时间:2023-09-22 15:32:54
导语:在机电一体化市场趋势的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
随着人们对工业加工精度和复杂度的要求提高,对加工设备的性能要求也越来越高。20世纪以来,各国纷纷发展数控加工技术,以解决复杂件的加工问题,比如对曲面配合件的加工。
1.1国内现状
2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,国家十一五科技发展规划也明确提出,提高大型设备数控化水平。但是目前我国整体大型设备的数控水平低,机械加工的精度、复杂度、精度保持度等都远低于国际水平。而加工中心作为机床家族的重要组成部分,今年来虽然也越来越受到国人重视,但是多为进口或者合资企业产品,其技术水平也较低。我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年。在精度方面,国内机床水平追赶国外先进水平的距离也很长。目前我国大型加工中心很难达到0.005mm,国外由于技术先进,则可以达到0.003mm。在精度保持度方面,国内一般为5年,国外则能够达到10年。目前国内在轴承、丝杠、刀具等决定机械精度的方面技术能力都不够。而国内数控系统最大的瓶颈在于国内系统是基于单板机的基础上发展起来的,至今没有一家是基于数字逻辑电路的设计。我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。
1.2国外现状
美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重于基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。德国1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。日本自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。另外还有台湾和韩国的机床也比中国先进。
1.3数控加工本身的特点
数控加工操作系统日益开放、数控系统向软数控系统发展、控制系统向智能化方向发展、向网络化方向发展、向高可靠方向发展、向多轴联动方向发展、向复合型方向发展的市场趋势。数控加工具有柔性好,自动化程度高的特点,对于轮廓形状复杂的曲线的加工尤其适合。数控加工中心是一种带有刀库并能自动更换刀具,对工件能够在一定的范围内进行多种加工操作的数控机床。本产品属于大型加工中心,主要用来加工复杂结构、工艺及精度要求高的大型设备部件的数控加工工具。其特点是:被加工零件经过一次装夹后,数控系统能控制机床按不同的工序自动选择和更换刀具;自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其它辅助功能,连续地对工件各加工面自动地进行钻孔、锪孔、铰孔、镗孔、攻螺纹、铣削及刨削等多工序加工。由于加工中心能集中地、自动地完成多种工序,避免了人为的操作误差、减少了工件装夹、测量和机床的调整时间及工件周转、搬运和存放时间,大大提高了加工效率和加工精度,所以具有良好的经济效益。加工中心按主轴在空间的位置可分为立式加工中心与卧式加工中心。利用数学方式输入,加工过程可任意编程,主轴及进给速度可按加工工艺需要各自变化,且能实现多座标联动,易加工复杂曲面。对於加工对象具有“易变、多变、善变”的特点,换批调整方便,可实现复杂件多品种中小批柔性生产,适应社会对产品多样化的需求。利用硬件和软件相组合,能实现信息反馈、补偿、自动加减速等功能,可进一步提高机床的加工精度、效率、自动化程度;数控机床是以数字控制为主的机电一体化机床,充分发挥了微电子、计算机技术特有的优点,易于实现信息化、智能化、网络化,可较易地组成各种先进制造系统,如FMS、FTL、FA,甚至将来的CIMS,能最大限度地提高工业的生产率、劳动生产率。
1.3.1数控系统与加工能力
目前处于世界领先水平的数控操作系统在设计中大量采用模块化结构。这种结构易于拆装、各个控制板高度集成,使可靠性有很大提高,而且便于维修、更换。FANUC系统设计了比较健全的自我保护电路。PMC信号和PMC功能指令极为丰富,便于工具机厂商编制PMC控制程序,而且增加了编程的灵活性。系统提供串行RS232C接口,以太网接口,能够完成PC和机床之间的数据传输。FANUC系统性能稳定,操作界面友好,系统各系列总体结构非常的类似,具有基本统一的操作界面。FANUC系统可以在较为宽泛的环境中使用,对于电压、温度等外界条件的要求不是特别高,因此适应性很强。
1.3.2机械系统与加工能力机械系统
目前以德国最好。目前较为先进的设备,保留了其先进的全静压块静压结构和双层式床身结构,增加了四柱双驱的平衡驱动方式,有效解决了消隙及驱动平衡的难题,采用斜齿齿轮对,使转台运转更加平稳;采用上压式镶条滑块结构,机床转台自适应调整液压夹紧装置使得B轴联动旋转加工精度更高,更加稳定;机床主轴采用液压氮气平衡,确保机床的快速响应速度,使机床运行更加平稳可靠。具有智能数字刨铣工能,可加工直角、锐角孔及异形斜面样条沟槽。该机床正式投产后机床直线精度(X\Y\Z)可达±0.003㎜,旋转(B)精度可达±2S”,直线重复定位精度达到0.001㎜。产品精度保持度可达10年以上,大大提高了机械的使用寿命。除此之外,目前先进数控加工设备还采用很多应用性很强的技术来提高加工精度和难度,保证其可以加工复杂的曲面件。在提高转台精度及平稳性方面:采用四柱双驱技术,由原来的一侧一个齿轮驱动改为在180°水平方向上按对等夹角两对双齿轮驱动,每对齿轮可自动消隙。机床转台精度长久保持性:使用12个独立的高耐磨铜静压块代替原来的贴塑耐磨条工艺,因静压几乎无磨损而长期保持精度。温度对机床精度的影响方面:使用温度补偿功能,在机床内部安置温度传感器,利用激光干涉仪测出其温度变化时机床在各温度下的变化值,然后再机床参数中补正。刨铣功能开发(直角孔槽加工):利用机床CS功能,使主轴与X、Y、Z轴移动的同时,主轴按刀具切线方向控制转角。机床惯量的控制:使用液压氮气组合平衡方式代替配重铁平衡方式,减少机械运动质量和运动中的动量惯量。
2、复杂曲面配合件的数控加工工艺
能够加工复杂曲面配合件是数控加工设备的重要性能之一。下面以一复杂的曲面加工件为例谈谈数控加工工艺。