HI,欢迎来到好期刊网!

基因组学的意义

时间:2024-01-05 14:39:02

导语:在基因组学的意义的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

基因组学的意义

第1篇

关键词:脑;基因组;元神;人格参照模式

中图分类号:R2-03

文献标识码:A文章编号:

1673-7717(2008)11-2495-02

TCM Discussion on Brain Functional Genomic

LIU Jia-qiang(Chengdu University of Traditional Chinese Medicine,Changdu 610075,Sichuan,China)

Abstract:Primordial shen is concentrative embodiment of Shen, brain is house of mental activity. Brain cell is metabolism about information. The characteristic of brain genomic is uniformity, profound and subtle, reflection, activeness. The essentiality relate to brain functional genomic, the ego relate to transposition element. The function of brain genomic include receipting, processing, storaging, fetching and firing information.

Key words:brain; genomic; primordial shen; frame of reference

人脑是生物亿万年进化的产物,是宇宙中已知最复杂最精细的体系。大脑的研究一直是科学家孜孜以求的,是比基因更复杂的体系。从现代科学的角度来看,大脑是生命的最高控制系统,是人体的调控和思维、意识的中心;如何从整体角度来解译大脑密码,是中医学最大的挑战。利用中医学整体思想结合现代信息科学技术以及基因组

学,将是从整体的角度真正解译意识奥秘的有力工具。

1 中医学对脑的认识

中医对脑的认识是相当模糊的,自《内经》以来,历代医家围绕着“心主神明”、“脑主视听”以及“神居泥丸”的理论,进行着反复的观察与探讨。王清任《医林改错》对脑髓学说论述较为清晰,力倡“脑髓说”,是历代文献中有关脑髓理论的精彩篇章。但其应用脑髓学说指导临床辨证治疗尚难完善。

《素问•三部九候论》云:“神藏五”,明确指出人体的五藏为藏神之脏。而《灵枢•本神论》的“心藏神”、“肺藏魄”、“肝藏魂”、“脾藏意”、“肾藏志”则进一步说明了5个神藏的具体内容,即“心、肺、肝、脾、肾”五藏分别藏有“神、魄、魂、意、志”。五神藏的统一体就是神。元神是神的集中体现,李时珍认为脑为元神之腑。中医将脑的功能归于五脏,但是反过来五脏的功能也构成了大脑。精气神是五脏的基础和功能,是人整体的功能属性。

2 基因组整体的精气神功能分类

供细胞自身生命的生长、繁殖、代谢与体能消耗的这些基因组功能模块称为精基因组功能模块,这些特殊信息的细胞分布在周身组织(包括躯体、内脏与脑等组织)中。维系人体内脏特有的分泌功能的基因组功能模块称为气基因组功能模块,由于这些基因的表达维系了五脏的相互作用和对外调控作用。神经细胞(主要是脑神经细胞)中的具有反映性、记忆性、主动性、搜索性等功能的基因组功能模块称为神(脑)基因组功能模块。正是这些基因组模块间的相互作用构成了基因组整体的结构和功能,这3个模块间存在直接的调控关系。

脑基因组是脑细胞的调控中心 基因组是细胞的调控中心,虽然神经元细胞的功能多样,但是神经元的功能特性仍然由神经元基因组的特性所决定。神经元细胞构成的复杂的网路系统实质上基因组之间的相互作用,从基因组出发解决脑问题可能更接近于实质。神(脑)基因组功能模块也是由五神藏功能模块所构成,五脏的相互作用构成了统一整体。

3 脑细胞是信息代谢

体细胞与内脏细胞的功能尽管也有不同,但都没越出实体物质代谢(包括能量代谢与物质代谢)的内容,而神经细胞则进一步发展到了“信息代谢”,如接收信息、传输信息、发放信息……体现信息的一出一入这种既类似又不同于一般物质代谢的功能,这是神经细胞所特有的功能,也是它的主要功能,脑神经细胞的物质能量代谢都是为它服务的。脑基因组的功能也集中体现在对自身以及外来信息的处理上。

4 脑基因组的特性

4.1 整体连接每个脑细胞的基因组作为一个功能信息单位与其他基因组全方位连接,突触的众多的细胞连成一体,促使脑所有细胞的基因组相互连接成一整体。

4.2 反映性脑基因组的全方位特性决定了与外物相互作用的反映特征,把客体的差异如实地呈现出来,脑(元神)则可以反映事物的全部特性,而且脑(元神)中有无数个层面,不仅可以反映客体的状态,而且也可以反映脑(元神)自身的内部状态。

4.3 能动性人的主动能动性是由脑基因组的能动性所决定的。

4.4 对信息的作用脑功能基因组的特性表现在对自身和外来信息的反映和处理上,信息是编码基因功能的起点和终点。

大脑皮层虽有相对的区域性,但各区域之间不但发生着多级双向的方式与多样性相互作用方式,而且每个区域都包含了别的区域的若干功能单元(或亚区) ,任何一种心理活动都需要大脑所有区域和系统(不同程度与方式)的参与。细胞之间传递的是调控信息,通过神经突触,在编码基因的作用下基因组之间传递了以编码基因序列为节点的非编码序列的调控信息,通过细胞内外信息的近乎无限的相互调控和反映,促使非编码序列的改变,促使某些编码基因的表达,脑细胞形成了统一的网络结构整体。

5 人的大脑是生理建构和文化建构的统一而成的整体

在形成人的完整的神经系统的过程中,是古猿经过劳动和社会交往所逐渐形成的。一方面,人类的文化建构的活动与发展是依从生理建构整体特性的,另一方面文化建构对生理建构具有能动的反作用,促进生理建构的演变,从而促进文化建构的进化与发展。人的大脑的生理建构和文化建构矛盾运动构成了从古猿到人的进化和人的继续发展。

大脑细胞中含有超过其他体细胞的RNA,而大脑又是以信息的接收、处理和发放等的信息代谢为主的,人类所接收的信息就很可能暂时存储在这些物质的排列中;人出生后客观世界的信息逐渐反映到人脑,从RNA传递到DNA中,继而影响到转座子和对编码基因的调控,形成了较为固定的转座子功能模式即人格参照模式。文化建构的基因序列影响了转座子的功能活性,转座子的功能活性又进一步影响了编码基因的功能活性。文化建构构成了人的特定心理模式:性格或者体质。文化建构发生了某些变化则影响基因组编码基因功能的发挥,通过激素又影响了身体五脏六腑的某些变化。文化建构的整体变化是可以造成核内某些编码基因的某些变化。

生理建构和文化建构的矛盾运动构成了人的特定心理模式。本性与脑细胞的功能基因组有关,自我则是与人格模式或者心理模式相关的转座子网络调控下的基因功能相关。脑基因组是统一矛盾的整体,处在文化信息排列和编码基因的矛盾运动中,而中间的媒介是转座子网络,即功能网络结构。文化信息影响编码基因的表达,编码基因是在文化信息的调控中表达。情绪反映的背景是人格参照模式,是在人格模式背景下表达的。

6 脑基因组的功能

脑基因组的功能主要体现在接收信息,加工、贮存、提取信息,发放信息3个方面。这些都与脑功能基因组密切相关,是在基因的作用下对信息的作用。

加工信息:人的感觉器官(眼耳鼻舌身)可以分别感受客观物质的物理、化学等特性的刺激。上述各种刺激作用到相应的感觉器官的感受器时,就可以引起传入神经的兴奋,进而在脑内引起反应,这些反应都可以引起脑(元神)相应的变化,基因序列的变化。若是单一的刺激,则是感觉;若是相关的复合信息,则是知觉。当一事物的“全部”信息进入脑(元神)后,则可形成该事物的表象。表象一旦形成,根据该表象部分特征,即可以回忆出整个表象来。每一事物都具有不同的特性,发放出的信息作用到不同的感觉器官,引起不同的神经冲动,伴随着不同的生理变化。这样一来,似乎完整的事物被各感觉器官分解了。但是这些信息进入脑(元神)后,又按其原来的状态组合,表现出原有的整体状态。

第二次加工,即把带有复杂信息的整体映象缩合成一个简单信息即特定的符号-词汇代替之。这是对事物表象的抽象、脱离事物具体信息的过程。这就是人意识活动的概念的形成过程。现代心理学或哲学认为这种抽象是经过分析、综合、演绎并对现象扬弃的结果,由此得出的概念或判断,抓住了事物本质。一旦表象被抽象并赋予语义的词汇后,形成的词汇就脱离了表象所占据的层面,而进入了另一层面并建立起另外的系统联系,这就是所谓的第二信号系统。如果我们把表象占据的脑(元神)空间称作“第一映象空间”的话,不妨把第二信号系统所占据的脑(元神)的空间叫做“第二映象空间”。

贮存信息:人脑基因组可以储存大量的信息。

提取信息:贮存有信息的脑神经细胞也会包含着所贮存的信息内容,因而也就成了脑(元神)中的一部分内容。鉴于意识的搜索性与驱动性,当需要提取信息时,就主动地向该点集中,于是实体物中的信息也就随之得到清晰的映象。

发放信息是靠人的各种器官(包括感觉器官)把信息发放到客观事物的过程。

结论:脑细胞功能的复杂性是由于细胞内所含的基因组的功能特性所决定,从基因组出发,从整体论出发来解译脑是一种捷径。当代影像学研究的只是脑基因组功能的外在显像,而对于神经元细胞的调控中心基因组没有深入研究。对于人脑这种复杂性系统,从还原论入手进行形的解剖研究不可能达到对脑整体的解译,而中医学思想无疑将可以发挥巨大的作用。

参考文献

[1] 刘家强.中医学现代化-由朴素唯物主义走向现代唯物主义[J].中医药学刊,2005,23(5):872-873.

第2篇

[关键词] 高血压;肾血管性;心室肥厚;结缔组织生长因子

[中图分类号] R544.1+4[文献标识码]A[文章编号]1673-7210(2008)07(b)-013-03

The relation between connective tissue growth factor and ventricular hypertrophy in the rats with renovascular hypertension

SUN Hong-lei1,ZHANG Jing-qun2,MA Ye-xin2

(1.Central Hospital of Jiaozuo Coal Group Co.Ltd.,Jiaozuo 454150,China;2. The Affiliated Tongji Hospital,Tongji College of Huazhong University of Science and Technology,Wuhan 430030,China)

[Abstract] Objective:To study the relation between connective tissue growth factor and ventricular hypertrophy in the rats with renovascular hypertension. Methods: Some two-kidney one-clip (2K1C) renovascular hypertension(RVH)rats were established. Then they were randomly divided into two groups:RC1 and RC2. In addition,sham-operated rats were designed as controls(SC). The left ventricular weight(LVW) and the ratio of left ventricle weight to body weight(LVW/BW) were measured when the rats were killed at the endpoint of the study. The CTGF protein in the left ventricular myocardium were assayed by immunohisto- chemical methods. Results: ①Significant ventricular hypertrophy appeared at the 8th week and became more serious at the 12th week after surgery.②The expression of CTGF protein in the left ventricular myocardium increased significantly in RC1 rats and RC2 rats(compared with the sham rats),and the expression of CTGF protein in RC2 rats increased more significantly than in RC1 rats. Conclusion:Increased expression of CTGF protein in left ventricular myocardium of rats with renovascular hypertension indicate that CTGF may play important roles in the development of ventricular hypertrophy of RVH rats.

[Key words] Hypertension;Renovascular;Ventricular hypertrophy;Connective tissue growth factor

高血压是一种与遗传和环境因素密切相关的以血压增高为主要临床表现的综合征,主要累及心、脑、肾、大动脉及外周血管等组织器官,引起心肌肥厚、心力衰竭、脑卒中、肾功能不全等一系列疾病,是引起机体致残、致死的元凶。如何预防和逆转左室肥厚是人们一直努力探讨的问题。结缔组织生长因子(CTGF)是新近发现的分泌性多肽,具有多种多样的生物学特性,在体内参与胚胎发育、细胞增生、分化及创伤愈合等。CTGF可促进细胞的黏附、增生、和细胞外基质形成[1]。相关研究表明,高血压可引起心肌CTGF mRNA表达增加,且CTGF mRNA的表达与心肌肥厚的程度密切相关[2]。本研究旨在探讨CTGF在RVH大鼠心肌肥厚发生、发展过程中的作用。

1材料与方法

1.1 实验动物模型制作与分组

雄性SD大鼠若干只随机分组。

两肾一夹手术组:两肾一夹方法构建肾血管性高血压模型[3]。3%戊巴比妥钠(30~50 mg/kg)麻醉下,沿腹白线作正中切口打开腹腔,分离左肾动脉,用一内径为0.20 mm的银夹使之部分缩窄;术后前4周每周检测清醒安静状态下尾动脉收缩压(SBP)(鼠尾动脉测压仪:Rat Tail NIBP System,ADI Instruments),如SBP较术前升高≥20 mmHg(1 mmHg=0.133 kPa),且高于140 mmHg为造模成功[3,4]。

假手术对照组:实行同样的手术操作,但是不缩窄肾动脉。

造模成功大鼠20只随机分成2组:RC1组和RC2组。同时设假手术对照组(SC组)。RC1组观察8周,RC2组观察12周。研究终点称动物体重(BW)后处死,称取左心室重量(LVW)。

1.2大鼠心肌胶原纤维形态学观察

取心肌冠状沟下约1 mm处,横切心肌标本约5 mm厚,纱布吸干血迹后,用10%福尔马林固定,石蜡包埋,制片。切片行VG胶原染色,用HMIAS-2000型全自动医学彩色图像分析系统(湖北武汉千屏影像公司)进行拍照,随机取10个视野测量,计算其均值,求取心肌组织胶原容积积分(CVF=胶原面积/总面积)。

1.3 免疫组化染色法检测TGF-β、CTGF的表达

心肌组织标本经10%福尔马林固定,石蜡包埋,4 μm厚切片。按照S-P方法,步骤如下:切片脱蜡入水,蒸馏水洗5 min,PBS洗5 min×2次,滴加1滴3%H2O2溶液,38℃放置15 min,PBS洗5 min×3次,抗原修复液(9 ml 0.1mol/L枸橼酸溶液+41 ml 0.1mol/L枸橼酸钠溶液+450 ml水)水浴加热,煮沸10~15 min,冷却后PBS洗5 min×3次,滴加正常山羊血清封闭,室温30 min,甩净不洗,滴加兔抗大鼠CTGF多克隆抗体(1100工作浓度,武汉博士德),4℃孵育过夜,PBS洗3 min×3次,滴加生物素化的羊抗兔IgG,37℃静置30 min,PBS洗3 min×3次,滴加过氧化物酶标记的链霉亲和素,37℃静置30 min,PBS洗3 min×3次,DAB染色3~5 min,苏木素复染,盐酸酒精分化,PBS返蓝,常规脱水透明,中性树胶封片,镜检。使用HMIAS-2000高清晰度彩色医学图文分析系统进行分析。随机选取每张切片至少10个视野(×200倍)自动选取阳性区域并计算平均光密度值.

1.4 统计学处理

数据资料以x±s表示,组间比较采用t检验和单因素方差分析及相关分析,以P<0.05为有统计学意义。

2 结果

2.1 鼠尾动脉压

各组术前SBP无明显差异,术后SBP:SC组较术前无明显变化,RC1、RC2组术后1周尾动脉压开始升高,4周显著增高,与SC相比有显著性差异(P<0.01),RC1与RC2相比无显著性差异(P>0.05),提示RVH模型成功(表1)。

2.2左心室重(LVW)、左心室重与体重比值(LVW/BW)

RC1组与SC相比,LVW、LVW/BW分别增加了38%、49%;RC2组LVW、LVW/BW进一步升高(P<0.01)。

2.3 VG胶原染色

采用VG胶原染色法使大鼠心肌胶原染色,SC组可见心肌间质内少许散在的细丝状红色胶原,RC1组间质内可见较粗大的波状纤维束,RC2组间质内见粗大的波状纤维束聚集成板状,形成瘢痕灶,取代原来的心肌细胞。表明肾血管性高血压组随着时间的推移,心肌纤维化程度明显加重(图1)。

2.4 心肌组织CTGF的表达

免疫组化染色法表明,CTGF主要在心肌胞浆及间质细胞表达,SC大鼠心肌胞浆内可见少量淡黄色颗粒物,呈弱阳性。RC1和RC2心肌组织内见大量棕黄色颗粒,呈强阳性(P<0.05)。RC2与RC1相比,棕黄色颗粒更粗大,平均光密度值升高更明显(表2)。

2.5 相关分析

把各组的CTGF的蛋白水平与相应的纤维化指标(LVW、LVW/BW、CVF)进行相关分析,结果显示CTGF与LVW (r=0.642,P<0.05)、LVW/BW(r=0.627,P<0.05)、CVF(r=0.779,P<0.05)均呈正相关。

3讨论

两肾一夹肾血管性高血压(RVH)心肌肥厚是体液因素介导的心肌肥厚模型,主要是由于肾动脉狭窄,肾脏缺血,激活了肾素-血管紧张素-醛固酮系统,从而引起血压持续性增高。因此,血管紧张素Ⅱ(AngⅡ)在该模型中明显增高,是研究血管紧张素介导的终末器官损害的模型系统[4]。由于心肌细胞的肥大,成纤维细胞增生,间质、血管的重构,使心肌顺应性降低,出现舒张功能不全,最终导致泵功能衰竭,研究表明,上述表现与心肌纤维胶原的重构,即心肌纤维化的形成密切相关[5]。

本实验构建两肾一夹RVH大鼠模型,术后1周尾动脉压开始升高,4周显著增高。假手术组术前术后血压无变化,即本实验模型是成功的。通过对心肌进行VG胶原染色,并以左心室重、左心室与体重比作为心肌肥厚的指标来进行观察。在试验中发现,术后8周RVH组大鼠开始出现心肌肥厚,12周进一步加重,心肌中见明显瘢痕灶,提示术后2~3个月,大鼠正处于心肌肥厚进展形成期。在心肌肥厚的同时,心肌中出现了CTGF mRNA表达的上调和蛋白的表达增多,且随着时间的延长,CTGF mRNA和蛋白的表达增多更明显,提示CTGF参与了两肾一夹肾血管性高血压心肌肥厚的形成。

1991年人类CTGF首次从培养的人脐静脉内皮细胞分离出。研究表明,在生理状态下,机体组织可有基础量CTGF分泌;而在病理状态时,CTGF的过度表达与某些纤维化或增生性疾病的发生密切相关。CTGF主要刺激某些细胞的趋化、黏附及促进细胞外基质形成,增加成纤维细胞和内皮细胞增殖,诱导血管内皮细胞的凋亡[6]。Dominika 等[7]发现在成纤维细胞中通过AngⅡⅠ型受体的激活,AngⅡ能引起CTGF mRNA和蛋白的迅速表达,CTGF可能是抗纤维化的一个靶点。已有研究发现,自发性高血压大鼠在低盐饮食状态下,心肌CTGF mRNA表达水平增高,表明高血压可引起心肌CTGF mRNA增加。同时还观察到在高盐饮食的状态下,其心肌CTGF mRNA、Ⅰ型胶原、Ⅲ型胶原基因表达较低盐饮食时增加更显著,且该作用可分别被AT1受体拮抗剂及其他药物部分抑制[8]。

本实验发现,CTGF mRNA和蛋白在肾血管性高血压心肌肥厚大鼠中表达异常增高,主要在心肌细胞、间质及瘢痕组织中,随病程延长其表达进一步增加,而此时血压并无进一步的增加。提示CTGF参与了肾血管性高血压大鼠心肌肥厚的发生、发展,而不依赖于血压的升高程度。

[参考文献]

[1]Joliver.Expression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas[J].Mol Cell boil,1992,12(10):10-12.

[2]Chen Y,Segarini F,Raoufi F,et al. Connective tissue growth factor secreted through Golgi and is degraded in the endosome[J]. Exp Cell Res,2001,271: 109-117.

[3]顾德官,顾天华,宋代军,等.实验性高血压大鼠的血压观察[J].上海第二医学院学报,1985,2(4):102-105.

[4]Bianciotti LG,Bold AJ. Modulation of cardiac natriuretic peptide gene expression following endothelin type A receptor blockade in renovascular hypertension[J]. Cardiovas Res,2001,49:808-816.

[5]Fortuno MA,Ravassa S,Fortuno A,et al. Cardiomyocyte apoptotic cell eath in arterial hypertension: mechanisms and potential anagement[J]. Hypertension,2001,38:1406-1412.

[6]Groholm T,Finckenberg P,Palojoki E,et al. Cardioprotective effects of vasopeptidase inhibition vs. angiotensin type 1-receptor blockade in spontaneously hypertensive rats on a high salt diet[J]. Hypertens Res,2004,27(8): 609-618.

[7]Dominika I,Margot R,Markus P,et al. Induction of connective tissue growth factor by angiotensin Ⅱ: integration of signaling pathways[J]. Arterioscler Thromb Vasc Biol,2003,23(10): 1782-1787.

[8]Prado GN,Taylor L,Piserchio A,et al. Global chimeric exchanges within the intracellular face of the bradykinin β2 receptor with corresponding angiotensin Ⅱ type Ia receptor regions: generation of fully functional hybrids showing characteristic signaling of the AT1a receptor[J].J Cell Biochem,2002, 85: 809-819.

第3篇

[关键词] 急性脑血管意外;神经源性肺水肿;组织因子;组织因子途径抑制物

[中图分类号] R743 [文献标识码] A [文章编号] 1673-7210(2011)11(b)-039-02

Changes of tissue factor and tissue factor pathway inhibitor in acute cerebral vascular accident complicated neurogenic pulmonary edema

XU Zhaojun, BIE Huarong, TIAN Min, ZHENG Zhijuan, ZHANG Dongju

Department of Emergency, the First People's Hospital in Tianmen City, Hubei Province, Tianmen 431700, China

[Abstract] Objective: To investigate the changes of tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in acute cerebral vascular accident complicated neurogenic pulmonary edema. Methods: 80 patients with acute cerebral vascular accident of which 36 cases of cerebral hemorrhage, 44 cases of cerebral infarction in our hospital from June 2007 to May 2010 were selected as the study group, 40 cases of healthy in the same period were chosen as the control group. TF, TFPI detected by ELISA technique and the results were compared. Results: TF level of study group was significantly higher than that of control group (all P

[Key words] Acute cerebral vascular accident; Neurogenic pulmonary edema; Tissue factor; Tissue factor pathway inhibitor

神经源性肺水肿(NPF)是指在无原发性心、肺和肾等疾病的情况下,由颅脑损伤或中枢神经系统(CNS)其他疾病引起的急性肺水肿。NPF是脑血管疾病较严重的肺部并发症,起病急,治疗困难,病死率可达60%~100%[1]。目前关于神经源性肺水肿确切的发病机制尚未完全明确。本文笔者研究组织因子(TF)及组织因子途径抑制物(TFPI)在急性脑血管意外患者中的含量变化,并探讨其含量变化与神经源性肺水肿发生的关系。现报道如下:

1 资料与方法

1.1 一般资料

选择我院2008年6月~2010年5月收治的脑血管意外患者80例为研究组,根据病种类型分为两个亚组,分别为脑出血组36例,脑梗死组44例,选择同期同年龄段健康体检患者40例为对照组(排除检出心脑血管疾病、肿瘤感染等疾病者)。全部研究对象近1个月来未使用过影响抗凝的药物。两组患者性别、年龄比较,差异均无统计学意义(P>0.05)。

1.2 神经源性肺水肿发病情况及表现

本组18例患者出现神经源性肺水肿,其中,脑出血组11例,脑梗死组7例,均在急性脑血管意外后数小时内发生,患者出现烦躁、心率增快、胸闷,严重者有气促、胸部压迫感,出现呼吸困难和发绀;血气分析显示不同程度的PaO2降低,PaCO2增高。

1.3 方法

全部患者均在脑血管意外发病3 d内采集静脉血,对照组患者入院体健时采集静脉血,枸橼酸钠抗凝,3 000 r/min离心10 min后,取血浆-20℃保存。采用双夹心酶联免疫吸附抗原法检测患者血浆TF、TFPI水平,TF、TFPI检测试剂来自美国BPB公司,操作完全按说明书进行。

1.4 统计学方法

采用SPSS 17.0统计学软件进行分析,计数资料比较采用χ2检验;计量资料数据以均数±标准差(x±s)表示,两组间比较采用t检验,多组间比较采用方差分析,多组间的两两比较采用q检验。P

2 结果

2..1 两组组织因子及组织因子途径抑制物比较

研究组患者中脑出血及脑梗死患者血TF值均高于对照组,差异均有高度统计学意义(均P

2.2 脑出血组中NPF与血TF、TFPI水平的关系

研究组脑出血患者中并发神经源性肺水肿患者血TF、TFPI均高于未并发神经源性肺水肿者,两者比较差异均有统计学意义(均P

2.3 脑梗死组中血NPF与TF、TFPI水平的关系

脑梗死患者中并发神经源性肺水肿的患者血TF、TFPI水平均高于未并发神经源性肺水肿者,两者比较差异有统计学意义(P

3 讨论

神经源性肺水肿(NPF)的发生原因很多,其中较常见的原因是颅脑外伤、急性脑血管病、脑肿瘤等,脑血管病尤其是急性重症脑血管意外可导致严重的肺部应激性损伤,起病急,治疗困难,近年来引起临床越来越多的重视。

关于NPF发生的机制有多种学说,其中冲击伤和渗透缺陷理论得到较多的公认,但是无论何种学说的基础都是机体在外界刺激作用下形成的强烈应激反应[2]。研究表明凝血反应与炎症反应存在重要联系。组织因子(TF)作为天然凝血途径启动物,与Ⅶa结合形成的Ⅶa/TF复合物可促进炎症介质的释放[3]。组织因子途径抑制物(TFPI)具有抗凝作用,还可以减少血浆趋炎症细胞因子水平。有文献报道组织因子可以改变肺泡表面活性物质的数量、功能,影响肺组织的修复机制而引发肺损伤[4-5],且外源性凝血的启动可促进外周单核细胞、内皮细胞释放白细胞介素、肿瘤坏死因子等,增强炎症反应,加重肺损伤[6]。TFPI可抑制肿瘤坏死因子α在肺组织的表达,抑制白细胞活性,减轻肺损伤。本文脑血管意外患者血浆TF水平均高于对照组,并且并发NPF的患者血浆TF水平明显高于未发生NPF的脑血管意外患者,且差异有统计学意义,从侧面说明了凝血与炎症反应异常确实存在于脑血管意外并发NPF的过程中,并且可能是促进NPF的一个重要因素。

本文急性脑血管意外患者中,脑出血及脑梗死患者血浆TF均高于正常对照组,原因可能是脑出血患者血管损伤,导致TF暴露入血,体内TF表达增加,或脑梗死患者动脉粥样斑块破裂,TF暴露,导致外源性凝血途径启动,血液呈高凝状态,进而产生血栓[7]。但急性脑出血患者血浆TFPI高于对照组,急性脑梗死患者血浆TFPI低于对照组,可能是脑出血患者过度的炎症反应,引起TFPI反馈性增多,而脑梗死患者凝血反应较强烈,具有抗凝作用的TFPI消耗过多,引起其血浆水平下降。

综上所述,笔者认为急性脑血管意外并发肺水肿的原因除了通常认为的机体应激反应外,还可能与机体凝血-纤溶异常及炎症反应有关,并且TF、TFPI参与了上述过程,共同导致肺损伤。但是其具体作用机制尚需进一步研究证实。

[参考文献]

[1] 曾松,梁子聪,陈进.颅脑损伤后并发神经源性肺水肿18例临床分析[J].广西医科大学学报,2011,28(1):127-128.

[2] Vespa PM, Bleck TP. Neurogenic pulmonary edema and other mechanisma of inpaired oxygenation after aneurysmal subarachnoid hemorrhage [J]. Neurocrit Care,2004,1(2):157-170.

[3] Dugina TN, Kiseleva FV, Chistov IV, et al. Receptors of the PAR family as a link between blood coagulation and inflammation [J]. Biochemistry,2002,67(1):65-74.

[4] 朱艳玲,赵明祥,吴珊.脑血管病并发神经源性肺水肿凝血/炎症机制的研究[J].山东医药,2007,47(16):22-23.

[5] 李波.重型颅脑损伤并发神经源性肺水肿的诊断和治疗[J].中国当代医药,2010,17(22):66-67.

[6] Szotowski B, Antoniak S, Poller W, et al. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines [J]. Circulation Research,2005,96(12):1233.

第4篇

[关键词]本草基因组学; 基因组学; 组学; 中药

[Abstract]Traditional Chinese medicine (TCM) has contributad greatly to improving human health However, the biological characteristics and molecular mechanisms of TCM in the treatment of human diseases remain largely unknown Genomics plays an important role in modern medicine and biology Here, we introduce genomics and other related omics to the study of herbs to propose a new discipline, Herbgenomics, that aims to uncover the genetic information and regulatory networks of herbs and to clarify their molecular mechanisms in the prevention and treatment of human diseases Herbgenomics includes herbal structural genomics, functional genomics, transcriptomics, proteomics, metabonomics, epigenomics and metagenomics Genomic information, together with transcriptomic, proteomic, and metabolomic data, can therefore be used to predict secondary metabolite biosynthetic pathways and their regulation, triggering a revolution in discoverybased research aimed at understanding the genetics and biology of herbs Herbgenomics provides an effective platform to support chemical and biological analyses of complex herbal products that may contain more than one active component Herbgenomics is now being applied to many areas of herb related biological research to help understand the quality of traditional medicines and for molecular herb identification through the establishment of an herbal gene bank Moreover, functional genomics can contribute to model herb research platforms, geoherbal research, genomicsassisted herb breeding, and herbal synthetic biology, all of which are important for securing the future of medicinal plants and their active compounds In addition, Herbgenomics will facilitate the elucidation of the targets and mechanism of herbs in disease treatment and provide support for personalized precise medicineHerbgenomics will accelerate the application of cuttingedge technologies in herbal research and provide an unprecedented opportunity to revolutionize the use and acceptance of traditional herbal medicines

[Key words]Herbgenomics; genomics; omics; traditional Chinese medicine (TCM)

doi:10.4268/cjcmm20162101

本草基因组学(herbgenomics)是利用组学技术研究中药基原物种的遗传信息及其调控网络,阐明中药防治人类疾病分子机制的学科,从基因组水平研究中药及其对人体作用的前沿科学。涉及中草药结构基因组、中草药转录组、中草药功能基因组、中草药蛋白质组、中药代谢组、中草药表观基因组、中草药宏基因组、药用模式生物、基因组辅助分子育种、DNA鉴定、中药合成生物学、中药基因组学、中草药生物信息学及数据库等理论与实验技术。

传统药物应用历史悠久,应用方式多样,相关研究主要集中在形态识别、化学物质基础揭示、药效作用分析、资源调查、人工栽培等方面,但长期以来对传统药物基因资源的认识和了解十分薄弱,人才极其匮乏。由于中药原植物基因组信息缺乏,中医药学和现代生命科学之间缺乏沟通的桥梁,新兴的前沿生命科学技术很难应用于传统中医药研究,如对于中药道地性形成和维持的遗传机制及道地性和药性的相互关系缺乏深入了解,已严重影响了我国道地药材的资源保护和新品种选育,中药道地性形成和维持的遗传基础研究急需加强;中药药性的生物学本质研究亟待加强,多年来中药药性研究主要集中在化学和药理方向,但对于中药药性的生物学本质研究还非常薄弱,已从根本上制约了对中药药性的深入研究;中药基因资源是一种珍贵的国家战略资源,国际竞争严峻,韩国、美国、日本等国家已启动许多中药基原物种全基因组研究,对我国传统中药研究领域造成极大挑战。另外,由于大多数药用植物有效成分含量低,分离提取需要消耗大量原料,对天然资源造成极大破坏,也使得多数提取类药物的生产成本很高。

本草基因组学作为新兴学科,广义而言是从基因组水平研究中药及其对人体作用。一方面从基因组水平研究基因序列的多态性与药物效应多样性之间的关系,研究基因及其突变体对不同个体药物作用效应差异的影响,从蛋白质组学角度研究中药作用靶点,特别是中药复方的多靶点效应,为中药配伍提供科学依据,指导药物开发及合理用药,为实现个体化精准医疗提供重要信息和技术保障;另一方面建立含有重要活性成分的中药原植物基因组研究体系,系统发掘中药活性成分合成及优良农艺性状相关基因,解析代谢物的合成途径、代谢物网络及调控机理,为中药道地品种改良和基因资源保护奠定基础,为中药药性研究提供理论基础,对传统药物学理论研究和应用具有重要意义,从基因组层面阐释中药道地性的分子基础,推动中药创新药物研发,为次生代谢产物的生物合成和代谢工程提供技术支撑,创新天然药物研发方式,为优质高产药用植物品种选育奠定坚实基础,推动中药农业的科学发展,对揭示天然药物形成的生物学本质具有重要价值,对培养多学科人才充实到传统药物研究具有引领作用。狭义而言本草基因组学集中研究中草药本身的遗传信息,不涉及对人体的作用。也就是说狭义本草基因组学主要研究中草药结构基因组、转录组、功能基因组、蛋白质组、代谢组、表观基因组、宏基因组,以揭示中药道地性和中药药性的遗传本质。本草基因组学正促进前沿生命科学技术应用到中药领域,推动中药研究迅速走到生命科学的最前沿。

1 本草基因组学的产生和发展

1.1 本草基因组学的产生 从“神农尝百草,一日而遇七十毒”的传说到现存最早的中药学著作《神农本草经》(又称《本草经》),从世界上现存最早的国家药典《新修本草》(即《唐本草》)到本草学巨著《本草纲目》,两千多年来,中药学的发展反映了我国劳动人民在寻找天然药物、利用天然药物方面积累了丰富经验。中药学是中国医药学的伟大宝库,对世界医药学发展作出了巨大贡献。随着现代科学技术的发展,特别是人类基因组计划(Human Genome Project)的提出和完成,对人类疾病的认识和治疗开启了全新的篇章,在此背景下,中药学研究逐渐深入到基因组水平从而导致本草基因组学产生和兴起。

1977年Sanger完成首个物种全基因组测序,噬菌体φX174基因组,大小为5.836 kb[1];人类基因组计划由美国科学家于1985年率先提出,1990年正式启动,2000年完成,是一项规模宏大,跨国跨学科的科学探索工程,其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的[2-3]。2000年,破译拟南芥Arabidopsis thaliana全基因组,大小为125 Mb,作为第一个植物全基因组测序在植物科学史上具有里程碑意义[4]。我国药用植物有11 146种,约占中药材资源总数的87%[5],是所有经济植物中最多的一类。同时,药用植物也是S多化学药物的重要原料,目前1/3以上的临床用药来源于植物提取物或其衍生物,其中最著名的青蒿素来源植物是黄花蒿。

中国学者应用光学图谱和新一代测序技术,完成染色体水平的灵芝基因组精细图绘制,通过基因组解析提出灵芝为首个中药基原的药用模式真菌,文章发表在《自然通讯》上,期刊编辑部以特别图片(featured image)形式进行了推介(图1)[6],认为该论文表明灵芝对于研究传统菌类中药的次生代谢途径及其调控是一个有价值的模式系统。灵芝基因组图谱的公布为开展灵芝三萜等有效成分的合成研究提供了便利,随着这些合成途径的逐步解析,使得通过合成生物学合成灵芝有效成分成为可能。同时,对灵芝生长发育和抗病抗逆关键基因的发掘和认知,将推动灵芝的基因组辅助育种研究,加速灵芝新品种的培育,并为灵芝的科学栽培和采收提供理论指导。

2009年,陈士林团队提出本草基因组计划,即针对具有重大经济价值和典型次生代谢途径的药用植物进行的全基因组测序和后基因组学研究,全基因组测序、组装和分析策略:测序物种的筛选原则,待测物种基因组预分析,测序平台的选择,遗传图谱和物理图谱的绘制,全基因组的组装及生物信息学分析;模式药用植物突变体库的建立和基因功能研究;药用植物有效成分的合成及其调控研究;药用植物抗病抗逆等优良性状的遗传机制研究及优良品种选育。在此基础上,详细介绍了本草基因组方法学研究:全面介绍物种基因组大小、染色体数目测定方法、第二代高通量测序方法、全基因组组装和基因组注释方法、基因组比较等生物信息学分析手段、简要阐述重测序在药用植物全基因组研究中的应用方法。由此,本草基因组学逐渐形成和完善,包括中草药结构基因组、转录组、功能基因组、蛋白质组学、代谢组、表观基因组、宏基因组、基因组辅助分子育种、中药合成生物学、中药基因组学、中草药生物信息学及数据库等内容。基于分子生物学和基因组学的药用植物鉴别是当前研究的活跃领域,用于鉴别的分子生物学和基因组学技术:AFLP、RFLP、RAPD、DNA微阵列技术(microarray)、DNA条形码(barcoding)等,基于基因组鉴别的分子基础是植物分子系统发育关系反映物种进化关系。在这些技术当中,药用植物DNA条形码鉴定策略及关键技术是最受关注的方向,中药材DNA条形码分子鉴定指导原则已列入《中国药典》2010年版增补本Ⅲ和《中国药典》2015年版。

1.2 本草基因组学的发展 2015年国际期刊《科学》增刊详述“本草基因组解读传统药物的生物学机制”,提出本草基因组学为药用模式生物、道地药材研究、基因组辅助育种、中药合成生物学、DNA鉴定、基因数据库构建等提供理论基础和技术支撑(图2)。目前,药用植物基因组学与生物信息学已经进入快速发展阶段,必将对传统药物学产生巨大影响。国内外已经开展青蒿[7]、丹参[8-15]、西洋参[16]、甘草[17]等多种药用植物的大规模转录组研究。基因组序列包含生物的起源、进化、发育、生理以及与遗传性状有关的一切信息,是从分子水平上全面解析各种生命现象的前提和基础。第二代高通量测序技术的飞速发展及第三代单分子测序技术的兴起使测序成本大大降低,测序时间大大缩短,为本草基因组计划的实施奠定了坚实的技术基础。目前,赤芝[6]、紫芝[18]、丹参[19]及铁皮石斛[20-21]等重要药用植物的基因组已完成测序工作并发表,人参、苦荞、穿心莲、紫苏等中草药基因组图谱也完成绘制。

例如为了解析丹参的遗传背景,陈士林团队联合国内外著名高校和研究机构,通过联合测序技术完成了丹参基因组图谱的组装,丹参基因组的完成代表着首个鼠尾草属物种基因组图谱的成功绘制。进化分析显示丹参与芝麻亲缘关系更近,估计其分化时间约6 700万年前。丹参基因组的发表推动首个药用模式植物研究体系的确立。本草基因组学将开辟中药研究和应用的全新领域,把握历史性机遇,将极大提高我国开发中药资源的能力,增强我国中药基础研究实力、提高我国中药研究的自主创新能力,对于加速中药现代化进程具有重大的战略性科学意义,促进中药研究和产业的快速发展[22]。本草基因组学将使中草药生物学研究进入一个崭新的时代――本草基因组时代。

1.3 学科内涵和外延 根据本草基因组学产生和发展过程,主要从3个方面确定学科的内涵,即理论体系、实验技术和应用方向(图3)。本草基因组学形成了高度综合的理论体系,包括从基因组水平研究本草的九大内容:中草药结构基因组、中草药功能基因组、中草药转录组和蛋白质组、中药代谢组、中草药表观基因组、中草药宏基因组、中药合成生物学、中药基因组学、中草药生物信息学等。本草基因组学的实验方法主要包括九大技术:高通量测序技术、遗传图谱构建技术、光学图谱构建技术、基因文库构建技术、突变库构建技术、组织培养与遗传转化、蛋白质分离纯化与鉴定技术、四大波谱技术及联用、基因组编辑技术等。基于本草基因组学的理论体系和实验技术,形成了该学科的七大应用方向:药用模式生物研究、阐明道地药材形成机制、基因组辅助育种、基因资源保护和利用、中药质量评价和控制、中药新药研发、指导相关学科研究。

本草基因组学的学科外延与本草学、中药学、基因组学、生物信息学、分子生物学、生物化学、生药学、中药资源学、中药鉴定学、中药栽培学、中药药理学、中药化学等密切相关(图4)。本草学和中药学为本草基因组学奠定了深厚的历史基础和人文基础,为本草基因组学研究对象的确定提供丰富候选材料,基因组学和生物信息学为本草基因组学提供前沿理论和技术支撑,分子生物学、生物化学、中药化学则为本草基因组学提供基础理论和基本实验技术支持,生药学、中药资源学、中药鉴定学、中药栽培学与本草基因组学互相支撑发展,各学科的侧重点不同,中药药理学、中药化学为本草基因组学的应用提供技术支持。与以上各学科相呼应,本草基因组学促进本草学和中药学从经典走向现代、从传统走向前沿,为中医药更好服务大众健康提供强大知识和技术支撑,扩大了基因组学和生物信息学的研究对象和应用领域,为分子生物学、生物化学、中药化学走向实践应用提供了生动案例,推动生药学、中药资源学、中药鉴定学、中药栽培学从基因组和分子水平开展研究,为中药药理学的深入研究提供理论和技术支持。

2 本草基因组学研究热

本草基因组学借助基因组学研究最新成果,开展中草药结构基因组、中草药功能基因组、中草药转录组和蛋白质组、中草药表观基因组、中草药宏基因组、中药合成生物学、中药代谢组、中药基因组学、中草药生物信息学及数据库等理论研究,同时对基因组研究相关实验技术在本草学中的应用与开发进行评价,推动本草生物学本质的揭示,促进遗传资源、化学质量、药物疗效相互关系的认识,以下详细阐述本草基因组学的研究内容。

2.1 中草药结构基因组研究 我国药用资源种类繁多,因此药用物种全基因组计划测序物种的选择应该综合考虑物种的经济价值和科学意义,并按照基因组从小到大、从简单到复杂的顺序进行测序研究。在测序平台的选择上应以第二代及第三代高通量测序平台为主,以第一代测序技术为辅。近年来,紫芝、赤芝、茯苓、丹参、人参、三七等10余种药用植物被筛选作为本草基因组计划的第一批测序物种,其中赤芝结构基因组发表被《今日美国》(USA Today)以“揭秘中国‘仙草’基因组”为题报道(图5),丹参基因组小(约600 Mb)、生长周期短、组织培养和遗传转化体系成熟等原因,被认为是研究中药活性成分生物合成理想的模式植物[23]。丹参全基因组测序完成已推动丹参作为第一个药用模式植物研究体系形成。

由于多数药用植物都缺乏系统的分子遗传学研究,因此在开展全基因组计划之前进行基因组预分析非常必要。基因组预分析的主要内容包括:①利用条形码等技术对满足筛选原则的待测物种进行鉴定[24-25];②通过观察有丝分裂中期染色体确定待测物种的染色体倍性和条数;③采用流式细胞术[26]或脉冲场电泳技术估测物种的基因组大小,为测序平台的选择提供参考;④基因组Survey测序,在大规模全基因组深度测序之前,首先对所选药用植物进行低覆盖度的Survey测序,用来评价其基因组大小、复杂度、重复序列、GC含量等信息。

遗传图谱和物理图谱在植物复杂的大基因组组装中具有重要作用。借助于遗传图谱或物理图谱中的分子标记,可将测序拼接产生的scaffolds按顺序定位到染色w上。但遗传图谱的构建需要遗传关系明确的亲本和子代株系,因此其在大多数药用植物中的应用受到限制。物理图谱描绘DNA上可以识别的标记位置和相互之间的距离(碱基数目)。最初的物理图谱绘制多是基于BAC文库,通过限制性酶切指纹图谱、荧光原位杂交等技术将BAC克隆按其在染色体上的顺序排列,不间断地覆盖到染色体上的一段区域[27]。如今,光学图谱OpGen[28]和单分子光学图谱BioNano等[29]依赖于大分子DNA酶切标记的方法常用于物理图谱的绘制。

随着第二代测序技术的快速发展,用于短序列拼接的生物信息学软件大量涌现,常用软件包括Velvet[30], Euler[31], SOAPdenovo2[32], CAP3[33]等。基因组草图组装完成后,可利用生物信息学方法对基因组进行分析和注释,为后续功能基因组研究提供丰富的资源。例如,可以通过GeneScan[34], FgeneSH[35]等工具发现和预测基因,利用BLAST同源序列比对或InterProScan[36]结构域搜索等方法对基因进行注释,利用GO分析对基因进行功能分类[37],利用KEGG对代谢途径进行分析等[38]。

2.2 中草药功能基因组研究 根据全基因组序列和结构信息,中草药功能基因组研究充分利用转录组学、蛋白组学、代谢组学等方法,对药用植物的功能基因进行发掘和鉴定,研究内容主要集中于构建模式药用植物平台、次生代谢产物合成途径和调控机制的解析、抗病抗逆等优良农艺性状遗传机制的揭示等。

拟南芥、水稻等重要模式植物均具有大规模的T-DNA 插入突变体库,利用这些突变体库发掘了大量生长发育、抗逆性、代谢相关的重要基因。丹参等模式药用植物全基因组序列和大规模突变体库的建立将为药用植物研究提供丰富的资源和材料,从而推动药用植物功能基因研究, 尤其是次生代谢途径相关基因的鉴定进程,突变体库中的一些具有抗逆、抗病、高产等优良性状的突变株系以及转基因植株也是良好的新种质资源。药用植物有效成分的生物合成途径和调控方面的研究还很薄弱,主要集中在长春花、青蒿和甘草等少数物种,一些具有重大商业价值的天然药物,如紫杉醇、长春碱、喜树碱等生物合成途径至今还未被完全解析,已有报道多采用单基因研究策略。本草基因组学为次生代谢途径相关基因的“批量化”发掘奠定基础,对次生代谢产物的生物合成及代谢工程等应用领域产生重要影响。

与生长发育、抗逆抗病、重要遗传性状及种质性状控制相关的基因是药用植物重要的功能基因,利用基因组注释信息,发掘优良基因,运用基因工程的手段打破生殖隔离,培育活性成分含量高的具有优良农艺性状的新品种,为活性成分的大量提取和广泛临床应用奠定基础[39]。中草药结构基因组将为转录组分析和基因组重测序研究提供参考序列,通过对种内或品种间种群个体的转录组测序和重测序可快速、准确、大规模地发现SNP,SSR,InDel等分子标记,加速分子标记和优良性状的遗传连锁研究,快速发现药用植物的表型、生理特征与基因型的关系,提高育种工作效率[39]。

2.3 中药组学其他研究 中草药转录组学是中草药功能基因组学的重要研究内容,是在整体水平上研究中草药某一生长阶段特定组织或细胞中全部转录本的种类、结构和功能以及基因转录调控规律的科学。中草药转录组研究为鉴定中草药植物生长发育及抗病抗逆等优良性状相关的基因功能提供基础[40-41]。目前,在多数中草药植物无法进行全基因组测序的情况下,转录表达谱研究成为比较基因序列、鉴定基因表达的一种快速方法。通过对中草药不同组织部位、不同生长时期、不同生长环境下的转录组进行比较分析,可有效发掘参与中草药植物生长发育及抗病抗逆等优良性状相关基因。

中药蛋白质组学是将蛋白质组学技术应用于中药研究领域,一方面通过比较对照细胞或动物组织的蛋白质表达谱和给予中药后蛋白质表达谱的差异,可找到中药的可能靶点相关蛋白质,另一方面不同中草药及其不同组分例如根茎叶中蛋白质组的差异,以评价中草药活性成分与其生长过程中蛋白组变化的关系,寻找中药高活性的机制。不同于其他蛋白质组学,中药蛋白质组学的研究对象为中草药本身及用中药(单体化合物、中药组份或复方)处理后的生物体(细胞或组织),发现中药的有效成分及作用机制。中药蛋白质组学的研究目标包括:中药药物作用靶点的发现和确认,特别是中药复方的多靶点效应,蛋白质组学能更好发现中药复方的多种靶点,研究中药植物蛋白质组成差异,阐明中药作用机制及中药毒理作用机制,以及为中药配伍提供科学依据。

中药代谢组学结合中草药结构基因组解析代谢物的合成途径、代谢物网络及调控机理,研究内容主要包括药用植物的鉴别和质量评价,药用植物品种选育及抗逆研究,初生、次生代谢途径解析,代谢网络、代谢工程研究及合成生物学研究等几个方面,最终为药用植物品种选育、创新药物研发和质量安全性评价奠定基础。

中药基因组学从基因水平研究基因序列的多态性与药物效应多样性之间的关系,研究基因及其突变体对不同个体药物作用效应差异的影响,以此平台指导药物开发及合理用药,为提高药物的安全性和有效性,避免不良反应,减少药物治疗费用和风险,实现个体化精准医疗提供重要信息和技术保障。例如,Sertel等[42]经基因检测得出53/56的基因上游位置包含一个或多个c-Myc/Max结合位点,c-Myc和Max介导的转录控制基因表达可能有助于提高青蒿琥酯对癌细胞的治疗效果[43]。又如,银杏具有显著的诱导CYP2C19活性效应,研究显示不同CYP2C19基因型个体,银杏与奥美拉唑(omeprazole,广泛使用的CYP2C19底物)存在潜在的中西药互作关系。Chen等 [44]研究了健康志愿者体内六味地黄丸潜在的中-西药相互作用以及是否受基因型影响。

中草药表观基因学是针对本草基因组计划中具有重要经济价值的药用植物和代表不同次生代谢途径的模式药用植物开展表观基因组学研究。研究内容主要包含4个领域:分别是DNA甲基化、蛋白质共价修、染色质重塑、非编码RNA调控。中草药表观基因组学将通过研究重要中药材(药用生物)的基因组信息及其表观遗传信息变化,探索环境与基因、基因与基因的相互作用,解析哪些基因受到环境因素的影响而出现表观遗传变化可能提高中药材的药效品质,哪些表观遗传信息影响中药的性味等。

中草药宏基因组学是以多种微生物基因组为研究对象,对药材生长环境中微生物的多样性、种群结构、进化关系、功能活性以及微生物与药材生长相互协作关系进行研究的一门学科,对于帮助解决中草药连作障碍等现实问题具有重要指导作用。

药用模式生物研究体系的确立是本草基因组学的重大贡献,该体系具有模式生物的共同特征。从一般生物学属性上看,通常具有世代周期较短、子代多,表型稳定等特征。从遗传资源看,基因组相对较小,易于进行全基因组测序,遗传转化相对容易。从药用特点看,需适于次生代谢产物生物合成和生产研究。

3 本草基因组学的实践应用

本草基因组学作为前沿科学,具有很强的理论性,同时该学科涉及的技术方法和理论对中医药实践具有巨大的指导意义。例如,基于中草药结构基因组开发的DNA条形码分子鉴定技术被国际期刊《生物技术前沿》以题为“草药鉴定从形态到DNA的文艺复兴”发表,将给传统中药鉴定带来革命性影响;基于中草药功能基因组和表观基因组研究阐明道地药材的形成机制,将对优质中药生产和栽培技术的改进提供指导;基于本草基因组学构建的基因数据库、代谢物数据库、蛋白数据库等,以及开发的相关生物信息学方法,将为中药药理学、中药化学、新药开发等提供战略资源;基于合成生物学技术实现目标产物的异源生产,具有环境友好、低耗能、低排放等优点,将为天然药物研发提供全新方式。

3.1 道地药材的生物学本质研究 道地药材是优质药材的代表,既受遗传因素的控制,又受环境条件的影响。组学技术可提供有用工具阐明道地药材的分子机制,例如,道地药材“沙漠人参”肉苁蓉Cistanche deserticola是中国最具特色的干旱区濒危药用植物和关键物种,新疆和内蒙古是其重要主产区和传统道地产区,研究表明,内蒙古阿拉善和新疆北疆是肉苁蓉两大生态适宜生产集中区(2类生态型),黄林芳等[45]对两大产区肉苁蓉化学成分、分子地理标识及生态因子进行考察。应用UPLC-Q-TOF/MS技术对肉苁蓉苯乙醇苷及环烯醚萜苷类成分进行分析;基于psbA-trnH序列对不同产地肉苁蓉进行分子鉴别及分析;通过“中国气象科学数据共享服务网”,获得两大产区包括温度、水分、光照等生态因子数据;运用生物统计、数量分类等分析方法,对肉苁蓉进行生态型划分。UPLC-Q-TOF/MS分析表明,内蒙古与新疆产肉苁蓉明显不同,鉴定出16种成分,其中2′-乙酰毛蕊花糖苷可作为区分两大产地肉苁蓉的指标成分;psbA-trnH序列比对分析发现,肉苁蓉不同产地间序列位点存在差异,新疆产肉苁蓉在191位点为G,内蒙古产则为A,NJ tree分析表明,肉苁蓉2个产地明显分为2支,差异显著;生态因子数据亦表明,肉苁蓉的两大气候地理分布格局,为研究不同生态区域中药生态型及品质变异的生物学本质提供了一种新思路,也为深化道地药材理论研究奠定重要基础。

另外,针对同一药材在不同种植区域,开展中草药表观基因组研究,明确不同生产区域的遗传变异,特别是环境不同对药材表观遗传的修饰作用,包括DNA甲基化修饰、小RNA测序分析、染色质免疫共沉淀分析等。此外,土壤微生物也是道地药材生长环境中的重要因素。采用宏基因组分析土壤微生物群落,为揭示土壤微生物和药材生长的相互作用提供依据。

3.2 中药分子标记用于中药质量控制研究 本草基因组和功能基因组研究为开发药材分子标记提供了丰富基因资源。基于基因组的分子标记有AFLP, ISSR, SNP等,基于转录组的分子标记有SSR等。当前国际上最受关注的分子标记是DNA条形码,已经构建标准操作流程和数据库、鉴定软件,可广泛应用于中药企业、药房、研究院所和大专院校等。中药材DNA条形码分子鉴定指导原则已被纳入《中国药典》,植物药材以ITS2序列为主、psbA-trnH为辅助序列,动物药材以COI序列为主、ITS2为辅助序列,在此基础上,进一步开发了质体基因组作为超级条形码对近缘物种或栽培品种进行鉴定。该体系可广泛应用于中药材种子种苗、中药材、中药超微破壁饮片、中成药等鉴定,已出版专著《中国药典中药材DNA条形码标准序列》和《中药DNA条形码分子鉴定》。

3.3 本草基因资源的保护与利用 随着本草基因组研究的发展,本草遗传信息快速增加,灵芝基因组论文被Nature China网站选为中国最佳研究(图6),迫切需要一个通用平台整合所有组学数据。数个草药数据库已经被建立,例如草药基因组数据库(http://)、转录组数据库(http://medicinalplantgenomics.msu.edu)、草药DNA条形码数据库(http:///en)、代谢途径数据库(http://)等。但是这些数据库缺乏长期维护,对使用者要求具备一定生物信息学技能。因此整合DNA和蛋白质序列、代谢组成分信息,方便使用的大数据库十分必要和迫切。进一步提升生物信息分析方法,更好地利用基因组和化学组信息解析次生代谢产物的生物合成途径,将有助于有效设计和寻找植物和真菌药物。

利用简化基因组测序技术获得数以万计的多态性标记。通过高通量测序及信息分析,快速鉴定高标准性的变异标记(SNPs),已广泛应用于分子育种、系统进化、种质资源鉴定等领域。利用该技术可以筛选抗病株的特异SNPs位点,建立筛选三七抗病品种的遗传标记,辅助系统选育,有效的缩短育种年限。通过系统选育的方法获得的抗病群体,并采用RAD-Seq技术筛选抗病株的SNPs位点,为基因组辅助育种提供遗传标记,进而有效缩短了三七的育种年限,加快育种进程。利用遗传图谱识别影响青蒿产量的基因位点取得突破,于《科学》[7],该文基于转录组及田间表型数据,通过构建遗传图谱识别影响青蒿素产量的位点。青蒿植株表型的变异出现在Artemis的F1谱系中,符合高水平的遗传变异。Graham等[7]发现与青蒿素浓度相关的QTL分别为LG1,LG4及 LG9(位于C4)。在开发标记位点用于育种的同时,Graham等检测了23 000株植株的青蒿素含量,这些植株是青蒿的F1种子经甲基磺酸乙酯诱变后于温室培养12周的F2、F3代。结果发现经诱变后的材料大约每4.5 Mb有一个突变,其变异频率小于Artemis中的每1/104碱基对的SNP多态性。该方法能够识别携带有益变异的个体(来源于甲基磺酸乙酯诱变处理),同时亦能识别遗传背景获得提升的个体(由于自然变异而导致有益等位基因分离的个体)。Graham等也检测高产F2代植株青蒿素的含量:尽管F2的植株杂合性较低,但其青蒿素含量比UK08 F1群体植株的含量高。另外,Graham等验证了基于田间试验获得与青蒿素含量相关的QTL在温室培育的高产植株中高效表达。同时发现,大量分离畸变有利于有益的等位基因(位于C4 LG1且与青蒿素产量相关的QTL)。这些数据证实了QTL及其对青蒿素产量的影响,同时也证明了基因型对于温室及田间培育的青蒿材料具有极大影响。

3.4 中药合成生物学研究 结构复杂多样的中药药用活性成分是中药材发挥药效的物质基础,也是新药发现的重要源泉。然而许多中药材在开发和使用的过程中往往面R一系列难题,如许多药材生长受环境因素影响较大;有些珍稀药材生长缓慢,甚至难以人工种植;大多数药用活性成分在中药材中含量低微,结构复杂,化学合成困难;传统的天然提取或者人工化学合成的方法难以满足科研和新药研发的需求,中药合成生物学将是解决这一矛盾的有效途径。中药合成生物学是在本草基因组研究基础上,对中药有效成分生物合成相关元器件进行发掘和表征,借助工程学原理对其进行设计和标准化,通过在底盘细胞中装配与集成,重建生物合成途径和代谢网络,实现药用活性成分的定向、高效的异源合成,从而提升我国创新性药物的研发能力和医药产业的国际核心竞争力[40]。

随着基于高通量测序的中草药结构基因组学和转录组学研究的快速发展,利用生物信息学技术和功能基因组学方法从大量中药原物种的遗传信息中筛选和鉴定出特定次生代谢途径的酶编码基因,将极大加快次生代谢途径的解析进程,为中药合成生物学研究奠定坚实基础。通过优化密码子偏好性、提高关键酶编码基因的表达量、下调或抑制代谢支路等方法来优化和改造异源代谢途径, 按人们实际需求获取药用活性成分[40]。

3.5 中药作用靶点与个性化治疗 中药蛋白质组学将蛋白组学技术应用于中药研究领域,对寻找中药的可能靶点和阐明中药有效成分作用机制具有重要意义。譬如,蒋建东教授团队在小檗碱降血脂研究中开展的突出工作[46],以及Pan等[47]利用蛋白组学技术分析丹参酮ⅡA对宫颈癌Caski细胞的抑制作用,发现C/EBP同源蛋白和细胞凋亡信号调节激酶1参与丹参酮ⅡA的抑癌作用。对于中药复方的相关作用靶点也有报道,Nquyen-Khuong等[48]探讨了由栝楼、大豆、中药五味子和西地格丝兰提取物组成的混合物作用于人膀胱癌细胞后蛋白质组的表达谱变化,鉴定了多种与能量代谢、细胞骨架、蛋白质降解以及肿瘤抑制相关的蛋白。

青蒿素及其衍生物青蒿琥酯表现出明显的体内外抗肿瘤活性,但其抗肿瘤的分子机制并不明确。研究者采用了基因芯片技术,在转录水平解析青蒿琥酯抗肿瘤相关的基因。再将表达谱数据导入信号通路分析和转录因子分析,结果表明c-Myc/Max可能是作为肿瘤细胞应对青蒿琥酯效应基因的转录调控因子,这一结果可能指导针对不同个体采用不同的治疗策略[42]。由于银杏具有显著的诱导CYP2C19活性效应,通过研究不同CYP2C19基因型健康中国人个体,银杏与奥美拉唑(omeprazole,广泛使用的CYP2C19底物)潜在的中西药互作关系。结果显示,银杏诱导CYP2C19基因型模式依赖的奥美拉唑羟基化反应,随后降低5-羟基奥美拉唑肾脏清除率。银杏和奥美拉唑或其他CYP2C19底物共同服用可显著减弱其药效,还需更多证据支持[49]。这一研究证实个体化治疗基于人体基因差异,可能发挥更好疗效。

[参考文献]

[1]Sanger F, Air G M, Barrell B G, et al. Nucleotide sequence of bacteriophageφX174 DNA[J]. J Mol Biol, 1978, 125(2):225.

[2]Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature, 2001, 409(6822):928.

[3]Venter J C, Adams M D, Sutton G G, et al. Shotgun sequencing of the human genome[J]. Science, 1998, 280(5369):1540.

[4]Initiative A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796.

[5]中国药材公司.中国中药资源 [M]. 北京:科学出版社, 1995.

[6]Chen S, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum[J]. Nat Commun, 2012, 3(2):177.

[7]Graham I A, Besser K, Blumer S, et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the anti-malarial drug artemisinin [J]. Science, 2010, 327: 328.

[8]Yan Y, Wang Z, Tian W, et al. Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza[J]. Sci Chin Life Sci, 2010, 53(2):273.

[9]李滢,孙超,罗红梅,等. 基于高通量测序454 GS FLX的丹参转录组学研究[J]. 药学学报,2010, 45(4):524.

[10]Hua W, Zhang Y, Song J, et al. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients [J]. Genomics, 2011, 98(4):272.

[11]Yang L, Ding G, Lin H, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS ONE, 2013, 8(11):e80464.

[12]Luo H, Zhu Y, Song J, et al. Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation[J]. Physiol Plantarum, 2014, 152(2):241.

[13]Ge Q, Zhang Y, Hua W P, et al. Combination of transcriptomic and metabolomic analyses reveals a JAZ repressor in the jasmonate signaling pathway of Salvia miltiorrhiza [J]. Sci Rep, 2015, 5: 14048.

[14]Gao W, Sun H X, Xiao H, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza [J]. BMC Genomics, 2014, 15:73.

[15]Xu Z, Peters R J, Weirather J, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza, and tanshinone biosynthesis [J]. Plant J, 2015, 82(6):951.

[16]Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis [J]. BMC Genomics, 2010, 11:262.

[17]Li Y, Luo H M, Sun C, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis [J]. BMC Genomics, 2010, 11: 268.

[18]Zhu Y J, Xu J, Sun C, et al. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense [J]. Sci Rep, 2015, 5:11087.

[19]Xu H, Song J Y, Luo H M, et al. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza[J]. Mol Plant, 2016, 9: 949.

[20]Liang Y, Xiao W, Hui L, et al. The genome of Dendrobium officinale, illuminates the biology of the important traditional Chinese orchid herb [J]. Mol Plant, 2014, 8(6):922.

[21]Zhang G Q, Xu Q, Bian C, et al. The Dendrobium catenatum Lindl.genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution [J]. Sci Rep, 2016, 6: 19029.

[22]士林,何柳,刘明珠,等. 本草基因组方法学研究[J].世界科学技术,2010, 12(3):316.

[23]宋经元,罗红梅,李春芳,等. 丹参药用模式植物研究探讨 [J]. 药学学报,2013, 48(7):1099.

[24]Chen S L, Yao H, Han J P, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS ONE, 2010, 5(1):e8613.

[25]Pang X H, Song J Y, Zhu Y J, et al. Applying plant DNA barcodes for Rosaceae species identification [J]. Cladistics, 2011, 27: 165.

[26]Dolezel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry [J]. Nat Protoc, 2007, 2(9):2233.

[27]Vu G T, Dear P H, Caligari P D, et al. BAC-HAPPY mapping (BAP mapping): a new and efficient protocol for physical mapping [J]. PLoS ONE, 2010, 5: e9089.

[28]Microbial genetic analysis-OpGen[EB/OL]. [2016-10-16]. http:///.

[29]Bionano genomics――whole genome mapping with the irys system[EB/OL]. [2016-10-16]. http:///.

[30]Zerbino D R, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs [J]. Genome Res, 2008, 18(5):821.

[31]Chaisson M J, Pevzner P A. Short read fragment assembly of bacterial genomes [J]. Genome Res, 2008, 18(2):324.

[32]Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo, assembler [J]. Gigascience, 2012, 1(1):18.

[33]Huang X, Madan A. CAP3: a DNA sequence assembly program [J]. Genome Res, 1999, 9(9):868.

[34]Lynn A M, Jain C K, Kosalai K, et al. An automated annotation tool for genomic DNA sequences using GeneScan and BLAST [J]. J Genet, 2001, 80: 9

[35]Solovyev V, Kosarev P, Seledsov I, et al. Automatic annotation of eukaryotic genes, pseudogenes and promoters [J]. Genome Biol, 2006, 7(Suppl 1): S10.

[36]Zdobnov E M, Apweiler R. InterProScan――an integration platform for the signature recognition methods in InterPro [J]. Bioinformatics, 2001, 17(9):847.

[37]Joslyn C A, Mniszewski S M, Fulmer A, et al. The gene ontology categorizer [J]. Bioinformatics, 2004, 20(1):169.

[38]Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG [J]. Nucleic Acids Res, 2006, 34:354.

[39]士林,孙永珍,徐江,等. 本草基因组计划研究策略[J]. 药学学报, 2010, 45 (7), 807.

[40]陈士林, 朱孝轩, 李春芳, 等. 中药基因组学与合成生物学[J].药学学报,2012, 47 (8): 1070.

[41]Chen S L, Song J Y, Sun C, et al. Herbal genomics: examining the biology of traditional medicines [J]. Science, 2015, 347 (6219 Suppl): S27.

[42]Sertel S, Eichhorn T, Simon C H, et al.Pharmacogenomic identification of c-Myc/Max-regulated genes associated with cytotoxicity of artesunate towards human colon, ovarian and lung cancer cell lines [J]. Molecules, 2010, 15(4): 2886.

[43]Scherf U, Ross D T, Waltham M, et al.A gene expression database for the molecular pharmacology of cancer [J]. Nat Genet, 2000, 24(3): 236.

[44]Chen Y, Ouyang D S, Kang Z, et al. Effect of a traditional Chinese medicine Liu Wei Di Huang Wan on the activities of CYP2C19, CYP2D6 and CYP3A4 in healthy volunteers [J]. Xenobiotica, 2012, 42(6): 596.

[45]S林芳,郑司浩,武拉斌,等. 基于化学成分及分子特征中药材肉苁蓉生态型研究 [J]. 中国科学: 生命科学, 2014, 44(3): 318.

[46]Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins [J].Nat Med, 2004, 10(12):1344.

[47]Pan T L, Wang P W, Hung Y C, et al. Proteomic analysis reveals tanshinone ⅡA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways [J].Proteomics, 2013, 13(23/24):3411.

第5篇

药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间关系的学科。

基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响物的作用。

基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。

苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。

吸入与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。

神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。

镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。

局部与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2的基因多态性主要是C734T和G2964A,可能影响药物代谢速度。

一直以来麻醉科医生较其它专业的医疗人员更能意识到不同个体对药物的反应存在差异。的药物基因组学研究将不仅更加合理的解释药效与不良反应的个体差异,更重要的是在用药前就可以根据病人的遗传特征选择最有效而副作用最小的药物种类和剂型,达到真正的个体化用药。

能够准确预测病人对麻醉及镇痛药物的反应,一直是广大麻醉科医生追求的目标之一。若能了解药物基因组学的基本原理,掌握用药的个体化原则,就有可能根据病人的不同基因组学特性合理用药,达到提高药效,降低毒性,防止不良反应的目的。本文对药物基因组学的基本概念和常用的药物基因组学研究进展进行综述。

一、概述

二十世纪60年代对临床麻醉过程中应用琥珀酰胆碱后长时间窒息、硫喷妥钠诱发卟啉症及恶性高热等的研究促进了药物遗传学(Pharmacogenetics)的形成和发展,可以说这门学科最早的研究就是从麻醉学开始的。

药物基因组学(Phamacogenomics)是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间的关系。它是以提高药物的疗效及安全性为目标,研究影响药物吸收、转运、代谢、消除等个体差异的基因特性,以及基因变异所致的不同病人对药物的不同反应,并由此开发新的药物和用药方法的科学。

1959年Vogel提出了“药物遗传学”,1997年Marshall提出“药物基因组学”。药物基因组学是药物遗传学的延伸和发展,两者的研究方法和范畴有颇多相似之处,都是研究基因的遗传变异与药物反应关系的学科。但药物遗传学主要集中于研究单基因变异,特别是药物代谢酶基因变异对药物作用的影响;而药物基因组学除覆盖药物遗传学研究范畴外,还包括与药物反应有关的所有遗传学标志,药物代谢靶受体或疾病发生链上诸多环节,所以研究领域更为广泛[1,2,3]。

二、基本概念

1.分子生物学基本概念

基因是一个遗传密码单位,由位于一条染色体(即一条长DNA分子和与其相关的蛋白)上特定位置的一段DNA序列组成。等位基因是位于染色体单一基因座位上的、两种或两种以上不同形式基因中的一种。人类基因或等位基因变异最常见的类型是单核苷酸多态性(single-nucleotidepolymorphism,SNP)。目前为止,已经鉴定出13000000多种SNPs。突变和多态性常可互换使用,但一般来说,突变是指低于1%的群体发生的变异,而多态性是高于1%的群体发生的变异。

2.基因多态性的命名法:

(1)数字前面的字母代表该基因座上最常见的核苷酸(即野生型),而数字后的字母则代表突变的核苷酸。例如:μ阿片受体基因A118G指的是在118碱基对上的腺嘌呤核苷酸(A)被鸟嘌呤核苷酸(G)取代,也可写成118A/G或118A>G。

(2)对于单个基因密码子导致氨基酸转换的多态性编码也可以用相互转换的氨基酸的来标记。例如:丁酰胆碱酯酶基因多态性Asp70Gly是指此蛋白质中第70个氨基酸-甘氨酸被天冬氨酸取代。

三、药物基因组学的研究内容

基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道及基因本身作为药物作用的靶,是药物基因组学研究的关键所在。这些基因编码蛋白大致可分为三大类:药物代谢酶、药物作用靶点、药物转运蛋白等。其中研究最为深入的是物与药物代谢酶CYP45O酶系基因多态性的相关性[1,2,3]。

基因多态性可通过药物代谢动力学和药物效应动力学改变来影响药物作用,对于临床较常用的、治疗剂量范围较窄的、替代药物较少的物尤其需引起临床重视。

(一)基因多态性对药物代谢动力学的影响

基因多态性对药物代谢动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面[3,4,5,6]。

1、药物代谢酶

与物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。

(1)细胞色素P-450(CYP45O)

物绝大部分在肝脏进行生物转化,参与反应的主要酶类是由一个庞大基因家族编码控制的细胞色素P450的氧化酶系统,其主要成分是细胞色素P-450(CYP45O)。CYP45O组成复杂,受基因多态性影响,称为CYP45O基因超家族。1993年Nelson等制定出能反应CYP45O基因超家族内的进化关系的统一命名法:凡CYP45O基因表达的P450酶系的氨基酸同源性大于40%的视为同一家族(Family),以CYP后标阿拉伯数字表示,如CYP2;氨基酸同源性大于55%为同一亚族(Subfamily),在家族表达后面加一大写字母,如CYP2D;每一亚族中的单个变化则在表达式后加上一个阿拉伯数字,如CYP

2D6。

(2)丁酰胆碱酯酶

麻醉过程中常用短效肌松剂美维库铵和琥珀酰胆碱,其作用时限依赖于水解速度。血浆中丁酰胆碱酯酶(假性胆碱酯酶)是水解这两种药物的酶,它的基因变异会使肌肉麻痹持续时间在个体间出现显著差异。

2、药物转运蛋白的多态性

转运蛋白控制药物的摄取、分布和排除。P-糖蛋白参与很多药物的能量依赖性跨膜转运,包括一些止吐药、镇痛药和抗心律失常药等。P-糖蛋白由多药耐药基因(MDR1)编码。不同个体间P-糖蛋白的表达差别明显,MDR1基因的数种SNPs已经被证实,但其对临床麻醉的意义还不清楚。

(二)基因多态性对药物效应动力学的影响

物的受体(药物靶点)蛋白编码基因的多态性有可能引起个体对许多药物敏感性的差异,产生不同的药物效应和毒性反应[7,8]。

1、蓝尼定受体-1(Ryanodinereceptor-1,RYR1)

蓝尼定受体-1是一种骨骼肌的钙离子通道蛋白,参与骨骼肌的收缩过程。恶性高热(malignanthyperthermia,MH)是一种具有家族遗传性的、由于RYR1基因异常而导致RYR1存在缺陷的亚临床肌肉病,在挥发性吸入和琥珀酰胆碱的触发下可以出现骨骼肌异常高代谢状态,以至导致患者死亡。

2、阿片受体

μ-阿片受体由OPRM1基因编码,是临床使用的大部分阿片类药物的主要作用位点。OPRM1基因的多态性在启动子、内含子和编码区均有发生,可引起受体蛋白的改变。吗啡和其它阿片类药物与μ-受体结合而产生镇痛、镇静及呼吸抑制。不同个体之间μ-阿片受体基因的表达水平有差异,对疼痛刺激的反应也有差异,对阿片药物的反应也不同。

3、GABAA和NMDA受体

γ-氨基丁酸A型(GABAA)受体是递质门控离子通道,能够调节多种物的效应。GABAA受体的亚单位(α、β、γ、δ、ε和θ)的编码基因存在多态性(尤其α和β),可能与孤独症、酒精依赖、癫痫及精神分裂症有关,但尚未见与物敏感性有关的报道。N-甲基-D-天门冬氨酸(NMDA)受体的多态性也有报道,但尚未发现与之相关的疾病。

(三)基因多态性对其它调节因子的影响

有些蛋白既不是药物作用的直接靶点,也不影响药代和药效动力学,但其编码基因的多态性在某些特定情况下会改变个体对药物的反应。例如,载脂蛋白E基因的遗传多态性可以影响羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶抑制剂(他汀类药物)的治疗反应。鲜红色头发的出现几乎都是黑皮质素-1受体(MC1R)基因突变的结果。MC1R基因敲除的老鼠对的需求量增加。先天红发妇女对地氟醚的需要量增加,热痛敏上升而局麻效力减弱。

四、苯二氮卓类药与基因多态性

大多数苯二氮卓类药经肝脏CYP45O代谢形成极性代谢物,由胆汁或尿液排出。常用的苯二氮卓类药物咪唑安定就是由CYP3A代谢,其代谢产物主要是1-羟基咪唑安定,其次是4-羟基咪唑安定。在体实验显示不同个体咪唑安定的清除率可有五倍的差异。

地西泮是另一种常用的苯二氮卓类镇静药,由CYP2C19和CYP2D6代谢。细胞色素CYP2C19的G681A多态性中A等位基因纯合子个体与正常等位基因G纯合子个体相比,地西泮的半衰期延长4倍,可能是CYP2C19的代谢活性明显降低的原因。A等位基因杂合子个体对地西泮代谢的半衰期介于两者之间。这些基因的差异在临床上表现为地西泮用药后镇静或意识消失的时间延长[9,10]。

五、吸入与基因多态性

到目前为止,吸入的药物基因组学研究主要集中于寻找引起药物副反应的遗传方面的原因,其中研究最多的是MH。药物基因组学研究发现RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。

与MH不同,氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应,但其发生机制还不十分清楚[7,11]。

六、神经肌肉阻滞药与基因多态性

神经肌肉阻滞药如琥珀酰胆碱和美维库铵的作用与遗传因素密切相关。血浆中丁酰胆碱酯酶(假性胆碱酯酶)是一种水解这两种药物的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,其第70位发生点突变而导致一个氨基酸的改变,与应用肌松剂后长时间窒息有关。如果丁酰胆碱酯酶Asp70Gly多态性杂合子(单个等位基因)表达,会导致胆碱酯酶活性降低,药物作用时间通常会延长3~8倍;而丁酰胆碱酯酶Asp70Gly多态性的纯合子(2个等位基因)表达则更加延长其恢复时间,比正常人增加60倍。法国的一项研究表明,应用多聚酶链反应(PCR)方法,16例发生过窒息延长的病人中13例被检测为A变异体阳性。预先了解丁酰胆碱酯酶基因型的改变,避免这些药物的应用可以缩短术后恢复时间和降低医疗费用[6,12]。

七、镇痛药物与基因多态性

μ-阿片受体是临床应用的阿片类药的主要作用部位。5%~10%的高加索人存在两种常见μ-阿片受体基因变异,即A118G和G2172T。A118G变异型使阿片药物的镇痛效力减弱。另一种阿片相关效应—瞳孔缩小,在118G携带者明显减弱。多态性还可影响阿片类药物的代谢。

阿片类药物的重要的代谢酶是CYP2D6。可待因通过CYP2D6转化为它的活性代谢产物-吗啡,从而发挥镇痛作用。对33名曾使用过曲马多的死者进行尸检发现,CYP2D6等位基因表达的数量与曲马多和O-和N-去甲基曲马多的血浆浓度比值密切相关,说明其代谢速度受CYP2D6多态性的影响。除CYP2D6外,美沙酮的代谢还受CYP3A4的作用。已证实CYP3A4在其它阿片类药如芬太尼、阿芬太尼和苏芬太尼的代谢方面也发挥重要作用。

有报道显示儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。COMT是儿茶酚胺代谢的重要介质,也是痛觉传导通路上肾上腺素能和多巴胺能神经的调控因子。研究证实Val158MetCOMT基因多态性可以使该酶的活性下降3~4倍。Zubieta等报道,G1947A多态性个体对实验性疼痛的耐受性较差,μ-阿片受体密度增加,内源性脑啡肽水平降低[13~16]。

八、局部与基因多态性

罗哌卡因是一种新型的酰胺类局麻药,有特有的S-(-)-S对应体,主要经肝脏代谢消除。罗哌卡因代谢产物3-OH-罗哌卡因由CYP1A2代谢生成,而4-OH-罗哌卡因、2-OH-罗哌卡因和2-6-pipecoloxylidide(PPX)则主要由CYP3A4代谢生成。CYP1A2的基因多态性主要是C734T和G2964A。Mendoza等对159例墨西哥人的DNA进行检测,发现CYP1A2基因的突变率为43%。Murayama等发现日本人中CYP1A2基因存在6种导致氨基酸替换的SNPs。这些发现可能对药物代谢动力学的研究、个体化用药具有重要意义[17,18,19]。

九、总结与

展望

第6篇

摘要:人类基因组计划(HGP)经过10年的实施,已取得巨大成果。该计划将显著改变医疗科学,同时也潜伏着新的危险。随着HGP的发展,人类社会在基因检查、药物基因组研究及基因治疗等三大应用领域有着美好的发展前景,同时也面临着新的困境。在将HGP成果应用于人类社会时,我们必须及时考虑和解决所涉及的伦理、道德和社会等问题,从而使HGP成果更好地为人类社会服务。

Why Map a Human

——Impact of Human Genome Project on Human Society & 10th Anniversary Celebration of HGP

Abstract:The Human Genome Project (HGP) has made great progress in ten years.HGP is producing a information that will illuminate secret of life.The effort could revolutionize medical science.But new dangers are arriving,too.Confronted with the dilemmas posed by new technology related to gene tests,pharmacogenomics and gene therapy,human need to make efforts to study and resolve ethical,legal and social quandaries.HGP will demand more guidance when technical gains are applied into human society.

Key Words:HGP;gene test;pharmacogenomics;gene theraphy

人类基因组计划(Human Genome Project,HGP)自1990年正式启动,至今已走过了10个春秋。这项跨世纪工程刚刚走过了它的第一个里程碑:第22号人类染色体被全部破译!1999年12月2日出版的《Nature》杂志上发表了该染色体的完整基因序列[1]。这是迄今为止被完全破译的第一条人类染色体。虽然其基因图谱中含有一些小的空白点,但它仍然是一项了不起的成就。这项成果的取得足以使科学家们保持兴奋的目光看到完整的人类基因组序列将在今年初步确定,这个完整的基因图谱将含有关于人体每个基因及这些基因的蛋白产物的全部信息。届时,《Nature》杂志若要发表完整基因图谱,大约需要59万页的篇幅。今天,HGP已提供了数万个基因供研究。任何对目前基因数据进行认真思考的人,都会感到束手无策;即便是遗传学家,面对包容在DNA中浩如烟海的遗传信息甚至也会觉得无所适从。

基于同样的原因,即使是在HGP取得巨大成果的今天,仍然不妨碍我们发出基因作图为哪般的疑问和感慨。的确,究竟为什么要对人类作图?将大量的资源用于得到一本浩瀚的90%以上为意义不明确的非编码序列的“天书”是否值得?对于人类社会而言,科学家说基因图谱将能告诉每个人,你从哪里来?你为什么是你?而与人们的利害直接相关的是,我们到底在寻找什么?这种寻找对于我们的生活意义何在?

很显然,就DNA序列信息本身讲,它几乎不能给我们提供特定基因功能的确定信息,更不能回答上述问题。早期的人类基因组计划倡导者把该计划描绘为医学万能药。这种夸张对吸引人们的注意力以及获得项目资助是重要的[2]。但是现在我们必须面对现实。基因包含的巨大信息确实有改革医学的潜力,但获得基因信息的同时也就打开了包含各种伦理问题在内的潘多拉魔盒,这意味着遗传信息的实现从来都不是一帆风顺的。我们需要培养新一代的科学家,用完全不同的角度去充分开发已得到的信息资源,从而阐释生命的奥秘。

1 人类基因检查的困惑

当越来越多的人类遗传基因被阐明了的时候,想要知道它对人意味着什么的压力也增加了。直接的问题是,这个婴儿患有遗传性疾病吗?那位少年带有致病基因吗?一个成年人带有与糖尿病或者其它疾病有关的DNA吗?10年前,HGP的始动因素就是要解决包括肿瘤在内的人类疾病的分子遗传学问题。6 000多种单基因遗传病和多种大面积危害人群健康的多基因疾病的致病基因和相关基因,代表了所有人类基因中结构和功能完整性至关重要的那一部分。因此,疾病基因的克隆在HGP各种竞争中居于核心的位置,也是HGP启动10年来在社会上显示度最大的成就[3]。而人们更关心的是医生该怎样才能从他的DNA中检查出其罹患癌症、心脏病及老年痴呆症的可能性,以便消除它们的致命影响?

基因检查正尝试对更多的这样的问题提供答案。毫无疑问,基因检查将是与人类社会密切相关的医疗诊断中获得最为迅速发展的重要领域之一。事实上,目前全世界每年都有数十万胎儿接受像羊水检查和绒毛膜抽样检查这样一类的技术检查。人工流产已经作为一种事实的方法来避免出生有可能带有遗传疾病的婴儿。同时这类检查并非只适用于未出生的胎儿,因为其中有许多方法也可以用来比较正确地检查儿童和成人疾病。显然,在今后数年里,随着人类23对染色体的完全解密,基因检查的次数将成倍地增长。

同样正确的是,科学家对人类染色体了解得越多,他们越加意识到疾病的遗传学比预期的要复杂得多,即使是那些所谓一目了然的疾病(单基因病)其易变性也超过了人们的想象。人类所有疾病中只有少数是由于单基因的缺损引起的。大多数比较复杂的疾病涉及许多只对人的易感性起推动作用的基因。这些疾病是由非单一基因的功能缺陷引起的。在任何相关基因上的DNA变异都可能导致一种疾病的表现型。一些基因的变异甚至只是对另一个基因的致病等位基因的补偿。更为重要的是:疾病的发生常常是基因的多种功能和这些功能的相互作用造成的;而人类生活的极其多样的环境,如我们吃的食物、呼吸的空气,我们接触的化学物质以及我们得到的医疗照顾等也同样影响基因的表达。

因此,在医学遗传学家尝试运用基因检查来预测病人的健康状况的努力中,一个不可忽视的现象是,在某些情况下,这些预测是极为准确的;但另一些情况下,测出的DNA变异与疾病的可能性之间并无密切联系。那么,我们应该如何正确对待基因检查所取得的信息?我们既可以利用这些信息来评估疾病发生的可能性,从而通过积极的饮食或行为改变来减少对某些普遍而复杂的疾病(如癌症、高血压)有遗传倾向的人们的患病危险。另一方面,这些信息也将可能导致人们的医疗保险增加,就业困难、爱情婚姻家庭发生问题等。作为遗传学研究的结果影响社会、经济生活的典型事例,目前在一些国家,如英国、美国已通过立法规定,个人的DNA检查数据不能作为保险和就业的依据[2]。

虽然基因检查的迅速发展已经提出了许多不容易解决的伦理上、法律上、社会学上以及科学上的许多难题,但就像其它数百万健康的儿童和成人所证明的,基因检查能够无法估量地改善个人、乃至整个家庭的生命质量。对基因检查将能带来的好处无动于衷是一种不道德的怯懦的行为,但是为了明智地使用这种技术,需要制定深谋远虑的社会和法律的政策。对遗传变异的关注及其它人类基因组序列的应用,我们必须提前预测、考虑和解决此类伦理学、法律和社会问题。

2 药物基因组学的承诺

DNA信息除了给疾病诊断带来的改善外,另一个很可能从HGP中较早获益的是改进在现有疾病治疗方法中进行药物选择的方法。尽管都知道个体对药物的代谢存在差异,现代医学实践采取的仍是以某一标准体重作为给药剂量的依据。而且许多疾病不仅是通过治疗进行诊断,更为不幸的是,往往在找到正确的药物之前,你可能已经花了4~6个星期去试验了其他4种不同的药,忍受了难耐的治疗过程和药物副作用。

不久的将来,理想的场景是当你在医院看病时,在医生给你开出处方前要做一件事,即从你头上拔下一根头发,做个DNA检测来看看什么药对你最恰当,从而不久你就能用上适合其本人基因组成的药品。这就是HGP的分支之一——药物基因组学的承诺[4]。这门新兴的科学,旨在从基因水平准确地阐述某些药物为什么有些人可获得理想效果,而另一些人则否。

人体疾病都是起因于细胞内正常代谢途径发生改变,代谢途径是有基因决定的。因此,不论是器质性病变还是功能性疾病无不与基因密切相关。从这个意义上说,药物设计应该建立在基因组信息的基础之上。科学家希望运用基因组信息来指导设计针对个人的药物预防计划并研制切合特殊患者基因构造的药品,从而避免毒害副作用产生。此外,DNA信息将帮助科学家们改变传统的从动物到临床的药物试验模式,从而可以大大减少药物试验的花费。由于临床用药的疗效与个体的遗传因素相关,对于在特定人群中具有卓越疗效的药物,涉及药物反应的用以鉴定基因差别的DNA序列分析,将有助于确定药物对小部分人群是否好。在这种情况下,药物使用前先进行DNA诊断将是可行的。诱人的一点是,由于改进的临床实验,将使更多、更有效、更便宜的药物出现[2]。美国人类基因组研究所所长Francis S.Colin预言道:药物基因组学将是下一代医学革命的一部分;用药个体化是其中的一项目标;很快,医生们将常规给病人做基因检测,以确保开给病人的药品实际上对该病人是最恰当的[5]。相对于基因治疗,药物基因组学的承诺可能更为实际或将实现的更早一些。

3 基因治疗的前景

HGP之所以展开,是因为它似乎能够带来最大的希望,使人类最终不仅能治愈长期已知的遗传性疾病,而且能够治愈与基因有着更为神秘联系的其他疾病(包括癌症)。或许以后人类再不必担忧罹患癌症、AIDS和心脏病之类的致命疾病,因为它们都可以轻而易举地扎上几针就可以预防和终身受益了。基因治疗的最终目的就是实现这些带有科学与科幻色彩的奇迹,从而被喻为医学史上的第四次革命。近年来,基因疗法涉足范围已超出遗传性失常疾病并进入后天获得性疾病中。实际上如今80%的临床测试都集中在癌症和AIDS上,致使基因疗法应用潜力远远超过相对较少的遗传性疾病[6]。随着HGP继续查明更多基因及其功能,基因疗法涉足疾病的种类将不断增加。

当前的问题是:人类将面临体细胞基因治疗和胚系细胞基因治疗的选择[2]。体细胞基因治疗将基因像药物一样的使用,其目的是将基因定向导入致病细胞以便替代或代偿这种致病缺陷。初步临床研究表明这种治疗方法是有前途的。这种基因治疗效用的发挥、副作用以及花费的多少,是决定是否使用基因或基因产物的主要因素,这不牵涉道德和法律问题。现代医学遗传学的倾向是人们已不满足只在体细胞上对致病基因的修修补补,科学家认为在生殖细胞水平采用胚系遗传工程(germ-line enginerring)进行基因治疗,将诞生完美无缺的人类[7]。与体细胞基因治疗情况完全不同,胚系细胞基因治疗的目的是以遗传的形式改变个体的全身的每个细胞。这种对生殖细胞的遗传修饰将会改变受术者及其子孙后代的DNA。在技术上,我们已经能够拥有转基因动物,至于转基因植物或食品早已成为我们生活的一部分。而胚系遗传工程产生的转基因人,在不久的将来或许比所谓的克隆人更易实现,也是更具意义的实践。因此许多科学家对应用于人类的胚系细胞基因治疗跃跃欲试。然而在转基因小鼠中,我们能够随意增加或者破坏几乎任何一个基因,而且可以不考虑使用限制。相反,尝试在人类应用则应该慎重。鉴于生殖细胞疗法会永远改变人的基因库,它是否应该受到鼓励或宽恕必须取决于生命的质量和道德因素[2]。

讨论基因疗法的前景和问题,如果不涉及伦理上的影响,那是不完整的。尤其是当我们开始改变生殖细胞时,这个状况将会变得更危险。遗传成分方面的错误可能给后代带来许多问题。不久,人类或许将面临更困难的决定,我们已经具有了改变我们人类基因结构的能力,我们将能设计我们的子孙后代。另一方面,遗传学知识告诉我们,遗传变异对物种是一种有意义的资源。在物种水平上的进化发生是保证适者生存。随着我们对基因调节人体功能的机制的了解更加深刻而广泛,我们人类该根据怎样的标准去选择有利于我们自己的性状,而对于诸如身材矮小、白化病、耳聋、活动过度和好攻击等所谓不利的性状是一律剔除(Knock-out)呢,还是容许这种个体差异的多样性存在?然而,谁会拒绝提高智力的遗传工程的诱惑呢?人类已成为地球上的主宰物种。我们已经控制了我们未来发展的大多数方面,现在我们正渴望通过遗传控制去掌握自己的进化,或许,自然界的下一步进化是在一个物种最终获得了这种能力的时候。美国加州大学生物物理学和社会学家斯托克对此评价道:“进化正被技术所替代,人类正变向有意识的设计对象。”[8]福兮?祸兮?这是一个问题。

我们的社会已跨入盲目发展核能的时代,但我们不能盲目地跨入遗传工程的时代。正如我们在基因疗法方面所得到好处那样,我们必须记住基因疗法带来的危险并保持警惕。这种把医疗技术的焦点缩到分子水平的理论和方法正在不断地给医学革命注入动力,也正是这种理论和方法使我们不得不面临最为严峻的伦理学难题。我们必须确定,我们要在何种程度上设计我们的子孙后代。我们是否有权利未经过后代的允许(实际上也不可能得到这种允许)就改变他们的基因?在设法解决这一问题的过程中,我们将面临人类的可塑性与可完善性等问题。

4 展望:迎接后基因组时代的到来

DNA双螺旋理论第一次让人类意识到,千姿百态的生命原来是由这么两条歪歪扭扭的东西所决定的。生命是如此简单以至于我们错误地认为只要将这两条螺旋搞清楚,就可以掌握人类自身的一切。很幸运的是大多数科学家对此已开始有了清醒的认识。HGP的完成离解开生命的奥秘仍然有漫长的路要走,这条道路的名称是后基因组时代。不论这条道路有多漫长,一件事已经达成共识,随着人类基因组计划的即将完成,真正有意义的探索将不来自序列而是来自对基因怎样被调控的解答。

无论如何,要HGP对诸如胚系基因治疗等伦理道德困境负责是不公平的。这些问题在计划实施前就已初现端倪,甚至从遗传学应用于人类时就意味着潘多拉魔盒的降临。HGP不是引起了新的问题,只是扩大了它的范围。HGP的发展已经超出了人们的预料,它使生命科学面目一新。其成果已反映在医疗临床和制药产业上。对人的生命观、人生观也会带来巨大冲击。因此如何克服其消极影响、最大限度地发挥其积极作用,使其为人类造福是已经摆在人们的面前的任务。而HGP对人类社会的终极影响/意义或许要很多年后才清晰可见。

参考文献

[1] DUNHAM I,SHIMIZU N,ROE B A,et al.The DNA sequence of human chromosome 22[J].Nature,1999,402:6 761,489-495.

[2] CHARLES R CANTOR.How will the Human Genome Project improve our quality of life [J].Nature Biotechnology,1998,16:212-213.

[3] 陈 竺,李 伟,俞 曼,等.人类基因组计划的机遇和挑战.Ⅰ.从结构基因组学到功能基因组学[J].生命的化学,1998,18(5):5-17.

[4] PERSIDIS A.Pharmacogenomics and diagnostics[J].Nature Bio-

technology,1998,16:791.

[5] ADAM G I R,SANDERS R,JONSSON J.The development of pharmacogenomic models to predict drug response[M].Pharmainformatics Supplement,1999.30-33.

[6] 张腾飞,钱关祥,陈诗书.人类基因治疗研究的现状[J].生命的化学,1999,19(1):11-12.

第7篇

关键词:体校运动员学生;语文学习兴趣;培养策略

【中图分类号】G842

一、体校生运动员学生语文学习兴趣不足的原因

(一)学生文化基础薄弱,层次分布不均

体校每年招生都是按照体育项目的条件从各个中小学选拔而来的,不可避免地会出现学生基础薄弱和文化素质参差不齐等现象。尤其在经过一段时间的体育专业训练后,大多数学生投人了较大的精力和时间在日常训练当中,无心、无力学习文化课程,然而有些学生又想做到两全其美,同时兼顾文化和训练,学生间层次的差异也因此出现。在实际的语文教学中会出现以下几个问题:

1.阅读问题

阅读是语文课程中必学的内容,阅读过程和阅读质量取决于获取信息的程度。在教学实践中,一些优秀的学生可以较为顺利地完成阅读理解任务,梳理文章内容也不存有问题,甚至可以分析文章中的优美语句,主旨感情和细节,并能理解作者的思想感情。然而也有一部分文化基础较薄弱的学生在阅读方面只停留在表层,无法理解和领悟课文的内涵,所以,应实施分层确立目标来调动学生语文阅读的兴趣和提高能力。

2.字词问题

字词是语文学习的基础,大部分学生还有待强化巩固较为复杂笔画的生词学习,甚至一些后进生在书写中还存有错别字的问题。

3.写作问题

大多数体校生在进入体校前接受过小学教育,语文知识也涉及几分,但作文水平参差不齐的现状更为明显。

(二)训练强度大,缺乏学习精力

体校生一般从小学阶段就开始了体育训练,直到初中或高中时期,已经训练了有几个年头,早已把训练当成一种日常行为习惯。他们和普通学校学生存在差别。表现在体校学生不仅要参加体育训练,各项语、数、外等文化课程的学习也都要完成,任务重、时间紧、压力大,由此许多体校学生对学好文化课没有充足的信心,再加上训练强度大,导致身心疲惫,根本没有精力放在语文等文化课程的学习上。

(三)教学“模式单一”僵硬,忽视学生个性

中国传统教育模式一直是教师在课堂上口若悬河,台下学生被动地接受教师所传达的知识。有些教师在进行语文教学时善于将课程分成字词、语段和中心主旨三个阶段,没有充分考虑学生个性特点和学习水平上所存在的差异[1]。因人的个性不同,学生在学习方法上也会具有差异性,如有的学生喜欢聆听教师讲解,而有的学生则喜欢和同学组成小组来相互讨论,有的更是喜欢独自分析、解决问题。虽然上述传统的分阶段的教学模式在短时间内各个层次的学习会提升学习效果,但是从语文教学长期发展来分析,这种教学不仅让学生散失了学习兴趣,语文素养更是不能得到提升,背离了语文教学的初衷。

二、培养体校运动员学生语文学习兴趣的策略

(一)树立学生自信心、提高学习语文兴趣

1.教育目标上

教师的任务在于科学地调节学生的学习与其需要之间的关系,尤其是在体育中专学校。更需要注重语文学习与日常训练和比赛之间的协调,使学生的学习活动与其情感需要实现和谐统一。

2.教学内容上

语文教育要发挥学生的主体性,教学内容必须针对学生的身心特c决定教学的难易程度。不能过高要求,要使学生在课堂中获得情感的认同感。

3.教育方法上

一方面要有平等的师生关系,另一方面教师要肯定学生的个性主张,并利用这种不一致的资源,精心整合,并合理运用到课堂中去。

(二)完善评价体系、增强学生学习动力

1.强化过程评价

把学生参与课堂教学活动及课后作业情况等多方面学习过程因素作为评定,考核学生语文学习的依据。让语文考试成绩不再成为评价学生优劣的唯一标准。

2.增强学生的自我评价

在加强了过程评价的情况下,考试不再是学生的负担,也不是老师主观评价学生的法宝,而是学生自我挑战、自我评价、自我认识的一种辅助手段,是学生寻找自我发展的一个过程,在教学过程中教师要努力让学生对自己的学习有认可度,从而引领学生主动带着感情融入到语文教学的学习过程中去。

(三)开放课堂教学,引领学生主动学习

《语文课程标准》指出:“语文课程应该是开放而富有创新活力的,应拓宽语文学习和运用的领域,注重学科的学习和现代科技手段的运用,使学生在不同内容和方法的相互交叉”[2]。理想的语文课应把课外资源引入课堂,把课堂学习引向课外,可以在中专语文教学中广泛开展语文活动课,构建开放式课堂。把知识的传授融入到各种有趣的活动中。如在散文教学使用绘画法、诵读法、情景再现法教学。针对不同的文体、内容,采用不同的教学形式,让学生对每一堂课都感觉到不一样,从而激发了学习的兴趣,调动了他们学习的积极性、主动性和创造性,起到了事半功倍的效果。

(四)改变教学方式,发挥学生学习主体性

课堂上要将学生作为教学的主体,教师为学生的自主学习和活动只提供保障和辅导。课堂上我尽可能营造宽松的课堂气氛,突出学生的主体地位,精心设计每堂课,让学生轻松地投身其中,沉浸其中,得到精神上的陶冶。充分发挥学生的主体作用,让学生自主探索,合作交流,作适度指导。学生在阅读中得到美的享受,在争辩中明白事理,在练习中得到提高。在学习中享受快乐,在快乐中学得知识,从而调动学生的学习兴趣。比如课前预习,我要求不同层次的学生做不同的朗读、思考、练习,课堂上让每一个学生都能发表自己的看法,尽量让每一位学生都动起来,给他们提供表现自己的空间。课后根据不同程度的学生布置难度适中的作业,并且及时发现他们的闪光点,及时给予鼓励、表扬、奖励,让他们品尝到成功的滋味和喜悦,从而激发学习语文的兴趣。

结语:

语文学科对学生的个体发展具有非常重要的影响,无论在哪个学习阶段都应该重视语文教学。体育中专的语文老师要根据学生的语文基础和学习情况有针对性的制定教学策略,培养学生学习语文的兴趣,通过语文课堂教学丰富学生的语文知识加强学生语文应用能力的指导,同时提升他们的人文素养和综合能力。

参考文献:

第8篇

【关键词】生物信息学;计算机科学;基因组学

生物信息学是利用计算机为工具,用数学及信息科学的理论和方法研究生命现象,对生物信息进行收集、加工、存储、检索和分析的科学。生物信息学的核心是基因组信息学,基因组学是研究生物基因组和如何利用基因的一门学问,该学科提供基因组信息以及相关数据系统,试图解决生物、医学和工业领域的重大问题。对于基因组学研究所产生的大量数据必须借助于先进的计算机技术收集和分析处理这些生物学信息,因此计算机科学为生物信息学的研究和应用提供了非常好的支撑。

1.序列比对

序列比对其意义是从核酸、氨基酸的层次来比较两个或两个以上符号序列的相似性或不相似性,进而推测其结构功能及进化上的联系。研究序列相似性的目的是通过相似的序列得到相似的结构或功能,也可以通过序列的相似性判别序列之间的同源性,推测序列之间的进化关系。序列比对是生物信息学的基础,非常重要。

序列比对中最基础的是双序列比对,双序列比较又分为全局序列比较和局部序列比较,这两种比较均可用动态程序设计方法有效解决。在实际应用中,某些在生物学上有重要意义的相似性不是仅仅分析单条序列,只能通过将多个序列对比排列起来才能识别。比如当面对许多不同生物但蛋白质功能相似时,我们可能想知道序列的哪些部分是相似的,哪些部分是不同的,进而分析蛋白质的结构和功能。为获得这些信息,我们需要对这些序列进行多序列比对。多重序列比对算法有动态规划算法、星形比对算法、树形比对算法、遗传算法、模拟退火算法、隐马尔可夫模型等,这些算法都可以通过计算机得以解决。

2.数据库搜索

随着人类基因组计划的实施,实验数据急剧增加,数据的标准化和检验成为信息处理的第一步工作,并在此基础上建立数据库,存储和管理基因组信息。这就需要借助计算机存储大量的生物学实验数据,通过对这些数据按一定功能分类整理,形成了数以百计的生物信息数据库,并要求有高效的程序对这些数据库进行查询,以此来满足生物学工作者的需要。数据库包括一级数据库和二级数据库,一级数据库直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是对基本数据进行分析、提炼加工后提取的有用信息。

分子生物学的三大核心数据库是GenBank核酸序列数据库,SWISS-PROT蛋白质序列数据库和PDB生物大分子结构数据库,这三大数据库为全世界分子生物学和医学研究人员了解生物分子信息的组织和结构,破译基因组信息提供了必要的支撑。但是用传统的手工分析方法来处理数据显然已经无法跟上新时代的步伐,对于大量的实验结果必须利用计算机进行自动分析,以此来寻找数据之间存在的密切关系,并且用来解决实际中的问题。

3.基因组序列分析

基因组学研究的首要目标是获得人的整套遗传密码,要得到人的全部遗传密码就要把人的基因组打碎,测完每个小的序列后再把它们重新拼接起来。所以目前生物信息学的大量工作是针对基因组DNA序列的,建立快速而又准确的DNA序列分析方法对研究基因的结构和功能有非常重要的意义。对于基因组序列,人们比较关心的是从序列中找到基因及其表达调控信息,比如对于未知基因,我们就可以通过把它与已知的基因序列进行比较,从而了解该基因相关的生理功能或者提供疾病发病机理的信息,从而为研发新药或对疾病的治疗提供一定的依据,使我们更全面地了解基因的结构,认识基因的功能。因此,如何让计算机有效地管理和运行海量的数据也是一个重要问题。

4.蛋白质结构预测

蛋白质是组成生物体的基本物质,几乎一切生命活动都要通过蛋白质的结构与功能体现出来,因此分析处理蛋白质数据也是相当重要的,蛋白质的生物功能由蛋白质的结构所决定,因此根据蛋白质序列预测蛋白质结构是很重要的问题,这就需要分析大量的数据,从中找出蛋白质序列和结构之间存在的关系与规律。

蛋白质结构预测分为二级结构预测和空间结构预测,在二级结构预测方面主要有以下几种不同的方法:①基于统计信息;②基于物理化学性质;③基于序列模式;④基于多层神经网络;⑤基于图论;⑥基于多元统计;⑦基于机器学习的专家规则;⑧最邻近算法。目前大多数二级结构预测的算法都是由序列比对算法BLAST、FASTA、CLUSTALW产生的经过比对的序列进行二级结构预测。虽然二级结构的预测方法其准确率已经可以达到80%以上,但二级结构预测的准确性还有待提高。

在实际进行蛋白质二级结构预测时,往往会把结构实验结果、序列比对结果、蛋白质结构预测结果,还有各种预测方法结合起来,比较常用的是同时使用多个软件进行预测,把各个软件预测结果分析后得出比较接近实际的蛋白质二级结构。将序列比对与二级结构预测相结合也是一种常见的综合分析方法。

蛋白质二级结构指蛋白质多肽链本身的折叠和盘绕的方式。二级结构主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素,常见的二级结构有α-螺旋和β-折叠。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。研究蛋白质空间结构的目标是为了了解蛋白质与三维结构的关系,预测蛋白质的二级结构预测只是预测蛋白质三维形状的第一步,蛋白质折叠问题是非常复杂的,这就导致了蛋白质的空间结构预测的复杂性。蛋白质三维结构预测方法有:同源模型化方法、线索化方法和从头预测的方法但是无论用哪一种方法,结果都是预测,采用不同的算法,可能产生不同的结果,因此还需要研究新的理论计算方法来预测蛋白质的三维结构。

图4.1 蛋白质结构

目前,已知蛋白质序列数据库中的数据量远远超过结构数据库中的数据量,并且这种差距会随着DNA序列分析技术和基因识别方法的进步越来越大,人们希望产生蛋白质结构的进度能够跟上产生蛋白质序列的速度,这就需要对蛋白质结构预测发展新的理论分析方法,目前还没有一个算法能够很好地预测出一个蛋白的三维结构形状,蛋白质的结构预测被认为是当代计算机科学要解决的最重要的问题之一,因此蛋白质结构预测的算法在分子生物学中显得尤为重要。

5.结束语

现如今计算机的发展已渗透到各个领域,生物学中的大量实验数据的处理和理论分析也需要有相应的计算机程序来完成,因此随着现代科技的发展,生物技术与计算机信息技术的融合已成为大势所趋。生物学研究过程中产生的海量数据需要强有力的数据处理分析工具,这样计算机科学技术就成为了生物科学家的必然选择,虽然人们已经利用计算机技术解决了很多生物学上的难题,但是如何利用计算机更好地处理生物学中的数据仍是一个长期而又复杂的课题。

【参考文献】

[1]孙啸,陆祖宏,谢建明.生物信息学基础[M].清华大学出版社,2005.

[2]张阳德.生物信息学.科学出版社[M].2004.

[3]Dan E.Krane & Michael L.Raymer,孙啸,陆祖宏,谢建明译.生物信息学概论[M].2004.

第9篇

 

关键词:  代谢组学 中医药现代化 证 疗效评价 中药新药

1  代谢组学与中医药学理论体系的联系

   

中医药学是有着数千年历史的古老科学,在历代医家不懈的医疗实践中,形成了以整体观念和辨证论治为特点的理论体系。所谓整体观念,是关于人体自身的完整性及人与自然和社会环境统一性的认识,是整体思维方法在中医理论中的体现。中医药学非常重视人体的统一性和完整性,认为人体的每个局部都是整体的一部分,都具有整个生命的全部信息;另一方面注重人体与环境的统一性,认为人的生命活动与自然运动规律相统一。这种观念贯穿于中医学对人体的生理活动和病理变化乃至疾病的诊断、预防和治疗等各个方面的理性认识之中。近年来,中医药现代化研究已经成为学术科研上的焦点问题,学者们力图用现代科学方法论来衡量和改造中医药学,却出现了中医药学在现代科学面前无法证明其科学性的尴尬局面[2]。这都是由于现代医学的方法论与中医药学的方法论之间存在着明显的鸿沟,中医药学研究用的是整体思辨的网状思维模式,它注重把握事物之间的联系,而不是事物本身,因而其知识结构是综合的、整体性的;同时,中医药学善于把人与环境因素综合地加以考虑,其思维呈网状结构。而现代医学研究是还原分析的链式思维模式,它是建立在实验分析基础上的,注重研究事物本身的特性,往往忽略了事物之间的联系,其知识结构是分析性的、局部的。然而,人体本身是一个复杂的整体,人体的复杂性及疾病的联系性,与中医的整体网状思维模式接近现代医学,也正由一元化向多元化转变,由单一性向系统型转变。基因组计划基本完成,标志着生物学研究进入了“后基因时代”,而系统生物学研究是后基因时代的最主要研究任务。基因组学、转录组学、蛋白质组学及代谢组学都是系统生物学的重要组成部分,基因组学、转录组学和蛋白质组学分别从基因、mRNA、蛋白质层面探寻生命的活动,然而,代谢物是生命活动的最终产物,代谢物的水平可以被看作是基因或环境发生变化时生物体作出的最终的应答,正如Oliver Fiehn所认为的“代谢物是基因型到表现型之间的桥梁”[3],“基因组学和蛋白质组学告诉你可能发生什么,而代谢组学则告诉你已经发生了什么”[4]。因此,代谢组学是系统生物学研究的终点。总之,代谢组学属于全局系统生物学(Global systems biology)研究方法,与中医药学的整体观念相对应;且代谢组学研究的目标是代谢物,而“代谢物是基因型到表现型之间的桥梁”,其研究更接近表现型,由此,代谢组学用于中医药现代化研究具有不可比拟的优势。

2  代谢组学与“证”的现代研究

辨证论治是中医学认识和治疗疾病的基本思路,是中医理论体系的基本特点之一。“证”是辨证论治的起点和核心。所谓“证”,是指在致病因素作用下,机体内外环境各系统之间相互关系发生紊乱所产生的综合反应,是反映疾病处于某一阶段病因、病性、病位、病势等病理要素的综合性诊断概念。因此,“证”的现代研究是中医药现代化研究的核心任务。近年来,学者们对“证”进行了广泛而深入的研究,主要集中在证候的标准化、客观化、证候的本质、计量诊断、证候的动物模型等方面。其中证的标准化、规范化是进行“证”的其它方面研究的基础,如果对证候没有一个客观的尺度加以评价,其它方面的研究也就无法进行。每一个证候都有其外象(外候)与内涵,证的标准化研究中,对其外候的研究主要是根据中医文献及临床资料,并结合临床流行病学研究,制订某些证的诊断标准,使辨证达到规范化,并将现代医学的实验指征结合到证的研究标准之中;但外候是用四诊——望、闻、问、切所获得的信息进行整理而得,很难量化,即使用流行病学方法加以分析,亦是靠专家经验打分,最多亦只是半定量。这种诊治的准确性很大程度上依赖医生的诊疗经验,无论在准确性、稳定性、敏感性等方面都更多地受到医患双方主观因素的影响。因此,从证的内涵方面去制定“证”的诊断标准十分有意义。近年来,学者们致力于探索证候的高特异性和高灵敏性的指标,试图建立证候实验诊断单个金指标,然而,由于证的整体性、动态性和异病同证、同病异证等特征,不可能用单一指标作定性、定量、定位的说明。据此,证候客观化研究采用综合指标,精选非特异指标进行特异组合,建立能反映证本质并能区别它证的定性、定量、定位综合实验指标,辅助四诊,确定证候诊断具有重要的意义。代谢组学正具备反映和解决这些问题的“组”、“群”、“谱”集成的分析功能。它能够通过检测不同时间患者的尿液或血液,对这些代谢产物进行分析,从而确定不同的证所对应的代谢组,使“证”可以得到客观化的表述。另外,利用代谢组学方法,通过研究代谢物图谱随时间的变化,能够帮助人们更好地理解疾病过程中“证”的变化与机体内物质的代谢途径和代谢状况的关系,还有助于疾病生物标记物的发现和辅助诊断,使诊断、治疗达到个体化。其准确性依赖于仪器的性能,可以提高诊治的科学化、定量化,避免了人为因素的误诊。

友情链接