HI,欢迎来到好期刊网!

高层建筑结构设计原理

时间:2023-09-24 15:54:49

导语:在高层建筑结构设计原理的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

高层建筑结构设计原理

第1篇

关键词:高层建筑、高位架空转换层、结构设计、城市化进程

Abstract: At present, our country related construction management department in the urban construction and development gave more support. With the rapid development of social economy, China's construction engineering structure design, tend to be the top, and diversification. As we in the construction engineering structure design work have to face some in the structure form irregular but for seismic performance and using the function requirement and the problem of high, which strongly high-rise building with high overhead conversion layers structure design concept is an inevitable trend. This article is to our country in high-rise building with high storey structure design of the stilt floor launches the discussion and analysis.

Keywords: high-rise buildings, high overhead conversion layers, the structure design, urbanization process

中图分类号: TU318文献标识码:A文章编号:

随着我国社会经济及城市化进程的持续快速发展,城市居民对于高层建筑的使用功能要求逐步趋于多样化和综合化。为了能够体现并满足这样的多样化、综合化建筑设计要求,就必须在高层建筑上下不同的结构体系连接层之间设置结构转换层。简单可以理解为,高层建筑在上下不同结构体系的层间设置一个可以起到“承上启下”作用的构造结构层,据建筑结构设计理念及原理来讲,高层建筑架空转换层是一种可以合理解决竖向结构的突变型转化和平面上的连续性变化的单元结构构造体系。以下主要针对高层建筑中带高位架空转换层的结构设计作详细谈论。

1高层建筑带高位架空转换层的特点及结构设计原理

1.1高层建筑带高位架空转换层的结构特点

高层建筑中某楼层的上部与下部因为平面层结构的使用功能有所不同,上层结构与下层结构是截然不同的两种结构体系设计,则该楼层需设置为专门的转换结构层。目前,我国大部分高层建筑都会将不同楼层的使用功能划分的很清楚,这样一来必然对结构楼层内部的使用空间大小提出要求,往往通过采用一定的结构形式对中间层进行转换出来,转化结构层应运而生,这其中就包括有些高层建筑结构采用带高位架空转换结构层的设计内容。例如,某建筑物的结构高层部分为砌体墙结构而在底层部分则变为使用空间较大的框架结构,两种体系之间就设置这种可以起到“承上启下”的高位架空转换结构层即可良好解决两种体系结构之间的连接问题。笔者认为设置高位架空转换结构层所体现的优点主要在于以下几点:

⑴高位架空转换结构层可将各种功用建筑单元空间集中布置并上下组合在一起,而在使用上更体系一种方便性与省时性,同时为居民提供更为优越的生活居住与工作环境,更是为适应现代社会快节奏和高效率生活的需要;

⑵高位架空转换结构层主体理念是以高层建筑结构设计呈集中紧凑的建筑布置型式,可达到最高效率的建筑使用面积。同时在给排水工程设计中又可便于布置一种相对集中且紧凑有利于节约建设投资成本、减少能源浪费的给排水管道线路;

⑶高位架空转换结构层的采用又可减少高层建筑的设计占地面积,并节约各项的土地使用费用和增加城市的绿化建设面积。

1.2高层建筑带高位架空转换层的结构设计原理

高层建筑结构设计无法避免的问题是结构下部受力要比上部大。按照传统理论来讲,在高层建筑结构设计中必然会考虑到下部结构的刚度要大于上部结构,相应的处理措施则应该是通过增加下部墙体、柱网,减少上部结构的墙柱密度,很显然这样的处理办法不够现实,不具可操作性,由于高层建筑的使用功能对于空间要求主要在下部结构空间,传统的高层建筑结构设计理念显然不再适用。因此,面对这一问题,设计人员就必须从常规的结构设计中采用逆向思维来解决,带高位架空转换层的理念创新便是例证。

图一带高位架空转换层上下结构等效刚度计算模型

(a)计算模型I—转换层下部结构(b)计算模型II—转换层上部结构

高层建筑带高位架空转换层的结构设计原理笔者认为带高位架空转换层的高层建筑结构是受力复杂且不利于抗震的一种结构型式,为了能够保证设计结构的抗震安全性能,必需要综合抗震概念与试验研究两方面来进行结构设计。由于带高位架空架空转换层应用于上、下层结构的转换,作为一种刚度较大的转换平台结构,可将建筑上部结构的荷载有效且均匀地传递给下层结构,从而使得整个建筑结构体系能够从上到下变换不同的使用功能,并合理利用结构空间。转换层结构多设计为大体积混凝土结构,配筋等级较高,甚至应用到型钢作为配筋使用,还采用预应力张拉等办法来提高建筑结构整体的刚度和承载能力。

2带高位架空转换层结构设计的应用

2.1带高位架空转换层设计的应用

近些年来,我国城市化进程发展迅猛,高层建筑逐步朝着多功能化和综合化用途发展。如某一高层建筑设计结构为筒状,沿着筒状竖向方向,高层内部结构设计作为生活居住所用,中层内部结构设计作为办公空间,而底层内部结构则设计作为餐饮娱乐空间,由此可见,高层建筑的结构设计不是统一作为一用的,必须要根据建筑使用的情况进行相关的使用面积和结构型式的规划设计,保证各个使用功能空间的开间面积充足。

第2篇

【关键词】高层建筑;结构设计;问题;对策

1.高层建筑结构设计选型

高层建筑结构体系作为抵抗水平和垂直方向荷载的传力途径,借助抗侧力体系及配套的水平构件与竖向构件向基础部分传递荷载。从建筑材料特点来看,高层建筑结构主要有钢结构、钢筋混凝土结构、钢混组合结构三种结构。其中,钢结构高层建筑除了强度高以外,还具有良好的抗震性能,施工技术简易,但是造价相对较高,耐火性能差。钢筋混凝土结构耐火耐腐蚀,造价低,但自重大,施工流程繁琐,质量管理极易出现漏洞。钢混组合结构高层建筑虽然巧妙规避了二者的缺陷,但节点处施作流程繁琐,钢筋与钢材的连接方面有技术缺陷,不能大面积推广应用。高层建筑结构体系有剪力墙结构、框架结构以及框架-剪力墙组合结构。其中,框架结构的承重部件是梁柱结构,结构体系会产生大的侧向位移,因而建筑物高度一般不能超过50m。剪力墙结构靠高层建筑墙体承重,可有效防止水平方向的形变,保证整体结构的性能符合建筑要求,因而常被用在高层建筑施工中。框架、剪力墙组合结构则整合了二者的比较优势,并且针对二者的技术缺陷进行改进,因此也是高层建筑常用结构。

2.高层建筑结构设计常见的问题

2.1 楼层平面刚度

楼层平面刚度一直是高层建筑结构设计环节比较棘手的问题。设计人员对高层建筑楼面平面刚度没有一个直观的认识,在设计上只是根据数学力学模型设计楼板变形计算程序,计算后所得数据往往差强人意。鉴于此,要采用结构设计的方式来设计建筑结构,前期必须妥善处理一些问题,稍有不慎就可能产生不安全因素,严重者还可能破坏建筑结构的安全性能。

2.2 抗震结构设计问题

对于高层建筑来说,在对其结构设计的过程中最为重要也是最难实施的环节就是其抗震结构的设计,因为高层建筑特点,使得其在地震发生过程中可能会存在很多不确定的因素,而在目前建筑结构设计的过程中,也没有对当地震发生时如何有效的进行避震以及其可能带来的破坏性进行足够的考虑。而如果在设计的过程中没有对高层建筑的相关抗震数据较为精确的分析,且不能够根据地震发生原理为依据进行相应的设计,则很有可能由于高层建筑抗震性能的不足而存在一定的安全隐患,从而对人们的生命财产安全造成严重的威胁。

2.3 嵌固端设置问题

目前,大多数高层建筑物设有两层或两层以上的人防或者地下室。高层建筑物的人防及地下室的顶板上都要设置嵌固端。此时,高层建筑结构设计就要考虑嵌固端设置可能造成的问题。在进行结构计算时,要考虑嵌固端设计对计算参数的影响,全面考虑其可能造成影响的多种可能,有效协调高层建筑结构抗震缝的宽度及缝隙与嵌固端的位置,并将嵌固端的上层和下层对应的刚度比值控制在规范要求的范围内。此外,在进行高层建筑结构设计时,要为嵌固端楼板设计合理的位置。在进行嵌固端的设计时,要综合考虑各方面因素,选择最优的设计方案,尽可能避免其在高层建筑结构使用过程中出现安全问题。这样,在确保结构安全的前提条件下,有助于促进建筑工程项目的顺利完工。

2.4 底层框架一剪力墙砌体结构挑梁裂缝问题

底层框架剪力墙砌体结构系一类高层建筑。它的上部是多层砌体结构,底层为框架剪力墙结构。在城市建筑中,分布在市区主干道上的大型商场、写字楼和住宅小区多采用高层建筑设计,以提高土地资源利用率,降低空间成本。但设计人员追求建筑使用面积,使二层往上的部分横墙采用了悬挑梁设计,使得底层框架一剪力墙砌体结构梁开裂。

2.5 高层建筑结构设计扭转问题

在建筑设计中,有一“建筑三心”的概念。“建筑三心”即为几何形心、刚度中心和结构重心。设计师应秉承三心合一的原则设计建筑结构,就是使这三点归于一点。如果建筑结构存在结构扭转的问题,就说明“建筑三心”未能归一点,使得整体结构承受水平荷载而产生扭转振动现象。

3.高层建筑结构设计问题应对策略分析

3.1 主梁若有次梁则增设附加筋

高层建筑结构中主梁需要增设附加筋。附加筋分为箍筋和吊筋。附加筋按照设计和施工要求来增设,建筑结构梁截面、下部集中荷载处由横向钢筋荷载力负担,将一附加筋装于梁上部,水箱下部则须先施作垫梁,再安装附加筋。如果主、次梁截面无较大差距,但次梁荷载较大,也需要设置附加筋。但是如果次梁截面小,主梁又高,受力满足计算要求,可无需另设附加筋。

3.2 平面与立面选择

上文提到,应该秉承建筑三心合一的原则设计高层建筑结构。施工时,如果无法满足这个要求,结构将会产生扭转的问题,处理起来相当棘手。建筑结构扭转系一种结构设计缺陷,其危害不言而喻。选择立面和平面时需要注意几个问题。首先,平面力求简单、规则、对称。对完全对称高层建筑结构,则要按设计要求调节一些重要节点的比例。切记一点:比例不宜过大过小,出现问题要尽快补救。在竖向布置上,注意刚度均匀、连续,以防结构出现软弱层,刚度突变。在建筑设计中,切莫为了达到审美效果而将剪力墙切断,降低建筑物的刚度,否则将可能产生严重的安全事故。

3.3 水平位移控制

水平位移现象在高层建筑设计中极为常见。设计高层建筑结构时,应根据结构的安全要求设计水平位移数值,同时要兼顾周期与地震因素。应按弯曲型设计剪力墙位移线,切忌设计成剪切型。相对而言,框架结构位移曲线则是剪切型。假设是混合式建筑构造,那么位移曲线也应是相结合的。

3.4 高层建筑结构设计扭转问题

水平荷载能使建筑物产生扭转破坏现象。设计建筑结构时,为规避这一现象,必须按“三心合一”的原则对建筑物的结构、平面布局进行周密的布置。水平荷载的质量分布在一定程度上决定了它对高层建筑结构造成的扭转破坏程度。为了确保水平荷载沿楼层平面均匀分布,最大限度规避扭转振动破坏,建议多使用矩形、方形等平面设计。当然,必须兼顾城市道路景观规划。因此,高层建筑不可能全部是方方正正的平面构造,也要根据城市规划和道路景观布局适当采用十字形、T 形或L 形等复杂建筑形式。但至少要明确一点,就是凸出部分的厚度与宽度的比值不得超限,并且尽量采用对称的平面结构。

结束语

高层结构设计可以说是一个与实际紧密结合的过程,决不能脱离实际而进行,在设计过程中,要综合考虑建筑工程所在地的地理环境、水文土质、抗震等级等,在参考规范的基础之上,通过借鉴其他成功案例的经验,合理安排建筑体从地下到地上,从主体到部分的结构,使建筑结构设计既符合外观的视觉享受,又达到主体的结构安全实用性。

参考文献

[1]荣洋,王文可,潘可明.建筑结构设计经验探讨[J].低温建筑技术,2008(5).

[2]于桂萍.关于多层建筑结构设计中的主要问题分析[J].中国高新技术企业,2008(22).

[3]莫雪辉.深度探讨如何提高建筑结构设计水平[J].科技资讯,2008(28).

第3篇

要】随着我国经济的快速发展,高层建筑逐渐成为城市建设中的重要建筑结构形式。由于高层建筑不同于传统低层建筑的设计施工,高度越大的建筑,其施工工艺越复杂,结构设计要求也越严格。良好的结构式设计是保证一项高层建筑项目工程质量的关键。本文通过阐述高层建筑结构设计的相关概念,分析了高层建筑结构设计的特点,并探讨了现有的高层建筑结构体系以及经济性。

【关键词】高层建筑;结构设计;设计特点;结构体系

目前我国的城市人口已经占全国总人口的一半以上,而城市占地面积却只占总面积的一小部分,在这种形势下,如何合理设计城市建筑结构以满足人们日益增长的需求成为社会关注的焦点。高层建筑在进行结构设计时,不仅要考虑建筑的安全性,还要考虑建筑的功能性。

1、高层建筑结构设计

高层建筑结构设计是为了满足人们越来越多的建筑功能需求为基本目标的。因此,在进行高层建筑的结构设计时,要充分考虑到当地的经济状况与和人民的生活水平以及施工条件的限制等因素。另外,高层建筑结构并不是低层建筑结构的叠加,其对于建筑结构的力学性质、设计构造原理的要求更加严格规范。

现代高层建筑结构的形式具备多样化、复杂化的特点,除了原有的几种基本结构形式,如框架结构、剪力墙结构以及筒体结构等,还需要根据不同建筑的功能需求而增加其他的结构,同时这也使得建筑中节点的连接形式更加复杂,不同的构件连接需要利用不同的节点类型,这是关系着高层建筑结构安全稳定的重要因素。另外,高层建筑在增大基层载荷的同时也为竖向结构带来了更多的载荷,对墙体、柱体的结构强度和支撑能力要求更高。

高层建筑的结构设计是一项涉及知识面较广,考虑因素较多的现代化建筑设计方式,在设计中除了要发挥设计的先进性,使建筑功能得到很好的体现,还要做好与经济性的协调工作。

2、高层建筑结构设计特点

高层建筑相较于低层建筑来讲,其结构设计需要更加严谨科学。笔者通过对现有的高层建筑结构进行深入的研究与分析,结合自身对建筑结构设计的理解,提出了高层建筑结构设计不同于其他建筑结构设计的几个特点,主要表现在水平荷载、轴向变形、侧移以及结构延性这几方面。

2.1水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。

2.2轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

2.3侧移成为控制指标。与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

2.4结构延性是重要设计指标。一般在建筑施工设计中,在保证建筑物应有的强度的同时,要需要保证建筑物具有一定的延性。这是为了使建筑物具有一定的变形能力,以适应因自然环境或人为因素而引起的楼房震动,避免因缺乏延性而在轻微震动中就发生建筑倒塌事故。高层建筑相对于低层建筑来讲,延性需要更大一些,即保证高层建筑的结构更柔一些,这就需要在结构设计中采取合理科学的措施,使高层建筑结构在使用中具有足够的延性。

3、高层建筑的结构体系设计分析

3.1框架-剪力墙体系。当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架-剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。

3.2剪力墙体系。当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。

3.3筒体体系。凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种型式。筒体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

4、高层建筑结构设计经济性分析

建筑结构的经济性是衡量建筑结构设计优劣的重要指标之一,一套好的建筑结构设计方案,不但要具有较强的实用性,还需要具备一定的经济性。尤其在高层建筑逐渐成为建筑结构的主流形式的今天,分析高层建筑结构的经济性对于我国建筑业的发展是很有意义的。

建筑结构的经济性是指一项建筑工程项目在以最低的成本投入下,获得最大的效用。其主要体现在建筑材料、空间设计、施工方法、建筑结构设置以及能源资源的利用这几个方面。例如在关于建筑材料的设计中,除了强调改进建筑材料保温性、改善建筑体形系数、提高建筑材料的气密性等一系列节能降耗措施,还要利用结构设计的灵活性,最大程度的减少材料的使用量来达到预期效果。在建筑空间组织、利用的高效化方面,除了要坚持对平面面积的充分利用,还要注重三维空间的挖掘。比如在图书馆设计中提出了“模块式”图书馆的创作思路,将图书馆划分成不同的功能模块,采用不同的层高、柱网,进行类比布局。这样可以减少“三统一”标准空间所造成的浪费,充分发挥空间效益。或者在空间住宅的设计中则对厨房、厕所的上区、卧室上下等潜在空间进行了有效的利用。将每户主、次二个开间设置为不同层高,对应于不同的功能使用要求,大大提高了住宅空间的使用效益和经济性。

第4篇

高层建筑的使用缓解了城市土地使用紧张的情况,大大提高了建筑物的容积和使用效果。高层建筑物工程庞大,技术复杂,其结构设计合理与否直接影响到建筑物本身的安全性能,所以在进行高层建筑结构设计时需要考虑四个方面的影响因素:高层建筑的抗风结构设计;高层建筑的抗震结构设计;高层建筑的消防结构设计;高层建筑的建设成本要科学合理。

1.1抗风结构设计

高层建筑由于层高的原因,对风具有阻断和干扰的作用,使得气流转从高层建筑的周边行进,被改变后的气流会产生使高层建筑振动的强大力量,使高层建筑遭受破坏甚至开裂。针对这一问题,首先必须把高层建筑的基础设计好,俗话说“万丈高楼平地起”,可见基础打好了,才能更好的提高建筑整体承受力。基地采用级配等级较高的砂石,保证回填料的整体密实度,防止不均衡的水平作用力威胁整个地基结构,造成倾覆的威胁,同时在建筑物基础受力层的底部设置抗拔锚杆,通过对杆体安装、注浆和锚杆钻孔等动作,提高建筑基础的抗拔强度。

1.2抗震结构设计

地球地壳板块活动异常,抗震结构的考虑始终是高层建筑的薄弱点,高层建筑工程庞大结构复杂,地震发生时可能的后果无法准确估算,外加设计人员在设计过程中未能综合考虑相关地震的破坏原理,使得建筑结构设计在抗震方面缺乏灵活性。地震发生时地基出现不同的沉降现象,这是导致系列建筑物被损毁的直接原因,所以合理设置抗侧力构件的位置,横向和纵向通过提高抗侧力构件的强度,使高层建筑物结构处于平面布置规则对称的状态,侧向刚度沿竖向宜均匀变化,从而达到一定的抗震效果;设计过程中,使用混凝土剪力墙的结构设计,可以有效提高抗侧力结构构件的承重能力,使得建筑物整体的重量更好的分散和延续开来,有效提高抗震效果。

1.3消防结构设计

高层建筑是一个复杂的系统工程,为了满足各种功能需求,施工过程中需要使用各种功能不同的建筑材料,并且很多材料是可燃的,无疑增加了火灾发生的概率。外加高层建筑空气对流性强,高空段风力比较强大,如果不幸发生火灾,无疑为火势的迅速蔓延提供了条件。所以高层建筑的消防结构设计要有科学性、人性化,切实保障住房使用者的生命财产安全。设计过程中必须全面考虑防火间距的设计、安全疏散功能结构的设计以及阻碍火势蔓延的分隔结构的设计,坚持以防为主,消防应急处理为辅的设计理念。

1.4工程造价

高层建筑地基设计的质量直接影响着基础的类型选择和工程的造价。如何在确保地基质量符合建筑规范要求的同时,又设计出经济效益最大的高层建筑基础呢?这就需要建筑设计者综合考虑工程的相关影响因素,设计前依据地质勘探报告对工程地质的情况充分了解,结合“整片筏基”与“板式筏基+独立柱基”两组方式的基础设计方案,实现最经济合理的地基量;除此之外,对于高层建筑整体使用的工程材料,都要做好全面的市场调查,找到质量、性能都相对较高的替代材料,同时价格又非常的经济;工程建设过程中,杜绝材料采购过程中出现的严重价格差现象,确保每一分工程款都用在实处。

2高层建筑结构的相关设计原则

2.1高层建筑过程中基础的设计原则

地基设计是高层建筑结构设计的前提工作,随着城市人口不断增加,为提高土地使用率,高层建筑不断涌现,车库、人防设施、地下室等不要不断的增加,通过确定基础底板的埋置深度以及建筑工程的岩土特征,来选定工程的基础设计。并且尽量选取天然的筏板基础。因为基础的设计工作包含基础的类型设计以及对地基的处理工作,地基类型的选择要考虑到建筑物上部结构的荷载、地基的承载力以及整体的工程造价等相关因素。如果在基础设计过程中天然筏板基础的沉降量计算过大,那么天然地基筏板就无法得到很好的应用,无疑增加成本,造成不必要的浪费。所以在高层建筑地基的设计过程中,需要详细研究地质勘探报告,要充分考虑筏板的设计基础、承载力和变形组成情况等,结合地区的相关地质条件对基础进行合理设计。

2.2剪力墙设置原则

前文提到过剪力墙在抗震结构设计中的重要作用,高层建筑中剪力墙的位置设置及其数量要求也是高层建筑结构设计原则中的重要考虑因素。现有的相关建筑规划中,主要描述的都是短肢剪力墙,而短肢剪力墙在实际使用过程中受到很多因素的影响,所以具体设计过程中设计人员都会尽量避免使用这种墙体结构,从而避免了后续相关问题的产生。在具体设计过程中,设计人员不能死板照搬规划,认为剪力墙只能设置在建筑物两端,要依据实际情况灵活变通,在建筑的纵向中轴线上也应该增加剪力墙结构设计,同时调整该结构墙的中心位置,合理控制好厚度和截面,以便建筑物的侧向位移能保持在可允许的范围之内。

3筏板设计的综合设计原则

高层建筑结构筏板基础的设计过程需要考虑很多的影响因素,还要结合具体施工造价情况对设计方案进行合理有效的调整。具体设计过程中可以通过比较“整片筏基”与“板式筏基+独立柱基”两组方式的工程造价,得出经济效益更加显著的方案。如果地质勘探的结果显示地层分布不均匀,上部结构荷载在筏板上分布不均匀,是筏板基础各部分的沉降差异较明显的话,那么就可以进行以下调整:调整建筑地表以上结构荷载或者调整网住间距,以达到减少基层压力差的效果;调整筏板的形状和面积,均衡压力差;对底板的强度与刚度予以加强,并且在跨度较大的间柱体之间设置加强板或者暗梁,提高基础筏板的整体抗压性能。

4结束语

第5篇

关键词高层建筑,结构设计、结构体系、结构类型

中图分类号:[TU208.3] 文献标识码:A 文章编号:

0 概述

近年来,随着国内国内人口以及城市化进程的不断加快,导致城市人口数量激增,城市土地建设资源日趋紧张。为了满足不断膨胀的建筑需求,适应现代社会高效率、快节奏的要求,建筑层数在不断增加,高层建筑群也犹如雨后春笋一般。高层建筑的结构形式不断创新,一系列新兴结构设计方案迅猛呈现。同时其结构体系也越来越复杂,建筑的使用功能等趋于多样化。结构设计关系到整个建筑的经济性与安全性,也决定了建筑的感官特点,成为高层建筑设计的重中之重。

因此,我们只有掌握了建筑结构体系的特点,才能更好使设计达到最理想标准。本文就高层建筑结构的结构体系类型以及高层建筑结构设计的特点进行说明,对高层结构选型、建筑基础、变形缝的设置以及剪力墙的构造等相关问题进行初步分析,为实际高层建筑结构设计提供一定参考。

1 高层建筑的结构类型及特点

目前,世界各国对高层建筑的高度标准还未形成统一的规定。我国《民用建筑设计通则》(GB50352-2005)将10 层及 10 层以上的建筑与高度超过 24m 的公共建筑和综合性建筑称为高层建筑。随着高层建筑迅速发展,结构形式不断丰富。,目前主要结构形式及特点如下:

(1)框架结构

框架结构是高层建筑最初采用的结构类型。结构体系由梁和柱以刚接或者铰接相连接而成。由梁柱组成的单元抵抗建筑所承受的水平、竖向荷载,属于一种平面受力体系。框架结构体系可以构建灵活的建筑空间,但由于框架梁柱截面较小,在抗震方面表现较差,主要应用于对于抗震设防要求低、高度较小的建筑。

(2)剪力墙结构

剪力墙结构是用钢筋混凝土墙承受竖向和侧向力的钢筋混凝土结构体系。由于竖向的钢筋混凝土墙板具有很好的整体性及侧向稳定性,可以适用于较高建筑。剪力墙结构的受力体系为剪力墙,要满足间距的要求,限制了建筑的空间灵活性。

(3)框剪结构

框剪结构是框架于剪力墙结构的融合体,在一定程度上弥补了框架结构受力性能差和剪力墙结构空间布置不够灵活的缺点。目前在我国的较高层建筑中得到了广泛应用。

(4 )筒体结构

筒体结构由竖向筒体承受竖向、和水平荷载的结构体系,是框架和剪力墙体系的演变体。框架或剪刀墙所围成的筒状封闭体系在受力方面具有更强的优越性,使建筑的高度进一步得到增大。

(5)其它巨型结构和组合结构

为了满足建筑高度的不断提高和建筑使用功能的要求,特巨型结构( 巨型梁 巨型柱和巨型支撑)被研究应用。另外,随着建筑体系的不断完善,不同结构形式相互融合取长补短,形成了基本结构体系的组合结构体系,如框架-核心筒结构等。

2 高层建筑结构设计的特点

从所受荷载角度而言多层结构与高层结构没有分别,但是由于高层结构体系的复杂性,构造特性有其独特的特点,从而其设计原理及设计方法侧重点等也不相同。

2.1 水平荷载是设计关键因素

竖向力与建筑高度成线性比例关系,而水平荷载对建筑产生的倾覆弯矩却成级数增长。高层建筑高度较大,风荷载和地震作用所产生的水平荷载,将会引起建筑结构构件内力的激增,并造成建筑整移很大。这就要求构件具有更高的承受荷载的能力。结构形式不同,建筑自身的结构动力特性等也有很大变化。因此,随着高度的增加,水平荷载将成为控制因素。

2.2 考虑轴向变形的影响

建筑高度越大产生的竖向荷载越大,作为竖向荷载的受力构件,柱子会发生较大的竖向变形。而梁柱做为受力体系,变形的发生会造成内力的重分布。连续梁中间支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大,这种影响同时会使梁的长度发生变化。因此在进行构件截面以及预制构件尺寸设计时,如果忽略轴向变形的影响将会偏于危险。

2.3 侧移成为设计的控制指标

建筑楼层较少时,总体移动较小。而当建筑高度达到一定程度,结构的整体刚度降低,在水平荷载的影响下,整体会产生很大侧移,这会大大影响人们的使用舒适感。另外,由于建筑侧移所产生的结构内力会使建筑产生裂缝以及结构损伤。因而,应高层建筑结构设计中药对结构的侧移进行控制。

2.4 结构延性是结构设计的重要指标

在竖向长度的增加造成高层建筑柔度大,在相同的荷载作用下,其水平和竖向变形都将不可忽视。为了避免结构在遭受高强荷载作用时,由于变形较大而发生倒塌,在结构设计时采取合理的构造措施,使塑性阶段后期建筑仍能承受较强的延性。

3. 高层建筑设计相关问题分析

高层建筑设计时,需要根据建筑所处的场地类型、所受荷载以及水文地质等工程状况,合理选用建筑形式、基础类型以及变形缝设置等进行研究,以确定合理可行且经济的方案。

3.1 结构选型

结构体系是抵抗竖向荷载和水平荷载时的传力途径及构件的组成方式。不同结构形式具有不同的结构体系已经做上一节做了简要介绍,根据不同使用要求,应该选用不同的建筑结构体系。

在高层建筑选型方面有几个问题需要认真考虑:(1)结构的规则性问题 结构是否规则对结构受力有很大影响,我国建筑规范中对建筑结构的规则性做了明确的规定;(2)结构高度问题 建筑造价会随着高度的增加而非线性增长,且对工程工期、造价等整体规划的影响相当大。另外需要考虑嵌固端的设置等问题。结构形式选择涉及到整个建筑的受力体系是高层建筑结构设计的首要考虑及决策重点。

3.2 基础选型

地基基础是上部结构直接承载体,承担着将上部荷载传递到地层内部的作用。高层建筑的基础类型有很多种,按基础的构造形式可分为条形基础、独立基础、满堂基础和桩基础。基础类型的选择不仅与建筑高度、工程地质条件相关,还受到施工技术和工程投资方面的影响。

因此,地基基础形式选取要对以下几点进行考虑:(1)上部结构高度 上部结构的高度与建筑的自重荷载紧密相关,当建筑体型及高度较大时对基础的承载力和刚度等多方面要求相应提高;(2)上部结构形式 不同结构形式所产生的结构变形响应不同,引起不同区域地基变形程度出现差异,上部结构对地基不均匀变形越敏感,就越应尽可能提高基础的总体刚度。

综上所述,基础型式的选用应进行必要的技术和经济方案比较,合理选用相应的基础设计方案。

3.3 变形缝设置

当建筑体型到达一定程度就会产生不均匀沉降以及受到温度影响变形量不可忽略等问题,这时需要在高层建筑内部设置多种变形缝来避免建筑整体遭受破坏。主要需要进行设置的变形缝有:沉降缝、伸缩缝、防震缝等。

4. 结语

随着现代化建筑事业的发展,高层建筑应用普及型越来越广。现代高层建筑结构设计是一项综合性技术工作,只有综合考虑高层建筑的安全性,经济性和合理性,才能实现高层建筑设计的完美设计。作为建筑结构设计人员必须不断的提升专业技能,才能为祖国的建筑事业贡献个人一份薄力。

参考文献:

[1] 刘伟琼. 关于高层建筑结构设计探析[J].中国新技术新产品,2011,3.

[2] 谭文锐,李达能. 高层建筑结构设计中问题之探究[J].广东科技,2007,(6)

第6篇

关键词:建筑;结构设计;概念设计

Abstract: With the development of China's economy, building structure design has been continuous progress and improvement. Conceptual design is gradually transformed from the economic field to field of building structure design, and achieved certain results. In this paper, combined with the actual work, and discusses the principle conceptual design of building structure design and application, for reference.

Keywords: building; structure design; conceptual design

中图分类号:TU318 文献标识码:文章编号

一、概念设计的内涵

概念设计是相对于建筑设计结构中难以计算和难以确定的一些工程和项目而言的,强调的是通过简单、合理、实用的结构设计方案的设计和实施,以达到分析整个建筑结构各程序间的力学关系,形成有效处理结构破坏原理、工程设计以及地震等因素的最终目的。概念设计不仅简单易行,还具有节约成本,提高设计效率和设计质量的作用。另外,随着我国对建筑设计的不断重视,传统设计的旧观念已不再适合当今社会的发展趋势,取而代之的是新型的设计理念和设计新意。建筑设计师也将优化设计思路,转变设计想法作为当今建筑设计的新方向。概念设计正是在这种大的背景下应运而生。

概念设计是站在宏观的角度上对建筑结构进行有效控制和掌握,主要分为两个方面:①从宏观的角度对建筑结构的整体性进行分析,并着重考虑整体结构与分支结构的融合程度、适应程度以及匹配程度,达到建筑结构设计方案的和谐、统一。②概念设计是站在理论的基础上对建筑结构设计的各方面进行合理得分析和统计,推测出可能出现的后果以及影响。针对数据设计中难以做出计算和测量的问题,依据设计规划中的实际经验进行重新审核和规划,实现建筑结构总体设计方案的优化。因此,我们可以总结出概念设计的关键之处就在于对于概念的理解。概念是建立在宏观、理论的基石下,合理、准确、适当得对建筑结构可能出现的问题和难点做出预测,并为整体建筑结构设计提供有效的设计方案。

二、建筑结构概念设计的原则

2.1全面考虑原则。结构概念设计时,首先根据建筑的要求,保证结构方案的合理化。结构选择时应结合当地固有的自然条件和人文条件(如气候、文化背景、地质条件等)、地表结构类型及荷载情况、相邻建筑物的影响、施工条件限制等多种因素进行综合分析,最后提出合理的方案。

2.2使用科学的计算简图。对简图进行计算是结构计算中的基础,选择恰当的计算简图是保证结构设计安全的重要条件。计算简图应有相应的构造措施来保证,建筑结构实际的节点不可能是纯粹的钢节点或者是铰接,但是其存在的误差必须严格限定在设计允许范围之内。

2.3功能协调原则。结构概念设计时,应尽可能做到建筑、结构、设备和施工手段的功能协调,结构各个构件的受力相互协调,共同承担自重及外部荷载,从而取得尽可能大的效能和效益。例如,在结构和建筑功能协调方面,要做到建筑体型和结构体系相协调,建筑使用和结构布置相结合等。从结构受力和变形分析看,要尽可能利用结构的对称性、变形的连续性和协调性。

2.4优化选型原则。结构概念设计归根到底是确定主体结构体系和结构布置,优化结构体系的前提是掌握各类基本构件的特征,根据环境、使用、建筑和荷载实况优化选择合适的基本构件,择优选用抗震和抗风性能好且经济合理的结构体系。优化结构布置是在满足使用要求和建筑意向的前提下优化主要受力构件的布置,重要的原则是平立面宜规则、对称,具有良好的整体性,要保证构件既有必要的抗震承载力与刚度,又拥有良好的承受非弹性变形的能力。

三、结构概念设计在建筑结构设计中的具体运用

3.1结构概念设计在建筑平面结构设计中的应用。在高层建筑设计中,水平荷载作用下的建筑结构侧移成为了高层建筑设计的难题。建筑结构设计人员在进行结构设计时,要运用结构概念设计原则,既要考虑到满足相关的要求,又要选择更好的抗侧力体系。在建筑物选择平面结构时,应该选用风压较小的结构设计。在进行结构设计时,还要综合分析所建建筑物周围的建筑物,了解分析周围建筑物对所建建筑物风压布局的影响。还要考虑建筑物的结构设计要增强建筑物的抵抗能力和竖向的荷载。并且,建筑结构设计人员还要运用概念设计,考虑到建筑结构的抗震能力,在平面设计时,要力求使建筑的平面结构简单规则。在结构概念设计中,如何选择既能够满足建筑结构侧向的移动距离,又不出现危险、使建筑结构能承受更多的侧压力的建筑结构模式,是目前建筑结构设计工程师所面临的最大难题。建筑平面结构要做到简单规则,考虑到风所带来一定的影响,可以根据具体情况,适当放宽建筑平面的结构,因为建筑结构设计一旦发生整体弯曲变形,还可以有补救措施。

3.2概念结构设计在建筑剖面结构设计中的应用。在建筑工程人员进行建筑的剖面设计时,要做好竖向的传力体系设计,控制好建筑物的高度比,使高层建筑物的抗侧力结构刚度由基础向建筑物的顶层逐渐过渡,避免出现建筑物竖向上刚度出现突变而消弱高层建筑物水平荷载能力的现象。当建筑物竖向的刚度变化特别大时或在高层建筑物的结构布局发生变化时,要设置结构的转换层,以确保高层建筑的稳定性。在给高层建筑设置锚固深度时,要结合高层建筑物设备用房和地下停车场的需要,设置一层或几层地下空间,提高高层建筑的抗震能力和抗倾覆能力。

在进行建筑物竖向形体设计时,根据概念设计原则,建筑结构设计人员可以选用截锥形、上窄下宽形和新月形的竖向形体设计形式。截锥形是指采用从下而上分段逐步减小楼层面积的阶梯状形体,这样能大大地增加房屋的刚度,此外,采用这种形体的建筑顶部楼面比建筑底部要小,有利于建筑的抗风和抗震作用。当采用上窄下宽形时,建筑物随着高度的增加,楼身不断变细,这样可以大大减少建筑物高层所承受的风力,降低楼体重心,增强建筑结构的稳定性。这种形式常见的有上削楔形体和退缩体,这些结构都有很好的抗风、抗震功能。当建筑设计人员采用新月形设计时,建筑物就像一个竖向的悬臂壳体,能有效地增加侧向力刚度。它的作用就像波形的屋面壳体,能抵抗重力荷载,通过一个壳和一个框架承受。这种形式的建筑物能够有效地抵抗对称作用和建筑物的侧向力。

3.3结构概念设计在基础设计中的作用。根据建筑物的不同地理位置和结构形式,建筑结构设计人员可以根据结构概念设计原则选择使用桩基基础、箱型基础和筏形基础。当遇到地基土质较软的情况时,建筑结构设计人员一定要考虑到运用人工的方法增强地基的承载能力。建筑工程人员可以采用桩基结构,用预制的钢筋混凝土土桩、混凝土灌注桩和钢管桩,将荷载直接传到地基下部坚实的持力层。在运用箱型基础时,建筑物的荷载力能够均匀地传给地基,抵抗地基的不均匀沉降,和周围的土体共同协作,增强建筑物的抗震和抗风能力。当采用筏形基础时,建筑物的上部结构荷载较大,地基的承载力较低。采用这种结构可以有效分散建筑物上部的荷载力,增加地基的承载力,防止地基产生不均匀沉降。

四、结束语

概念设计作为展现设计理念,强化设计意识,增强设计准确性、提高设计精确度的重要标准,在整个建筑结构设计中起着不可替代的作用。在建筑结构的设计中,结构设计人员一定要结合各方面宝贵的经验将结构概念运用的恰到好处,从而保证建筑结构设计的不断发展,提高建筑行业的水平,使得建筑物的质量和安全性得到有效的保证。

参考文献:

[1] 高鹏,乔可义. 重视概念设计,提高建筑结构设计的质量[J]. 黑龙江科技信息, 2011,(03) .

[2] 闵小双. 概念设计在建筑结构设计中的意义[J]. 科技资讯, 2006,(34) .

第7篇

关键词:建筑结构概念设计;结构措施;应用

中图分类号: TU3 文献标识码: A

引言:

概念设计及结构措施在建筑结构设计中的应用,能够优化结构设计,提高结构承载力和稳定性,使其寿命达到甚至超过设计使用年限,并且建筑结构能够与周围环境有机的融合。

一、概念设计与建筑结构设计之间的关系探讨

概念设计是指以设计师的个人经验为基础进行的定性设计,而结构设计是根据概念设计的要求及力学等定量设计来实现的一个逆向过程,其中,定量设计主要包括建筑结构内力、配筋数量及结构变形等参数。若概念设计不合理,将会影响整个建筑的结构设计,由于概念设计是体现出设计师的一种先进设计思想,因此,在建筑结构设计中,设计师需要根据建筑的整个概念进行结构设计,并对构件与结构之间的关系进行协同处理。所以,概念设计与结构设计两者之间的关系是相辅相成的。

二、建筑结构概念设计的应用

作为一种新的设计方法,建筑结构概念设计既符合理论,又结合实际弥补了理论的不足,设计人员从工程经验与理论知识相结合的角度,对建筑结构进行概念性的分析和比较,从而形成经济合理的设计方案。

(一)抗震设计中的概念设计

地震是一种常见的自然灾害,具有突发性和严重破坏性的特点,一旦发生,将危及人们的生命财产安全。地震学的研究表明,现在尚不能准确检测到地震发生的时间、地点及强度。由于在地震时建筑结构受力的复杂性与不确定性,再加上计算软件的机械性与局限性,抗震设计中的计算数据可能与实际情况大相径庭。所以,在日常的结构设计中,其计算结果仅能作为参考,而不能保证结构的安全可靠性,存在很大的安全隐患。在这种情况下,为了保证建筑结构的抗震性能只能借助于结构抗震的概念设计。抗震概念设计是根据结构地震破坏形态以及以往的工程经验而逐步形成的基本设计原则和设计思想,从宏观的角度强化抗震结构,通过对建筑选址、基础设计、结构选型、构件连接等环节的综合考虑,科学分析软件计算结果,创造有利的抗震条件,从而有效控制结构的薄弱环节,达到抗震的效果。总之,就结构抗震设计来说,结构概念设计的重要性远远大于数值计算。

为使建筑具有良好的抗震性能,在伉震概念设计中应该注意以下问题。一是场地和地基的选择。地基是否牢靠直接关系到建筑结构的抗震能力。地基分为天然地基和人工地基,在地质条件较好、具有较强的承载力时使用天然地基,可以拥有较好的抗震效果,否则采用人工地基。二是结构构件传递地震力的合理性。应选择合理的结构体系,使结构受力明确、传力简洁,避免结构体系受力复杂,同时设置多道抗震防线,以保障建筑结构的抗震性能。三是建筑的外观设计,要求建筑外形简单、对称,要求建筑结构规则,确保建筑结构的质量和刚度沿结构分布的均匀性和对称性。四是建筑结构的整体性。结构构件之间的连接要可靠,以保证连接部位具有一定的强度和变形能力,使结构具有稳定的抗震性;对于非结构构件,在利用其对整体结构有利影响的同时,避免由于不合理的设置而引起的不利作用。同时,还要注意结构的空间整体性,以保证结构的整体稳定性。五是刚柔相济的原则。要求在结构抗震设计中统筹考虑结构的刚度和韧性,刚柔相济,在满足变形要求的同时,提高结构抗震性能。

(二)高层建筑结构设计中的概念设计

城市化进程的加快使得高层建筑结构如雨后春笋般迅速发展,同时高层建筑结构设计方案的日益复杂,设计人员需要以更多的主观分析来判断结构的经济合理性,由此可见,概念设计在高层建筑结构设计中的重要性。在对高层建筑进行概念设计时需要注意以下问题。其一,选择刚柔相济的结构。相对于低层建筑物,高层建筑具有自重大、受气流影响大等问题,需要设计人员通过概念设计,选择刚柔相济的结构,保障结构的刚度和韧性,同时宏观把控结构的水平荷载。其二,选择合理的结构体系。在高层建筑结构设计中,水平荷载的影响远大于垂直荷载的影响,水平荷载是结构设计的控制因素,所以抗侧立机构的选择至关重要,同时,也要综合考虑建筑的功能和高度。其三,选择合理的结构布置。高层建筑结构布置的合理与否,直接影响到建筑物的正常使用,也直接影响到造价的高低以及工程量的大小,如果结构布置不合理,不仅增加了造价和工程量,而且还会产生严重的安全隐患。所以,一定要选择合理的结构布置,确保结构的整体性和整体稳定性,要求结构受力明确,抗侧构件力求均匀对称,传力简洁,避免局部出现薄弱部位。

三、建筑结构设计中概念设计注意事项

(一)结构简图的科学性

结构概念设计首先要有科学专业的理论作为支撑,而且一般情况下利用结构设计简图对结构概念设计的合理性进行评估。在结构简图的选择上,要遵照安全和准确的原则,选取合理的简图。因为如果选取的简图不够科学,那么相应的结构概念设计也会出现相应的错误,甚至对工程的质量问题造成巨大的影响。所以说,结构设计简图在制作时应该做到精确、科学,使出现的误差也在可控范围内,应该进行严格的审查,保证简图的质量。

(二)结构刚度科学化选取

建筑结构在刚度的选择上至关重要,而且在建筑结构概念设计中也必须遵守刚度的要求。结构刚度可科学化选择,是保证工程质量的有效措施,还能够对地震等灾害起到危险性降低的作用。与此同时,结构刚度的科学化选取还能扩大空间的占有率,使建筑平面的利用率等都能得到合理的利用。

(三)对计算的结果进行准确分析

随着社会和经济的发展,信息技术被广泛的应用,特别是在数字的计算等方面设计出种类繁琐的计算软件,可是各计算软件在计算的结果上确实各不相同,让使用者也不知道哪个是正确的,所以在工程的设计中计算工作经常出现混乱。在进行设计时,软件的选择很重要,应该对各个软件进行系统化分析,根据工程的实际情况和设计的原理等,选择适合的软件,确保计算结果科学准确。

(四)合理选择建筑基础

根据选择好的建筑场地的地形特征和结构形式进行结构基础的选择。如果是松软的地质且要建造高层建筑,天然的地基无法承受起荷载,需要采用桩地基,把建筑物的荷载传递到下面坚实的持力层中;如果建筑场地土质不均匀,为了改善不均匀沉降的问题,从而增加建筑物的抗震抗灾能力,则可以选择箱型基础;最后一种建筑基础是筏型基础,它整体的刚性大结构稳定性好,可以解决建筑物上部的超荷载,还可以解决其压力分布不均的问题。

(五)合理选择建筑主体的结构体系

建筑主体是一个空间的结构体系,目前我们在空间结构体系整体研究中还有一定的局限性,在设计工程中用了许多假定和简化理论,作为结构工程师我们更应该通过强化概念设计,灵活运用规范,运用概念设计理论对整个结构体型与各基本分体系之间的力学关系有透彻的认识,做到结构体型布局合理,受力明确,抗震性能好。结合建筑平面工程对结构体系进行合理的布置,通过调整结构刚心、建筑物质心及平面形心三者之间的距离使三者尽可能地靠近,以利于减小结构体系的扭转力,增强整个结构的稳定性,提高结构的抗震能力,同时也能节约工程造价。

四、建筑结构设计中的概念设计与结构措施

(一)协同工作概念与结构体系

协同工作的概念在工业产品的设计与制造中已经有较为广泛的使用,目的是将内部结构体系能够高效的进行优化配合,实现其设计寿命。现阶段,轻型钢结构的应用就是协同工作概念与结构体系完美结合的案例。轻型钢结构以其质轻、价低、施工进度快、受施工环境影响较小、抗变形,抗震能力好等优点在工业厂房中不断得到应用。由于轻型钢结构的抗拉强度比普通混凝土的强度要高出25倍左右,而且不产生裂缝,在建筑结构中具有较好的结构性。另外,钢结构具有较好的塑性变形特性,当某种原因导致其它结构断裂时,同时发生在钢结构上则只是表现为塑性变形,而且变形具有缓冲期,能够为安全撤离提供充足的时间保障。因此,在协同工作概念下轻型钢结构作用发挥出色。如某钢结构厂房,设计为门式轻型钢结构,总跨度为 36m,长度为 100m,柱距18m,屋面坡度为1:15,设计使用年限50年,抗震设防烈度为八度。在应用概念设计时,首先要明确门式轻型钢结构厂房各构件的最大负荷,为了增加稳定性需要设置支撑体系,保证厂房的使用寿命达到设计使用年限。单层厂房轻型钢结构一般由横向钢框架、屋盖钢结构、支撑体系、吊车梁和制动梁以及墙架等构成。在某些单层厂房钢结构中,由于工艺操作上的要求,还可能设有工作平台。然后,再对结构受力进行有效的分析,以保证同层各柱在相同的水平位移时,能同时达到最大承载能力。

(二)钢混结构

钢管混凝土在当下建筑施工中是时常应用的,是一种将钢材和混凝土进行混合,达成充分发挥二者性能的新型模式,能够让刚度和建筑稳定性有一定程度的提升。应用钢管和混凝土相结合主要应用的原理有两个方面可以体现。

1)外部钢管能够较好的对内部混凝土有所约束,让混凝土强度可以有所加大,对变形的几率能够有效减少。钢筋混凝土中的结构促使建筑物中的抗震能力不断加强,合理的解决了高层底层柱轴压比超限的问题。

2)内部混凝土能够对外部钢管有力支撑,钢管和内部混凝土能够有效结合,从而构成具备一定优势的互补型效果,让自身的优势都可以显现出较好的补充,所存在的缺陷也能够互相弥补,让承载力有所加大,相互结合之后的承载力是两者承载之和的18倍左右。

(三)悬索结构

悬索结构所用的全都是拉杆,这就使材料的利用率以及结构的应力水平都变得相当高,可以充分的利用高强度的材料,还可以施加预应力,同时也包括与悬索结构相结合的一些结构模式等,所以悬索结构就比较适合应用于跨度非常大的建筑结构中。

五、结束语

综上所述,合理地处理构件与结构、结构与结构的关系,不断地加强结构概念,深入、深刻地了解各类结构的性能,并能有意识地、灵活地运用它们,才能更好的促进概念设计及结构措施在建筑结构设计中的完美应用。

参考文献:

[1] 杨迪珊.建筑结构设计总信息辅助确定与评价软件[D].厦门大学,2014.

第8篇

关键词:高层建筑;结构设计;问题;措施

中图分类号:TU208文献标识码: A

引言

随着社会经济的发展以及城市化进程的加快,高层建筑不断增多,人们对于高层建筑结构设计的关注度也相应的增加,高层建筑设计相对于一般的建筑结构而言有很大的区别,其结构和样式比较复杂而且施工过程中的难度也相对较大,其中会存在一些问题。

一 、高层建筑结构设计的特点

(一)水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震

作用,其数值是随着结构动力性的不同而有较大的变化。

(二)侧移成为控指标

与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。

(三)抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

(四)减轻高层建筑自重比多层建筑更为重要

高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。

(五)轴向变形不容忽视

采用框架体系和框架――剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。

(六)概念设计与理论计算同样重要

抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。

二 、高层建筑物建筑结构设计的基本原则

(一)选择适合的基础

方案应该根据工程的上部载荷分布和结构类型,地质条件,施工条件以及相邻的建筑物影响等各种因素进行综合性分析,选择既合理又经济的方案,必要时要进行地基变形演算,在进行设计时要最大限度地发挥地基的潜力。在进行基础设计时,应该参考临近建筑资料和进行现场查看,要有详细的地质勘查报告,一般情况下,在一个结构单元内部适合用两种不同的类型。

(二)对计算结构进行正确分析

普遍在结构设计中运用计算机技术,但是,往往不同的软件会得出不同的计算结果。所以,对于程序的适用条件、范围等设计师应该进行全面的了解。因为软件本身有缺陷、人工输入有误或者程序与结构的实际情况不相符合,在计算机辅助设计时,都会造成错误的计算结果,所以,在拿到电算结构时要求结构工程师要慎重校对,认真进行分析,做出合理的判断。

(三)选用适当的计算简图

在计算简图的基础上进行结构计算时,为了保证结构的安全,要选择适当的计算简图。如果计算简图选用不当,那么则会造成结构安全的频繁发生,要有相应的构造措施来保证计算简图。为了减少计算简图的误差,实际结构的节点应该保证在设计所允许的范围之内,因为其不能是纯粹的刚结点。

(四)采取相应的构造措施

强剪弱弯、强柱弱梁、强压若拉、注意构件的延性性能原则是在结构设计中要始终牢记的。要注意钢筋的锚固长度,特别是钢筋执行段锚固的长度。要加强薄弱部位,考虑温度应力的影响。

(五)合理选择结构方案

要选择一个切实可行的结构体系与结构形式,一个经济合理的结构方案是一个合理设计的保证。结构体系应该传力简捷,受力明确。地震区应力求平面和竖向规则,同一结构单元不宜混用不同结构体系。总之,必须综合分析工程的材料、施工条件、设计要求、地理环境等,并且要与水、电、建筑等专业进行充分的协商,以此为基础确定结构方案,为结构选型,最好进行多方案比较后选用较为优秀的。

三 、高层建筑结构设计问题以及相应的措施分析

(一)短肢剪力墙的设置问题

墙肢截面高厚比在新规范中为地5-8墙定义为短肢剪力墙,并且对短肢剪力墙在高层建筑中的应用根据实际经验和实验数据增加了众多限制,所以,在设计高层建筑中时,为了避免给后期的设计增加不必要的麻烦,结构工程师应该尽可能地不用或者是少用短肢剪力墙。

(二)结构的规则性问题

在这方面新旧规范的内容有了较大的变动,在这方面新规范增加了不少的限制条件。比如说:嵌固端上下层刚度比信息以及平面规则性信息等等。此外,“建筑不应采用严重不规则的设计方案”,这是在新规范中采用强制性条文明确进行规定的。所以,为了避免后期施工图的设计阶段工作变得被动,在遵循新规范的各种限制条件上结构工程师必须要严格注意。

(三)结构超高的问题

对结构的总高度在高规范以及抗震规范中着非常严格的限制,特别是针对以前超高的问题,除了在新规范中再增加了B级高度外,还将原来的限制高度设定为A级高度,在设计方法和处理措施上都有着较大的改变。由于结构类型的变更而忽略了该问题,造成未予通过施工图审查的现象,在实际工程设计中是出现过的,如果出现这样的情况,就必须要开专家会议进行论证或者是进行重新设计,不仅对工程的工期造成了巨大的影响,也对工程的整体规划带来了巨大的影响。

(四)嵌固端的设置问题

在高层建筑中嵌固端有可能设置在人防顶板等位置,也有可能设置在地下室顶板。这主要是由于一般高层建筑都带有两层或两层以上的人防和地下室。所以,结构设计工程师在这个问题上,由嵌固端的设置带来的一系列需要注意的问题往往都忽视了。

(五)抗震缝

在实际发生地震的过程当中,按照相关设计规范标准往往抗震缝会出现碰撞现象,所以,为了比较碰撞问题,抗震缝应该进行适当的加大。

(六)关于回弹再压缩

在开挖基坑时,回弹以弹性为主,不反弹,坑中心的地基土反弹,回弹部分被人工清除,摩擦角范围内的坑边的基底土受到约束。如果基坑较大,那么所受到的约束就相对较小,例如:箱基,应按照基底压力计算沉降,作为安全储备的则是被坑边土约束的部分,这也是为实际沉降比计算沉降小的一个原因,如果基坑较小,那么坑底所受到的约束很大,例如:应按基底附加应力计算沉降,独立基础,可以忽略回弹。

四、结束语

高层建筑结构设计是一个长期、复杂甚至循环往复的过程,任何在这个过程中的遗漏或错误都有可能使整个设计过程变得更加复杂或使设计结果存在不安全因素。因此,设计人员必须全面考虑、慎重对待高层建筑结构设计当中出现的每一个问题,并在日常工作中多积累经验,提高自身的设计水平。

参考文献

[1]张亚,陈伟.探讨高层建筑结构设计问题[J].科技致富向导,2010(7):52.

第9篇

【关键词】 建筑结构;安全度

一、建筑结构设计的安全度把控对于工程本身的重大意义

在的工程建设中,结构的安全度是衡量建筑结构有效性的重要基点,而以此发散的建筑功能性、美感度、创造力及艺术感也都是基于建筑结构安全这一基本前提。同时,结构设计的安全度更体现在建筑应对突发的特殊情况的稳定性思考,因此建筑结构设计的安全度对于现代建筑有着十分巨大的意义,离开结构安全,建筑设计将无从谈起。

另一方面,建筑结构设计的安全度把控并非一味的高标准堆砌,而是在基于项目本身具体情况及周边地质、地理环境考虑下而得出的综合性思考成果。结构设计的合理是建立在对项目本身的深入了解及对各种结构体系优劣及适应性的充分挖掘基础上得出的最佳方案,符合各项技术指标、不浪费、不缺失是建筑结构设计在安全性指标上的基本出发点。

二、影响建筑结构设计安全度的主要因素

总的来说,建筑物结构设计安全度是指在设计师设计下,通过规范化的设计,合理的施工处理使建筑在一定的环境下具有预防破坏及应对突发事件的一个安全系数指标。建筑的安全性主要取决于设计水平与施工水准,而其中,处于设计规划阶段的建筑结构设计方案具有更大的可控性,因此在工程安全的综合考虑上,建筑结构设计安全就显的尤为重要。一般而言,建筑设计的结构安全度主要是由构建重要性所决定的,若建筑物重要层级相同,结构的安全富余则主要体现在构架的平面布置及竖向受力方面。在建筑结构设计上,平面规则和竖向受力构建规则的建筑工程将会拥有更加合理的受力结构,工程的安全系数也会更高。若建筑物体现在同等的设计要求之下,合理的建筑结构设计则会表现出更好的经济性。因此,在工程的前期准备阶段,建筑的结构设计就显得尤为重要,设计人员必须在充分了解结构设计规范及工程特性的前提下做设计的创意发挥,而并非一味的求新求异,脱离了建筑结构合理性的工程设计无疑于舍本逐末。

1.建筑结构型式的选取

就全球范围内来看,钢结构和钢筋混凝土结构为目前最为常用的两种结构方式。单从结构安全性角度考虑,钢结构相较于钢筋混凝土结构有着更为明显的优势。例如,钢结构有着更高的强度且自重更轻,抗震性能更好。但同样的,钢结构的耐火性能较差,对于高层建筑的防火性能难以达到最为理想的要求。因此,相对而言,钢筋混凝土结构在全球范围内的应用则更为普遍,钢筋混凝土结构作为建材性能而言无明显缺陷,而随着施工技术的进步,混凝土材料性能的提升,钢筋混凝土结构的性价比优势更为明显。

2.建筑结构体系的选取

就目前而言,全球范围内比较常见的建筑结构体系包括:框架结构、剪力墙结构、框架―剪力墙结构、筒体结构等。四大结构体型均有各自的优势及局限性,因此,在综合考虑建筑功能性及当地地质、地理环境基础上的建筑结构体系的选择就有着十分巨大的现实意义

2.1框架结构

框架结构是目前较为常见的计算理论成熟度也相对较高的一种结构体系。框架结构适用于楼层相对较低的一般性建筑,例如:办公、住宅、商店、医疗、学校及多层工业厂房、仓库等。对于框架结构本身而言,其建筑平面布置灵活,建筑立面易于操作施工,该体系结构使得房屋整体自重较轻,造价相对较低,有着不错的性价比优势。但同样,框架结构本身的局限性也十分明显,例如:框架结构体系柔性较大,抗侧力能力较差,从而直接导致框架结构体系对于风荷载作用及地震荷载作用的承载力不足的缺陷。因此,框架结构的适用范围有限,理论上而言,框架结构体系的合理层数应该控制在6到15层之间。

2.2剪力墙结构体系

剪力墙结构体系能很好的解决房屋刚度及抗剪度不足的问题。通常,在高层建筑的施工中,人们在建筑结构中设置钢筋混凝土墙体并通过多轴线或横向交叉布置的形式形成刚度较大的墙体,从而使得空间整体性能大大提升并保证了房屋的抗震性。此外,剪力墙结构体系还具有易于分割的特点,因此该结构在传统住宅及旅馆的应用中较为普遍。

2.3框架―剪力墙结构体系

框架―剪力墙结构体系被更多的用于现代高层建筑中的行政办公大楼及高档酒店、旅馆等。由于综合了框架结构及剪力墙结构的优点,框架―剪力墙结构体系在现实运用中表现出更好的钢度及抗震能力,同时,也有着布局灵活使用方便等特点。

2.4筒体结构体系

筒体结构体系是现代建筑设计飞速发展下的产物。随着现代建筑对于建筑层数,建筑高度的需求越来越高,高层建筑对建筑结构体系提出了更多更复杂的要求,传统建筑结构体系中,无论是框架结构还是剪力墙结构均以平面工作状态构筑建筑设计,其梁体刚度,抗震系数难以达到要求。而筒体结构体系则很好地解决了这方面的需求。筒体结构体系的基本原理为:由剪力墙构成空间薄壁筒体成为竖向悬臂箱形梁,加密柱子,从而增强梁的刚度,并能形成空间整体受力的框筒,筒体结构体系通常由一个或多个筒体组成。

对于建筑结构体系的选取并非简单的对号入座,在处理建筑个性及复杂的环境因素面前,前期的综合调研和理性分析就更为重要。建筑结构设计应该在不违背建筑理论基本原理的前提下,灵活运用、合理创新,不应过分拘泥于以往的经验、规则,要懂得与时俱进、具体问题具体分析。建筑结构设计的安全是整个工程建设环节最为重要的一环,因此必须格外重视。

3.建筑体型及立面的规则化设计

现代社会,建筑业发展日新月异,建筑本身在满足其基本功能性的同时更被赋予了越来越多的含义。因此,在建筑设计上,设计者的个性思想及创造力被越来越多的表现出来,这也是建筑业蓬勃发展的良性表现。与此同时,建筑体型及立面的创新也使得建筑在具体的施工过程中呈现出更大的操作难度更复杂的受力结构,这无疑会对建筑整体的安全提出新的考验。因此,在建筑结构设计上,设计者应在保障建筑安全性这一大的前提下合理创新,尽量避免不规则化立面设计,从根本上保障建筑结构设计的整体安全。

总而言之,建筑机构设计的安全性把控是一个多方面综合考虑的过程。一方面他是工程可行性的基本保障,是工程顺利实施的前提,另一方面,他又将对工程建设的各个环节产生深远的影响。例如,建筑结构设计会对工程具体实施过程中的建材、工艺等提出具体的要求,从而对工程造价产生根本上的影响。在工程建设中,建筑结构设计的重要性不言而喻。因此,现代建筑工程对建筑结构设计提出了更高的要求,设计人员必须对于工程整体的各个环节做充分的思考,并以高度的责任心及使命感将对建筑安全性的把控落实到工程建设的每一个具体环节中。

参考文献

[1] 胡松.建筑结构设计安全度的探讨[j].中小企业管理与科技(上旬刊).2010(09)