时间:2023-09-01 16:49:10
导语:在高层建筑结构抗震设计论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:高层;混凝土;建筑;抗震;结构设计
中图分类号:TU37 文献标识码:A 文章编号:
近几十年来,钢筋混凝土结构有了更大的发展,混凝土强度和钢筋强度得到提高,钢筋混凝土结构的应用范围不断扩大,预应力混凝土结构也开始应用。钢筋混凝土高层建筑成为了当前建筑物的一个主体工程,如何保证建筑结构抗震设计是否过关尤为重要。设计阶段决定主体结构构件、非结构构件的尺寸与构造、连接,是结构抗震性能目标能否实现的一个重要阶段。论文就钢筋混凝土高层建筑结构抗震关键设计进行探讨,旨在促进了钢筋混凝土结构和预应力混凝土结构的飞速发展。
一、结构抗震设计的重要性
地震是一种随机振动,有难于把握的复杂性和不确定性,要准确预测建筑物所遭遇地震的特性和参数,目前尚难做到。在结构分析方面,由于未能充分考虑结构的空间作用、结构材料的非弹性性质、材料时效、阻尼变化等多种因素,同时也存在着不准确性。因此,工程抗震问题不能完全依赖“计算设计”解决,而必须立足于“概念设计”。概念设计是指设计人员从结构的宏观整体出发,用结构系统的观点,着眼于结构整体反应,正确地解决总体方案、材料使用、分析计算、截面设计和细部构造等问题,力求得到最为经济、合理的结构设计方案以达到合理抗震设计的目的。结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位。地震能量的聚散,如果仅集中在少数薄弱部位,必会导致结构过早破坏,目前各种抗震设计方法的前提之一就是假定整个结构能发挥耗散地震能量的作用,在此前提下才能以多遇地震作用进行结构计算、构件截面设计并辅以相应的构造措施,必要时采用弹性时程分析法进行补充计算,试图达到罕遇地震作用下结构不倒塌的目标。
二、高层混凝土建筑结构抗震设计策略
1、 从建筑的全局出发
高层混凝土建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破会,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
2、地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
3、高度的确定
按我国现行高层建筑混凝土结构技术规程(JGJ3- 2002)规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。这个高度是我国目前建筑科研水平、经济发展水平和施工技术水平下,较为稳妥的,也是与目前整个土建规范体系相协调的。可实际上,已有许多混凝土结构高层建筑的高度超过了这个限制。对于超高限建筑物,应当采取科学谨慎的态度:一要有专家论证,二要有模型振动台试验。在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化。因为随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。
4、材料的选用和结构体系
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的三种主要结构体系(框—筒、筒中筒和框架—支撑体系),都是其他国家高层建筑采用的主要体系。但国外,特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。在高层建筑中采用框架———核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内简往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。
在高层建筑中,应注意结构体系及材料的优选。现在我国钢材生产数量已较大,建筑钢材的类型及品种也在逐步增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。在超过一定高度后,由于钢结构质量较小而且较柔,为减小风振而需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。
另外,许多高层建筑底部几层柱虽然长细比小于4,但并不一定是短柱。因为确定是不是短柱的参数是柱的剪跨比,只有剪跨比≤2 的柱才是短柱。有专家学者提出现行抗震规范应采用较高轴压比。但是即使能调整轴压比限值,柱断面并不能由于略微增大轴压比限值而显著减小。因此在抗震的超高层建筑中采用钢筋混凝土是否合理值得商榷。
总之,钢筋混凝土框架结构是我国大量存在的建筑结构形式之一,钢筋混凝土框架结构的柱端与节点的破坏较为严重,其抗震设计中应该钢筋混凝土高层建筑结构抗震关键设计,另外,必须满足“强柱弱梁”“、强剪弱弯”“、强节点”“、强底层柱底”等延性设计原则和有关规定。
5、运用延性设计
结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。
总之,高层建筑结构的抗震设计方法和技术是不断变化和进步的,需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。
参考文献:
[1] 计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.
[2] 蒋新梅. 高层建筑结构的抗震设计[J]. 广东科技. 2009(08)
关键词:高层建筑;抗震性能;理念;具体方法
Abstract: the world's population increased continuously, make the per capita living space gradually reduce, and then make the emergence of the high-rise building become an inevitable result. In recent years, such as earthquake disaster for high-rise building with the great damage and loss makes people have to of high-rise building in the design and construction of the construction of the seismic performance increase of consideration. This article describes and analyzes the structure of the high-rise building aseismic design of many of the idea of the foundation, and further puts forward the specific methods of seismic design.
Keywords: high building; Seismic performance; Ideas; The specific method
中图分类号:[TU208.3]文献标识码:A 文章编号:
地震因为其高破坏力和高不确定性两个特征成为一种危害人类正常生活的重大自然灾害。同时也成为包括高层建筑在内的绝大部分建筑设计和施工项目都必需考虑的一个重要因素之一[1]。因为在人类的发展历史上,地震这一自然灾害给人们带来了巨大的经济财产和人身安全的损失,于是在很早以前抗震设计就成为了建筑结构设计里的一个重要考虑因素,而建筑结构的抗震设计理念和方法也随着历史的进步在不断的发展。虽然人类目前还无法准确预测地震灾害并确保建筑物在地震中免受损失和破坏,但是已经形成了一套比较完整的理论和方法体系,在一定程度上能做到“小震不坏,中震不修,大震不倒”,并尽大可能的做到了减少因地震建筑物倒塌而给人们生命和财产带来的的严重损失。
高层建筑结构抗震设计理念
一直以来,对于建筑物的抗震设计理念和方法的研究都是建筑结构设计中的一个必要考虑因素,而增强建筑物的抗震性能是理论研究者为之奋斗不懈的的目标。现有的抗震设计理念是经过以下几个重要的阶段而总结得来的。
一是刚性设计理念。这是人们应对地震这一自然灾害所总结和研究出的第一个设计的理念。当时的地震工程学者对地震和抗震理论知识的了解还很少,很贫乏。学者普遍认为建筑物在地震中损坏甚至倒塌的主要原因是因为建筑物的刚度不够,不能抵抗地震的巨大能量才会倒塌。按照这一设计理念人们在房屋的施工建设工程中就通过增加剪力墙的厚度和承重墙的钢筋和水泥的比例,以此来保证墙体结构有足够的刚度,从而时地基与整个主体建筑形成一个刚性的有机整体。但是这一理念有其自身所具备的局限性,因为强调对建筑物刚度的要求,使得建筑物在高度和跨度上的发展收到限制。
二是柔性设计理念。因为看到了刚性设计理念的先天性不足,在刚性设计理念之后,抗震设计专家和学者们又提出了一个与刚性设计理念全然不同的柔性设计理念。这一理念放弃了对建筑物刚性的追求并且利用柔性建筑在地震中建筑物可以有效的侧移和形变的优点来减少地震对建筑物的损害。事实表明,这一设计理念具备了刚性设计理念所无法具备的优势,并且在一些小的低等级的地震中能比较好的保证建筑物的完好[2]。但是也仅仅是限于应对低等级的地震,事实表明,当遇到较高等级的地震时,在这一设计理念的指导下所建设的房屋是没有任何抵抗力的。
三是结构控制设计理念。这一设计理念主要是通过对建筑物的控制结构的设置使已有的结构和新生的结构共同抵御地震。最近这些年以来,这一设计理念被广泛应用于桥梁和高层建筑物的抗震设计中。
第四个是性能设计理念。这一设计理念的主要思想是让建筑物在面对不同等级地震的时候能有不一样的与之对应的抗震能力与性能,体现了多级抗震设防的重要思想[3]。该理论是在之前刚性设计理念、柔性设计理念和结构控制设计理念的基础之上发展的全新的理论,因为其较大的抗震优势,使得它成为现阶段实际应用最为广泛的抗震设计理念。它具体表现为以下几个方面:①尽可能增加多道抗震防线。每一个抗震机构的体系都不是一个单一的体系,而一般都是右多个有良好延性的系统构成,而每一个分系统又是通过有较好延伸性能和柔性的构件相互连接配合作用的。比如说有剪力墙-框架体系是由具有良好延性的剪力墙和柔性较高的框架组成,而剪力墙又是分为双肢剪力墙和多肢剪力墙分体系。一般的,强地震都伴随着一系列的余震,这就要求建筑物节构具备抵抗强震的第一道防线之后还能有第二道,第三道防线来抵抗接下来的余震,只有这样,才能保证建筑物在强震之后仍旧能够不倒塌。这就要求每一楼层里的主要抗震耗能构建在强震中屈服后其他的辅助构建仍具有弹性性能,从而延长构件的“有效屈服时间”。 ②增强薄弱部位的抗震性能。构件的实际承受能力和计算承受能力是对构件合理布置的基础,当在实际地震过程中,构件的实际承受里高于计算承受力,也就是构件面临承受力的不定集中的情况,这时候就需要通过其他的与之相连的辅助构件对它的承受力完成转移[4]。在薄弱部位(很有可能出现力的集中的部位)增强抗震设计,提高其抗震性能,能够有效做到保证建筑物在地震中变形小,不倒塌。
二、高层建筑结构设计方法
对于建筑结构抗震设计,通常要考虑高层建筑物的刚度、强度,和延性,因为不仅要保证整体结构在地震中能够承受一定范围内的轴压力和剪力,同时还要做到在力过大的时候在允许结构有一定的变形但是不至于严重倒塌。这是抗震的主要内容,也是抗震的核心内容。而现在具体的设计方法有以下这些。
一是多采用强剪弱弯结构。建筑结构中的梁和柱子简剪力破坏比轴向扭力破坏所带来的后果要严重的多,所以在设计之中要增强粱柱和墙体的剪力弱化轴向弯力。另外与此类似的还应该多采用强柱弱梁和强节点弱构件的设计方法。
二是改善高层建筑结构均匀性设计。首先是高层建筑是一个三维结构,在地震中作用力的方向是任意的,使其侧向两轴在刚度上均匀是保证其抗震性和抗风性的重要因素[5];然后是在沿竖直方向的层剪力刚性性能尽量不要发生突变;最后就是沿同一轴的各向抗侧力结构要避免出现刚度较大而延性较低的结构。
三是加强短柱抗震性能。①改善建筑物整个结构的抗震性能可以通过缩小短柱的截面积,增大剪跨比进而提高短柱的计算受压载重力的方式达到。具体的方法是增强混泥土的实际等级,降低其轴压比。②采用钢管混泥土的方式浇灌短柱。在由圆形钢管构成的构件体系里浇筑混泥土保证了混泥土能够在三个方向都能受到足够强度的压力,从而提高了混泥土本身的抗压能力和极限应力,进而在保证刚度和强度的前提下增强了其延性。③采用分体柱结构。这种方法是通过人为的将柱子的抗弯性能降低到其抗剪性能之下,从而用短柱在地震中的延性破坏代替它的水平断裂进而保证建筑物不易倒塌。
结语
随着社会和科技的进步和发展,专家学者对建筑物结构抗震设计的理念也在不断的更新进步,进步和先进的理念给我们带来的是可靠的结构设计方法。虽然人类在战胜地震这一自然灾害的路上还是任重而道远,但是我们有理由相信,随着人们对已有地震经验的总结,我们的抗震工程学者会研究出更好的高层建筑结构设计理念理念和方法,进而进一步保证人类生命和财产不受损失。
参考文献:
[1] 张彭,解林伟.试析高层建筑结构设计理念及方法[J].陕西建筑,2011(08)
[2] 王欣.浅谈高层建筑结构选型要点[J].科技创新导报,2010,(15)
[3] 郑克勤.关于高层建筑结构设计探讨[J].中华民居,2011(03)
关键词:不规则;高层建筑结构;抗震
1前言
抗震工作是建筑设计和施工的重点,为使所设计的高层建筑结构在强度、刚度、延性及耗能能力等方面达到最佳,结构工程师要进行严格系统的结构分析与设计。不规则高层建筑的不规则性,对高层建筑的结构设计提出了更高的难度和要求,论文就此展开论述。
2不规则高层建筑结构概述
以往,高层建筑造型与火柴盒一样,单调且乏味,缺乏新意。但上个世纪八十年代,随着城市化进程建设不断加快,人们物质生活得到了极大的改善,对精神文化需求不断增强,为建筑设计带来了发展机遇。复杂、不规则及不对称结构高层建筑涌现,并成为建筑发展的潮流。如上海希尔顿酒店、深圳发展中心等,正因为建筑造型独特引起了人们的关注。与此同时,美国高烈度地震区的西海岸也出现了很多形式复杂、不规则高层建筑物,虽然,我们看到的建筑物体型规则、简单,但由于其抗侧力构件布置与一般建筑差别较大,使其能够在结构上以不对称形态呈现出来。如尼加拉瓜马那瓜的中央银行,在设计中,其主要呈现简单的矩形状,但在建筑东西方向设置电梯井,在很大程度上增加了建筑物刚度。虽然不规则高层建筑看上去给人一种摇摇欲坠的视觉效果,但由于其设计依据科学的力学计算,是科学的。不规则高层建筑以扭转、凹凸不规则等多种形式存在,相比较一般建筑来说,不规则高层建筑设计难度较大,故要给予更多关注和重视。
3不规则高层建筑结构抗震分析
3.1案例分析
某高层建筑地上25层,地下3层,总体高度104.2米。15层以下东西长度94米,16层以上为83米。南北向宽度为30米,总建筑面积5.3万平方米。地下三层分别为餐饮、商业、车库区。
建筑师从环境和功能的要素的角度,将北侧设计为电梯、机房、管井的集中区域,南侧为敞开式的商住和办公区域,采用玻璃幕墙作为立面的材料。整体立面为起航的船体,屋顶从东向主屋面逐渐升起,高点高度为22.5米,上有桅杆,桅杆高度为15米。
3.2设计详情
建筑物的结构特点把握,从15层开始向上,西北侧有收进,竖向的变化较大,南侧没有设计剪力墙予以支撑,南北向的偏心较大。顶层自西向东有变化,东面较高和重。
平面上的特点是,建筑物的两个端部有刚度较小的单跨框架,东南的尖角为单柱,在地震作用下,端面的平面质量将起到很大的作用,由于不规则,因此,需要在扭转效应上,设计出较大的抗侧刚度。
经过对结构特性的分析之后,采用试算的方法,发现建筑物的特点是西低东高、西轻东重。东端和西端出现的单跨框架以及部分的面积,侧刚较小,产生东段振幅较大的情况,为了使得结构能够形成以平动为主的基本振型,因此在东面设置了剪力墙。
针对南北向的偏心问题,为了满足建筑连续多跨的框架刚度较大的特点要求按照剪力墙承担的总弯矩进行了剪力墙量的设置,减少了纵向地震作用下可能产生的扭矩,这样,建筑物的靠近端部的剪力墙转动中心的力臂将增大,能够在地震扭转中南北偏心产生的时候起到重要的作用。
4工程结构抗震设计
对于位移限值的分析,在考虑了偶然偏心影响的地震作用,楼层的最大位移与层高的比例是满足建筑设计要求。RATIO为层平均位移和最大位移之间的比值,RTIO-D(n)为层平均层间和最大层间的位移比值,MAX-D/h为最大层间位移角,Umax为顶层最大位移(mm)。
计算模型分别按照0、90度和45度方向计算结构在水平力作用下的变形和内力的组合特征,考虑双向水平地震作用下的扭转影响,得到了剪力墙连梁的折减系数、周期折减系数、阻尼比等数值。
经过软件的计算结果,还发现个别连梁的弯矩和剪力出现截面超筋的情况,再进行连梁设计以及配筋的时候,通过设置钢暗柱的方式,给予了加强措施。在本工程中,两个单元的建筑均为混凝土核芯筒体的垂直交通通道,如电梯、楼梯,构成的核心抗侧力的构件主要分布在两侧,这种设计提高了抗侧的高度。对于周边的翼板出现的出挑略多的问题,采用了弹性板加以解决,充分考虑变形对于边角柱以及竖向构件的影响,提高了一个等级的抗震功能,加强的区域内的配筋,采用全高加密箍筋的方法,保证地震发生的时候构件不屈服,结构延性加强。
本建筑工程有着平面立面不规则的先天状况,因此,要对计算过程中的近似性、局限性、地震的不确定性进行充分的考虑,将施工因素等问题加入设计的内容。不能完全依靠计算结构,而是要对结构的整体构造,薄弱环节加以分析,从结构安全的角度进行设计。
例如工程在地震作用下,最不利的趋于在两个端部,这部分为单跨柱框架,因此应进行承载能力和延性的加强,防止出现破坏。
工程的框架承担地震的总弯矩经过测量接近50%,因此要在南侧纵向框架的强度和延性设计上采用提高抗震等级的方法进行构造的设计。
工程的西侧剪力墙的数量较少,因此,在该区域的抗扭的设计上应予以加强。
还有中心部位的楼电梯间,混凝土的剪力墙布置上,框架较小的框架带来了单体抗扭转刚度不足的问题,可以通过增加结构的侧力抗扭剛度的方法进行增大,依靠外围抗侧力墙刚度增加的方法,将抗扭转刚度增大。
5结构不规则设计的注意事项
结构不规则设计时,必须注意以下问题:(1)重点考虑结构的均匀性与对称性,并对结构的偏心率进行有效的控制。如果能够保证偏心率足够小,结构就会出现清晰的平动主振型和扭转主振型,更容易符合扭平分量比的标准;(2)重视累积质量对结构的影响。如果结构的某一部分存在高低跨现象,需要科学合理的设置剪力墙,有效的降低偏心距;(3)如果楼板因存在大面积缺失的现象而形成长短柱的状态,不但要提高短柱的延性,而且需要提高长柱的刚度;(4)提高结构周边梁的刚度。通过提高周边连梁与框架梁的刚度,可以提高整体结构的抗扭刚度,并且有利于刚心位置的调整。
6结语
论文摘要:本文从抗震的角度探讨建筑的体型,建筑平面布置和竖向布置、规范中设计限值的控制、屋顶建筑等设计问题。
建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑
设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。
一、建筑体型设计问题
建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。
二、建筑平面布置设计问题
建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。
三、建筑竖向布置设计问题
建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。
四、建筑上应满足的设计限值控制问题
根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。
五、屋顶建筑的抗震设计问题
在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。
六、结束语
总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑
抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。
参考文献:
[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。
[2]包世华、方鄂华,《高层建筑结构设计》,清华大学出版社,2003。
关健词:概念设计 结构设计 框—剪结构
中图分类号:S611文献标识码:A 文章编号:
一、概念设计的涵义
概念设计就是从结构总体方案设计一开始,就运用人们对建筑结构抗震已有的正确知识去处理好结构设计中将遇到的问题,诸如:房屋体形、结构体系、刚度分布、构件延性等等。从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施。从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。也就是说概念设计是工程师运用思维和判断力,根据从大量震害经验得出的结构抗震原则,从宏观上确定结构设计中的基本问题。因此,工程师必须从主体上了解结构抗震特点,振动中结构的受力特征,抓住要点,突出主要矛盾,用正确的概念来指导概念设计,才会获得成功。由于概念设计包括的范围极广,因此不仅仅要分析总体方案确定的原则,还要顾及非材料的正确使用和关键部位的细部构造。但是首先和最重要的还是结构总体概念设计、材料选型和细部构造等问题,这些设计原则和结构概念中,较为重要的是结构总体设计。
二、结构总体设计的注意要点
1.延性耗能
在建筑结构的整体设计上要注意加强薄弱环节,尽量做到等强度。同时,应使建筑结构在一个恰当的部位能消耗大量的能量,在具体设计中即为各式各样的梁,如框架梁、联肢墙的连肢梁等。结构延性一般用延性系数表示,它表示的是结构极限变形(位移、转角、曲率)与屈服变形的比值,也可以分别用位移延性系数,转角延性系数等来表示,该比值越大,结构的延性越好。在设计上为提高钢筋混凝土梁的延性,一般采取以下措施:(1)首先应选取合适的梁截面尺寸,以获得合适的配筋率,避免梁受拉筋过多或出现超筋。因此,对地震区梁的配筋率要大大低于一般梁的最高配筋率。(2)梁上部(跨中)和下部(端部)配置适量的受压筋。(3)提高梁混凝土强度等级,采用中低级钢筋对延性有利。(4)T形梁比矩形梁延性好。(5)注意加密箍筋。地震区钢筋混凝土梁的位移延性系数一般要求不得低于4。
2.多道防线设计
现在有一种新的抗震概念:当建筑结构受到强烈地震动主脉冲卓越周期的作用时,一方面利用结构中增设的赘余杆件的屈服和变形,来耗散地震输入能量;另一方面利用赘余杆件的破坏和退出工作,使整个结构从一种稳定体系过渡到另一种稳定体系,实现结构周期的变化,以避开地震动卓越周期长时间持续作用所引起的共振效应。这种通过对结构动力特性的适当控制,来减轻建筑物的破坏程度,是对付高烈度地震的一种经济有效的方法。
3.妥善处理非结构部件
非结构部件一般是指在通常结构分析中不考虑承受重力荷载以及风、地震等侧力荷载的部件,如内隔墙,框架填充墙,建筑处围墙板,楼梯等。实际上,在地震作用下,高层建筑中的这些部件或多或少地参与工作,从而改变了整个结构或局部构件的刚度,承载力和传力路线。造成未曾估计到的局部震害。在钢筋混凝土框架体系的高层建筑中,这些影响最为普遍。(1)砌体填充墙的抗震作用:①使结构刚度增大,自振周期缩短,水平地震力增大30%~50%。②改变了结构的地震剪力分布状况。③砌体填充墙具有较大的抗推刚度,限制了框架的变形,从而减小了整个结构的地震侧移幅值。 (2)柱端震害,在地震中,角柱上端被嵌砌于框架间的砖墙顶断。这是典型的柱端震害。在框架体系设计中必须考虑,并采取恰当的预防措施。(3)形成短柱破坏。采用钢筋混凝土框架的高层建筑,就框架柱的受力状况和破坏形态而言,一般情况下属于长柱。由于窗裙墙对框架柱的刚性约束,减短了柱的有效长度,使它变成了短柱,承担的地震力大增,发生剪切破坏。因此,采用贴砌围护方案或墙、柱柔性连接方案都是防止短柱破坏的有效手段。否则沿柱的全高,柱身箍筋的配置均应符合短柱的规定。这一点,在施工图中,应当说明清楚。
三、案例讨论
某项目情况:地上34层共120m,地下共3层,其中地下第3层为5级人防。该结构为超高层结构,框架-剪力墙结构体系。其中在地上第三层有局部框值转换。在方案设计阶段,框架的轴线尺寸己经由建筑确定,梁柱截面尺寸根据竖向荷载及粗估的水平地震作用效应确定。最后问题是剪力墙如何布置、数量多少。这是一个关系到结构安全和技术经济合理性,并体现出体系优越性的关键性环节。所以结构工程师在方案设计阶段都积极参与,并根据适宜刚度概念算出剪力墙的面积,结合建筑要求设计出经济合理的方案。
1.剪力墙的布置。一般情况下,剪力墙应在纵横两个方向同时布置,并使两个方向的自振周期比较接近。在非抗震设计的条件下,也允许只设横向剪力墙而不设纵向剪力墙,这时,纵向风力全部由纵向框架承受。剪力墙的一般布置原则是“均匀、分散、对称、周边”。均匀、分散是要求剪力墙的片数多,每片的刚度不要太大,也就是说布置很多片短的剪力墙;并且在楼层平面上均匀布开不要集中在某一局部区域。一方面,剪力墙对称布置可以避免和减少建筑物受到的扭矩。另一方面,剪力墙沿周边布置可以最大幅度地加大抗扭转的内力臂,提高整个结构的抗扭能力。经过讨论,大家一致同意剪力墙沿周边布置。
2.剪力墙的平面位置。一般情况下,剪力墙宜布置在下述的各个部位:(1)竖向荷载较大处。这样可以获得三点好处:①较大重力荷载引起的较大地震作用,可以直接传到剪力墙上;②剪力墙承受很大的弯矩和剪力,有了较大轴向压力来平衡,可以减小墙体的拉应力,并提高墙体的受剪力承载力;③可以避免使用较大截面梁、柱的框架来承担较大的竖向荷载。(2)平面形状变化处或楼盖水平刚度剧变处。这样可以消除地震时在该部位楼板中引起的应力集中效应。(3)楼梯间、电梯间以及楼板较大洞口的两侧。根据本工程特点,剪力墙的平面位置布置在竖向荷载较大处。
3.剪力墙最大间距。在框—剪体系中,剪力墙是主要抗震构件,承担着80%以上的地震力;框架是次要抗震构件,仅承担加%以下的地震力。要保持框一剪体系这一结构特性,以剪力墙为侧向支撑的各层楼盖,在地震力作用下的水平变形就需控制在很小数值范围以内,使框架的侧向变形与剪力墙大致相同。否则,就需要通过空间分析来考虑楼盖水平变形所引起的框架剪力增值。在实际工程中,剪力墙间距一般在2.5B及30m以内。有30m长的一段无剪力墙的自由布置空间,完全可以满足建筑功能的要求。
参考文献:
[1]小谷俊川.日本基于性能结构抗震设计方法的发展.建筑结构,2000,6.
[2]建筑抗震设计规范.(GBJfl一89).
关键词:高层建筑;高层结构设计;抗震;常见问题;
一、高层建筑结构设计的意义及依据 1.1概念设计的意义 高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。 1.2概念设计的依据 高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。
二、高层建筑结构设计的几个问题及设计方面的原则 2.1高层建筑结构受力性能 对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,因此,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。 2.2高层建筑结构设计中的扭转问题 在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。同时,在结构平面布置时,应尽可能使结构处于对称状态。
2.3 选用适当的计算简图:结构计算是在计算简图的基础上进行的,计算简图选用不当则会导致结构安全的事故经常发生,所以选择适当的计算简图是保证结构安全的重要条件。
关键词:高层建筑 多塔体系结构 嵌固端
中图分类号:TU97 文献标识码:A 文章编号:1672-3791(2013)05(b)-0049-02
高层多塔住宅建筑嵌固端是指上部结构的底部嵌固部位,嵌固端的确定主要通过调整承载力和刚度,迫使塑性铰在预期部位出现,且能够承受上部结构在该处屈服超强引起的极限弯矩和出现塑性铰时最大剪力以及相应最大或最小轴向力。高层多塔住宅建筑必须合理选取和优化嵌固端,以此保证地基基础具备较强承载力,防止建筑结构出现滑移和转动,确保高层建筑结构设计形成稳定的体系,有效预防建筑倾覆或较大的差异沉降。多塔高层嵌固端的合理选取对结构的安全和经济性都有较大的影响。
1 高层多塔式建筑结构嵌固端的作用分析
随着高层建筑的迅猛发展,建筑高度也随之增加,使得因风载荷或地震作用而产生的水平载荷对高层多塔住宅建筑结构的内力和位移影响逐步加大。而合理确定基础埋置深度,是满足高层多塔住宅地基承载力和结构稳定性要求的前提,以此有效减少由于地基沉降和不均匀沉降所造成的建筑整体倾斜,防止水平载荷使建筑物产生倾斜和滑移,增强抗震能力。基础埋深的确定直接影响高层多塔住宅建筑的基础设计选型,所以必须将其作为基础设计的关键环节,确保地基的可靠性。加之,基础埋深会影响建筑结构的动力反应性质和静力反应性质,因此必须在保证高层多塔住宅建筑结构安全的基础上,兼顾技术因素和经济因素选择合理的基础埋置深度。
在高层多塔住宅建筑结构设计中,合理选取和优化嵌固端有利于保证地基基础的承载力、刚度、抗转动能力和抗滑移能力,构建稳定的高层多塔住宅建筑结构,对于防止差异沉降和倾覆具有重要意义。在高层多塔住宅建筑的抗震设防中,正确选取结构嵌固端是建筑结构计算模式的重要假定,直接影响到结构中某些构件内力分配的准确性,以及结构产生侧移的真实性和结构设计的经济性。尤其对于上部结构嵌固而言,其在基础或地下室部位的选择,会对结构计算中弯矩大小、配筋用量等问题产生重大影响。一般情况下,高层多塔住宅建筑带有二层或二层以上的地下室,嵌固端既可以选择地下室顶板位置,也可以地下室基础位置。然而在实际的结构设计中,设计人员往往忽视了嵌固端的设置问题,埋下了建筑结构安全隐患。如,嵌固端上下层刚度比的限制和抗震等级的一致性、嵌固端楼板的设计、嵌固端在结构计算时的设置、嵌固端位置与结构抗震缝设置的协调性等问题,这些问题的忽视会大量增加后期结构的分析计算量和设计工作的修改量。因此,在高层多塔住宅建筑的抗震设计中,必须解决好嵌固端的选取和优化问题,积极采取有效的技术措施,提高高层多塔住宅建筑结构的可靠性。
2 高层多塔式住宅嵌固端的合理选取及优化途径
(1)高层多塔式住宅结构嵌固端选取原则。
①工程所在地的地质和水文条件。高层多塔式住宅嵌固端的选取与基础设计有着非常密切的关系,而工程所在地的地质和水文条件是基础设计的主要影响因素,鉴于此,其必然会对嵌固端的选取产生一定程度的影响,所以,在实际工程中,对结构嵌固端进行选取时,应当充分考虑工程所在地地基土地的性质,这对于嵌固端的合理选取尤为重要。
例如,某多塔式高层建筑为商住两用,最初设计时,决定将桩基础顶面作为嵌固端,后经多方面综合分析发现,若是以桩基础顶面作为嵌固端虽然便于施工,但是工程造价相对较高。设计人员提出可将地下室结构顶板作为嵌固端,这样不但能够使计算模型得以简化,而且结构的传力途径也更加直接和明确,同时还能够解决各个塔楼可能存在的质量与刚度分布不均匀的缺陷。此外,地上的多塔楼可按照多、高层建筑进行考虑,不需要作为复杂高层结构进行计算,这使得构造过程得以简化,有助于工程整体造价的降低。
②地基基础的实际埋深深度。就高层住宅建筑结构而言,在合理选取嵌固端的过程中,势必会涉及到建筑地基基础的埋深深度问题。嵌固端部位应当在符合地基基础有效埋深深度或是可靠埋深深度的基础上进行合理选取,嵌固端的位置应当在基础顶面或是高于顶面的位置上,而对于带有地下室结构的高层建筑来讲,地基基础的埋深深度直接决定了地下室的具体层数,嵌固端可按照具体要求选在某一层顶板或是底板的位置上。
③基础结构形式。高层建筑基础结构形式不同,嵌固端选取的重点和位置也有所不同,相应的结构计算模型也不相同。
④首层楼面荷载。高层建筑的地下室顶板常被作为结构嵌固端的首层楼面,在正常使用条件下,其所承受的活荷载通常较小,即便是商用的高层建筑,其活荷载也不超过3.5 kN/m2,但需要注意的是,结构设计过程中必须充分考虑施工荷载。
(2)多塔式高层住宅嵌固端的优化措施。
目前,按照建筑功能、区域规划以及现场环境等方面需要,大底盘多塔式高层住宅越来越多,而随着该结构形式住宅的增多,与之相关的技术问题也随之突显。对于塔楼的嵌固端,可选取在底盘的顶板处,具体优化措施如下。
①通常情况下,为了确保转换层上下部结构的侧向刚度基本一致,需要在大底盘的部分增设新的剪力墙。由于高层建筑结构设计的计算软件日趋完善,为此,多塔式住宅能够实现以整体结构进行计算。
②就大底盘地下室上部的多塔结构设计而言,由于结构本身为大底盘,故此其上部结构无需按照多塔结构进行计算,但是对于地下室结构的设计则应当充分考虑上部多塔对其结构稳定性的影响。这主要是因为地下室结构连为整体且地上结构分为若干个独立结构时,地上结构与高层建筑结构设计规范中规定的多塔式结构不符。为此,在设计地下室时,必须考虑地上多个独立塔楼的重力荷载、高度以及结构类型,并采用多塔模型进行相应的静力计算分析。
③在对大底盘多塔式住宅进行结构设计时,应当重视概念设计,如果在条件允许的情况下,应当对地面以上的裙房建筑进行分缝处理,这样可以使各个单体结构的体型变得更加简单,传力也更为直接。同时,在计算结构的位移比时,应当注意程序的输出结果并一定是真实情况,所以应当按照规程的要求对位移比进行重新计算,并选取塔楼最大位移点对应裙房的位置值进行单塔复核计算。除此之外,还应注意程序有时会将质心的位移确定为平均位移,这种情况并不适用于对称性较差的多塔式住宅结构,为此,实际工程中也应当采取单塔复核计算的方式进行复核。
参考文献
[1] 吴钟鸣.关于高层建筑基础埋置深度以及嵌固端选取的问题研究[J].城市建设理论研究:电子版,2012(33).
[2] 张元坤,唐旭雄,容柏生.超高层建筑结构设计方案的确立—— 某广场88层主楼的嵌固端方案设计简介[J].建筑科学,2011(1).
[3] 魏琏,王森,韦承基.水平地震作用下扭转不规则结构抗震设计若干问题[A].第十八届全国高层建筑结构会议论文集选编[C],2009(4).
关键词:高层住宅 混凝土剪力墙结构设计
Abstract: the development of our national economy, urban and rural residents and the standard of living rises ceaselessly, housing demand rapid increase, construction land increasingly nervous, national and each large and medium cities arise high-rise residential big development situation. To high-level residence structure design of further discussion and research, and has important practical significance. This paper mainly high-rise residential buildings to the shear wall structure design of the related problems on the some research.
Keywords: high-rise residential concrete shear wall structure design
中图分类号:TU318文献标识码:A 文章编号:
前言
剪力墙是一种有效的抗侧向力结构单元,可以组成完全由剪力墙抵抗侧向力
的结构,也可以和框架共同组成抵抗侧向力的框一剪结构。通常按其墙肢截面高度与厚度的比值分为一般剪力墙、短肢剪力墙和异型柱。剪力墙结构作为高层建筑中的主要结构形式,被广泛运用于现代高层建筑领域。《高层建筑混凝土结构技术规程》(JGJ3.2002)对剪力墙结构的设计原则、计算方法和构造措施作出了相应规定,但有些规定尚不够细致,可操作性较差。目前工程实践中大多数剪力墙结构的布置还主要取决于设计人员的经验。
一、剪力墙的分类
剪力墙根据墙肢的高厚比分为一般剪力墙和短肢剪力墙。―般剪力墙是指墙肢截面高度和厚度之比大于8的剪力墙;短肢剪力墙是指墙肢截面高度与厚度之比为5~8 的剪力墙。当剪力墙的墙肢截面高度hw与厚度bw之比不大于3时,应按柱的要求进行设计,底部加强部位纵向钢筋的配筋率不应小于1.2%,其他部位不应小于1.0%,箍筋应沿全高加密。剪力墙墙肢长度(即墙肢截面高度)―般不宜大于8m。
剪力墙按受力特性的不同主要可分为:①整体剪力墙。不开洞或开洞面积不大于15%的墙。②小开口整体剪力墙。开洞面积大于15%,但仍属洞口较小的开孔剪力墙,其局部弯矩不超过水平荷载的悬臂弯矩的 15%,且大部分楼层上墙肢没有反弯点。③双肢墙(多肢墙)。开洞面积比较大或洞口成列布置的墙,其受力特点与小开口整体剪力墙相似。④壁式框架。洞口尺寸大,连梁线刚度与墙肢线刚度相近的墙,其受力特点是弯矩图在大多数楼层中都出现反弯点。
二、剪力墙结构分析模型及方法
高层建筑结构中的剪力墙所承受的荷载有风和地震引起的水平荷载、结构自重和各楼层活荷载等竖向荷载,其主要功能还是抵抗结构的水平侧力,利用其强大的抗侧移刚度,减小结构的侧移。一般在多遇地震作用下,剪力墙能很好地满足结构强度、刚度和抗震方面的要求,在大震和罕遇地震作用下,由于地震加速度峰值大,输入的地震能量大,这就要求剪力墙具有较好的耗能能力,具有较好的延性。所以在进行结构设计时,对有抗震设防要求的结构就要进行非线性静力、动力分析,而在这一分析中,如何建立合理的剪力墙计算分析模型就显得尤为重要。目前国内外对剪力墙的计算分析模型的研究很多,主要可归纳为两种,
基于固体力学的微观模型和以一个构件为一个单元的宏观模型。
三、剪力墙结构设计应注意的问题
1、选择有利的建筑形式
住宅剪力墙结构布置时,墙片不宜过长,一般以墙片高宽比为1.5左右为宜,墙片平面形式不宜采用提高抗侧刚度的“L”“T”等平面形式,而是应尽可能采用“一”字形,以弱化每一单片剪力墙的刚度,实现剪力墙均匀分散、多道设防的目的。另外,还应控制剪力墙的最大间距,而纵向抗震墙应在外纵轴布置开窗洞的抗震墙或剪力墙,以增强横向抗倾覆的能力,避免边柱产生过大的压力和拉力。
2、结构竖向布置
结构竖向布置方面,该项目高宽比H/B=5,符合抗震规范剪力墙结构6度设防小于6的要求。在抗震设计中要求结构承载力和刚度宜自下而上逐渐减小,变化均匀、连续,不要突变。该工程平面在竖向上没有大的内收外挑情况,平面从底至顶一致。竖向刚度的变化主要表现在分段改变构件截面尺寸和混凝土强度等级,从施工方便来说,改变次数不宜太多;但从结构受力角度来看改变次数太少,每次变化太大又容易产生刚度的突变。
3、 剪力墙边缘构件的设置
根据(JGJ 3―2002)《高层建筑混凝土结构技术规程》 中规定,当一、二级抗震等级底部加强部位轴压比小于限值时,需要设置约束边缘构件,其长度及箍筋配置量都需要进行计算,并从加强部位顶部向上延伸一层。对于普通剪力墙,其暗柱配筋满足规范要求的最小配筋率,建议加强区配筋率取0.7%,一般部位配筋率取0.5%;而根据 《高层建筑混凝土结构技术规程》规定,对于短肢剪力墙截面的全部纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其他部位不宜小于取1.0%。对于小墙肢的受力性能较差,应严格按《 高层建筑混凝土结构技术规程》控制其轴压比,宜按框架柱进行截面设计,并应控制其纵向钢筋配筋率,加强区取1.2%,一般部位取1.0%;而对于一个方向长肢另一方向短肢的墙体,设计计算中,一是另一方向短肢不计入刚度,则配筋可不考虑该方向短肢的影响,二是短肢计入刚度,则配筋中应考虑该方向短肢的不利影响,即该短肢配筋率在加强区取1.0%,一般部位可取0.8%。同时,对抗震等级为二级的剪力墙和三、四级抗震等级的全部,以及非抗震设计剪力墙的全部,在重力荷载代表值作用下轴压比小于 0.30 时,可按 《高层建筑混凝土结构技术规程》仅设置构造边缘构件,而设置约束边缘构件配筋不宜过大。
4、连梁的设计及配筋
剪力墙的连梁是耗能构件,它的剪切破坏对抗震不利,会使结构的延性降低。设计时要注意对连梁进行“强剪弱弯”的验算,保证连梁的剪切破坏后于弯曲破坏。切忌人为加大连梁的纵筋,如此,可能无法满足“强剪弱弯”的要求。不能认为加大箍筋就能保证“强剪弱弯”。当连梁不满足截面控制条件时,盲目增加箍筋的结果会导致连梁剪切破坏先于箍筋充分发挥作用。连梁截面的抗剪计算,对于跨高比大于2.5的连梁,其剪力设计值应乘以增大系数ƞvb:一级取
1.3,二级取1.2,三级取1.1。剪力墙连梁的截面尚应满足以下要求:
跨高比大于2,5时:
跨高比不大于2.5时:
式中:V――梁端截面组合的剪力设计值;
ßc――混凝土强度影响系数,按《高规》(JGJ 3-2002)第6.2.6条的规定采用。
由于高层建筑中联肢剪力墙在风荷载、地震作用下被破坏时的形态与剪力墙的连梁有很大关系,因此,在设计中为减少剪力墙受破坏,应注重连梁的设计。即在设计中,应降低连梁的弯矩,从而降低连梁的抗弯承载力,使连梁早出现塑性铰,降低连梁中的平均剪应力,改善其延性;设计时,应使连梁的剪力设计值大于或等于连梁的抗弯极限状态相应的剪力;相应增大连梁的跨高比(连梁的高度计算与设计应按照统一规定,从洞顶算到楼板面或屋面),从而可相应降低连梁的刚度,使连梁的承载力有可能不超限;对于窗洞楼面至窗台部分可用轻质材料砌筑;对于窗台有飘窗时,可再增加 1 根梁,2 根梁之间用轻质材料填充。连梁配筋应对称配置,腰筋同墙体水平筋预应力筋有腐蚀作用的外加剂。
四、剪力墙结构优化设计控制因素初探
影响剪力墙结构优化设计的主要因素包括结构变形和轴压比、建筑功能布局、剪力墙的构造要求、经济性能等。
水平位移是结构变形的主要方面,高层建筑中为了保证结构具有较大刚度,应对层间位移加以控制。这个控制实际上是对构件截面大小、刚度大小的一个相对指标。层间位移角的限制却不包括建筑整体弯曲产生的水平位移,要求较宽松。显然层间位移是与结构的抗侧刚度紧密联系的,剪力墙结构的抗侧刚度主要是由剪力墙产生的,而剪力墙的多少又直接与混凝土和钢筋的用量相关。所以对位移进行控制就间接控制结构的造价。剪力墙的轴压比是指在地震作用下,剪力墙的轴力与混凝土的抗压强度和剪力墙截面积之比。对轴压比的限制是为了保证在地震作用下剪力墙具有足够的延性,也即是说对轴压比的控制就是对剪力墙延性的控制。结构的经济性是在综合考虑各个控制因素的基础上对结构作出的功能与造价的最优比。
低烈度区在非强风作用下,因为地震作用与风荷载作用较小,水平力较小,且一般剪力墙结构墙肢布置间距较小,可能轴压比和结构变形均不起控制作用,建筑功能布局、剪力墙构造要求起控制作用。在强震区水平力较大,主要控制因素可能是结构变形和轴压比。
结语
随着经济建设的发展,我国高层建筑也有了快速的发展,尤其是改革开放之后建设了很多的高层建筑。但是由于高层建筑设计上的复杂性,也给高层建筑的设计带来许多难点。所以,我们要不断加强建筑结构设计研究。
参考文献
【1】方鄂华.高层建筑钢筋混凝土结构概念设计【M】.北京:机械工业出版社。2004.
【2】姚琦.住宅剪力墙结构的优化控制因素探讨【D】.重庆大学硕士学位论文,2006.
关键词:嵌固端,概念设计,刚度
多层、特别是高层钢筋混凝土建筑,在进行概念设计、结构计算时,必须明确嵌固端的位置。嵌固端是人为的对多、高层建筑结构计算模型中的一个重要假定,它直接关系到结构计算模型与结构实际受力状态的符合程度,以及构件内力、结构侧移等计算结果的准确性。
嵌固端的定义,指除能承受轴力、弯矩、剪力之外;X向水平位移,Y向水平位移,竖向位移,位移角均为零的部位。按在地震作用下的屈服机制而言,就是预期塑性铰出现的部位。确定嵌固端就是通过刚度和承载力调整,迫使塑性铰在预期部位出现,并能承担上部结构在该处屈服超强引起的极限弯矩和出现塑性铰时的最大剪力以及相应的最大最小轴力。故嵌固端的选取和处理直接影响结构体系的受力和变形状态;恰当和正确对待嵌固端的选择和处理对保证结构体系的可靠性有重要意义。
如进行抗震设计的高层建筑,当地下室顶层作为上部结构的嵌固端时,地下一层的抗震等级应按上部结构采用,地下一层以下结构的抗震等级可根据具体情况采用三级或四级。抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/8和底部两层二者的较大值。此“底部两层”理解为从嵌固端向上的二层,而不是从基础向上的二层。墙厚和配筋,底部加强部位的墙厚,一、二级不宜小于200,且不宜小于层高的1/16;三、四级不应小于160,且不应小于层高的1/20。一、二、三级抗震墙的竖向和横向分布钢筋最小配筋率均不应小于0.25%,四级抗震墙不应小于0.2%。从以上数据可以看出,嵌固端的正确选取,直接影响工程的墙厚及配筋,影响工程造价。所以,设计人应高度重视。科技论文。
多层建筑的嵌固端一般在基础位置;因为多层建筑一般不含地下室,其基础埋深较浅;实际工程中,特别是城市繁华地段,多层商业公建也存在联体的大底盘地下室。科技论文。规范规定“高层建筑宜设地下室”,但实际工程中,高层建筑也存在不含地下室的情况;所以,应根据建筑物的使用功能,基础埋深,有无地下室,地质情况等具体对待。
1. 有地下室的建筑
有地下室的建筑宜将上部结构的嵌固部位设在地下室顶板,此时应满足以下条件:1.1地下室顶板与室外地坪的高差不能太大,一般宜小于本层层高的1/3。
1.2地下室顶板结构应为梁板体系(即强梁弱柱),且该层楼板不得留有大洞,楼板框架梁应有足够的抗弯刚度,地下室顶板部位的梁柱节点的左右梁端截面实际受弯承载力之和不宜小于柱端实际承载力之和。
1.3地下室结构的布置应保证地下室顶板及地下室各层楼板有足够的平面内整体刚度和承载力,能将上部结构的地震作用传递到所有的地下室抗侧力构件上;为此,地下室顶板的厚度不宜小于180mm,混凝土强度等级不应低于C30,并应采用双层双向配筋,每个方向每层配筋率不小于0.25%。
1.4地下室结构应能承受上部结构屈服超强及地下室本身的地震作用,即地下室的楼层剪切刚度不小于相邻上部结构楼层剪切刚度的2倍;一般情况下,地下室外墙可参与地下室楼层剪切刚度的计算,但当地下室外墙与上部结构相距较远,如地下室一端附带多跨地下车库的情况,则在确定结构底部嵌固部位时,地下室外墙不参与地下室楼层剪切刚度的计算。
1.5上部为多塔结构地下室为大底盘时,应满足以下条件:<1>大底盘地下室的整体刚度与上部所有塔楼的总体刚度比不小于2.0。<2>每栋塔楼范围内的地下室剪切刚度与相邻上部塔楼的剪切刚度比不应小于1.5,塔楼范围可取塔楼周边向外扩出与地下室高度相等的水平长度。
1.6地下室柱截面每侧纵向钢筋面积,处应满足计算要求外,不应少于地上1层对应柱每侧纵向钢筋面积的1.1倍。
若由于地下室大部分顶板标高降低较多、开大洞口、地下室顶板标高与地下室地坪的高差大于本层层高的1/3或地下一层混凝土剪力墙墙体较少等原因,不能满足地下室顶板作为上部结构嵌固部位的要求时,一般宜将嵌固部位设在基础顶面。除非地下室不是一层,当为两层甚至多层地下室时,地下1层剪切刚度应大于地上1层楼层的剪切刚度,且地下2层楼层剪切刚度应大于地下1层楼层剪切刚度,并应大于地上1层楼层剪切刚度的2倍。
2.无地下室建筑
2.1若基础埋深较浅,可取基础顶面作为上部结构的嵌固部位。
2.2若基础埋深较深,多层剪力墙或砌体结构,当建筑地面设有200~300mm厚混凝土刚性地面时,可取室外地面以下500mm处作为上部结构的嵌固部位。上部结构为刚度较柔的框架结构,采用柱下独立基础,基础埋深较深时,将拉梁作为上部结构的嵌固部位是不妥的。拉梁改变了柱子的计算长度,使柱子的配筋较为经济合理,但拉梁本身刚度比较小,再加上回填土的密实度不好控制,行不成嵌固端。如果按《建筑地基基础设计规范》设计为高杯口基础,满足高杯口基础的壁厚要求,可将高杯口基础的顶面作为嵌固端。
总之,嵌固端是个人为假定的概念,当地下室或基础侧向刚度足够大,可以成为上部结构嵌固端的时候,也只能说明其只能成为上部结构水平方向的嵌固端,不能成为其竖向的嵌固端,因为嵌固端不能约束上部结构的竖向变形,更保证不了因地基土的压缩而造成的沉降。科技论文。所以,不同的结构空间计算模型,不同的工程,应采用力学知识,力学概念,分析其正确性,确保结构的安全。