越来越意识到,对法律推理的微观机制认识不足已成为人工智能模拟的严重障碍。P.Wahlgren指出,“许多人工智能技术在法律领域的开发项目之所以失败,就是因为许多潜在的法理学原则没有在系统开发的开始阶段被遵守或给予有效的注意。”“法理学对法律推理和方法论问题的关注已经有几百年,而人工智能的诞生只是本世纪50年代中期的事情,这个事实是人工智能通过考察法理学知识来丰富自己的一个有效动机。”(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)因此,研究法律推理自动化的目标,“一方面是用人工智能(通过把计算机的应用与分析模型相结合)来支撑法律推理的可能性;另一方面是应用法理学理论来解决作为法律推理支撑系统的以及一般的人工智能问题。”(注:P.Wahlgren,AutomationofLegalReasoning:AStudyonArtificialIntelligenceandLaw,ComputerLawSeries11.KluwerLawandTaxationPublishers.DeventerBoston1992.Chapter7.)在前一方面,是人工智能法律系统充当法律推理研究的思想实验手段以及辅助司法审判的问题。后一方面,则是法律推理的法律学研究成果直接为人工智能法律系统的研制所应用的问题。例如,20世纪70年代法理学在真实和假设案例的推理和分析方面所取得的成果,已为几种人工智能法律装置借鉴而成为其设计工作的理论基础。在运用模糊或开放结构概念的法律推理研究方面,以及在法庭辩论和法律解释的形式化等问题上,法理学的研究成果也已为人工智能法律系统的研究所借鉴。

四、人工智能法律系统研究的难点

人工智能法律系统的研究尽管在很短的时间内取得了许多令人振奋的成果,但它的发展也面临着许多困难。这些困难构成了研究工作需要进一步努力奋斗的目标。

第一,关于法律解释的模拟。在法理学的诸多研究成果中,法律解释的研究对人工智能法律系统的研制起着关键作用。法律知识表达的核心问题是法律解释。法律规范在一个法律论点上的效力,是由法律家按忠实原意和适合当时案件的原则通过法律解释予以确认的,其中包含着人类特有的价值和目的考虑,反映了法律家的知识表达具有主观能动性。所以,德沃金将解释过程看作是一种结合了法律知识、时代信息和思维方法而形成的,能够应变的思维策略。(注:Dworkin,TakingRightsSeriously,HarvardUniversityPressCambridge,Massachusetts1977.p.75.)目前的法律专家系统并未以知识表达为目的来解释法律,而是将法律整齐地“码放”在计算机记忆系统中仅供一般检索之用。然而,在法律知识工程系统中,法律知识必须被解释,以满足自动推理对法律知识进行重新建构的需要。麦卡锡说:“在开发智能信息系统的过程中,最关键的任务既不是文件的重建也不是专家意见的重建,而是建立有关法律领域的概念模型。”(注:McCarty,Intelligentlegalinformationsystems:problemsandprospects,op.cit.supra,note25,p.126.)建立法律概念模型必须以法律家对某一法律概念的共识为基础,但不同的法律家对同一法律概念往往有不同的解释策略。凯尔森甚至说:即使在国内法领域也难以形成一个“能够用来叙述一定法律共同体的实在法的基本概念”。(注:(奥)凯尔森著:《法与国家的一般理论》,沈宗灵译,中国大百科全书出版社1996年版,第1页。)尽管如此,法理学还是为法律概念模型的重建提供了一些方法。例如,德沃金认为,法官在“解释”阶段,要通过推理论证,为自己在“前解释”阶段所确定的大多数法官对模糊法律规范的“一致看法”提供“一些总的理由”。获取这些总的理由的过程分为两个步骤:首先,从现存的明确法律制度中抽象出一般的法律原则,用自我建立的一般法律理论来证明这种法律原则是其中的一部分,证明现存的明确法律制度是正当的。其次,再以法律原则为依据反向推出具体的法律结论,即用一般法律理论来证明某一法律原则存在的合理性,再用该法律原则来解释某一法律概念。TAXMAN等系统装置已吸收了这种方法,法律知识被计算机结构语言以语义网络的方式组成不同的规则系统,解释程序使计算机根据案件事实来执行某条法律规则,并在新案件事实输入时对法律规则作出新的解释后才加以调用。不过,法律知识表达的进展还依赖于法律解释研究取得更多的突破。

第二,关于启发式程序。目前的法律专家系统如果不能与启发式程序接口,不能运用判断性知识进行推理,只通过规则反馈来提供简单解释,就谈不上真正的智能性。启发式程序要解决智能机器如何模拟法律家推理的直觉性、经验性以及推理结果的不确定性等问题,即人可以有效地处理错误的或不完全的数据,在必要时作出猜测和假设,从而使问题的解决具有灵活性。在这方面,Gardner的混合推理模型,EdwinaL.Rissland运用联想程序对规则和判例推理的结果作集合处理的思路,以及Massachusetts大学研制的CABARET(基于判例的推理工具),在将启发式程序应用于系统开发方面都进行了有益的尝试。但是,法律问题往往没有唯一正确的答案,这是人工智能模拟法律推理的一个难题。选择哪一个答案,往往取决于法律推理的目的标准和推理主体的立场和价值观念。但智能机器没有自己的目的、利益和立场。这似乎从某种程度上划定了机器法律推理所能解决问题的范围。

第三,关于法律自然语言理解。在设计基于规则的程序时,设计者必须假定整套规则没有意义不明和冲突,程序必须消灭这些问题而使规则呈现出更多的一致性。就是说,尽管人们对法律概念的含义可以争论不休,但输入机器的法律语言却不能互相矛盾。机器语言具有很大的局限性,例如,LDS基于规则来模拟严格责任并计算实际损害时,表现出的最大弱点就是不能使用不精确的自然语言进行推理。然而,在实际的法律推理过程中,法律家对某个问题的任何一种回答都可根据上下文关系作多种解释,而且辩论双方总是寻求得出不同的结论。因此,智能法律专家系统的成功在很大程度上还依赖于自然语言理解研究工作的突破。牛津大学的一个程序组正在研究法律自然语言的理解问题,但是遇到了重重困难。原因是连法学家们自己目前也还没有建立起一套大家一致同意的专业术语规范。所以EdwinaL.Rissland认为,常识知识、意图和信仰类知识的模拟化,以及自然语言理解的模拟问题,迄今为止可能是人工智能面临的最困难的任务。对于语言模拟来说,像交际短语和短语概括的有限能力可能会在较窄的语境条件下取得成果,完全的功能模拟、一般“解决问题”能力的模拟则距离非常遥远,而像书面上诉意见的理解则是永远的终极幻想。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)

五、人工智能法律系统的开发策略和应用前景

我们能够制造出一台什么样的机器,可以证明它是人工智能法律系统?从检验标准上看,这主要是法律知识在机器中再现的判定问题。根据“图灵试验”原理,我们可将该检验标准概括如下:设两间隔开的屋子,一间坐着一位法律家,另一间“坐着”一台智能机器。一个人(也是法律家)向法律家和机器提出同样的法律问题,如果提问者不能从二者的回答中区分出谁是法律家、谁是机器,就不能怀疑机器具有法律知识表达的能力。

依“图灵试验”制定的智能法律系统检验标准,所看重的是功能。只要机器和法律家解决同样法律问题时所表现出来的功能相同,就不再苛求哪个是钢铁结构、哪个是血肉之躯。人工智能立足的基础,就是相同的功能可以通过不同的结构来实现之功能模拟理论。

从功能模拟的观点来确定人工智能法律系统的研究与开发策略,可作以下考虑:

第一,扩大人工智能法律系统的研发主体。现有人工法律系统的幼稚,暴露了仅仅依靠计算机和知识工程专家从事系统研发工作的局限性。因此,应该确立以法律家、逻辑学家和计算机专家三结合的研发群体。在系统研发初期,可组成由法学家、逻辑与认知专家、计算机和知识工程专家为主体的课题组,制定系统研发的整体战略和分阶段实施的研发规划。在系统研发中期,应通过网络等手段充分吸收初级产品用户(律师、检察官、法官)的意见,使研发工作在理论研究与实际应用之间形成反馈,将开发精英与广大用户的智慧结合起来,互相启发、群策群力,推动系统迅速升级。

第二,确定研究与应用相结合、以应用为主导的研发策略。目前国外人工智能法律系统的研究大多停留在实验室领域,还没有在司法实践中加以应用。但是,任何智能系统包括相对简单的软件系统,如果不经过用户的长期使用和反馈,是永远也不可能走向成熟的。从我国的实际情况看,如果不能将初期研究成果尽快地转化为产品,我们也难以为后续研究工作提供雄厚的资金支持。因此,人工智能法律系统的研究必须走产研结合的道路,坚持以应用开路,使智能法律系统尽快走出实验室,同时以研究为先导,促进不断更新升级。

第三,系统研发目标与初级产品功能定位。人工智能法律系统的研发目标是制造出能够满足多用户(律师、检察官、法官、立法者、法学家)多种需要的机型。初级产品的定位应考虑到,人的推理功能特别是价值推理的功能远远超过机器,但人的记忆功能、检索速度和准确性又远不如机器。同时还应该考虑到,我国目前有12万律师,23万检察官和21万法官,每年1.2万法学院本科毕业生,他们对法律知识的获取、表达和应用能力参差不齐。因此,初级产品的标准可适当降低,先研制推理功能薄弱、检索功能强大的法律专家系统。可与计算机厂商合作生产具有强大数据库功能的硬件,并确保最新法律、法规、司法解释和判例的网上及时更新;同时编制以案件为引导的高速检索软件。系统开发的先期目标应确定为:(1)替律师起草仅供参考的书和辩护词;(2)替法官起草仅供参考的判决书;(3)为法学院学生提供模拟法庭审判的通用系统软件,以辅助学生在、辩护和审判等诉讼的不同阶段巩固所学知识、获得审判经验。上述软件旨在提供一个初级平台,先解决有无和急需,再不断收集用户反馈意见,逐步改进完善。

第四,实验室研发应确定较高的起点或跟踪战略。国外以知识工程为主要技术手段的人工智能法律系统开发已经历了如下发展阶段:(1)主要适用于简单案件的规则推理;(2)运用开放结构概念的推理;(3)运用判例和假设的推理;(4)运用规则和判例的混合推理。我们如确定以简单案件的规则推理为初级市场产品,那么,实验室中第二代产品开发就应瞄准运用开放结构概念的推理。同时,跟踪运用假设的推理及混合推理,吸收国外先进的KBS和HYPO的设计思想,将功能子系统开发与联想式控制系统结合。HYPO判例法推理智能装置具有如下功能:(1)评价相关判例;(2)判定何方使用判例更加贴切;(3)分析并区分判例;(4)建立假设并用假设来推理;(5)为一种主张引用各种类型的反例;(6)建立判例的引证概要。HYPO以商业秘密法的判例推理为模拟对象,假设了完全自动化的法律推理过程中全部要素被建立起来的途径。值得注意的是,HYPO忽略了许多要素的存在,如商业秘密法背后的政策考虑,法律概念应用于实际情况时固有的模糊性,信息是否已被公开,被告是否使用了对方设计的产品,是否签署了让与协议,等等。一个系统设计的要素列表无论多长,好律师也总能再多想出一些。同样,律师对案件的分析,不可能仅限于商业秘密法判例,还可能援引侵权法或专利法的判例,这决定了缘由的多种可能性。Ashley还讨论了判例法推理模拟的其他困难:判例并不是概念的肯定的或否定的样本,因此,要通过要素等简单的法律术语使模糊的法律规则得到澄清十分困难,法律原则和类推推理之间的关系还不能以令人满意的方式加以描述。(注:EdwinaL.Rissland,ArtificialIntelligenceandLaw:SteppingStonestoaModelofLegalReasoning,TheYaleLawJournal.(Vol.99:1957-1981).)这说明,即使具有较高起点的实验室基础研究,也不宜确定过高的目标。因为,智能法律系统的研究不能脱离人工智能的整体发展水平。

第五,人-机系统解决方案。人和机器在解决法律问题时各有所长。人的优点是能作价值推理,使法律问题的解决适应社会的变化发展,从而具有灵活性。机器的长处是记忆和检索功能强,可以使法律问题的解决具有一贯性。人-机系统解决方案立足于人与机器的功能互补,目的是解放人的脑力劳动,服务于国家的法治建设。该方案的实施可以分为两个阶段:第一阶段以人为主,机器为人收集信息并作初步分析,提供决策参考。律师受理案件后,可以先用机器处理大批数据,并参考机器的和辩护方案,再做更加高级的推理论证工作。法官接触一个新案件,或新法官刚接触审判工作,也可以先看看“机器法官”的判决建议或者审判思路,作为参考。法院的监督部门可参照机器法官的判决,对法官的审判活动进行某种监督,如二者的判决结果差别太大,可以审查一下法官的判决理由。这也许可以在一定程度上制约司法腐败。在人-机系统开发的第二阶段,会有越来越多的简单案件的判决与电脑推理结果完全相同,因此,某些简单案件可以机器为主进行审判,例如,美国小额法庭的一些案件,我国法庭可用简易程序来审理的一些案件。法官可以作为“产品检验员”监督和修订机器的判决结果。这样,法官的判案效率将大大提高,法官队伍也可借此“消肿”,有可能大幅度提高法官薪水,吸引高素质法律人才进入法官队伍。

未来的计算机不会完全取代律师和法官,然而,律师和法官与智能机器统一体的出现则可能具有无限光明的前景。(注:Smith,J.C,MachineIntelligenceandLegalReasoning,Chicago-KentLawReview,1998,Vol.73,No.1,p277.)可以预见,人工智能将为法律工作的自动化提供越来越强有力的外脑支持。电脑律师或法官将在网络所及的范围内承担起诸如收债、税务、小额犯罪诉讼等职能。自动法律推理系统将对诉讼活动发挥越来越多的辅助作用,例如,通过严密的演绎逻辑使用户确信全部法律结论得出的正当性;在解决相互冲突的规则、判例和政策问题时提示可能出现的判决预测;等等。正如网络的出现打破了少数人对信息的垄断一样,电脑法律顾问的问世,将打破法官、律师对法律知识的垄断,极大地推动法律知识的普及,迅速提高广大人民群众的法律素质,使法律真正变为群众手中的锐利武器。