HI,欢迎来到好期刊网!

数字化控制与制造技术

时间:2024-01-17 16:20:22

导语:在数字化控制与制造技术的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

数字化控制与制造技术

第1篇

关键词:数字化车间,机械加工

中图分类号:TH161 文献标识码:A 文章编号:

近年来,为实现我国装备制造业的转型升级,国家大力推行精益制造、智能制造、敏捷制造等先进制造理念,并高度重视信息化在制造中的促进作用。数字化车间理论与应用研究方兴未艾。

数字化车间的概念

数字化车间是数字化技术在制造车间集成应用而形成的一种制造车间的模式,即从数字化产品工艺设计、工艺试验、生产组织和管理等方面入手,将制造车间中的数字化设备与工艺设计及生产管理的信息进行集成,形成基于数字化设备和信息集成于信息流自动化的集成制造系统,从整体上改善生产的组织与管理,提高制造系统的柔性,提高数字化设备的效率。

数字化车间目前存在两个方面的含义。一方面,它是指从制造的现实出发,对制造过程中产生的数据进行数字化,并对它们进行加工处理,产生相关的信息,在制造系统中进行存储和交换,并直接应用于车间对生产过程的管理和控制,通常把这种生产方式称为数字化制造。另一方面,它是指“车间”生存于数字化世界,在真实工厂或生产过程还没有开始前,这个车间在虚拟空间中运作,对真实车间进行虚拟现实的仿真,提供优化的结果,是虚拟制造技术的发展。

本文讨论的是前一种含义,其实质是数字化技术在车间的综合应用,即利用计算机辅助进行信息管理、生产工艺安排、生产计划制定和生产过程控制,在车间范围内实现CAD/CAPP/CAM,PDM,MRP,MES,DNC等数字化技术的集成应用。

2、数字化车间的组成结构

数字化车间的总体结构如图1所示,分为企业计划层、制造执行层和控制层。通常,数字化车间本身包括制造执行和控制两个层次,企业计划层是数字化车间的上游,是数字化车间运行的外部环境。制造执行层是数字化车间的核心,它协调车间各个部门完成车间的技术管理、生产计划和调度及整个生产过程的管理与控制,而控制层则完成设备管理、现场数据采集和物流监控。数字化车间需要实现企业以生产计划和执行控制为主线的生产管理信息系统集成应用,以CAD/CAPP/CAM和PDM集成为特征的技术信息系统集成,以及基于网络实现DNC、现场数据采集和物流标识等监控系统集成应用。制造执行系统为车间范围内的这三种集成提供了应用平台。

实施数字化车间的关键是基于车间数字化装备、综合网络(DNC)和数据管理系统建立制造执行系统,实现生产作业计划管理与执行控制,以及实现制造执行系统与企业资源管理系统和产品与工艺过程设计系统的集成应用。

3、典型机械加工数字化车间

数字化车间在各种类型车间中已有广泛实践,以机械加工车间最为典型。机械加工车间通过制造执行系统将工厂生产计划信息引入车间,并根据工厂生产计划进行具体执行计划——生产作业计划的指定,把企业下达的生产任务具体分配到车间的各个生产单元(工段)、工作地和工人,规定他们在月、旬、周、日以及轮班和小时内的具体生产任务;并通过现场终端将生产指令直接下达到操作者,同时及时采集任务状态信息,组织产品生产过程各阶段、各工序在时间上和空间上的衔接协调,实现生产进度控制、产品质量控制、物料消耗与库存控制及生产成本费用控制等。生产计划与控制是实现生产计划,提高产品质量,降低生产消耗和产品成本的重要手段。

车间可通过PDM集成和运行CAD/CAPP/CAM软件,支持车间的工艺准备技术工作,实现设计数据直接引入、工艺建模、自动编程和程序仿真。DNC系统通过网络与CAD/CAPP/CAM相连,直接从NC程序库中读取所需要的加工程序和参数,也可以将生产现场经调试的实际应用程序回收后统一存放、归档。同样,机床的CNC参数也可以通过此系统进行传输。

车间建立刀具管理系统,实现数控用刀具的管理和预调,考虑到生产规模的扩大和品种的变化速度加快,在加强CAD/CAPP/CAM的同时,应注重生产准备环节的技术改造。刀具综合管理和预调制度的建立及刀具管理系统的采用可以实现在车间(单元)范围内的刀具参数和寿命管理,实现刀具的统一调配和配送,将缩短生产准备时间,降低车间刀具占有量,提高刀具的利用率,以及稳定产品质量,还可以通过DNC系统实现刀具参数的传递。

4、机械加工数字化车间的实施效果

通过数字化车间系统的实施,机械加工车间在管理手段、生产效率、生产成本等方面都会有明显效果,为精益生产模式的建立奠定了良好的基础。

1)彻底消除机床信息孤岛,实现了工厂的完全网络化管理

通过机床网络DNC的建设,彻底改变了以前数控机床的单机通信方式,全面实现了机床的集中管理与控制,机床由以前的信息孤岛转变为整个工厂的一个信息节点,实现了数控程序的传输网络化、管理规范化、仿真虚拟化、数据采集自动化。

2)通过图形化的高级排成,最大程度地优化了生产计划

通过高级自动排产算法,可将生产任务分解到每一工序、每一设备、每一分钟,并可通过方便直观的图形看板形式,以即时的方式提供准确的交货日期,实时获知落后于计划的作业,查明是哪里出现了生产“瓶颈”,实现了生产任务的精确管理。

3)实现生产过程的全透明化管理

通过准确、及时、自动的机床生产信息反馈,可以同时采集所有机床的实时状态,随时查看机床的开机、运行、故障等信息,实施获知每台机床的工件生产数量,并结合条码扫描等手动采集方式,实现生产过程全方位的透明化管理。

4)减少机床辅助时间,提高机床利用率

通过协同制造平台,实现了技术、物料、工具、质量等生产准备协同,从根本上避免了因某一环节的准备不足而影响生产的不良情况。通过高级排产、程序网络传输、模拟仿真、程序数据库管理,将生产计划、程序编辑、仿真、管理等生产辅助任务在计算机端快速高效地完成,这些管理措施与手段均可最大程度地提高机床的有效利用率。

5)实现对库房的精细管理,优化库存,降低生产成本

充分利用先进的计算机网络技术,全面实现对车间各类(包括刀具、物料、在制品等)库房的计算机管理,可有效优化各类库存,明显地降低车间库存成本。

6)与PDM/ERP系统全面集成,整合企业制造资源

通过与PDM/ERP等系统的有机集成,以及MES系统自动导入ERP的生产计划等上游信息,实现企业各管理系统之间数据资源最大程度的共享,为实现企业级的精益生产奠定良好的技术与管理基础。

参考文献:

[1] 杨文通,王蕾,刘志峰 编著. 数字化网络化制造技术. 电子工业出版社

第2篇

【关键词】数字化工厂工艺规划仿真优化

中图分类号:S220文献标识码: A

1引言

围绕激烈的市场竞争,制造企业已经意识到他们正面临着巨大的时间、成本、质量、产品差异化等压力。如何快速适应市场的变化,实现从“以产定销”到“按订单生产”模式转变?数字化工厂提供了较为理想的解决方案。

2 数字化工厂概述

数字化工厂是BIM(建筑信息模型)技术、现代数字制造技术与计算机仿真技术相结合的产物,同时具有其鲜明的特征。

2.1数字化工厂

2.1.1数字化工厂的概念

数字化工厂是以产品全生命周期的相关数据为基础,根据虚拟制造原理,在虚拟环境中,对整个生产过程进行仿真、优化和重组的新的生产组织方式。它是在设计建造阶段,建立全面、详实的信息,包括材料、工艺、设备运行管理等全生命周期的信息档案数据库,利用BIM(建筑信息模型)技术指导建筑物、构筑物及设备的科学使用和维护,为信息化、标准化管理提供数据基础平台,加上CAD、EEP、MEP等应用管理系统,实现工厂控制系统内部数字化信息的有效传递,既链接了生产过程的各个环节,又与企业经营管理相互联系,进而把整个企业数字化的资金信息、物流信息、生产装置状态信息、生产效率信息、生产能力信息、市场信息、采购信息以及企业所必须的控制目标都实时、准确、全面、系统地提供给决策者和管理者,帮助企业决策者和管理者提高决策的实时性和准确性以及管理者的效率,从而实现管理和控制数字化、一体化的目标。

2.1.2数字化工厂的优势

数字化工厂利用其工厂布局、工艺规划和仿真优化等功能手段,改变了传统工业生产的理念,给现代化工业带来了新的技术革命,其优势作用较为明显。

预规划和灵活性生产:利用数字化工厂技术,整个企业在设计之初就可以对工厂布局、产品生产水平与能力等进行预规划,帮助企业进行评估与检验。同时,数字化工厂技术的应用使得工厂设计不再是各部门单一地流水作业,各部门成为一个紧密联系的有机整体,有助于工厂建设过程中的灵活协调与并行处理。此外,在工厂生产过程中能够最大程度地关联产业链上的各节点,增强生产、物流、管理过程中的灵活性和自动化水平。

缩短产品上市时间、提高产品竞争力:数字化工厂能够根据市场需求的变化,快速、方便地对新产品进行虚拟化仿真设计,加快了新产品设计成形的进度。同时,通过对新产品的生产工艺、生产过程进行模拟仿真与优化,保证了新产品生产过程的顺利性与产品质量的可靠性,加快了产品的上市时间,在企业间的竞争中占得先机。

节约资源、降低成本、提高资金效益:通过数字化工厂技术方便地进行产品的虚拟设计与验证,最大程度地降低了物理原型的生产与更改,从而有效地减少资源浪费、降低产品开发成本。同时,充分利用现有的数据资料(客户需求、生产原料、设备状况等)进行生产仿真与预测,对生产过程进行预先判断与决策,从而提高生产收益与资金使用效益。

提升产品质量水平:利用数字化工厂技术,能够对产品设计、产品原料、生产过程等进行严格把关与统筹安排,降低设计与生产制造之间的不确定性,从而提高产品数据的统一性,方便地进行质量规划,提升质量水平。

2.2数字化工厂的差异性

“数字化工厂”贯穿整个工艺设计、规划、验证、直至车间生产工艺整个制造过程,在实施过程需要注意系统集成方面的问题,“数字化工厂”不是一个独立的系统,规划时,需要与设计部门的CAD/PDM系统进行数据交换,并对设计产品进行可制造性验证(工艺评审),同时,所有规划还需要考虑工厂资源情况。所以,“数字化工厂”与设计系统CAD/PDM和企业资源管理系统ERP的集成是必须的。同时,“数字化工厂”还有必要把企业已有的规划“知识”(如工时卡、焊接规范等)集成起来,整个集成的底部是PLM构架。

同时,类似于PDM系统和ERP系统,每个企业都有自己的流程和规范,考虑到很多人都在一个环境中协同工作(工艺工程师、设计工程师、零件和工具制造者、外包商、供应商以及生产工程师等),随时会创建大量的数据,所以,“数字化工厂”规划系统也存在客户化定制的要求,如操作界面、流程规范、输出等,主要是便于使用和存取等。

3 数字化工厂的实现与应用

数字化工厂以突出的功能优点,在工业生产,尤其是制造业生产中具有广泛的应用,但其实现过程也涉及多种关键技术。

3.1数字化工厂的关键技术

数字化工厂涉及的关键技术主要有:数字化建模技术、虚拟现实技术、优化仿真技术、应用生产技术。

数字化建模技术:数字化工厂是建立在数字化模型基础上的虚拟仿真系统,输入数字化工厂的各种制造资源、工艺数据、CAD数据等要求建立离散化数学模型,才能在数字化工厂软件系统内进行各种数字仿真与分析。数字化模型的准确性关系到对实际系统真实反映的精度,对于后续的产品设计、工艺设计以及生产过程的模拟仿真具有较大的影响。因此,数字化建模技术作为数字化工厂的技术基础,其作用十分关键

虚拟现实技术:虚拟现实技术能够提供一种具有沉浸性、交互性和构想性的多维信息空间,方便实现人机交互,使用户能身临其境地感受开发的产品,具有很好地直观性,在数字化工厂中具有广泛的应用前景。虚拟技术的实现水平,很大程度上影响着数字化工厂系统的可操作性,同时也影响着用户对产品设计以及生产过程判断的正确性。

优化仿真技术:优化仿真技术是数字化工厂的价值所在,根据建立的数字化模型与仿真系统给出的仿真结果及其各种预测数据,分析虚拟生产过程中的可能存在的各种问题和潜在的优化方案等,进而优化生产过程、提高生产的可靠性与产品质量,最终提高企业的效益。由此可见,优化仿真技术水平对于能否最大限度地发挥企业效益、提升企业竞争力具有十分重要的作用,其优化技术的自动化、智能化水平尤为关键。

应用生产技术:数字化工厂通过建模仿真提供一整套较为完善的产品设计、工艺开发与生产流程,但是作为生产自动化的需要,数字化工厂系统要求能够提供各种可以直接应用于实际生产的设备控制程序以及各种是生产需要的工序、报表文件等。各种友好、优良的应用接口,能够加快数字化设计向实际生产应用的转化进程。

3.2常见数字化工厂软件

由于数字化工厂技术在工业生产过程中的优越性,各知名企业竞相开发各种数字化工厂软件,其中较为常见、应用最为广泛的数字化工厂软件主要有eM-Power和Demia等。

eM-Power是由美国的Tecnomatix技术公司开发的数字化工厂软件,它在工业生产中应用十分广泛。该软件架构是建立在Oracle数据库之上的三层结构,它为企业用户提供零件制造解决方案、装配规划、工厂及生产线设计和优化、产品质量和人员绩效等主要功能。这些主要的功能模块建立在统一的数据库eM_Server中,实现整个生产制造过程的信息共享。2007年以来,西门子公司在收购了UGS(UGS于2004年收购了Tecnomatix)的基础上,推出了功能更为强大的Teamcenter 8和Tecnomatix 9,提供工厂设计及优化、制造工艺管理、装配规划与验证、开发、仿真和调试自动的制造过程和质量管理等功能,在各大企业具有广泛应用。

Delmia是由法国的Dassault公司开发的数字化工厂解决方案,该解决方案是构建在Dassault公司的PLM结构的顶层,由其专用数据库(PPR-Hub)统一管理。Delmia的体系结构主要包括:面向制造过程设计的(DPE)、面向物流过程分析的(QUEST)、面向装配过程分析的(DPM)、面向人机分析的(Human)、面向虚拟现实仿真的(Envision)、面向机器人仿真的(Robotics)、面向虚拟数控加工方针的(VNC)、面向系统数据集成的(PPR Navigato)等。它主要由面向数字化工艺规划模块、数字化仿真平台工具集以及车间现场制造执行系统的集成模块等组成。

3.3数字化工厂的应用

数字化工厂是信息化技术发展过程中出现的一种新的企业组织形式,是促进企业现代化发展的新兴技术,目前主要应用在汽车制造、航空航天等大型制造企业。

3.3.1数字化工厂技术在汽车行业的应用。

目前,数字化工厂技术在国内外汽车制造业中得到了广泛应用。在国外,如通用汽车公司使用Tecnmatix eMPower的解决方案,大大缩短了通用公司从新产品设计、制造到投放市场的时间,同时提升了其产品质量。奥迪公司使用eM-Plant进行物流规划仿真,如A3 Sportback项目。通过物流规划仿真不仅使得整个生产物流供应链之间建立起了紧密有序的联系,同时也方便对物流方案进行先期评估和可行性分析。在国内,如一汽大众在车身主拼线工艺设计中采用数字化工厂技术,改善了车身焊接工艺,提高车身焊接质量。上海大众在发动机设计和产品总装领域采用数字化工厂技术,大幅提升了公司的制造技术和产品质量。目前,华晨金杯公司引进西门子的Tecnomatix软件,对产品的总装工艺进行数字化改造。

3.3.2数字化工厂技术在飞机制造业的应用。

在飞机制造业,数字化工厂技术的先进性也得到了充分体现。如美国的洛克希德马丁公司在F35研制过程中,采用数字化工厂技术缩短了2/3的研制周期,降低了50%的研制成本,开创了航空数字化制造的先河。有如波音787飞机在研制过程中采用基于Delmia的数字化工厂技术,实现其产品的虚拟样机。空客A380飞机采用虚拟装配方案,实现整机的三维虚拟装配仿真和验证。不仅国外飞机制造企业在其产品的研制、生产过程中使用数字化工厂技术,国内的飞机制造企业也是如此。如上海飞机制造厂利用数字化工厂技术在三维环境中进行人工装配操作的数字化模拟,提高了人工操作的标准化。而西安航空动力控制公司则采用Tecnomatix的数字化工厂软件对其异型件生产线进行仿真和优化,进行技术改造探索。

3.3.3数字化工厂在铸造行业的探索

共享铸钢团《数字化工厂示范工程》拟运用先进制造理念(如虚拟制造、智能制造、绿色制造、柔性制造等)和先进铸造技术、方法,结合共享集团在铸造行业内领先的制造、技术和管理经验,全面融合先进信息化技术,建设数字化模样生产线、数字化柔性造型生产线、智能化熔炼控制系统、智能体联合控制的铸件精整线、数字化在线检测等综合集成的数字化铸造工厂,在“多品种、小批量、快捷”铸造生产方面达到同行业领先水平,建成一座在铸造行业领先的“数字化、柔性化、绿色、高效”铸造工厂,集成并创造数字化铸造新模式。

4结束语

随着计算机技术、网络技术的飞速发展,数字化工厂技术不断与现代企业相结合,已成为提升企业竞争力的新动力。在当前企业发展的新形势下,数字化工厂技术出现了新的趋势。首先,现场总线技术在数字化工厂中的应用,提升数字化工厂的现场可操作性;其次,应用网络技术,拓展数字化工厂网络互联能力;最后,数字化工厂的智能化发展,实现虚拟仿真与企业真实生产的无缝链接,打造真正的智能数字化工厂。

作者简介

郭兆祥(1976-)男,硕士研究生,从事技术质量管理工作。

参考文献.

[1]李险峰.DELMIA让数字化工厂成为现实[J].CAD/CAM与制造业信息化,2006,(9):48-50.

第3篇

关键词:数字化制造技术;数字化设计;数字化制造;应用

信息技术不仅已经被广泛应用到人们日常生活、生产等各个领域,同时也在很大程度上促进了工业制造领域智能化的高速发展。我国数字化制造技术在工艺设计、制造数据管理以及生产过程控制等环节发挥了一定作用,但是有些技术在该领域中的应用水平相对较低,因此,在未来发展中必须构建以企业产品为背景的数字化制造技术应用研究。

1.数字化制造技术概念简介

数字化制造技术基于虚拟现实技术、计算机网络技术、快速原型技术、数据库技术以及多媒体技术等多种现代化科学技术,可以根据不同制造企业的需求,实现资源信息收集和整理,产品信息、工艺流程信息、资源信息自动整合分析、规划以及重组,实现对产品进行设计、功能仿真以及原型制造,并根据用户对产品的实际需求进行功能调整或整体优化设计。

2.数字化制造技术的应用现状

(1)产品数字化设计。产品数字化设计是指产品在设计阶段充分利用计算机,在图形设备(CAD)的辅助下可以将产品的图形设计出来,同时也要完成产品功能设计、结构分析等多个产品设计环节,在数字化设计过程中使用了软件绘图、编辑图形以及分析等技术,技术人员也可以利用数字化设计程序对产品结构设计进行优化与完善,运用计算机强大的计算功能、分析功能以及比较功能在各种设计方案中选出最佳方案。

(2)数字化分析。数字化产品分析功能也是基于计算机辅助技术而成,可以对结构复杂的产品进行优化设计,产品优化设计过程中主要利用了力学性能对其进行分析,并运用CAE软件对产品的综合性能及安全性、稳定性、可靠性等方面进行模拟分析,通过模拟不同产品在实际上的运行状态来确定其是否存在设计缺陷,如果发现设计缺陷可以立即对产品设计进行优化,以确保最终产品在实际运用中的综合性能等方面可以满足用户需求。

(3)数字化生产工艺。数字化生产工艺是指产品在生产过程中利用计算机对生产过程进行控制,技术人员可以将产品零件的形状、尺寸、材料以及处理过程等数据输入计算机,并将该产品在生产设备中的工艺参数输入到计算机中,这样计算机便可以对该产品的生产工艺进行数值计算、逻辑判断以及推理,并根据所输入的参数编制出最佳的工艺内容及路线。

(4)数字化制造。数字化制造主要是基于CAM软件而成,该软件可以根据技术人员设计出的模型进行自动编程,并可以利用计算机与其他辅助软件实现仿真制造生产过程,并可以自动判断出产品生产过程中会遇到的干涉及碰撞等问题,计算机软件自动编写的程序需要技术人员对其进行修改,以便计算机编写的程序可以满足产品的制造要求,在程序加以处理后便可以传输到数控机床上进行产品的实际加工,如果发现产品加工中存有缺陷,技术人员可以在数控机床的控制端对其进行微调。

(5)数字化管理。产品数据管理是工业制造领域数字化管理中的核心内容,企业一般都是通过CAD/CAM系统实现对产品数据的数字化管理,并可以对所产生的产品进行全生命周期数据管理,不仅可以根据企业信息的管理要求对图纸、工艺文件进行整理,更可以根据企业的运行管理需求进行市场调研、产品更新等一切与生产有关的数据管理,而这也是在信息时代有效提高制造企业市场核心竞争力的有效途径之一。PDM技术不仅在我国工业制造领域中占有重要的地位,同时也是计算机领域中的核心技术,而在我国只有一部分大型企业在发展中运用了PDM技术,这也为这些大型工业制造企业带来了可观的经济效益,因此,在新时期我国工业制造领域应充分利用PDM技术。

(6)逆向工程。传统的产品设计无法实现产品的“复制”过程,而数字化制造技术的应用有效打破了这一限制,逆向工程可以根据已有的产品通过分析研究来获取其设计过程,而逆向工程在工业制造领域中一般都应用到企业无法获取产品设计方法的情况下,利用产品实物可以在很大程度上推导出产品的设计方法及工艺流程,所以该项技术在新时期已被广泛运用到新产品的开发或旧产品的改进等,对我国工业制造领域在新时期的高速发展有着重要意义。

3.结语

现阶段我国数字化制造技术正在不断向着产品集成化、管理网络化方向发展,同时产品生产过程的智能化、虚拟化、绿色化以及柔性化等都是该项技术未来发展中的必然趋势,其不仅对提高我国工业制造领域的生产效率及质量有着重要意义,同时也可以更好地促进工业制造领域在新时期向着可持续发展方向迈进。

参考文献:

[1]李铁刚.车铣复合集成数字化制造[J].组合机床与自动化加工技术,2013(02).

第4篇

关键词 数字化;设计制造;一体化;应用研究

中图分类号TP3 文献标识码A 文章编号2095―6363(2017)03―0021―01

1概述

飞机设计和制造是飞机研制的重要2个环节。飞机研制是创造新型的飞机,从设计方案的提出到投入使用,需要经历很长的时间,是一件很复杂的系统工程。一般情况下飞机研制分为拟定技术要求、飞机设计、飞机制造和飞机试飞定型等4个阶段。飞机数字化设计制造技术是数字化数据管理和传递系统为基础,在数字化设计技术的前提下,有效结合数字化工艺技术、装配技术、检测技术、机器人自动钻铆技术及数字化的集成控制技术等多种先进技术的综合应用的结果。

数字化设计制造技术在机械、汽车、医药行业应用比较早。航空领域在20世纪80年代诞生于西方航空发达国家。数字化设计制造技术从根本上改变了飞机制造方法。数字装配方法有效解决了传统制造方式的周期长、返工率高、质量低、精度低、风险大和成本高的问题,给飞机研制开辟了崭新的道路。

面对市场竞争,传统的飞机研制方式无法满足企业发展需求,为了能在竞争中处于有利位置,企业必须采用数字化设计制造一体化技术是势在必行。数字化设计制造一体化技术能够大幅降低制造成本,提高制造精度和质量,缩短制造周期,降低返工率。

2数字化设计制造一体化技术的组成

数字化设计制造一体化技术是多个高新技术高度集成的结果。数字化设计制造一体化技术包含数字化设计系统、数字化工艺系统、数字化工装系统、数字化检测系统、自动钻铆系统等子系统。

1)数字化设计系统。数字化设计系统能够在产品的数字化定义和建模的基础上,利用计算机实现模拟预装配,主要作用是对产品M行干涉检查、位置分析以及人际功效分析等工作。通过虚拟预装配可以进行结构协调设计、系统协调设计、检查零部件的安装和拆卸等工作,有效地减少因设计错误而引起的返工和更改。

2)数字化工艺技术。数字化工艺技术是在数字设计的基础上,对设计数据进行按数字装配要求分析,总结归类和工艺设计的过程。包括工艺路线分工、工艺流程设计、工艺装备选择、工艺控制点选取、容差分配和数字化预装配等等。也就是根据现有技术、设备选择最合适的产品实现的方案或工艺技术的过程。

3)数字化工装系统。飞机装配中广泛应用的数字化工装技术有特征定位技术、柔性定位技术和数字化定位技术等等。

特征定位技术是利用零部件的工艺特征或装配配合关系来确定零部件的位置关系,达到准确定位的目的。常用的方法有凸台定位、装配孔和工艺孔定位等。

柔性定位技术是指通过采用可变的工装支撑和定位要素来满足不同产品或类似产品的不同定位要求。柔性工装常用于壁板类部件、翼梁类部件、对接部件、舵面等部件的装配。

数字化定位技术是数字化测量技术在飞机装配中的应用。指通过同一组数字化测量点的位置来确定组、部件的不同站位不同状态下的准确定位。常用的数字化定位系统有激光跟踪仪、iGPS定位系统、照相测量等。

4)自动钻铆系统。自动钻铆系统,也叫机器人加工系统。通过数字化编程的程序控制机器人,用机器人的动作代替部件装配中的制孔、锪窝、送钉、加胶、铆接等工序。自动钻铆系统加工精度高、效率高、工作一致性好等特点。机器人效率是人工的6~10倍。机器人加工工作已拓宽到铆接、焊接、胶接和喷漆等工作。

3国内飞机数字化设计制造一体化应用情况及存在的问题

我国航空工业主要沿袭前苏联的组织生产模式,飞机设计制造技术发展缓慢。飞机研制技术和组织管理方式落后,虽然在不断完善和该机,但与发达国家比差距较大,自动化水平不是很高,半自动和纯手工制造还在应用。目前在技术和管理方面都存在一定的问题。

数字化设计制造一体化体系建设需完善。数字化设计、工艺设计、工装设计、流程设计、数据管理和传输、数字化装配等方面均缺乏完整的、体系的标准规范。虽然已有了基础的标准,但实践过程中存在诸多问题。

在产品设计阶段缺乏设计制造一体化的考虑,缺乏数字化装配的工艺性考虑。在我们飞机装配中发现很多方面可以改变设计方式方法,应逐步加强面向装配的设计,加强“三化”设计。比如壁板设计、地板设计、翼肋设计完全可以按模块设计,便于柔性制造。

数据管理和数据传递平台需规范和完善。从设计到装配需要多个数据库、多个软件、多个接口的交换,数据管理和传递,硬件软件需进一步规范和完善。

数字化装配过程中补偿技术、检测技术需进一步提高。数字化装配是复杂的系统工程,装配过程受产品设计、工艺设计、工装设计与制造、零件制造、检验检测、工具使用等多个方面的影响,以上某个环节出现任何问题均影响部件制造的进度、节奏和质量。

4加快飞机数字化设计制造一体化应用的方法

数字化设计制造一体化技术是制造业发展的必然选择。面对困境和问题,我们需要采取以下措施,加强研究和应用实践。

1)建立产品全寿命工作模型,优化流程。目前发达国家高新企业几乎全部都采用全寿命周期的设计制造方法,其主要特点是充分考虑制造工艺性、售后维护的方便性,在方案论证阶段销售维护和制造问题先考虑并反复迭代。

国内航空产品研制周期长,质量低、成本高的主要原因是没有按照产品全寿命周期模型管理产品的研发,在设计阶段缺乏全寿命考虑,产品没有面向制造、面向用户、面向维护。

具体表现为:(1)缺乏完整的系统工程的研发理念,重功能性能,轻过程管理;白顶向下的设计分解和自底向上的逐级验证过程不清晰,不完整;设计指标逐级分解不全,设计验证迭代不够,验证不充分。(2)缺乏规范化、操作性强的流程;流程结构化差,粗放、层次不清、不够规范、不细化、操作性不强;没有整体流程,流程是串行的,运行缓慢,问题留到了后面,造成返工和拖延;流程的执行缺乏强制和纪律性。

2)加强面向制造的设计。传统的设计方式和传统的模拟量传递技术很难与数字化装配技术接轨,数字装配技术的前提是面向装配的数字化设计技术。具体为,加大产品的“三化”设计,加大产品的模块化、系列化和通用化,尽量加大通用件和共享零部件。比如壁板类零件、地板零件应采取模块化设计。另外,零件剖面选择取、设计分离面的选取应充分考虑数字化装配工艺,如,Z字形长桁剖面比L形长桁更便于机器人加工。

3)加强数字化装配技术的研究。数字化装配技术在国内刚刚起步,从标准的建立和技术的协调兼容没有明确的参考依据。我们知道需要数字化装配技术,但不是很明白需要什么样的数字化装配技术,因为产品类型不同、工艺分离面不同,所选取的装配方法不同。因此目前没有形成完整的技术树,对核心技术、关键技术识别不够。在产品零件到总装结束哪些分里面或哪些工位选取数字化装配更合适、效率更高等方面需研究和探索。

第5篇

关键词:350km高速动车组;工装设计制造;技术

前言

近年来,高度动车覆盖率不断增大,意味着动车制造工作量也不断在增加,350km高速动车组是技术要求十分高的产品,在制作过程中,必须要严格要求制造工艺才能产生出合格的产品,在工装设计制造中,不但要保证质量,而且要控制工作设计制作成本。

1 350km高速动车组工装设计制作技术改进

1.1设计方法上的改变

在工装设计上一直以来都在二维计算机的辅助下进行设计,360km高速动车组制造技术引入之后,工装设计工作进行了改进,采用了工装三维数字化技术进行设计。在工装设计上还采用三维软件,在原始数据模型的基础上进行数据修改时,只需要进行工装设计的更新工作即可,与此同时工装设计也随之得到改变[1]。例如,司机室总成工装设计中,司机室外形数据的大小与工装侧面弧度定位板弧度的大小一致,并且建立以参数关系,此时,需要更变司机室外形,采取的改变方式是对工装进行更新,更新时,工装上两侧的弧度定位板会自动根据命令进行更变,此设计大大提高了设计的效率。

1.2结构上的改变

我国机车车辆工装技术起步比较晚,与国外相比还存在很大的差距,我国在机车车辆的工装结构上,采用的前苏联的技术,而发达国家在机车车辆工装上已经采用更为先进的技术。我国所采用的机车工装结构零件交换性差,并且体积大,需要很长一段时间进行制造,此缺点大大降低了工作效率。350km高度动车组技术的提高,在工装结构上进行了改进,解决了原有的一系列问题[2]。例如,原有的车顶组焊夹具,其结构是两个长度为25米长的铸铁平台构建而成,体积巨大,开展工装调整工作必然十分不方便,经过改进之后,其结构仅由10组模块化紧压机构、10组模块化定位机构以及2个基础座构成,此结构简单、体积小,使用方面,工装的重量不超过12t,和原来的工装结构体重相比,重量足足减少的1/3,更重要的是模块与模块之间进行调整时十分方便快捷。

1.3通用设计上的改进

随着350km高速动车组制造技术的不断提高,工装设计通过设计上的理念已完全改变,采用的是新的通用设计技术。例如,350km高速动车组的侧墙组焊夹具就是工装实现通用化工装的表现,特点就是可对3中形状各不相同的侧墙开展焊接工作,此工作取代了传统的6种不同类型的组焊工装,使工装成本得到有效控制,此工装的构成为16个定位卡紧模块,其模块看,而已进行侧墙定位等多项工作。位于定位卡紧模块中心部位的是圆辊,可以进行360度的旋转。圆辊在使用的过程中,旋转的控制由电气自动化系统进行控制,这样的控制方式使每一组的圆辊旋转角度都可保持一致。在旋转的过程中,圆辊旋转的角度为60度时,16组定位卡紧模块的圆辊定位机构在此时就会自动形成一个定位机构,工装整体就形成了一个相互联通的整体。

2 350km高速动车组工装设计制造技术未来的发展趋势

现如今,我国在350km高速动车组工装研制模式上,还停留在串行工程的模式上,无法提高工作效率,尤其是在工作的设计、制造这两项工作上,周期较长。国外采用的是并行工程的模式,350km高速动车组司机室操作台工程设计上采用此模式之后,操纵台制作所花费的时间大大减少 [3]。另外,工装设计制造中还未实现数字化,为此,工装数字化将会成为工装设计制造微未来的发展趋势,所谓的数字化就是处在三维数字化的情况下开展工装结构设计等工作,工装制造实现数字化是将数字化设计工装模型运用其中,进行数字化的加工,尤其是关键特征面进行加工制作,而工程数字化检测指的是对数字化设计制造工程采用的检测设备为数字化检测设备。

3结束语

我国在350km高速动车组工装设计制造中采用的技术与发达国家相比,较为落后,在高速动车组快速发展的今天,若是不对工装设计制造技术进行改进,则难以满足时代的需求,为此,要对工工装设计方法、结构等多方面进行改进,提高我国的制造效率。

参考文献:

[1]李碧钰,刘长清,石东山,熊煜宇,辛本雨.350km/h高速动车组换气装置国产化研制[J]. 机车电传动,2014,21(01):37-40.

第6篇

关键词:飞机;数据管理;集成管理

飞机是当今交通运输行业的主要交通工具之一,其汇集了当今各种高新技术,可以说是人类当今工作科技发展支柱,航空产业也因此成为当今各国经济与国力的体现依据。就我国而言,航空产业的兴起也带动着材料产业、通信产业及电子产业的蓬勃发展。在飞机装备综合保障的分析与设计工作中,可靠性维修性保障性分析已成为关注的焦点。文章通过分析飞机数字化装备数据集成管理的内涵,提出了具体的实施方案。

1 飞机综合保障数据集成管理

飞机是一个集机械、电子、通导、武器等多种装备及技术的综合体。在使用过程中如何保持飞机的最大系统效能,以最少的投入来保障各装备的安全可靠的运行一直是各级部门以及装备使用和维修管理人员追求的目标。为了实现该目标,要进行有效地综合保障,必须要有能描述装备状态的准确数据。也就是说,要有大量的有效信息用于分析与决策,这就涉及到数据的集成管理。即数据是各种保障方案得以执行的前提。

飞机数字化装备数据是飞机数字化装配工艺设计、制造中所使用的制造数据的总称,它包含了工程数据、装配工艺数据、资源数据及检验数据等多个领域。其中工程数据主要指的是工程设计部门所的有关产品结构、产品物理性能、功能及设计方面的数据。装配工艺数据指的是飞机是数字化装配中所生成的各项工艺信息流。资源数据则是飞机数字化装配工艺设计、生产当中所生成的基本信息,其中包含了材料信息、设备库信息、人员配置信息及工具库等。检验数据是一个动态的过程,它随着装配业务流程的开展而不断变化,其中包含了检验测验数据、现场装置数据、数字化测量设备得出的实验数据以及误差分析数据等。

2 以数字化为核心的装配技术

飞机装配的关键在于要协调和解决好系统件装配过程中的互换问题,只有这样才能实现装配的科学合理。数字化装配技术是一种能提高产品质量、适应快速研制和生产、降低制造成本的技术。数字化装配方法不仅包括了传统数字化装配概念中工装的设计、制造及装配的虚拟仿真等,还包括了如柔性装配、无型架装配等自动化装配方法。飞机数字化装配技术是数字化装配工艺技术、数字化柔性装配工装技术、光学检测与反馈技术、数字化钻铆技术及数字化的集成控制技术等多种先进技术的综合应用。数字化装配技术在飞机装配过程中实现装配的数字化、柔性化、信息化、模K化和自动化,是将传统的依靠手工或专用型架夹具的装配方式转变为数字化的装配方式,将传统装配模式下的模拟量传递模式改为数字量传递模式,因此要首先明确以下概念:

2.1 协调准确度。

协调准确度描述的是两个系统件相互配合的实际尺寸和几何形状的匹配程度,符合程度越高该值越大。由此可见,采用的先进装配技术必须能够提高不同系统件之间的协调准确度。

2.2 关键特性

关键特性是指那些能够影响飞机系统件之间协调准确度的过程特性、零部件特性以及材料特性。它是由具体的计量和计数数据来衡量的,并根据数据制定相应的特性树从而指导飞机装配。

2.3 基于数字化标工定义的互换协调方法

数字化协调方法是一种建立在数字化标准工装定义上的协调互换方法,也即是常说的数字化标准工装协调方法,它能够保证组件和产品部件、产品和生产工艺装备、工艺装备之间形状和尺寸的协调互换。数字标工协调法的实现依赖于测量系统、数字化制造以及数字化工装设计,利用数控成形加工出定位元素。在进行工装制造时,通过室内GPS、数字照相测量、电子经纬仪、激光跟踪仪等数字测量系统实时控制测量,建立相关的坐标系统从而直接比较3D模型定义数据和测量数据,达到验证产品是否合格的目的。

3 装配数据集成模型

飞机数据装配之中需要大量的数据信息,这些信息在各个应用系统之间要及时互通共享,此时集成数据则能有效的保证业务流和数据流的互转。在飞机装配中,数据集成模型的构建主要从以下方面入手。

3.1 系统集成框架的建立

集成框架指的是在分布式、异构的计算机环境中实现信息集成、功能集成及过程集成的软件系统,这一环节通常都是以PDM作为集成平台,将CAD、CAPP、ERP、MES作为数据传输平台,从而实现内外信息的共享与互通,使信息流处于有效、有序、可控的状态。这种集成框架是以现有的数据库技术、网络技术为支撑平台来完成文档管理、项目管理和配置管理等任务。

3.2 装配数据集成实现的关键技术

3.2.1 数字化装配工艺的设计

数字化装配工艺设计的基础是基于模型的定义(MBD)技术,即用集成的三维实体模型来完整表达产品定义信息,作为唯一的制造依据。MBD技术根据数字化定义规范,采用三维建模进行数字化产品定义,建立起满足协调要求的全机三维数字样机和三维工装模型。工艺人员可直接依据三维实体模型开展三维工艺设计,改变了以往同时依据二维工程图纸和三维实体模型来设计产品装配工艺和零件加工工艺的做法,依据数字化装配工艺流程,建立三维数字化装配工艺模型,通过数字化虚拟装配环境对装配工艺过程进行模拟仿真,在工艺工作进行的同时及飞机产品实物装配前进行制造工艺活动的虚拟装配验证,确认工艺操作过程准确无误后再将装配工艺授权发放,进行现场使用和实物装配。在工艺模拟仿真过程中还可生成装配操作的三维工艺图解和多媒体动画,为数字化装配工艺现场应用提供依据。

3.2.2 框架系统之间的集成

现阶段的装配数据是在数字化技术的基础上,以PDM作为集成平台,这一集成方式包含了封装模式、接口模式、内部函数调用模式、中间交火模式和中间数据库等,是根据数据类型、信息操作分类及存储方法再结合管理流程、开发成本形成的一套系统集成模式。

(1)CAD与PDM集成

CAD与PDM之间的信息集成利用接口连接的方式来实现,CAD系统将产品的结构。零件信息及时、准确的反映给PDM系统,确保了两个系统数据的一致性,另外通过PDM系统内部借口,将这些文件批量导出并存储到PDM系统中,读取零件相关信息,且生成BOM结构树,与三维模型、文件等信息一一对应。

(2)CAPP与PDM集成

CAPP与PDM系统之间的集成采用了接口与紧密集成混合的继承方式,是通过DELMIA作为系统核心,以PPR-HUB作为存储器,用来存储集成产品的相关信息和工艺资源,为产品装配各阶段工艺人员使用提供了最新、最真实的数据资料。

结束语

伴随科学技术的进一步发展,装配企业的信息集成势在必行,本文通过对飞机综合保障数据集成管理分析,旨在通过建立统一装配数据模型,达到信息共享与交换的目的,但由机系统的复杂性,这一方案还有待进一步的探讨与研究。

参考文献

第7篇

关键词:数字化 节能 抽油机 数字化油田

引言

数字化抽油机是指具备数据采集和远程控制功能的抽油机。是针对目前数字化建设现场施工中安装工作量大、野外施工难度大、油田现场动火、动电危险度高、设备集成度低、各施工单位安装方式不统一等问题而研制的新产品。

该产品集成油井数据采集模块,实现抽油机自动调节平衡,自动调节冲次。现场安装和数字化建设安装同步进行,节约建设成本,缩短建设周期,对油田数字化建设起到了积极地推动作用。

现就数字化抽油机介绍如下:

一、结构组成

数字化抽油机是一种游梁平衡的无基础弯梁变矩抽油机。通过智能控制系统中数据采集传输模块,实现本机与上位机的数据传输,并实现本机的逻辑运算与智能控制。

其中数据显示模块实时显示抽油机的冲次和平衡度,控制系统还具有工频启动、停止、过流、过载、缺相等保护的功能,可通过变频器的变频,调整抽油机冲次,并实现电机的软启动及多项保护功能。数字化抽油机还配置有一体化载荷悬绳器,该悬绳器将载荷传感器嵌入到其中,使传感器得到有效保护,从而很好的实现载荷和位移及电参数的实时采集与传输。数字化抽油机的平衡调节装置,包括控制系统和执行机构,具有手动和自动两个功能,根据平衡度的大小,调节平衡重的力矩,实现抽油机平衡状态的无级调节。

二、结构特点

数字化抽油机的支架采用三条腿结构,三条腿全部坐于底座上,具有足够稳定性,便于制造安装、节约材料成本;减速器安装方向与常规式游梁抽油机布置一致,更利于低转速减速器的齿轮和轴承;电机与控制柜后置,符合SY6320-2008《陆上油气田油气集输安全规程》相关规定,距离井口在5米以上;全新游梁平衡调节装置,利用电动机带动丝杠传到系统,使与抽油机后臂连接的平衡重力臂发生改变来平衡悬点载荷。

三、性能特点

抽油机平衡状况的好坏,直接影响到抽油机的效率、能耗和寿命,对抽油杆的工作状况也有很大的影响,必须予以高度重视。数字化抽油机根据自动监测并实时显示抽油机的平衡状况,可手动或自动将抽油机调整到最佳的平衡状况,降低峰值电流,达到保护减速器和节能的目的。通过软件可设定平衡度,如85~95%为最佳平衡状态,当采集的传感器数据计算之后,自动启动平衡电机进行至最佳。抽油机运行过程中,根据功图量油软件数据接口得到的泵功图或泵充满度,应用最佳冲次技术设计的判定软件计算后,发送指令给变频器,调整电动机输入频率,调整到最合理的抽油机冲次。冲程的改变是靠人工调整曲柄销装置在曲柄上的位置来实现的,沿用了原来调径变矩抽油机的成熟结构,不需吊车配合即可完成。

四、数字化控制

数字化控制柜分上下两层。上层集成安装油井的数据采集模块,主要包括:井口RTU、低压电源、功放、扬声器等,可实现数据传输(有线/无线)、功图采集、电参数采集、油压采集、远程启停、报警等功能。具有多种类型的通信接口,根据标准的通信协议,可提供RS232、RS485或RJ45等对外接口;下层安装变频器、工频和变频控制单元的部件和线路,工频变频可不断电切换。外面板有各种手动自动转换开关、冲次及平衡度显示屏等。

五、标准化与模块化设计

为适应抽油机规模化生产,在保证强度和安全性的前提下,设计时对零部件进行标准化和模块化设计。

1、焊接件:驴头、游梁、支架、底座、横梁和连杆等根据冲程的不同,设计时多种型号使用一种方案设计;

2、轴承座:支架轴承座、横梁轴承座、曲柄销轴承盒借用原来弯梁变矩抽油机标准化之后的图纸,保证配件及易损件的连续性使用;

3、一体化悬绳器:根据机型和驴头结构不同设计了两种型号

六、寿命周期

与游梁式曲柄平衡抽油机相比,由于大部分曲柄平衡的重量转为游梁平衡,所以抽油机各个活动部件受力(如:连杆、曲柄销、减速器扭矩力等)大幅度减小,使得抽油机各转动部件及整机使用寿命延长。

七、安全维护

继承和保留了原常规游梁式抽油机的全部优点具有结构简单、安全可靠、耐用皮实、维护方便、维修费用低的优点,且运转现场的安装、维修、保养等和现状无改变,不需要进行采油工重新培训。

数字化抽油机借鉴了常规游梁式抽油机的成熟节能机理,采用了传统游梁式抽油机的外形结构,特别是生产制造、使用维护与传统游梁式抽油机无变化,由于整机高度降低,重心下移,因此出现意外风险的几率明显低。

八、数字化管理

数字化建设必须结合延长油田特点,集成整合现有的综合资源,创新技术和管理理念,建立全油田统一的生产管理,综合研究的数字化管理系统,实现同一平台信息共享多级监视,分散控制,达到强化安全过程监控,节约人力资源和提高效益的目标。而数字化抽油机是数字化采油管理的基础,大面积普及数字化抽油机可以为延长油田开拓数字化油田奠定结实的基础。

九、结论

数字化抽油机的利用是采油行业信息化建设的发展趋势,是油田科研生产部门管理与决策的基础平台。它将为油田各层次实现信息化建设起着统领和导向的作用。是延长油田实现数字化油田发展战略的关键环节,是企业现代化的基本标志,是提高企业数字化核心竞争力的重要手段,是走新型工业化道路的必然选择,是体制创新、管理创新和加强企业管理的重要途径,是科技进步的重要表现和组成部分,是带动各项工作提高水平的突破口,是企业求生存、图发展的必由之路。按照集团公司要求十二五期间油田公司实现石油产量达到1500万吨,如何管理好8万口油井,只有靠管理创新、技术进步、市场化运作来保障,在管理上需要建设适合延长油田的集生产指挥、综合分析决策措施方案自动生成的管理系统,发展数字化油田的基础就是数字化抽油机。从而可以看出数字化抽油机在延长油田的推广使用将会给延长油田未来发展宏图画上浓重的一笔。

参考文献

[1].游梁式抽油机节能机理及其典型构件分析;作者:罗仁全,张学鲁,于胜存,季祥云;中国石油大学出版社

[2]游梁式抽油机技术与应用;作者:罗仁全,张学鲁,季祥云;石油工业出版社

第8篇

1.1自动化制造模块为了提高生产效率与减少生产费用而研发的一种规模较小的自动化控制系统,就是所谓的自动化制造模块,因为它能够自主性地完成某项任务以及具有比较小的外形,所有被普遍地应用于机械制造中。自动化制造模块可以是一立的设施,也可以是很多台的设施,结合加工产品的差异可以组合不一样的加工设施像是数控机床和物料运输机等。

1.2自动化加工的生产线在机械制造当中,自动化制造系统是这项自动化的控制技术是应用普遍的,自动化制造系统指的是在缺少人工间接或者是直接参与的情况下,组装零件或者是加工原材料为零件,在加工的过程中实施自动化的工艺与管理过程。由很多台的加工设施组合而成了自动化制造系统,并且是由统一的计算机系统进行控制的,从而形成了自动化的加工流水线。

1.3自动化制造工厂因为自动化制造工厂是这种自动化的技术是有着极高综合性的,它能够实现原料到产品制造的整个过程,所以自动化制造工厂具有十分高的技术含量。而自动化制造工厂的重要组成部分就是自动化制造系统,并且在借助计算机系统的控制,统一了高自动化物料运输系统,从而使得系统和全面的自动化控制系统形成鉴于自动化制造工厂的制造费用比较高以及对技术含量高要求,因此在机械制造业当中未能够普遍地应用自动化制造工厂。

2机械制造工艺的未来发展趋势

2.1自动化

2.1.1自动化机械制造生产线的高效发展机械制造业生产线的高度自动化与技术的改进得益于批量零配件的市场需要。而自动化设施研发机构和制造企业的主要内容就转向自动化机械制造生产线的高效发展。

2.1.2自动化制造模块是机械制造自动化的未来发展趋势在柔性技术应用于机械制造的影响下,机械制造业的未来发展趋势是生产方式灵活与花费较少的FMC。当前,我国的中小型企业的主导依旧是制造业,FM在这一部分企业当中的应用,能够大大地减少生产费用,使得生产变得更加灵活因此,通过FMC系统实施柔性化作为前提条件往纵深的方向发展是机械制造工艺未来的发展趋势。

2.1.3功能多样性的自动化生产设施对于机械产品的市场需要来讲,功能性单一的自动化生产设施已经远远不能够满足,而科研人员与企业的研究重点就是功能多样性的自动化生产系统。在新的世纪,机械制造行业主要的研发内容是自动化的制造和加工系统。在工业机器人与数字化加工制造中心组成以机械制造系统集成化的影响下,机械制造的自动化发展趋势更加明显。与此同时,这有利于实现自动化工厂。

2.2集成化

集成化也是机械制造工艺一种必然的发展趋势,也就是机械制造和加工从分散型的工艺向连续化与集成化的工艺转变。其中,技术与设施的集成是当前的集成化,也就是某些零件的一次性制造过程是借助连续性的工艺与机电一体化来实施的。集成化的未来发展趋势是成品的集成化加工和制造,也就是在一个自动化的系统当中实现设计、制造加工、装配,产品检验的整个过程。

2.3数字化

计算机技术在机械制造工艺与技术当中的应用,重点表现为数字体系与数字工程,它是机械制造工艺发展与技术进步的一种发展趋势,也是主导,即所谓的数字化。其中,工艺流程的信息化、数字化,技术方面的自动化、数字化是数字化的基本发展趋势。纵观当前形势下机械制造工艺的发展,数字化的发展趋势是必然的,也是不可取代的,同时也是工艺改进与技术发展的一种重要力量。比如,在机械制造的整个过程当中,以管理工艺的数字化信号与制造技术,不仅仅能够全天候地监测在工艺流程与技术,还能够大大地减少费用支出,使得生产效率大大地提高,并且使得生产的科学技术含量提高。当然,管理人员实施决策与管理的一个关键依据就是数字信号,从而使得数字信号变成机械制造的重要管理要素。

2.4精细化

对于机械制造工艺的发展来讲,加工方式与材料的进步是必不可少的,也就是应当不断地提高加工制造的精密化,比如,在上个世纪的时候,将误差降低在10μm就是超精密加工,之后是1μm,在到上个世纪末期的时候是0.01μm,而当前是1nm。在以后不断进步的纳米技术的影响下,机械制造工艺会以纳米作为主要的单位。

3结语

第9篇

【关键词】船舶制造;数字化设计;信息一体化

一、引言

数字化造船是以造船过程的知识融合为基础,以数字化建模仿真与优化为特征,将信息技术全面应用于船舶的产品开发、设计、制造、管理、经营和决策的全过程,最终达到快速设计、快速建造、快速检测、快速响应和快速重组的目的。数字化造船技术涵盖的范围非常广泛。本文就目前较为流行的部分数字化技术进行简要分析。

二、行业背景

在经济全球化的今天,国际造船业已发展成为全球一体化市场,世界各国造船企业在全球范围内展开了技术、性能、质量和服务等全方位的角逐。随着全球船舶市场占有率的竞争日趋激烈,世界造船业在技术、体制上发生了重大改革,其中造船技术的发展尤为突出,从最初的焊接技术到大型生产流水线等新技术的成功应用,到现阶段信息集成系统、并行工程、敏捷造船、先进制造模式等先进技术或理念在船舶制造业中广泛应用,使船舶行业凸显成为信息密集、技术密集和资金密集的现代新型产业。

自二十世纪七十年代开始,我国造船业开始快速发展,至今已经历了特征鲜明的三个阶段。从最初的打开国门走向世界,到规模不断壮大超越日韩,我国造船业在几经沉浮后实现了蜕变,造船技术的发展也实现了飞跃。尤其是数字化造船技术的发展,完成了船舶设计、制造、管理手段的革新。

中国船舶工业发展历程

三、技术分析及应用

数字化造船要求以数据处理、虚拟现实、数据库、网络通讯等数字化技术为基础,将数字化技术全面应用于船舶的开发、设计、制造、管理的全过程中。数字化技术所包含的内容非常广泛,如何将船舶设计、生产、管理的相关理论和方法与特定数字化技术相融合将是数字化技术应用的关键所在。下面列举部分船舶行业中应用的重点/难点技术,并结合NACKS的现状进行了简要的分析。

(一)虚拟仿真技术

船舶建造虚拟仿真技术作为一种新型技术,旨在利用数字模型替代物理原型,对船舶的设计、制造及生产系统等进行仿真,以提高设计水平、建造质量,缩短产品研制周期。船舶建造虚拟仿真技术是基于计算机和信息技术的一种新的先进造船技术,是船舶数字化建造的具体体现,对船舶产业的科技发展具有重要意义。

造船发达国家纷纷利用信息技术给造船业带来的各种机遇,积极开展船舶虚拟设计和建造仿真技术的研究。韩国和日本的造船业,虚拟设计与制造仿真技术研究开展得比较早,并取得较好的研究成果。对于首制高附加值船舶和船舶的设计和建造,在实际建造之前都要利用虚拟仿真技术对设计结果、建造工艺和建造流程进行预先仿真,能够及时发现并纠正设计中存在的问题。由于虚拟现实技术可将仍处于概念阶段的设计方案以逼近于现实的形式呈现出来,从而可以及早发现并纠正设计问题。

虚拟仿真在船舶行业的应用范畴,主要包含四部分内容:船舶虚拟设计评估与优化技术、船舶建造工艺仿真与优化技术、船厂物流仿真与能力评估技术与作业、运行保障仿真技术。国内船舶行业在前三个方向都开展了一些工作,基本突破了常用异构系统数据转换、船舶产品虚拟评估技术、船舶工艺自动建造技术、船舶焊接工艺智能设计与统计技术等关键技术,并开展多型船舶的建造工艺仿真,船厂建造资源能力评估等工作。然后,在建造工艺深化应用、船厂物流仿真、运行保障领域的应用较少,深度也较浅,将是未来发展重点。

(二)物联网技术

物联网技术即通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网技术是在近十年开速发展的一项网络技术,在不知不觉间已经充斥在我们身边每一个角落,比如打卡考勤系统和条形码扫描系统。

船舶行业属于劳动力密集型、多品种、小批量、按订单生产的离线制造行业,因其行业信息化量大、管理复杂,物联网技术的快速发展给船舶行业注入了新鲜的血液。通过物联网技术的应用,可在生产建造、物流、设备管理、能源控制、安全管理、质量管理等多领域实现信息的实时采集、统计分析,实现过程控制、状态跟踪、统计分析、平衡优化的目的。

物联网技术在最近几年发展迅速,但其在船舶行业的普及还存在一定难度,首先最重要的一点就是成本问题。电子标签、读写设备价格较高,在没有大规模应用的情况下,收益预期与投入难以平衡。其次,物联网的应用还存在一定的技术难点:技术标准还存在较多不统一的部分;数据采集频繁,信息安全需重点考虑;物联网的协议栈需要统一;IPV4资源存在耗尽风险。另外,造船现场的条件较差,这对物联网的应用提出了挑战,潮湿、高温、电磁屏蔽等也是阻碍物联网普及的障碍物。

(三)企业信息集成技术

在船舶企业中,由于作业内容的不同,往往有多个异构的、运行在不同的软硬件平台上的信息系统同时运行,这些系统的数据源彼此独立、相互封闭,使得数据难以在系统之间交流、共享和融合,从而形成了"信息孤岛"。随着数字化应用的不断深入,企业内部、企业与外部信息交互的需求日益强烈,急切需要对已有的信息进行整合,联通“信息孤岛”,共享信息。

企业信息集成是指企业在不同应用系统之间实现数据共享,即实现数据在不同格式和存储方式之间的转化,来源不同、形态不一、内容不等的信息资源进行系统分析、辨清正误、消除冗余、合并同类,进而产生具有统一数据形式的有价值信息的过程。

对船舶企业而言,企业的信息集成可实现各部门、各应用系统之间的协调运作,实现业务流程的定制、改造和优化,为企业的各种应用和系统提供一个统一的运行协作平台,实现流程协作和信息共享。信息的共享又会间接的降低企业的运营成本。

(四)CAD/CAE一体化技术

船舶设计是一个涉及多个专业、多个系统、规模庞大的协同工作过程。其周期较长、过程较复杂,且在船舶设计过程中,不同专业使用不同的计算机辅助设计(CAD)及计算机辅助分析(CAE)软件,从而造成缺乏一体化、集成化的设计系统,信息交流不通畅,存在“信息孤岛”问题。CAD/CAE技术的相互融合、相互渗透已成为了一种自发的有效需求,在CAD/CAE一体化技术的帮助下,船舶研发、设计将实现从经验设计到计算机辅助设计的转变,可大大缩短产品周期,提高产品质量。

通过对比可以看出,CAD注重产品的外形特征,以提供图形图像、数字化模型为主,而CAE更注重的是产品物理特征问题。在实际作业中,将研发和设计相互割裂开来会产生重复性投入,同时会降低作业流程的效率。

FEM与TRIBON建立的船体模型对比