时间:2023-10-08 15:44:08
导语:在高档数控机床的发展趋势的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
目前,数控机床已成为各国机床制造商竞相展示先进技术、争夺用户及扩大市场的焦点。尽管我国数控机床产业起步晚,但近年来发展迅猛,在普及型出口机床领域具备一定的竞争力;但在中高端数控机床领域,我国数控机床产业与发达国家相比还存在较大的差距,国际竞争力还比较弱。
发展速度惊人
我国的数控机床产业主要通过设备和技术的引进发展起来的。从20世纪80年代开始,从发达国家引进了一些数控系统和伺服技术,结束了我国数控机床发展长期徘徊不前的局面。2007年,国内企业终于占有了国内机床市场的半壁江山。2009年,国产机床市场继续占有率显著提升,国产金属加工机床产值市场占有率由上年的61%提高到70%,其中国产数控机床由51.6%提高到62%。
近年来,我国机床行业保持高速增长,增速超过美国、日本。2009年,当世界主要机床生产国和地区产值均大幅下降,而我国产值逆势增长。在拉动内需政策带动下,金属加工机床总产值同比上升了7.6%,以153亿美元的产值超越了日本和德国,跃居世界第一,2009年世界机床总消费512.1亿美元,其中,我国消费机床197.86亿美元,占当年世界机床产值的35.7%。同时,我国人均机床消费排位,首次超过了美国和西班牙。
中高端机床,还要进口
目前,在中高端数控机床领域,尤其是高端数控机床领域,国产机床市场占有率还是偏低。我国高端机床的市场需求很大,机床进口单价总体保持增长趋势。不仅在数控机床及加工中心等中高端大型机床上需要依赖进口,而且国内机床行业的数控系统和机床关键零部件也有不少仍然依靠进口,加大了贸易逆差。而出口产品以中低档机床为主,产品附加值低。
与发达国家相比,国产中高端机床仍然落后,在加工精度、稳定性、无故障时间上与国外产品有较大差距,而且数控化率偏低。我国企业在中高端数控机床领域的专利水平是非常有限。据统计,我国数控机床领域中70%以上的专利属于国外机床企业。而发达国家严格限制出口数控机床技术,因此在数控机床领域,我国很难引进国外核心技术和关键部件。
尽管我国企业虽然加大了科研投入的资本投入力度,但企业对数控机床领域的技术控制力仍很薄弱。这导致在中高档机床领域,尤其是在高端数控机床领域,国产机床市场占有率偏低。尽管内资企业专利、技术实力以及自有品牌占有率近年来均有所提高,但与发达国家相比仍存在很大差距,我国不得不在中高端数控机床产品方面依赖进口。
差距仍较明显
目前,我国数控机床行业发展的最大瓶颈是技术能力低下,对国外尖端技术的依存度很高。国内数控机床企业生产的中、高端数控机床,更多处于组装和制造环节,普遍未掌握核心技术。
据统计,数控机床的核心技术――数控系统由显示器、控制器伺服、伺服电机和各种开关、传感器构成,中国有90%需要从国外进口。目前70%的数控专利仍为国外企业所把持。我国在数控机床研发基础薄弱,投入力度不够,导致国产数控系统在性能与功能上与国外的差距较大。
例如,在高端数控机床领域,由于在高速高效性、精度等问题未能解决,国产机床在高端数控机床领域的市场份额不高。如国外滚珠丝杠副驱动的高速加工中心快速进给速度大多在40m/min以上,最高已达到90m/min,直线电机驱动的加工中心最高达到120m/min;而国内加工中心快速进给大多在30m/min左右,直线电机驱动的加工中心也仅试制出样品。
德国13%的机床都是作为生产设备出售给全世界其他国家的机床生产企业。显示德国机床全球领先的技术优势。德国机床企业将年销售额的6%用于研发,大部分企业可自主开发和生产数控机床,在数控机床主机以及功能部件开发方面位于世界前列。目前,数控机床占德产值近80%,占出口额3/4以上。机床制造业占德工业产值比例虽然不足1%,但已经成为德国制造业长盛不衰、竞争力突出的重要保障。
大势所趋
目前,世界机床生产国集中度偏高。进入世界机床产值最大的20家企业中,日本有6家为最多,其次为德国有5家,就集中度而言,日本、德国、美国入围企业的合计产值均已占其本国产值的48%以上,而中国的2家入围企业仅占全国产值的22.2%。为最低。
与发达国家相比,我国机床业的产业集中度较低。中国机床亟待产业升级和自主创新。随着全球数控机床向大型化、精密化方向发展,对资本投入、研发投入的要求将不断加大。在此背景下,国外机床企业纷纷进行重组和整合,提升行业集中度。
在我国,中小机床企业在技术上和市场销售上将难以与大企业相竞争,将面临被淘汰的境地;而以沈阳机床、大连机床、秦川集团为代表的行业龙头,自身竞争力不断提高,在政府的支持下,将加快并购整合的步伐。例如,大连机床实现整合,成立了大连机床集团并且兼并了英格索尔生产系统公司等国外企业,销售额位居世界机床行业第九;沈阳机床通过改制整合,市场占有率明显提高,销售额位居世界机床行业第七;北京第一机床厂并购了德国科宝公司,技术水平大幅提升。
我国企业已从单纯的“技术引进”转变为“技术引进与自主研发”相结合的模式。例如,沈阳机床把研发的“触角”扩展到德国、意大利,其在世界机床的排位也由名不见经传跃升到了2009年的第7位。目前,沈阳机床的研发费用约占其销售额的4%左右。
在未来,我国还应继续扶植较大型企业,形成几家有国际竞争力的大型机床企业,加快促进我国数控机床产业的发展。而这几年兴起的民营企业,在市场竞争大潮中还将经历考验,集中度增大是个趋势。他们要生存,也要搞“专、精、特”上下功夫。
如何更好地走出去
如何提升我国数控机床产业竞争力呢?我们对此提出如下建议:
关注国家投资重点,加快产业结构调整
金融危机爆发以来,国际机床市场不断下滑,但全行业中高档数控机床以及大型数控机床的产值比例稳步上升,这反映了市场需求结构正在发生重大变化。即:中高档数控机床的比例会大幅增加,经济型数控机床的比例不会有太大变化,而非数控的普通机床需求将会大幅度减少。
目前,国家对航空、汽车、铁路、绿色能源、船舶、电子信息等行业的巨大的投
资拉动了市场需求结构向高端发展。国家着眼于结构调整这一长远发展目标。我国在很多关键领域还受到国外的技术封锁,有的甚至对我国禁售。因此结构调整必将以自主创新为基础。这将给机床工具行业带来产业升级和结构调整的机遇。
数控机床企业应关注重点投资领域,深入了解用户工艺,加大研发适用产品的力度。尽快淘汰落后产品和产能。避免恶性竞争。应大胆尝试向“专、精、特”产品转移。一些企业开发出高速铁路轨道板磨床就是向“专机”发展的成功例子。这种需要我们填补空白的领域还有很多。
提高数控机床产业的自主创新能力
快速提高我国数控机床企业的自主开发能力,加快引进吸收,形成紧密的产学研相结合体系成为当务之急。
为此,要积极支持建立国家数控机床工程研究中心,完善企业技术开发体系,利用国家科技经费,支持提升行业技术水平和产业化水平的机床功能部件及数控系统,抓紧实施数控产业关键技术及基础共性技术的研究开发项目,支持机床行业和骨干企业提高技术创新能力,促进数控新产品的开发;要大力提升企业制造的专业化水平,增强行业配套能力,鼓励采取产学研相结合等多种形式,依托重点工程,多方面筹集研发资金,发展具有自主知识产权的高档数控机床、功能部件及数控系统,尤其要提高重点企业的技术开发能力、装备数控化率和管理信息化水平。
积极扩大出口,调整出口结构
根据目前全球经济形势,行业要保持传统机床、工具、重型机床和成形机床等优势产品的出口。针对当前增长较快的亚洲市场,通过扩大宣传、提供完善的售后服务,实现批量出口中高档机床的目标。有海外并购的企业应通过海外渠道突破高档机床的出口。此外,还可以利用政府的援外项目以及政府贷款扩大我行业产品及技术出口。
当前,国际市场回升迹象仍不明显,机床工具行业要密切关注欧、美、日等世界发达经济体的发展趋势,巩固行业传统出口市场。同时着重瞄准东盟及亚洲其他地区、金砖四国中其他三个国家、VISTA五国等具有发展潜力的新兴出口市场,扩大行业出口。特别是我国与东盟自贸区协议已于2010年1月1日生效,绝大部分商品贸易将享受零关税,我国企业应利用这一便利条件,关注东盟市场需求,加强中高档机床的出口。
关键词:数控技术;现状;发展趋势
引言
数控技术主要是通过数字信息来达到机械运动与工作行程相关操作做对应的操控技术,这种技术是将传统机械制造人工相关技术、现代操控技术、计算机技术、传感检测技术、光机电技术与网络通信技术得到高度结合后产生的现代性的制造业技术,其操作具有较高的精确性、高效性、智能化等特点,因此可以达到制造业操控的更高水平。数控技术在一定程度上是实现自动化制造的基础条件,同时也是现代制造业发展的关键之处,对于一个国家与企业的工业现代化水平而言,可以通过其数控技术相关水平与装备数量做对应衡量。
1我国数控技术发展现状
当下我国数控相关产业基地已经形成,例如华中数控与航天数控都属于当下具有相当规模的大批量生产的数控系统厂商,在相关研究结果与技术的商品化发展之上构建了大量的数控厂。相关生产厂家构成了我国当下的数控产业生产研发基地,数控技术的发展在我国当下已经初具规模。同时对于数控技术而言,大部分技术已经掌握,同时已经做好了商业化、产业化开发利用的状态,为企业与相关产业的发展赢得了利润与发展动力。整体的产业发展已经进入一种常规的商业运作的循环状态。
2我国数控技术发展问题
2.1数控系统与功能部件水平落后
当下数控技术相关产业的发展受到数控系统与功能部件水平落后的现状而出现发展前进的强大制约。国产中档型数控系统在国内的整体市场中占比为35%,高档型占比95%,其他需要进口来有效支持。功能部件在国内市场中的总体份额占比为30%,中高档型占比相对更低,台湾产占比50%,欧盟与日本等占比20%。
2.2高档数控机床技术有待提升
高速、复合、智能与高精等典型性的高档数控机床技术在一定程度上虽然获得的一定的发展,相关新产品与技术也得到了推进,但是与国际高水平对比,目前我国的高档数控机床技术仍旧处于较为滞后的状态,部分高精尖技术仍旧没有得到充分地掌握,而多数掌握的技术都属于较为基础的技术。对于动态综合补偿技术、高速高精运动控制技术、智能技术、复合加工技术与高精度直驱技术等都存在技术水平的较大差异,与产业化发展仍旧有较大距离。同时也没有建立起以企业为主题、市场为导向以及产学研用一体的研发体系,相关行业自主创新发展仍旧没有高新技术作支撑。
2.3缺乏自主开发与自主品牌竞争力
当下我国数控机床骨干技术的研发条件较为薄弱,资金运用率较低,可持续性的投入能力缺乏,没有关键性的技术与技术突破做支撑,人才结构配置不科学,零部件支撑能力相对较弱,没有形成较为完善的产业研发体系。
3我国数控技术未来发展趋势
3.1高速与高精尖技术与装备发展
为了提升企业与相关产业在国内与国际市场上的竞争力,优化产业结构,提升产业所带来的实际经济效益与社会效益,需要不断地缩短技术装备生产周期,进而有效地提升产业与企业在市场中的竞争实力。其操作主要是通过提升产品所在的档次与质量来完成,高速与高精性加工技术可以在一定程度上有效地提升生产效率。
3.2智能化、开放性与网络化的发展
虽然当下的数控技术已经逐步朝着智能化、网络化等趋势发展,但是在一定程度上其技术运用的广泛性与深度性还有待加强。产业与企业自身为了获取更高的利润,在先进技术的运用上仍旧处于滞后状态。其原因在于先进技术的运用所节省的成本远远低于其采用传统人力成本更高。特别是先进技术使用所带来的设备采购成本与日常技术维护保养成本,并不能达到更优于传统人工操作成本效益。智能化、网络化与开放性所带来的实际作用远远高于当下我国数控技术发展的水平。相关的研发也是市场所需的必然趋势,虽然目前应用尚且不广泛,但是也不能否定其发展的未来价值。智能化系统主要是包括智能诊断、监控等技术方面,可以有效地便于系统的诊断与维修保养。智能化自动变成与人机界面等技术,可以有效地将变成与操作更加的智能化;驱动性与使用连接也能达到智能化操作;在加工效率与质量水平上也可以通过智能化来有效控制生成。开放式数控技术主要是在系统的开发上可以放在统一性的运行平台上操作,可以达到一定特性的品牌产品。开放性可以在变化、扩充与裁剪数控功能等方面展开对机床厂家与客户端用户的服务,完成系列化与快速,达到不同品种与档次开放式数控系统的展现,可以依据用户个性化应用与技术诀窍做有效集合来生成其控制系统。网络化主要是可以有效地达到生产线、制造系统与制造企业在信息集成方面的需要。在国外著名相关单位已经得到了有效的应用,已经形成一定未来发展趋势。
4结语
数控技术当下在我国发展水平较低,需要充分依据实际情况,做产业结构的调整,注重高精尖技术的开发运用,提升生产效率与质量,从而获得市场的认可。
参考文献:
[1]李国巍,王盼,孙凯旋,等.数控技术现状与发展趋势[J].黑龙江科学,2016,7(7):14-15.
关键词:数控机床 控制技术
数控机床是机电一体化的典型产品,数控机床控制技术是集计算机及软件技术、自动控制技术、电子技术、自动检测技术、液压与气动技术和精密机械等技术为一体的多学科交叉的综合技术。随着科学技术的高速发展,机电一体化技术迅猛发展,数控机床在企业普遍应用,对生产线操作人员的知识和能力要求越来越高。
一、数控机床的优点与缺点
(一)数控机床的优点
对零件的适应性强,可加工复杂形状的零件表面。在同一台数控机床上,只需更换加工程序,就可适应不同品种及尺寸工件的自动加工,这就为复杂结构的单件、小批量生产以及试制新产品提供了极大的便利,特别是对那些普通机床很难加工或无法加工的精密复杂表面(如螺旋表面),数控机床也能实现自动加工。
加工精度高,加工质量稳定。目前,数控机床控制的刀具和工作台最小移动量(脉冲当量)普遍达到0.0001mm,而且数控系统可自动补偿进给传动链的反向间隙和丝杠螺距误差,使数控机床达到很高的加工精度。此外,数控机床的制造精度高,其自动加工方式避免了生产者的人为操作误差,因此,同一批工件的尺寸一致性好,产品合格率高,加工质量稳定。
生产效率高。由于数控机床结构刚性好,允许进行大切削用量的强力切削,从主轴转速和进给量的变化范围比普通机床大,因此在加工时可选用最佳切削用量,提高了数控机床的切削效率,节省了机动时间。与普通机床相比,数控机床的生产效率可提高2—3倍。
良好的经济效益。使用数控机床进行单件、小批量生产时,可节省划线工时,减少调整、加工和检验时间,节省直接生产费用;同时还能节省工装设计、制造费用;数控机床加工精度高,质量稳定,减少了废品率,使生产成本进一步下降。此外,数控机床还可实现一机多用,所以数控机床虽然价格较高,仍可获得良好的经济效益。
自动化程度高。数控机床自动化程度高,可大大减轻工人的劳动强度,减少操作人员的人数,同时有利于现代化管理,可向更高级的制造系统发展。
(二)数控机床的缺点
数控机床的主要缺点价格较高,设备首次投资大;对操作、维修人员的技术要求较高;加工复杂形状的零件时。手工编程的工作量大。
二、数控机床的种类
数控机床的种类很多,主要分类
按工艺用途分类。按工艺用途,数控机床可分类如下。普通数控机床:这种分类方式与普通机床分类方法一样,铣床、数控锚床、数控钻床、数控磨床、数控齿轮加工机床等。加工中心机床:数控加工中心是在普通数控机床上加装一个刀库和自动换刀装置而构成的数控机床,它可在一次装夹后进行多种工序加工。
按运动方式分类。按运动方式,数控机床可分类点位控制数控机床。数控系统只控制刀具从要有数控钻床、数控坐标锤床、数控冲剪床等。直线控制数控机床:数控系统除了控制点与点之间的准确位置以外,还要保证两点之间移动的轨迹是一条直线,而且对移动的速度也要进行控制。这类机床主要有简易数控车床、数控销、铣床等。轮廓控制数控机床:数控系统能对两个或两个以上运动坐标的位移及速度进行连续相关的控制,使合成的运动轨迹能满足加工的要求。这类机床主要有数控车床、数控铣床等。
按伺服系统的控制方式分类。按伺服系统的控制方式,数控机床可分类如下。开环控制系统的数控机床。闭环控制系统的数控机床。半闭环控制系统的数控机床。
按数控系统的功能水平分类。技功能水平分类,数控系统可分类如下。经济性数控机床。经济性数控机床大多指采用开环控制系统的数控机床价格便宜,适用于自动化程度要求不高的场合。中档数控机床。这类数控机床功能较全,价格适中,应用较广。高档数控机床。这类数控机床功能齐全,价格较贵。
三、数控机床控制技术的发展
机械设备最早的控制装置是手动控制器。目前,继电器—接触器控制仍然是我国机械设备最基本的电气控制形式之一。到了20世纪奶年代至50年代,出现了交磁放大机—电动机控制,这是一种闭环反馈系统,系统的控制精度和快速性都有了提高。20世纪60年代出现了晶体管——晶闸管控制,由晶闸管供电的直流调速系统和交流调速系统不仅调运性能大为改善,而且减少了机械设备和占地面积,耗电少,效率局,完全取代了交磁放大机—电动机控制系统。
在20世纪的60年代出现丁一种能够根据需要方便地改变控制程序,结构简单、价格低廉的自动化装置—顺序控制器。随着大规模集成电路和微处理器技术的发展及应用,在20世纪70年代出现了一种以微处理器为核心的新型工业控制器——可编程序控制器。这种器件完全能够适应恶劣的工业环境,由于它具备了计算机控制和继电器控制系统两方面的优点,故目前已作为一种标准化通用设备普通应用于工业控制。
随着计算机技术的迅速发展,数控机床的应用日益广泛,井进一步推动了数控系统的发展,产生了自动编程系统、计算机数控系统、计算机群控系统和天性制造系统。计算机集成制造系统及计算机辅助设计、制造一体化是机械制造一体化的高级阶段,可实现产品从设计到制造的全部自动化。
综上所述,机械设备控制技术的产生,并不是孤立的,而是各种技术相互渗透的结果。它代表了正在形成中的新一代的生产技术,已显示出并将越来越显示出强大的威力。
四、数控机床控制技术的发展趋势
当前数控技术在国内外广泛应用,在汽车制造、工程机械、农业器具、航天等机械制造领域当中随处可见。另外,数控化技术的应用方面还有很多,包括畜牧业、化学、生物学、物理学等多方面。
1.1国外机械制造数控技术发展世界第一台数控铣床在美国诞生,距今已经有60年,数控技术与机械制造已经融为了一体,数控技术所控制的数控车床,通过车、铣、加工中心、镗、磨、冲压、电加工等形式,制造出来种类多样的机械产品。每年世界上新增的数控机床数量约为10~20万台,装置的功能和质量也不断提高。夕阳产业的制造业,在数控机床的诞生下,又才一次焕发了活力。以德国为代表的高水平数控技术,将机械与数控的融合发挥到了机制,德国也出现了以汽车为领先行业的机械制造业,其所制造的机器在全世界范围内享有盛誉。
1.2国内机械制造数控技术的发展我国数控技术是起步于20世纪中期,经过多年的发展,目前较具规模的有广州数控等。我国现在数控机床生产厂家有100多家,生产数控产品多种多样,有几千种以上。目前我国占据的市场的产品主要集中在经济型上,而中高档产品市场的比例仍然非常小,与国外的先进产品相比,在稳定性和精度等方面均存在较大的差距。目前我国是全世界拥有机床最多的国家,但我们机床的数控化率在2%以下,这与发达国家一般能达到20%以上有较大的差距。
2、数控技术的发展方向
科学技术的发展,数控技术向着高速度、高精度化、多功能化和智能化发展。计算机技术三维技术发挥为数控技术的进步提供了强大支撑,同时数控机床的系统设备更新与更换,也让数控技术演绎的更加完美。
2.1高速度、高精度化国际生产工程学会(CIRP)将高速度、高精度化确定为21世纪的中心研究方向之一。三维曲面加工是数控加工技术的一大突破,通过64位CPU实现CAD/CAM,简化操作指令,简明操作界面,人性化的UI界面,让加工指令的输入更加轻便,同时计算机技术的提高,对加工精度提高发挥了重要作用。另外,“零传动”直线伺服已经被广泛应用,直线电动机的劣势在现在数控优化下成为了其优势所在。该伺服系统对速度和位置的控制软件,将图像和实际加工对应起来,高分辨率的位置检测装置,对工件状态信息的收集和处理效果明显。高速CPU和显卡,加上内置微处理器,让工件图片信息的分辨率大大提高,对随时发出操作指令有重要作用。
2.2多功能化当前机械制造行业当中数控机床,往往能够达到一机多能的效果,合理进行加工动作执行,配备较多的冗余,保证设备的较高的利用率。例如,自动换刀是当前全自动数控机床上运用最为广泛的系统,自动换到系统配备了铣削、镗削、钻削、车削、铰孔、扩孔、攻螺纹,甚至磨削的道具,保证这些工序能够迅速切换。将机床的前后台分割开来,通过高速计算CPU对机床运转过程进行全面控制。实现机床前台工作后台编辑的指令的要求,指令编辑后能够立即进行动作调整,这又有赖于高速DNC接口,保证信号传递的高效率,甚至可以连接多个机床对同一大型工件进行立体加工。
2.3智能化数控技术的另一个发展趋势是加工过程的智能化。自适应控制(AC,AdaptiveControl)是最近在国际上流行的道具控制系统,该系统能够根据进给、切削用量等参数,自动调整道具的夹紧状态和受力状态,以保证加工过程中的道具效率切削效率最高,达到加工精度和光滑度的要求。另外,数控机床的故障自诊和自我修复功能,采用了CNC系统,该系统在数控机床启动的同时,也随机启动,对数控机床工作当中的参数进行监控,当数控机床参数便利预定波动范围之外,将自动修正,还会对硬件设备状态进行监控,提醒机械操作人员相应的保养工作,例如刀面磨损和刀具温度过高等都会有相应的指示灯。
3、结束语
20世纪中期,随着电子技术的发展,自动信息处理、数据处理以及电子计算机的出现,给自动化技术带来了新的概念,用数字化信号对机床运动及其加工过程进行控制,推动了机床自动化的发展。
采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。
1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。
这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。
在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。
数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。
然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。
到了1960年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到1966年实际使用的约6000台数控机床中,85%是点位控制的机床。
数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。这种产品最初是在1959年3月,由美国卡耐·;特雷克公司(Keaney&TreckerCorp.)开发出来的。这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令自动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。它可缩短机床上零件的装卸时间和更换刀具的时间。加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。
1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制造系统(FlexibleManufacturingSystem——FMS)之后,美、欧、日等也相继进行开发及应用。1974年以后,随着微电子技术的迅速发展,微处理器直接用于数控机床,使数控的软件功能加强,发展成计算机数字控制机床(简称为CNC机床),进一步推动了数控机床的普及应用和大力发展。
80年代,国际上出现了1~4台加工中心或车削中心为主体,再配上工件自动装卸和监控检验装置的柔性制造单元(FlexibleManufacturingCell——FMC)。这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制造系统中使用。
目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩展,从中小批量加工向大批量加工发展。
所以机床数控技术,被认为是现代机械自动化的基础技术。
那什么是车床呢?据资料所载,所谓车床,是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。
古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。1797年,英国机械发明家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可改变进给速度和被加工螺纹的螺距。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。
为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床;1848年,美国又出现回轮车床;1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床;20世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。
第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于60年代开始用于车床,70年代后得到迅速发展。
车床依用途和功能区分为多种类型。
普通车床的加工对象广,主轴转速和进给量的调整范围大,能加工工件的内外表面、端面和内外螺纹。这种车床主要由工人手工操作,生产效率低,适用于单件、小批生产和修配车间。
转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次使用不同刀具完成多种工序,适用于成批生产。
自动车床能按一定程序自动完成中小型工件的多工序加工,能自动上下料,重复加工一批同样的工件,适用于大批、大量生产。
多刀半自动车床有单轴、多轴、卧式和立式之分。单轴卧式的布局形式与普通车床相似,但两组刀架分别装在主轴的前后或上下,用于加工盘、环和轴类工件,其生产率比普通车床提高3~5倍。
仿形车床能仿照样板或样件的形状尺寸,自动完成工件的加工循环,适用于形状较复杂的工件的小批和成批生产,生产率比普通车床高10~15倍。有多刀架、多轴、卡盘式、立式等类型
立式车床的主轴垂直于水平面,工件装夹在水平的回转工作台上,刀架在横粱或立柱上移动。适用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。
铲齿车床在车削的同时,刀架周期地作径向往复运动,用于铲车铣刀、滚刀等的成形齿面。通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。
专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。联合车床主要用于车削加工,但附加一些特殊部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,适用于工程车、船舶或移动修理站
看机床的水平主要看金属切削机床,其他机床技术和复杂性不高,就是近几年很流行的电加工机床,也只是方法的改变,没什么复杂性和科技含量。
我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。
金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。
由普通发展到数控,一个人顶原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。
自美国在50年代末搞出世界一台数控车床后,机床制造业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。等80年代我们再去看世界的数控机床水平,差距就是20年了,其实奋起直追还有希望,但国营工厂不思进取,到了90年代,我们再去看世界水平,已有30年的差距了。中国改革开放前走的是苏联的路子,什么叫苏联的路子,举个例子来讲:比如,生产一根轴,苏联的方式是建一个专用生产线,用多台专用机床,好处是批量很容易上去,但一旦这根轴的参数发生了变化,这条线就报废了,生产人员也就没事做了。在1960-1980年代,国营工厂一个产品生产几十年不变样。到了1980年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就困难了,到了90年代就大量破产,大量职工下岗。现代的生产也有大批量生产,但主要是单件小批量,不管是那种,只要你的设备是数控的,适应起来就快。专业机床的路子已经到头了,;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推进螺旋桨上的制造,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。由此也可见,前苏联的机床制造业也落后了,他们落后,我们就更不用说了。虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没问题,剩下的就是电子系统方面,德国的电子系统工业本来就强大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。
但日本人的强项就是仿造,从上世纪70年代起,日本大量从德国引进技术,消化后大量仿造,经过努力,日本在90年代起,就超越了德国,成为世界第一大数控机床生产国,直到现在还是。他们在机床制造水平上,有一些也走在了世界前面,如在机床复合(一机多种功能)化方面,是世界第一。数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,主要是它的发拿科公司。第一代的系统用步进电机,我们现在也能造,第二代用交流伺服电机。现在的数控系统的核心就是交流伺服电机和系统内的逻辑控制软件,交流伺服电机我们国家目前还没有谁能制造,这是一个光学、机械、电子的综合体。逻辑控制软件就是控制机床的各轴运动,而这些轴是用伺服电机驱动的,一般的系统能同时控制3轴,高级系统能控制五轴,能控5轴的,五轴以上也没问题。我们国家也由有5轴系统,但“做秀”的成份多,还没实用化。我们的工厂用的五轴和五轴以上机床,100%进口。
机床是一个国家制造业水平高低的象征,其核心就是数控系统。我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,主要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有问题。目前国内的各大机床厂,数控系统100%外购,各厂家一般都买日本发那科、三菱的系统,占80%以上,也有德国西门子的系统,但比较少。德国西门子系统为什么用的少呢?早期,德国系统不太能适合我们的电网,我们的电网稳定性不够,西门子系统的电子伺服模块容易烧坏。日本就不同了,他们的系统就烧不坏。近来西门子系统改进了不少,价格方面还是略高。德国人很不重视中国,所以他们的系统汉语化最近才有,不像日本,老早就有汉语化版的。
就国产高级数控机床而言,其利润的主体是被外国人拿走了,中国只是挣了一个辛苦钱。
美国为什么没有能成为数控机床制造大国呢?这个和他们当时制定产业政策的人有关,再加上当时美国的劳动力贵,买比制造划算。机床属于投资大,见效慢,回报率底的产业,而且需要技术积累。不太附和美国情况。但后来美国发现,机床属于战略物资,没有它,飞机、大炮、坦克、军舰的制造都有问题,所以他们重新制定政策,扶植了一些机床厂,规定了一些单位只能买国产设备,就是贵也得买,这就为美国保留了一些数控机床行业。美国机床在世界上没有什么竞争力。
欧洲的机床,除德国外,瑞士的也很好,要说超高精密机床,瑞士的相当好,但价格也是天价。一般用户用不起。意大利、英国、法国属于二流,中国很少买他们的机床。西班牙为了让中国进口他们的机床,不惜贷款给中国,但买的人也很少??借钱总是要还的。
韩国、台湾的数控机床制造能力比大陆地区略强,不过水平差不多。他们也是在上世纪90年代引进日本技术发展的。韩国应该好一点,它有自己制造的、已经商业化了的数控系统,但进口到中国的机床,应我们的要求,也换成了日本系统。我们对他们的系统信不过。韩国数控机床主要有两家:大宇和现代。大宇目前在我国设有合资企业。台湾机床和我们大体一样,自己造机械部分,系统采购日本的。但他们的机床质量差,寿命短,目前在大陆影响很坏。其实他们比我们国产的要好一点。但我们自己的差,我们还能容忍,台湾的机床是用美金买来的,用的不好,那火就大了。台湾最主要的几家机床厂已打算把工厂迁往大陆,大部分都在上海。这些厂目前在国内的竞争中,也打着“国产”的旗号。
近来随着中国的经济发展,也引起了世界一些主要机床厂商的注意,2000年,日本最大的机床制造商“马扎克”在中国银川设立了一家数控机床合资厂,据说制造水平相当高,号称“智能化、网络化”工厂,和世界同步。今年日本另外一家大机床厂大隈公司在北京设立了一家能年产1000台数控机床的控股公司,德国的一家很有名的企业也在上海设立了工厂。
目前,国家制定了一些政策,鼓励国民使用国产数控机床,各厂家也在努力追赶。国内买机床最多的是军工企业,一个购买计划里,80%是进口,国产机床满足不了需要。今后五年内,这个趋势不会改变。不过就目前国内的需要来讲,我国的数控机床目前能满足中低档产品的订货。
美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。因其社会条件不同,各有特点。
1.美国的数控发展史
美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重於基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。
2.德国的数控发展史
德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。,於1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统,均为世界闻名,竞相采用。
3.日本的数控发展史
日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出于蓝而胜于蓝。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。
4.我国的现状
我国数控技术的发展起步于二十世纪五十年代,中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。在1958~1979年间为第一阶段,从1979年至今为第二阶段。第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。主要存在的问题是盲目性大,缺乏实事求是的科学精神。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。
在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。存在的主要问题包括:缺乏象日本“机电法”、“机信法”那样的指引;严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。
2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,1999年,我们国家机械加工设备数控华率是5-8%,目前预计是15-20%之间。一、什么是数控机床车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。我们一般所说的数控设备,主要是指数控车床和加工中心。我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年,但如果国家支持,追赶起来也不是什么问题,例如:去年,沈阳机床集团收购了德国西思机床公司,意义很大,如果大力消化技术,可以缩短不少差距。大连机床公司也从德国引进了不少先进技术。上海一家企业购买日本著名的机床制造商池贝。,近几年随着中国制造的崛起,欧洲不少企业倒闭或者被兼并,如马毫、斯滨纳等。日本经济不景气,有不少在80年代很出名的机床制造商倒闭,例如:新泻铁工所。二、数控设备的发展方向六个方面:智能化、网络化、高速、高精度、符合、环保。目前德国和瑞士的机床精度最高,综合起来,德国的水平最高,日本的产值最大。美国的机床业一般。中国大陆、韩国。台湾属于同一水平。但就门类、种类多少而言,我们应该能进世界前4名。三、数控系统 由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界最大的三家厂商是:日本发那客、德国西门子、日本三菱;其余还有法国扭姆、西班牙凡高等。国内由华中数控、航天数控等。国内的数控系统刚刚开始产业化、水平质量一般。高档次的系统全都是进口。华中数控这几年发展迅速,软件水平相当不错,但差就差在电器硬件上,故障率比较高。华中数控也有意向数控机床业进军,但机床的硬件方面不行,质量精度一般。目前国内一些大厂还没有采用华中数控的。广州机床厂的简易数控系统也不错。我们国家机床业最薄弱的环节在数控系统。
四、机床精度1、机械加工机床精度分静精度、加工精度(包括尺寸精度和几何精度)、定位精度、重复定位精度等5种。2、机床精度体系:目前我们国家内承认的大致是四种体系:德国VDI标准、日本JIS标准、国际标准ISO标准、国标GB,国标和国际标准差不多。3、看一台机床水平的高低,要看它的重复定位精度,一台机床的重复定位精度如果能达到0.005mm(ISO标准.、统计法),就是一台高精度机床,在0.005mm(ISO标准.、统计法)以下,就是超高精度机床,高精度的机床,要有最好的轴承、丝杠。;4、加工出高精度零件,不只要求机床精度高,还要有好的工艺方法、好的夹具、好的刀具。五、目前世界著名机床厂商在我国的投资情况1、2000年,世界最大的专业机床制造商马扎克(MAZAK)在宁夏银川投资建了名为“宁夏小巨人机床公司”的机床公司,生产数控车床、立式加工中心和车铣复合中心。机床质量不错,目前效益良好,年产600台,目前正在建2期工程,建成后可以年产1200台。2、2003年,德国著名的机床制造商德马吉在上海投资建厂,目前年组装生产数控车床和立式加工中心120台左右。3、2002年,日本著名的机床生产商大隈公司和北京第一机床厂合资建厂,年生产能力为1000台,生产数控车床、立式加工中心、卧式加工中心。4、韩国大宇在山东青岛投资建厂,目前生产能力不知。5、台湾省的著名机床制造商友嘉在浙江萧山投资建厂,年生产能力800台。5、民营企业进入机床行业情况1、浙江日发公司,2000年投产,生产数控车床、加工中心。年生产能力300台。2.2004年,浙江宁波著名的铸塑机厂商海天公司投资生产机床,主要是从日本引进技术,目前刚开始,起点比较高。3.2002年,西安北村投产,名字象日本的,其实老板是中国人,采用日本技术。生产小型仪表数控车床,水平相当不错。六、军工企业技改情况军工企业得到国家拨款开始于当年“大使馆被炸”,后来台湾上台后,大规模技改开始了,军工企业进入新一轮的技改高峰,我们很多军工企业开始停止购买普通设备。尤其是近3年来,我们的军工企业从欧洲和日本买了大批量的先进数控机床。也从国内机床厂哪里采购了大批普通数控机床,国内机床厂商为了迎接这次大技改,也引进了不少先进技术,争取军工企业的高端订单。听在军工企业的朋友讲,如果再能“顶”三年,我们的整体水平会上一个台阶。 其实,总书记掌权以来,已经把国防事业提到了和经济发展一样的高度上,他说,我们要建立和经济发展相适应的国防能力,相信再过10年,随着我国国防工业和汽车行业的发展,我们国家会诞生世界水平的机床制造商,也将会超越日本,成为世界第一机床生产大国。
参考文献:
1.《机床与液压》20041No171995-2005TsinghuaTongfang OpticalDiscCo¸,Ltd¸Allrightsreserved
4.《机床数控系统的发展趋势》黄勇陈子辰浙江大学
5.《中国机械工程》
6.《数控机床及应用》作者:李佳
7.《机械设计与制造工程》2001年第30卷第1期
8《机电新产品导报》2005年第12期
9.《瞭望》2007年第37期
1. 主轴系统分类及特点
数控机床主轴驱动系统是数控机床的大功率执行机构,其功能是接受数控系统(CNC)的S码速度指令及M码辅助功能指令,驱动主轴进行切削加工。它包括主轴驱动装置、主轴电动机、主轴位置检测装置、传动机构及主轴。通常主轴驱动被加工工件旋转的是车削加工,所对应的机床是车床类;主轴驱动切削刀具旋转的是铣削加工,所对应的机床是铣床类。
全功能数控机床的主传动系统大多采用无级变速。目前,无级变速系统根据控制方式的不同主要有变频主轴系统和伺服主轴系统两种,一般采用直流或交流主轴电机,通过带传动带动主轴旋转,或通过带传动和主轴箱内的减速齿轮(以获得更大的转矩)带动主轴旋转。另外根据主轴速度控制信号的不同可分为模拟量控制的主轴驱动装置和串行数字控制的主轴驱动装置两类。模拟量控制的的主轴驱动装置采用变频器实现主轴电动机控制,有通用变频器控制通用电机和专用变频器控制专用电机两种形式。目前大部分的经济型机床均采用数控系统模拟量输出+变频器+感应(异步)电机的形式,性价比很高,这时也可以将模拟主轴称为变频主轴。串行主轴驱动装置一般由各数控公司自行研制并生产,如西门子公司的611系列,日本发那克公司的α系列等。
1.1普通笼型异步电动机配齿轮变速箱
这是最经济的一种方法主轴配置方式,但只能实现有级调速,由于电动机始终工作在额定转速下,经齿轮减速后,在主轴低速下输出力矩大,重切削能力强,非常适合粗加工和半精加工的要求。如果加工产品比较单一,对主轴转速没有太高的要求,配置在数控机床上也能起到很好的效果;它的缺点是噪音比较大,由于电机工作在工频下,主轴转速范围不大,不适合有色金属和需要频繁变换主轴速度的加工场合。
1.2普通笼型异步电动机配简易型变频器
可以实现主轴的无级调速,主轴电动机只有工作在约500转/分钟以上才能有比较满意的力矩输出,否则,特别是车床很容易出现堵转的情况,一般会采用两挡齿轮或皮带变速,但主轴仍然只能工作在中高速范围,另外因为受到普通电动机最高转速的限制,主轴的转速范围受到较大的限制。
1.3通笼型异步电动机配通用变频器
目前进口的通用变频器,除了具有U/f曲线调节,一般还具有无反馈矢量控制功能,会对电动机的低速特性有所改善,配合两级齿轮变速,基本上可以满足车床低速(100―200转/分钟)小加工余量的加工,但同样受最高电动机速度的限制。这是目前经济型数控机床比较常用的主轴驱动系统。
1.4专用变频调速电动机配通用变频器
将调速电动机与主轴合成一体,这是几年来新出现的一种结构。这种变速方式大大简化了主轴箱体与主轴的结构,有效地提高了主轴部件的刚度,但主轴输出转矩小,电动机发热对主轴影响较大。
2.主轴系统的发展方向
机床的主轴驱动与进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其他直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20世纪60―70年代,数控机床的主轴一般采用三项感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已经不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求:
2.1调速范围宽并实现无级调速;
对主轴的调速范围要求更高,就是要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无极调速,并减少中间传动环节,简化主轴箱。主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。
2.2恒功率范围要宽;
主轴在全速范围内均能提供切削所需功率,并尽可能在全速范围内提供主轴电动机的最大功率。由于主轴电动机与驱动装置的限制,主轴在低速段均为恒转矩输出。为满足数控机床低速、强力切削的需要,常采用分级无级变速地方法(即在低速段采用机械减速装置),以扩大输出转矩。
2.3 具有4象限驱动能力;
要求主轴在正、反向转动时均可进行自动加、减速控制,并且加、减速时间要短。
2.4 具有位置控制能力;
即进给功能(C轴功能)和定向功能(准停功能),以满足机床自动换刀、刚性攻丝、螺纹切削以及车削中心的某些加工工艺的需要。
2.5具有较高的精度与刚度,传动平稳,噪音低;
2.6 良好的抗震性和热稳定性。
3.国内外先进主轴系统
“十二五”期间,我国将大力推进两化深度融合,大力发展高端制造装备,其战略目标是实现制造业的可持续发展,实现制造业向资源节约型和环境友好型转型。
作为装备制造业“母机”的高档数控机床或基础制造装备,是高端制造装备的重要组成部分,也是实现两化深度融合的重要载体,不仅在机床的设计、生产过程中应实现绿色,而且所生产的机床工具产品也应做到高效率、高精度、低能耗,并应从设计阶段就考虑使机床工具产品具备良好的再制造性能。
实施机床行业的绿色制造,重点应从四个途径入手,首先是机床的绿色设计,第二,发展新工艺及新产品,第三,机床再制造,第四,机床的数控化和智能化。
机床的绿色设计
传统的产品设计,通常主要考虑的是产品的基本属性,如功能、质量、寿命、成本等,很少考虑环境属性。按照这种方式生产出来的产品,很可能在其使用寿命结束后,回收利用率低,资源浪费严重,造成环境污染。绿色设计是从可持续发展的高度审视产品的整个生命周期,强调在产品开发阶段按照全生命周期的观点进行系统性的分析与评价,消除潜在的、对环境的负面影响。
绿色设计是机床绿色制造的首要环节,一般包括机床结构设计、绿色材料选择、制造环境设计、工艺设计、机床包装方案设计和机床回收处理方案设计等步骤。此外,为保证绿色设计的有效性,在设计方案完成后还应对资源消耗和环境影响等进行综合评价。
机床的绿色设计应建立面向能源和碳排放模型的生态化设计的知识库和数据库及相关技术规范和标准,充分考虑机床产品使用过程中的能耗和可维护性,选择绿色材料,使用多功能部件及模块化的部件来简化产品设计结构,做到既节省原材料,又减少浪费和环境污染,同时降低机床使用时的能源消耗;在除尘、、液压和冷却系统的改进、废弃物的处理等方面尽可能考虑采用高新技术和先进适用技术、少无切削术、干式切削技术、油气液净化技术及其它洁净技术等,提高资源利用率控制和减少废弃物,实现节能、节材、无污染,发展循环经济;为了适应对废旧机床产品回收、再制造的要求,在设计阶段就应考虑产品的易拆解、易回收和易修理;同时,应注意产品的可扩展和升级性,留足功能扩展空间,方便用户通过更换功能部件或使用标准化的产品接口等方式,对产品进行升级或添加功能,延长机床的使用寿命,提高利用率。
发展新工艺及新产品
机械工业在制造过程中是消耗钢材大户,而机械产品在使用过程中则是消耗能源的大户。机械产品使用过程的能源消费强度远高于生产过程,据统计,量大面广、耗能高的21类机电产品,电力消耗约占全国发电量的60%,煤炭消耗约占全国煤炭产量的50%,汽油消耗约占全国汽油产量的58%,柴油消耗约占全国柴油产量的40%。
机械产品生产过程消耗钢材约占全国的39%,因此发展新工艺,并研发体现新工艺的机床装备,对提高材料利用率、节能节材有着重要意义,是发展机床绿色制造的另一个主要途径。新工艺的主要发展趋势是通过“精确成形+精密磨削”,减少加工过程中的材料耗费和加工过程,同时减少污染物排放。
大力发展净成形/近净成形的工艺及设备。采用零件精确成形技术,材料利用率可较传统的成形工艺提高20%-40%,冷精锻精确成形可使材料利用率提高到98%以上,精确铸造成形技术也可达到90%以上。精确塑性成形技术大多是在室温下实施的,免除了加热工序,节约了加热能量,大大减少了零件生产过程中的能量消耗。净成形零件成形后不需要加工或者需要很少的加工,可取消或大大减少加工工时,实现节能、降耗的目标;此外,在成形过程中还可同时考虑通过控制温度、压力、流体场、电磁场等外部载荷的施加,提高零件的内在质量。发展零件精确成形技术及相关装备,对机械工业节约资源、能源和环境友好,实现可持续发展意义重大。
发展加工过程的新工艺。如采用干切削和微量技术可以节省成本并替代高成本、高污染和有害健康的湿切削过程,促进机床的绿色化。磨床的磨削工艺对环境影响很大,新型的快速点磨削技术具有磨削区域小,磨削力小、砂轮使用寿命长、磨削温度低、冷却简单,这对实现绿色制造具有重要意义。
采用新的加工方法。通过发展增量制造技术,在不用模具和工具的条件下生成复杂零部件,解决从设计到制造的快速对接问题,满足产品快速开发和快速制造的要求。
机床再制造
再制造是指以废旧产品作为生产毛坯,通过专业化修复或升级改造的方法来使其质量特性不低于原有新品水平的制造过程。再制造是制造产业链的延伸,也是先进制造和绿色制造的重要组成部分。再制造产品在产品功能、技术性能、绿色性、经济性等质量特性方面不低于原型新品,其成本仅是新品的约50%,可实现节能60%、节材70%,对环境的不良影响显著降低。
根据我国目前的机床保有量和预计每年报废机床的情况,机床的再制造是我国实施机床绿色制造的关键技术和重要趋势。机床再制造过程一般包括废旧机床回收、拆卸、清洗、检测分类、机床及零部件再设计、再制造生产加工、整机再装配、调试、检验及销售等过程。一般来讲,机床再制造可分为产品级再制造和零部件级再制造两种形式。机床产品级再制造是对机床整体性能进行提升,包括机床功能化再造、数控化升级、节能化提升等。机床零部件级再制造主要是根据零部件的不同对其进行再利用、再修复、再资源化及废弃处理。
对旧机床进行再制造,可以充分利用机床原有的床身、导轨、工作台、立柱、底座等零部件,大大节约资源和能源,实现节能、节材,减少重新生产铸铁件对环境的污染,一次性投入资金少,供货周期短。同时,机床再制造可以根据机床的状态及工艺要求选择增加数控系统或其他功能,进一步提升机床性能、节省成本、提高生产效率。
目前,机床再制造主要集中在重型和超重型机床。一般而言,重型、超重型机床对钢铁资源的消耗非常巨大,再制造对部分机床的能耗节约高达60%以上:重型机床的再制造周期一般为3~6个月,可以利用70%以上的残留价值,再制造机床的费用比同类新机床要低70%左右,再制造周期短、成本低的特性体现得分外明显;重型机床大量的基础件具有耐久稳定性,特别是床身、立柱等部件,使得再制造机床在基础性能稳定方面有了很好的保证。因此,重型机床再制造在节约资源,发展循环经济方面的优势尤为明显。
目前我国机床再制造存在一些问题,比如机床再制造缺乏政策性的定义和行业标准;市场竞争不规范;个性
化的客户需求造成了机床再制造业务单品种、小批量的特点,产业化较为困难:我国废旧机床的物流体系建设仍然处于初级阶段,旧机床的回收和再制造机床的销售没有顺畅的渠道,再制造业务和新品业务的矛盾日益明显等等。
国家工信部近年选择了一些再制造企业和项目进行了试点支持,对制定再制造行业标准、提升用户对再制造产品的使用信心、促进再制造业务发展等方面起到了一定的示范试点作用和效果。下一步希望国家有关部门能够继续加快推进机床再制造产业发展,鼓励更多的企业进入再制造市场,采用税收、补贴等支持手段,加大对机床再制造企业的扶持力度。
机床的数控化和智能化
我国作为后发展的国家,其工业化进程与已完成工业化的国家不尽相同,是在信息技术快速发展的环境下进行的,因此,推行机床绿色制造很重要的是借助信息技术,使信息技术与机械制造技术密切结合、深度融合。
1.加强机床数控化
20世纪50年代诞生的数控技术,以及随后出现的机器人技术和计算机辅助设计技术,开创了数字化制造的先河,加速了制造技术与信息技术的融合,也解决了制造产品多样化对柔性制造的要求。
当前数控技术及系统已越来越成熟,应大力推广到各种机床和热加工设备上去。
2.发展机床智能化
从新的发展趋势来看,当今的数控机床已越来越难满足市场的要求,具有更高加工质量、更高加工效率、更强自适应控制和补偿功能、更高可靠性、更宜人的人机交互模式、更强网络集成能力等智能化特征的数控机床,将会成为未来20年高端数控机床发展的趋势,因此要进一步加强机床数控化的研究和应用。
数控机床与基础制造装备的智能化可以提高能源和原材料的利用效率、降低污染排放水平,提升产品的性能、文化/知识含量以及技术附加值,增强企业的市场响应能力,提高生产质量、效率和安全性。
发展智能制造装备需要解决的关键技术是:面向制造过程状况监控和装备性能预测的感知与分析技术,基于几何与物理约束的智能化工艺规划和数控编程技术,智能数控系统与伺服控制技术,智能控制技术。
目前,智能制造装备已列入我国培育和发展的战略性新兴产业规划之中,近期国家科技部、工信部、发改委等联合启动的《“数控一代”机械产品创新应用示范工程》,国家发改委、财政部、工信部进行的“智能制造装备发展专项”等都说明国家将“数控一代”机械产品和智能制造装备作为发展重点方向给予了高度重视,而数控机床和基础制造装备是其重点。预计到2020年,我国将把智能制造装备产业培育成为具有国际竞争力的先导产业,总体技术水平迈入国际先进行列。
数控技术在机械制造方面有着便利性和精确度以及高效率的特点,对于一般的机床很难完成的机械加工操作通过数控技术能够高质量的完成,在对工艺进行加工的过程中还能够对于加工的参数得以方便的改变,这些便利的特点使得机械制造的总体质量得到了提高。
2数控技术的发展趋势分析
新的技术给我国的传统机械制造产业的发展迎来了一个蓬勃的春天,也使得制造业成为了一个工业化的象征,在计算机技术的不断发展的过程中,数控技术给我国的一些重要行业的发展(例如:汽车和轻工以及医疗等)也起到了很大的促进作用,从目前国内外的数控技术的实际发展以及研究的情况来看,其在未来的发展趋势上主要向着高速,高精加工技术及装备的新趋势,五轴联动加工和复合加工机床快速发展,智能化、开放式、网络化趋势,重视新技术标准、规范的建立这些方向上迈进。
3数控技术在机械制造中的实际应用探究
数控技术的应用涉及到多个方面的技术,例如:计算机技术、测量技术、信息处理技术等等,通过对于这些技术的运转操作,其对机械制造行业的发展起到了推动性的作用。
1)数控技术在机床方面的实际应用,对于机械设备来说它在机械制造中的地位非常的重要,在现代技术的应用下机床设备已经是机电一体化产品的重要组成部分,这对于产品的加工质量有着关键性的作用,而通过计算机数控技术为机床的有效控制提供了一个很好的条件,在机床的数字化作用下对于刀具以及机械的部件以及主轴的变速等等都是由数字来进行操作,只需要在对机械的一些零部件加工之前由编程人员把零部件的相关程序进行编程,而后再通过程序的载体,比如说光碟或者是半导体的存储器等,进行载入程序或者是通过手动的方式把这些程序进行输入电脑中处理,从而通过驱动电路来对机床进行控制,在这一过程中如果是想改变对机械的零部件加工只要在电脑系统的程序中进行修改,输入新的程序即可,这对于传统的人工调整有着很大的方便性,在效率上得到了提高。
2)数控技术在汽车机械制造中的实际应用,在我国的经济得到稳步上升过程中人们的生活水平也随之得到了很大的提高,在对产品的消费方面需求愈来愈大,其中,对于汽车的需求在近些年的发展过程中得到了迅猛的增长,这就给汽车机械的制造技术提出了高的要求,对于传统的机械制造技术已经不能很好的满足当前的市场发展需求,在这一市场激烈竞争的背景下数控技术就有着其重要的作用,数控技术在汽车机械制造中得以应用能够在质量上以及效率上都能够得到有效的提高,对于汽车的零部件的加工以及新产品的研制都有着很好的效率提升,从而也把汽车机械的零部件加工向着集成化以及规模化的方向得到了发展。
3)数控技术在煤矿机械制造中的实际应用,煤矿产业对于我国的经济发展有着重要的促进作用,由于煤矿的开采需要机械的参与并且在当前的煤矿产业的发展中对于采煤机械的要求也已经愈来愈高,在实际的采煤环境制约下采煤机的种类也比较的多,并且都不是大批的进行生产,这就给采煤机械的制造有了很大的困难,对于传统的机械制造的技术在采煤机的单件下料问题上得不到很好的解决,而数控技术的应用可以通过龙骨板程序进行下料,对于在套料的选用方案上起到了很好的优化作用,在效率提高的同时,在对机械的零部件生产过程中的精确度也有了很好的保障,从而对采煤机机械的制造质量得到了总体的提高,这对采煤人员的人身安全有了很好的保障,也进而对采煤的过程中的事故得到了有效的降低。在数控技术得到了一定程度的发展的同时,也应当清醒的看到一些不足之处,在长期的发展过程中,我国的数控机床还处在一个低档膨胀和中档发展迟缓以及高档进口的这样一个局面,在我国的一些重要的工程方面的应用上还是依靠于进口的设备和技术来完成,从整体的发展上来看,我国在数控技术上的水平以及精确度和质量、性能和其他国家相比还处于比较落后的阶段,在自主创新能力方面还不够,在自主产权的操作系统方面还比较的缺乏。故此,在未来的数控技术的应用方面,还要针对这些问题进行大力的发展。
4结束语
一、在新的形势下,机械产业面临着特殊的机遇和挑战
前景机遇:机械装备产品需求依然较大。我国仍处于工业化和城镇化加速发展阶段,汽车工业、基础设施建设和石化、冶金、轻工、建材等传统产业的转型提升将带来巨大市场空间。国家高度重视机械产业发展。将高端装备制造业列为战略性新兴产业,先后出台智能制造装备、机械基础零部件、铸造等专项规划,一直是国家扶持的重中之重。智能制造变革将引发第三次工业革命。由人工智能技术、机器人技术和以3D打印为代表的智能制造技术正催生第三次工业革命,为机械产业创新升级带来新的动力。
压力挑战:装备制造业面临双向挤压。一方面美国、日本和欧盟加紧从技术、标准和市场等方面提高门槛,在高端装备制造业领域重新获得优势地位;另一方面,越南、印度等发展中国家凭借更低生产成本优势,积极主动承接国际产业转移,装备制造业正面临高端不足、低端流失的双向挤压。国内市场环境日趋严峻。资源环境压力与日俱增,劳动力成本优势逐步削弱,产能过剩造成市场竞争激烈,制造业进入微利时代。我市机械产业整体实力有待提升。产业大而不强,关键核心技术缺乏,自主知识产权和高附加值产品比重低,关键零部件配套能力较弱等问题。
二、在未来定位上,机械产业需开拓转型发展的广度和深度
扬州市机械企业和服务部门必须坚持政企携手、“八化并举”,加快推进创新转型和内涵提升,实现机械产业健康可持续发展。
(一)品牌特色化
机械装备产业门类齐全,企业众多,如何在日趋激烈的市场竞争中突围,必须坚持“人无我有、人有我精”的特色化品牌战略。一是培育品牌的差异特色。引导企业围绕蓝海市场开发首台套重大装备,加快培育高速飞剪线、随车起重机、旋压机、宠物食品机械、节能灯管自动生产线、大型转盘轴承、航空航天电缆等特色化、差异化产品,新增认定首台套20项以上。二是打造品牌精品特色。开展重点装备领域质量攻关,不断提高伺服数控转塔冲床、高速精密压力机、冶金凤凰炉、自卸车液压系统、篦冷机、脱硫设备等传统特色产品的质量和稳定性,数控机床平均无故障时间提高30%,做精产品、做响品牌、彰显特色。
(二)产品智能化
必须顺应国际制造业发展趋势,加快培育智能化产品,重塑我市机械产业的新优势。一是强化自主创新能力。依托国家高档数控机床和智能制造装备重大专项,组织企业开展关键技术攻关,提高创新能力,力争在多轴联动、新型传感与识别、模块化控制系统、实时网络通信、功能安全、故障诊断与维护6大关键共性技术上取得突破。二是提高产品智能化水平。实施重大新产品研发计划,推动新型传感器、智能仪器仪表、可编程控制器、网络传输等模块嵌入装备产品,不断提高装备自动化、网络化、智能化水平,力争机床数控化率达90%以上,智能冲压成套装备、多轴联动复合机床、激光切割机、冲激复合机、热模锻设备等高端产品进入世界一流企业关键工序。三是加快发展工业机器人。加大政府引导扶持力度,建立“政产学研用”相结合的机器人产业创新联盟,以行业专用机器人为切入点,引导数控技术优势企业加强对码垛、锻造、钣金等工业机器人的研究开发,培育规模,做出品牌,力争到2015年机器人产业规模达10亿元。
(三)装备自动化
生产装备优劣决定产品质量高低,我国数控设备比例仅28%,而日本为83%。要广泛使用数控装备。充分利用进口设备退税、技改项目设备补助等政策,鼓励企业购置数控装备,提高加工精度和效率,力争全行业列统企业主要设备数控化率达100%。要鼓励应用智能装备。工业机器人和3D打印技术将彻底改变传统制造业形态,要鼓励企业在快速精密成形、工业设计、焊接、喷涂等单调重复性工序上采用3D打印和工业机器人,提高生产效率和重复精度,力争每年智能装备增加15%。
(四)模式高端化
要加快构建现代装备制造企业模式。一是柔性制造模式。要引导行业龙头企业应用自动化、物联网、云计算等技术,加速构建柔性制造单元和系统,从大批量生产转为大批量定制,加快对用户个性化需求的响应速度,实现敏捷制造和柔性制造。二是精益研发模式。虽然CAD、PDM等以提升效率为主的软件得到很好普及,但与世界一流装备企业相比,还需要引入CAE、CAI等研发过程管控平台,建设“人+流程+技术”三位一体的精益研发体系和过程管控能力,构建新一代精益研发模式,进一步提高创新能力。三是多元商业模式。要抓住经济启稳回升势头,鼓励企业开展电子商务、兼并重组、上市融资,国际营销和海外投资,力争培育跨国公司1—2家、上市公司3家以上。
(五)产业链式化
要不断完善上下游贯通、附加值提高的新型机械装备产业链。一是延伸供需链。打造“配套+整机+用户”的产业链,要突破上游。积极招引主轴部件、导轨丝杠、精密液压、伺服驱动、数控系统等关键部件项目,实施“三基”强基工程(机械基础件、基础制造工艺和基础材料),改变“重整机、轻配套”的局面,力争“三基”和关键部件本地配套率达到40%。要紧跟下游。帮助更多企业为需求量大、竞争力强的央企外企配套,实现靠大靠强发展。二是扩展价值链。国际先进制造业中服务创造价值占2/3,要引导企业大力发展工程总包、系统集成、设备租赁、机床4S店、机械再制造等服务型制造业,从单纯销售产品向提供完整系统解决方案转变,增值区间向制造业价值“微笑曲线”的研发和服务两端延伸,打造覆盖产品全生命周期的价值链,力争培育服务型示范企业50家以上。
(六)布局集聚化
要严格控制新上项目并引导现有企业进入相应产业集聚区。一要优化块状集聚。引导区域同类企业整合市场、商标、信息、人脉、设备等优势资源,形成产品互补、品牌共建、装备共享、产业共赢的协作机制,打造区域品牌,重点发展金属加工机械、电气机械、液压机械、粮食机械五大制造基地,以及脱硫设备、水处理设备、储能电池、电动工具、高电压试验设备、泵阀管件六个特色机械产业集聚区,力争2015年产值贡献达2600亿元。二要加强链式集聚。吸引关键基础材料、核心基础零部件和先进基础加工等配套企业向装备制造基地和集聚区集聚,减少原材料物流成本,提高协作效率,细化供应链分工,提高产业整体劳动生产率。
(七)制造绿色化
要大力发展节能减排、环境友好、循环再生的绿色制造业。一是采用轻量化设计。鼓励产品设计中采用高性能合金、高强度钢等轻质化材料,薄壁、空心、带筋等轻量化结构,以及高效电机和变频技术,不断减少装备重量、体积和功率消耗。二是倡导绿色制造。严格按照国家政策控制淘汰低端铸造、含氰电镀、铅蓄电池等落后产业,提倡使用无污染的焊料和涂料,采用干式切削、真空热处理、近净成形等先进工艺,不断降低能耗和废弃物排放。三是发展环保装备。未来我国环保产业将迎来高速增长期,要充分利用脱硫脱硝、能源回收、污水处理等良好的装备基础,抢抓机遇,加快发展水、气、固、声、热、仪6大环保装备,形成先发优势。四是鼓励机械再制造。我国已经进入机械装备报废高峰期,引导企业研发拆解与超声清洗、剩余寿命评估和零部件缺陷修复等回收技术,推动工程机械、机电设备、机床等再制造。
(八)服务专业化