HI,欢迎来到好期刊网!

重金属污染的现状

时间:2024-02-01 15:32:50

导语:在重金属污染的现状的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

重金属污染的现状

第1篇

关键词:重金属;土壤重金属污染;生物修复技术

土壤重金属污染问题越来越引起人们的关注,它具有长期性、累积性、潜伏性和不可逆性等特点。土壤一旦遭受重金属污染,不仅危害大、治理成本高,而且较难以消除。 “十二五”期间,我国将元素铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和砷(As)列为重金属污染防控的重点元素。2014年4月,环保部和国土部联合的《全国土壤污染状况调查公报》显示,全国土壤环境状况总体不容乐观,部分地区土壤污染严重。全国第二次土地调查结果显示,我国中重度污染耕地大约为5000万亩。

被重金属污染的土壤不仅对作物的生长发育、产量及品质有影响,而且会通过食物链放大富集进入人体,极低浓度就能破坏人体正常的生理活动,损害人体健康[1]。土壤污染影响到整个人类生存环境的质量。重金属污染已成为一个亟待解决的环境问题。

1、土壤中重金属的来源及危害

土壤中重金属的来源可分为天然来源和人为来源。天然来源是由于土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。人为来源主要是来自人类的工农业生产活动以及生活垃圾,工矿业废弃地土壤环境问题突出,黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、矿物制品、金属制品和电力等行业,重污染企业用地及周边土壤存在超标现象。

近年来,突发性的环境污染事件骤增,特别是重金属污染事件。突发的环境事件会导致重金属在短时间内高浓度地进入环境,产生严重的污染。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海等多起砷污染事件。2009年8月以来,又发生了陕西凤翔儿童血铅超标、湖南浏阳镉污染及山东临沂砷污染事件。2014年,湖南衡东县儿童血铅超标事件,300多名儿童被查出血铅含量超标。据美国学者统计表明,城市儿童血铅与城市土壤铅含量呈显著的指数关系[2]。据统计,我国约有3万多公倾土地受汞的污染,有1万多公倾土地受镉的污染,每年仅生产“镉米”就达5万t以上,而每年因污染而损失的粮食约1200万t,严重影响了我国的粮食生产和食品安全[3]。这些重金属污染事件有些是由于管理不当、交通事故等人为原因导致的,有些则是环境长期受到污染、污染物含量超过环境容量而突然爆发的结果。“砷毒”“血铅”“镉米”等重金属污染事件频发,让重金属污染成为最受关注的公共事件之一。重金属污染问题已日益严重,土壤重金属的治理和修复已迫在眉睫。

2.重金属土壤污染治理生物修复技术

目前,国内外较成熟的土壤重金属污染修复技术有物理修复法、化学修复法和生物修复法等,本文主要就土壤重金属修复领域的研究热点生物修复技术进行重点介绍。生物修复技术主要有植物修复技术、微生物修复技术、农业生产修复技术和组合修复技术。

2.1植物修复技术

根据Cunningham等人的定义,植物修复是利用绿色植物来转移、容纳或转化污染物,使其对环境无害[4]。根据机理的不同,土壤重金属污染的植物修复技术有3中类型:植物固定、植物挥发和植物提取。目前研究最多且最有发展前景的植物修复技术为植物提取。植物提取是指将某种特定的植物种植在重金属污染的土壤上,该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(如灰化处理)后即可将该重金属从土体中去除,达到治理污染与生态修复的目的,这种特定的植物被称为超积累植物。植物修复法成本低,可有效避免二次污染,对环境扰动小。目前,全球已发现的超积累植物大约500种,大部分是关于镍的超富集植物。在我国已经发现宝山堇菜、龙葵、马蔺、三叶鬼针草对Cd有富集作用,蜈蚣草[5]和大叶井口边草[6]对As有富集作用,圆锥南芥[7]属多重金属富集植物,对Pb、Zn、Cd均有富集作用。植物修复技术可同时修复土壤及周边水体;成本低;能够美化环境,可提高土壤的肥力。植物修复技术的缺点:超富集植物个体矮小,生长缓慢,修复周期很长;超富集植物对重金属具有较强的选择性和拮抗性;植物收割后,需要进行特殊处理,否则易造成二次污染;异地引种将对当地的生物多样性构成潜在威胁。适用于大面积农田土壤修复。

2.2微生物修复技术

微生物修复技术是利用微生物(如藻类、细菌、真菌等)的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度。微生物不能降解和破坏重金属,但可通过改变它们的化学或物理特性而影响金属在环境中的迁移与转化。研究证明,土壤中铬可以在微生物还原作用、生物吸附、富集等作用下降低其生物可利用性和毒性,以达到修复铬污染土壤的目的[8]。微生物修复效果好、投资小、费用低、易于管理与操作、不产生二次污染。但是微生物修复的专一性强,很难同时修复多种复合重金属污染土壤;应用难度大。

2.3农业生态修复技术

农业生态修复包括农艺修复和生态修复,前者是改变耕作制度,调节种植作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等来降低土壤重金属污染;后者调节土壤水分、养分、pH值和土壤氧化还原状况及气温、湿度等生态因素,调控污染物所处环境介质,但该技术修复周期长、效果不明显。农业生态修复技术环境友好,代价小。但需要大量的调研,基础研究,改变种植习惯。适用于大面积低污染农田土壤。

2.4组合修复技术

植物组合修复技术是将植物修复技术与其他土壤重金属污染治理方法(比如物理、化学等修复技术)综合利用形成的组合技术,与单一重金属治理技术相比,植物组合修复技术具有独特的优点。有代表的有螯合剂-植物组合修复技术,螯合剂与土壤中的重金属发生螯合作用,形成水溶性的金属―螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,强化植物对重金属的吸收。另外还有基因工程-植物组合修复技术及微生物-植物组合修复技术等。

3、展望

随着社会的发展进步,人们对土壤重金属污染的认识越来越深刻,越来越重视,如何防控和治理土壤重金属已成为人们关注的焦点。在今后的土壤重金属污染治理中,首先应以源头控制,即有效地降低重金属污染物的排放,这主要有赖于国家环境政策与法规的不断完善和工矿企业技术革新的落实。其次就是土壤的修复技术,针对土壤污染的复杂性、多样性及复合性,在修复时要综合考虑污染物的性质、土壤条件、投资成本等各方面的因素,从单一的修复技术向多数联合的修复技术、综合集成的工程修复技术发展,选择最适合的修复技术或组合, 达到高效、节约的双重效果。

参考文献

[1] 张许文琦.植物修复技术治理土壤重金属污染的研究进展[J].人民长江,2013,44(增刊):144-146.

[2] 蒋海燕,等.城市土壤污染研究现状与趋势[J].安全与环境学报,2004,4(5):73-77.

[3] 陈怀满.土壤-植物系统中的重金属污染[M].北京: 科技出版社,1996.

[4] Cunningham SD.Remediation of contaminated soil with green plants: an overview[J].In Vitro. Cell Dev. Biol,1993,( 29) :207-212.

[5] 陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47( 3) : 207 - 210.

[6] 韦朝阳, 陈同斌, 黄泽春,等. 大叶井口边草―种新发现的富集砷的植物[J].生态学报,2002,22( 5) :777-778.

第2篇

摘要:通过对襄阳市16个点位农田土壤实地调查、采集及实验室分析测定其重金属含量,采用单项污染指数法和综合污染指数法,评

>> 农田土壤重金属污染及修复技术分析 杭州市土壤和蔬菜重金属污染现状及评价体系 武汉市新城区菜地土壤重金属含量状况及污染评价 湖南某尾矿库周边农田土壤及蔬菜重金属污染与健康风险评价 探析长期污灌农田土壤重金属污染与潜在环境风险评价 山东省典型农田土壤中重金属污染评价 农田土壤重金属污染与防治 农田土壤重金属污染的植物修复技术及工程示范 我国农田土壤重金属污染修复及安全利用综述 白银市东大沟污灌区表层土壤重金属污染及潜在生态风险评价 大理市不同生态区表层土壤重金属污染初步评价 兰州市蔬菜基地土壤重金属污染评价与分析 包头市绿地土壤重金属污染分析与评价 十堰市畜禽养殖场周边土壤重金属污染评价 常熟市土壤重金属污染研究 郫县土壤重金属污染状况调查 探析土壤重金属的污染及其评价方法 不同土壤重金属污染评价方法对比研究 关于土壤重金属污染评价方法研究 三峡库区土壤重金属元素含量分析及污染评价 常见问题解答 当前所在位置:

[7] 国家环保总局.GB15618-1995土壤环境质量标准[S].北京:中国标准出版社,1995.

[8] 国家环保总局.NY/T395-2000农田土壤环境质量监测技术规范[S].北京:中国标准出版社,2000.

[9] 黄顺生,廖启林,吴新民,等.扬中地区农田土壤重金属污染调查与评价[J].土壤,2006,38(4):483~488.

第3篇

关键词:农田土壤;重金属污染;修复技术;环境保护

中图分类号:S153 文献标识码:A DOI:10.11974/nyyjs.20170432024

1 我国农田重金属污染现状

1.1 重金属普遍超标

农田重金属污染主要是指Pb、Cu、Hg、Zn、Cr、Cd等重金属元素在农田土壤中的含量超过土壤背景值,根据农田部、环保部等部门近年来报告数据显示,全国有300多个重点污染区重金属超标,占农田污染的80%,抽取数据显示,我国农田平均重金属超标率在2010年前就已经高达12%,在一些大城市,例如北京、上海、深圳等地,各类重金属元素在农田土壤中的含量尤其高,城市发展对于农田重金属污染影响极为严重,目前我国农田重金属污染形势严峻,污染情况已经得到重视,各类措施也在紧急筹备和实施之中。我国农田重金属污染现状具有范围大,种类多,相对集中,分布不均,普遍严重的特点。虽然污染依然严重,但随着环保力度的增强和范围的扩大,污染情况正在逐步改善。

1.2 污染主要来源

农田重金属污染修复,关键在防、治二字,要做到对重金属污染的防治,需要了解农田中重金属的来源,污染来源主要有4类,分别是:污水、大气、农业废弃物以及固体垃圾。空气污染是我国环境保护的一大难题给农田也带来了极大的影响,空气中夹杂着来自工业、交通、矿山等的污染物中,不乏各类重金属物质,在大气沉降过程中,重金属便进入了农田土壤之中。大量数据实例表明,在工业区、道路旁,土壤中含重金属量较其他地区明显高出数倍,环保部研究青藏铁路沿线两侧、北京等城市道路旁农田土质以及种植物,发现不仅土壤重金属含量高,植物中也含有较高的重金属元素。含重金属的污水一旦进入农田并沉淀,就容易造成农田重金属含量的增加,农业材料,如农药、农肥等,在大面积、长期使用之下,重金属会慢慢渗入土壤之中,而一些固体堆积物更是含有大量重金属,在堆积中容易渗入地下。

2 农田重金属污染修复技术

2.1 物理、化学修复技术

物理修复技术主要有换土、深耕翻土、填土以及加热法,前3种方法原理一致,皆是使浅层土壤以旧换新,这些方法工程量大,效果稳定,修复彻底,但是不仅换土需要大量工程,集中处理土壤的耗损也非常大,因此并不适合大规模应用。加热法是利用加热使挥发性重金属从土壤中挥发析出,虽然有一定作用,但是容易导致一些元素酸化或者相互反应,产生更为严重的后果,且析出气体的收集也很棘手。化学修复方法也是如此,无论是电动修复还是淋洗修复,都容易导致严重的污染,电动修复是通过土壤两侧通电以电场作用将重金属带到电极,在两极集中收集并进行处理,淋洗是将水或者其他制剂放入土壤之中进行冲洗,制剂的选择和二次污染的防治成为淋洗的重点,物理、化学方法虽然效果好,但是成本高且对环境极可能造成二次污染,因此实践中应用甚少,相关部门正在加紧研究改善重金属污染治理之中。

2.2 生物修复技术

生物修复技术成本较低,有利于规模化操作,并且生物法的优势在于其环境有益性,不仅能够有效处理农田土壤重金属污染,更重要的是,生物修复有助于修复自然界的正常循环,有利于全面改善环境,目前的环境保护实践对于生物方法也极为推崇。生物修复法主要是利用植物和微生物、动物进行土壤修复,利用植物根系固定重金属,减少扩散,植物还能够从土壤中吸收重金属,储存在植物体内,我国已经发现大量对重金属具有吸收能力的植物,在实践中也有一定研究和应用,植物修复是较为推崇的方法,绿色植物的大量种植能够固定土壤、防风固沙、净化空气,大量种植能够吸收重金属的植物,则一举数得,值得注意的是,植物吸收重金属存于体内,势必导致重金属含量过高,这些植物一定不能作为食品销售。微生物、动物与植物修复法类似,生物修复技术容易破坏生态平衡,尤其是微生物、动物修复,因此也需要进一步研究,目前而言,选取植物进行大规模种植修复土壤似乎是于环境保护最有益处的方法。

3 结语

环境于人类而言重如生命,l展中的破坏已经造成,如何修复才是关键,农田土壤重金属污染,重在防治,切断污染源的同时改良污染土壤方为可行之路。

参考文献

第4篇

关键词:矿区;重金属污染;修复;土壤

中图分类号:F124.5 文献标志码:A 文章编号:1673-291X(2013)18-0286-02

引言

中国是世界上重要的重金属矿区之一,分布着大量的优质重金属矿,丰富的重金属资源为中国国民经济的健康稳定发展提供了资源保障。然而,长期以来在重金属矿区开采的过程中,由于开采技术、资金缺乏及管理方面等原因,对矿区周围的土壤与环境造成了严重影响,从而引发了大量的生态环境问题。

矿业废弃地一般都含有大量的重金属,这些废弃地以尾矿和废弃的低品位矿石的重金属含量最高。重金属通过地表生物地球化学作用释放和迁移到土壤及河流中,而这些受重金属污染的水又通过灌溉方式进入农田,并通过食物链进入人体,从而对矿区附近居民的健康和生存环境构成严重威胁 [1]。通常情况下,有色金属矿区附近的土壤中,铅、铜、锌含量分别为正常土壤中含量的 10~40倍、5~200倍、5~10 倍 [2]。

一、矿区土壤重金属污染现状

铅锌矿区重金属污染现状越来越严重,已经损害了人民的群众健康。如在20世纪60年代,日本曾发生的第二公害病―骨痛病,便是由于食用被镉废水污染了土壤生产的“镉米”所致。王新等对辽宁省铁岭柴河Pb―Zn矿区的土壤一岩石界面的重金属行为特性进行了研究,结果表明该矿区土壤Cd、Pb、Zn元素含量分别是当地背景含量的11倍、4.5倍、3倍,大大超过了当地背景含量水平;Cd作为制约当地农业用地的限制性元素,超过国家土壤环境质量标准5.8倍;矿区附近玉米中Pb、Cd含量分别是国家食品卫生标准16~21倍、5.7~9.7倍[3]。湖南省由于有色金属矿山开采引起的Pb、Cd、Hg、As等重金属污染,受污染面积达2.8万km2,占全省总面积的13%。部分地区土壤中Pb、Cd、Hg、As高出正常值数倍至数百倍,从而出现了地方病。王莹以上虞某废弃铅锌尾矿山为研究对象,研究了土壤中重金属含量及污染状况,结果表明:尾矿山周边各采样点土壤 As、Zn、Pb 和 Cu 平均含量为 328 mg.kg-1、1 760 mg.kg-1、2 708 mg.kg-1和 287 mg.kg-1,均超过土壤环境背景值,各元素含量变异强度为:As>Pb>Cu>Zn[4]。

二、矿区土壤重金属修复技术

重金属是农业环境和农产品的一个重要污染物质。对土壤重金属污染的修复技术常用的有物理修复和化学修复。物理修复主要包括客土、换土和深耕翻土等措施。通过客土、换土和深耕翻土与污土混合,可以降低土壤中重金属的含量,减少重金属对土壤―植物系统产生的毒害。化学修复就是向土壤投入改良剂,通过对重金属的吸附、氧化还原、沉淀作用,以降低重金属的生物有效性。但由于重金属元素在环境中具有相对稳定性和难降解性,至今仍未找到可供大面积应用的重金属污染治理方法。

近年来出现的植物修复,具有投资和维护成本低、操作简便、不造成二次污染、具有潜在或显在经济效益等优点,并且其更适应环境保护的要求,因此越来越受到高度重视。植物修复是一种经济、有效且非破坏性的修复技术,主要利用自然生长或遗传培育植物对土壤中的污染物进行固定和吸收。通常包括:植物提取,即植物对重金属的吸收。目前已发现有400 多种植物能够超积累各种重金属,一些超积累植物能同时积累多种重金属,如羊蕨属植物和具有富重金属性的苋科植物对土壤中重金属的吸收率达到 100%。蒋先军等的研究发现,印度芥菜对Cu、Zn、Pb 等中等污染土壤具有良好的修复效果[5]。有证据表明,柳树和白杨能从土壤中去除一定量的重金属,净化低污染的土壤;植物挥发,即通过植物使土壤中的某些重金属(如Hg2+)转化成气态(HgO)而挥发出来;根际过滤,即利用植物根系过滤积淀水体中的重金属;植物稳定,即利用植物根际的一些特殊物质使土壤中的污染物转化为相对无害的物质。有研究发现,树木可以存活并生长于含有较高浓度的多种重金属污染的土壤上。经监测,桦树和柳树的一些树种可以耐受铅和锌[6]。

结论与展望

矿区土壤的重金属污染是矿区所面临的重大生态环境问题,具有自己独有的特征,在治理的过程中应因地制宜地选择恰当的治理方式。

物理、化学等方法对于矿山土壤的修复存在耗能、耗钱、对土壤结构损害较大等缺点,从保护生态环境出发,这些方法均对矿山生态环境的恢复作用不明显,而植物修复成本较低,可以稳定土壤、控制污染、改善景观、减轻污染对人类的健康威胁,所以在修复矿山土壤重金属污染的过程中,越来越多的国家选择使用植物修复技术。近年来,中国金属矿业迅速发展,所造成的重金属污染日益加剧,植物修复技术的研究更具有广阔的市场,并逐步走向商业化,同时中国有广袤的国土、丰富的资源、复杂多样的地理条件,蕴藏着大量超富集植物,为中国开展有关植物修复技术的研究提供了良好的基础。

参考文献:

[1] 郑奎,李林.中国铅锌矿区的重金属污染现状及治理[J].安徽农业科学,2009,(30).

[2] 薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,(1):90-93.

[3] 王新,周启星,任丽萍.矿区农产品质量及土壤─岩石界面重金属行为特性的研究[J].农业环境科学学报,2004,(3):459-463.

[4] 王莹,赵全利,胡莹,等.上虞某铅锌矿区周边土壤植物重金属含量及其污染评价[J].环境化学,2011,(7).

第5篇

关键词:重金属污染,相关系数,城市功能区,污染源

土壤是人类生存的物质基础,它的质量直接影响着人类的生活和生产;同时,人类的活动也直接影响着土环境。随着城市经济的发展和城市人口的不断增加,城市土壤的重金属污染日益严重[1,2]。本文利用2011年全国大学生数学建模竞赛A题提供的数据(该数据可在其官网下载),定量分析城市重金属污染的程度以及各污染物的主要来源。

首先对数据做简要说明。在数据中,城区被划分为生活区、工业区、山区、主干道路区和公园绿地区等5个功能区。每个区被划分为间距1公里左右的网格,然后按照每平方公里1个采样点对表土层进行取样、编号,并记录下样本中8种重金属的浓度。

一、重金属污染物和所属功能区的相关系数

相关系数是变量之间相关程度的指标[3,4],样本相关系数用r表示,相关系数的取值范围为[-1,1]。r值越大,变量之间的线性相关程度越高;r值越接近0,变量之间的线性相关程度越低。相关系数是用来说明两个现象之间相关关系密切程度的统计分析指示。r>0为正相关,r

首先,计算出5个区各个重金属元素所对应浓度平均值。然后,去除比重金属元素的背景值范围上限小的样本点。最后,对各5个区中没被去除的样本点的各个重金属元素浓度与该类元素的背景值范围上限作差方并取平均值,得到8个重金属元素与5个区的相关性系数(如表1)。

表1 重金属污染物和所属功能区相关系数

二、重金属污染物和距离的相关系数

上面的分析并没有考虑各样本点与各区域距离的关系,造成分析结果存在一定的误差,为此,我们引入距离相关性进行优化。

用相同的方法可以求得其它金属对应相应区域的相关程度,见表2。

表2 重金属污染物与距离的相关系数

三、结果分析

重金属的污染程度和到各区域的距离有着密切的关系。当相关系数为负值时。表示重金属浓度的大小和距离呈负相关,值越小则相关程度越大,即离区域越近,污染的较大,表示由该区造成污染的原因可能性越强;反之,值越大表示相关程度小,由该区造成的某重金属污染可能性小。当相关系数为正数时,表示重金属的污染和距离呈正相关,即离该区域越远,污染程度较大,说明该区不是造成某种金属的污染的原因。

由表可以看出,Cu的浓度和工业区的距离成负相关,负值最大,表示金属元素Cu污染的主要原因是来自工业区。As的污染主要来源是公园绿地区,Cd的污染主要原因是工业,Cr金属元素的污染在五个区域中的主要污染原因是生活,Hg的主要污染来源是工业,Ni金属元素在给定的五个区域中主要原因是工业,工业也是造成Pb污染的主要原因,Zn的污染来源主要也是工业。山区一列都为正数,山区不是这些污染的主要来源,符合实际的情况。我们的计算结果和经验数据相符[5],说明用相关性分析造成重金属污染的原因的方法比较可靠。

参考文献

[1] 陈怀满等,中国土壤重金属污染现状与防治对策[J],Ambio,1999,28(2),130-134.

[2] 史贵涛等,城市土壤重金属污染研究现状与趋势[J], 环境监测管理与技术,2006,18(6),9-12.

[3] 何晓群,现代统计分析方法与应用[M],中国人民大学出版社,1998.

第6篇

关键词:农田土壤;重金属污染;监测技术;空间估值方法

中图分类号:X833 文献标识码:A DOI:10.11974/nyyjs.20170133031

农田土壤为各种粮食作物提供了基本生长环境,一旦受到污染就会直接威胁到人们的身体健康。但就目前来看,农田土壤已经遭受了铅、汞、镉等重金属元素的污染。而这些污染物具有毒性大、难降解和易积累的特点,还会伴随作物被人体吸收。加强农田土壤重金属污染的监测,并对污染进行空间估值,则能够更好的进行农田土壤污染的监管,进而为人们的生产、生活提供更多安全保障。

1 农田土壤重金属污染监测技术分析

1.1 实验室监测技术

在农田土壤重金属污染监测方面,实验室监测为传统监测技术,包含原子荧光光谱法、电化学仪器分析法、分光光度法和极谱分析法等多种方法,都需要完成样本田间采样,然后对土样进行处理、分析,以完成土壤重金属污染监测。使用实验室监测法,具有基体干扰小、检出限低、准确度高和分析范围宽等特点。但是,采取该种监测方法需完成监测区土壤|量现状调查和重金属污染土壤修复试验等工作,采样工作量较大,并且监测成本较高,需要的分析时间较长。此外,只要样品在采集、运输、存储和测定过程中出现差错,就会导致测量结果失真。

1.2 现场监测技术

为克服实验室监测的局限性,现场监测技术在农田土壤重金属污染监测中得到了应用。目前,可以连续完成土壤重金属监测的技术主要包含土壤磁化率监测技术和激光诱导击穿光谱技术等。应用前一种技术,可以利用土壤在外磁场中受感应产生的磁化强度和外加磁场强度比重完成土壤中重金属污染的监测。因为,重金属污染将导致土壤磁性增强,所以能够利用土壤磁化率和地球化学元素含量进行重金属污染表征。该技术具有无破坏性、快速、经济和灵敏的特点,在土壤研究工作中得到了广泛应用。但是,由于会对土壤磁化率产生影响的因素较多,因此使用该技术也无法完成污染程度及污染来源的准确判断[1]。应用后一种技术,主要是利用原子发射光谱分析法对土壤重金属污染进行快速、实时探测,可同时完成多种元素分析,并且只有很小几率会对研究对象造成再污染。但作为半定量测量手段,其在监测灵敏度和检测限上仍然有一定的局限性。

2 农田土壤重金属污染空间估值方法

2.1 局部高值分布区划分

在完成农田土壤重金属污染监测的基础上,还要对影响土壤重金属含量变化的外源因素的空间分布信息进行获取,以便更好的完成土壤重金属含量分布规律的描述。为此,还要采取关联规则、统计对比和回归分析等方法确定外源因素,然后进行有直接影响的外源因子的提取。在此基础上,需利用统计的半方差函数完成土壤重金属历史样点空间结构提取,以便对不同元素空间变异范围进行判断。而通过实地取样调查,则能完成土壤重金属含量的局部高值分布区的划分。

2.2 土壤单元类获取

不同于全局地理空间的土壤重金属空间分布,局部地理空间的土壤重金属空间分布具有一定连续性。通过获取土壤单元类,则能够将全局异质空间的重金属含量空间估值问题转化为局部空间最优估值问题。为此,还应采取自收敛分类方法完成环境变量分类。使用谱分割方法,则可以完成景观要素特征向量分类,从而获得土壤单元分类。但获得的单元类仅为粗略分类结果,还应将同为空间异质的单元类进行归并子类,以减少分类数目。为此,还应对2个单元类包含的监测样点的重金属含量数据展开方差分析,以确定2个单元类是否为空间异质。

2.3 重金属污染空间估值

针对获得的多个土壤空间分类集,需利用土壤单元分类图将在相同单元类中的监测样点划分为一类,以获得监测样点集。利用二分树索引方法,则能完成空间估值方法的构建。在估值操作前,需输入参与估值的最小估值单元数和最大搜索半径,以完成已知位点数的估值单元搜索,用于进行未知单元的属性值的估算。利用土壤单元类包含样点的已知观测值和所有样点观测值的均值之差和对应的权重,就可以得到未知位点的估算值。

3 结论

使用科学的土壤重金属污染监测技术进行农田土壤重金属污染监测,然后结合监测样点数据进行重金属污染的空间估值,则能进一步了解农田土壤重金属空间分布规律,继而更好的完成农田土壤重金属污染的调查评估工作。

第7篇

1.土壤重金属污染现状 目前我国受重金属污染的耕地面积近2000万公顷,约占耕地总面积的1/5。受矿区污染土地达200万公顷,石油污染土地约500万公顷,固体废弃物堆放污染约5万公顷,“工业三废”污染耕地近1000万公顷,污水灌溉的农田面积达330多万公顷。土壤污染使全国农业粮食减产已超过1300万吨,因农药和有机物污染、放射性污染、病原菌污染等其他类型的污染所导致的经济损失难以估计。由于污染,土壤的营养功能、净化功能、缓冲功能和有机体的支持功能正在丧失。

2.土壤重金属污染产生的严重后果 ①土壤污染使本来就紧张的耕地资源更加短缺。②土壤污染给人民的身体健康带来极大的威胁。③土壤污染给农业发展带来很大的不利影响。④土壤污染也是造成其他环境污染的重要原因。⑤土壤污染中的污染物具有迁移性和滞留性,有可能继续造成新的土地污染。⑥土壤污染严重危及后代子孙的利益,不利于农村经济的可持续发展。

3.土壤重金属污染来源 ①随着大气沉降进入土壤的重金属。大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近,污染的程度就越重。②随污水进入土壤的重金属。污水按来源和数量可分为城市生活污水、石油化工污水、工业矿山污水和城市混合污水等。生活污水中重金属含量很少。但是,由于我国工业迅速发展,工矿企业污水未经分流处理而排入下水道与生活污水混合排放,从而造成污灌区土壤重金属铅、镉、汞、溴、铬等含量逐年增加,随着污水灌溉而进入土壤的重金属,以不同的方式被土壤截留固定。③随固体废弃物进入土壤的重金属。固体废弃物种类繁多,成分复杂,不同种类其危害方式和污染程度不同。其中矿业和工业固体废弃物最为严重。这类废弃物在堆放或处理过程中,由于日晒、雨淋、水洗,重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。有一些固体废弃物被直接或通过加工作为肥料放入土壤,造成土壤重金属污染。如随着我国畜牧生产的发展,产生大量的家畜粪便及动物加工产生的废弃物,这类农业固体废弃物中含有植物所需氮、磷、钾和有机质,同时由于饲料中添加了一定量的重金属盐类,因此作为肥料施入土壤增加了土壤锌、锰等重金属元素的含量。固体废弃物也可以通过风的传播而使污染范围扩大,土壤中重金属的含量随距污染源的距离增大而降低。④随农用物资进入土壤的重金属。农药、化肥和地膜是重要的农用物资,对农业生产的发展起着重大的推动作用,但长期不合理施肥,也可以导致土壤重金属污染。重金属元素是肥料中最多的污染物质,氮、钾肥料中重金属含量较低,磷肥中含用较多的有害重金属,复合肥的重金属主要来源于母料及加工流程所带入。

第8篇

关键词:土壤;重金属;修复措施

重金属污染是当今面积最广、危害最大的环境问题之一。土壤中重金属污染不仅降低土壤肥力和作物的产量与品质,而且恶化环境,并通过食物链危及人类的生命和健康。由于重金属污染毒性机制和生物效应的复杂性,重金属污染一直是当前研究的热点。因此,土壤重金属污染的治理对于环境质量的改善十分重要,土壤重金属污染的修复也是环境可持续发展的必然要求。

1. 土壤重金属污染概述

土壤重金属污染是指由于人类活动将重金属引入到土壤中,致使土壤中重金属含量明显高于原有含量,并造成生态环境恶化的现象。例如在废蓄电池加工回收处理场地,土壤Pb 的浓度高达12 000mg/kg,而Cu 和Zn 也严重超标(1 800~2 200mg/kg);在一些工矿区或污灌区的土壤也常受Cd、Pb、Cu 的复合污染。土壤中多重金属元素或化合物之间以及重金属与土壤界面之间存在相互作用,使其污染土壤修复技术具有挑战性。

据统计,1980 年我国工业“三废”污染耕地面积266.7万公顷,1988 年增加到666.7 万公顷,1992 年增加到1 000万公顷。目前,全国遭受不同程度污染的耕地面积已接近2 000 万公顷,约占耕地面积的1/5。全国目前约有1.3 万公顷耕地受到Cd 的污染,涉及11 个省市的25 个地区;约有3.2 万公顷的耕地受到Hg 的污染,涉及15 个省市的21 个地区。部分地区的重金属污染已相当严重,如广州郊区老污灌区,土壤中Cd 的含量竟高达228mg/kg,平均含量为6.68mg/kg;沈阳张士灌区有2 533hm2土地遭受Cd 的污染,其中严重污染的占13%。据报道,目前我国污灌区有11 处生产的大米中Cd 含量严重超标。

2. 土壤重金属迁移规律的影响因素

重金属在土壤—农作物系统中的迁移规律与元素本身的化学特性、土壤理化性质、农作物种类等有关,并且会因各种污染元素数量和迁移速度的差异,在不同类型土壤剖面中的积累状况不同。

2.1 重金属元素自身理化性质对迁移规律的影响

不同种类重金属因其自身理化行为与生物有效性的差异,在土壤-农作物系统中的迁移化规律明显不同。研究表明同一土壤剖面中的Pb和Cr容易被土壤吸附而难以迁移,Cd的迁移率明显高于其他元素,Cd、As、Zn、Cu较易在农产品中积累,而Cr难以被吸收。重金属存在形态可分为可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态。作物对重金属元素的吸收与重金属元素在土壤中的存在形态密切相关,一般认为可交换态含量与蔬菜中重金属元素含量间有较好的相关性,在土壤中迁移能力也强。

2.2 土壤理化性质对重金属在土壤中迁移规律的影响

土壤的理化性质是影响重金属在土壤中的存在形态以及重金属生物有效性的主要因素,土壤的理化性质主要包括pH值、土壤质地、土壤氧化还原电位(Eh 值)、有机质含量等。土壤pH值主要通过影响土壤重金属的存在形态和土壤对重金属的吸附量,从而影响重金属的迁移和淀积行为。有机质对土壤重金属的影响极其复杂,小分子量有机质与重金属络合或螯合增加其移动性,大分子有机质通过提高土壤CEC而使重金属元素有效性降低,随着土壤有机质含量的上升,大部分重金属元素浓度降低,生物有效性降低。

3. 修复措施

3.1 生物修复

(1)植物修复技术对土壤性质和周围生态环境的影响小,是真正意义上的“绿色修复技术”。植物修复技术的效果与重金属在土壤中的生物可利用性密切相关。重金属元素主要富集在根部,茎叶含量相对较少。植物各部位对重金属的吸收与土壤中可交换态和碳酸盐结合态含量具有一定的相关性,尤其是茎叶相关性更强。由于土壤中残余态不能被植物吸收,植物主要吸收土壤中可交换态的含量,而土壤中铁锰氧化物结合态和有机结合态与土壤中可交换态的含量互相转换,因此,即使在没有新污染源的情况下,土壤中重金属并不能完全被植物吸收达到安全值。

(2)微生物修复。微生物对金属元素有浸出作用,主要包括胞内和胞外累积作用、胞外络合作用、氧化还原作用、甲基化和脱甲基化作用以及微生物在新陈代谢过程中改变介质的物理化学环境而促使金属元素溶出等作用。微生物通过向胞外周围环境释放无机和有机酸可以扰乱金属元素的地球化学形态。细胞外有机化合物中含有具多功能团分子结构的低分子量有机物,其可以改变可溶性金属离子的形态,使它们沉淀下来。

3.2 化学修复

在一定条件下施用碳酸盐、磷酸盐、氧化物质促进沉淀形成,减少重金属对土壤的副作用和进入土壤的数量。土壤改良剂的选择必须根据生态系统的特征、土壤类型、作物种类、污染物的性质等来确定。但通过投加改良剂来治理重金属污染的土壤,需防止重金属的再度活化。淋洗法,通过淋洗使重金属移出根层,一般有以下2种方式:① 含有某种配位体的溶液淋洗土壤,配位体倾向于与重金属形成具有一定稳定常数的络合物。② 对轻壤质土壤消除重金属污染物时,应选用能与已知污染阳离子形成络合物的配位体的溶液冲洗土壤,用含有能与污染阳离子产生难溶性沉淀物的阴离子溶液继续冲洗土壤,调节冲洗液的组成与用量,使重金属在土壤一定深度形成难溶的间层。

4. 结束语

土壤重金属污染是当前面临的重大难题之一,迫切需要解决。而今植物修复技术的发展和广泛应用,为解决土壤重金属污染提供了一条绿色通道。同时,作为微生物最大的聚居场所的土壤系统,不可忽视微生物的强大作用,应该积极开展研究,使其发挥更大的作用。单一化学手段治理土壤重金属污染,虽然有一定的成效,但是不可避免二次污染;而化学手段也不可摒弃,化学手段可以改良土壤,在一定程度上是其他手段所不可替代的。因此,建议可以继续推进生物修复技术的发展,同时,将物理、生物、化学修复手段结合起来,更好地治理土壤重金属的污染。

参考文献

[1] 顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-151.

[2] 张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.

[3] 陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社,1996.

[4] LEE SW,GLICKMANN E,COOKSEY DA.Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium transporting ATPase and a MerR family response regulator[J].Applied and Environ.Microbio.,2001,67(4):1437-1444.

[5] STONE A.T. Reactions of extracellar organic ligands with dissolved metalions and mineral surfaces[J].Reviews in mineralogy and Geochemistry,1997,35(1):309-344.

第9篇

关键词:化工,土壤污染,重金属,防治

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。

一、重金属的来源、种类

1.土壤重金属来源广泛,主要包括有大气降尘、污水灌溉、工业废弃物得不当堆置、矿业 活动、农药和化肥等。首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。

2.大气中重金属沉降、大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu 的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。

3.农药、化肥和塑料薄膜使用 施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属 Hg、Cd、As、Zn、Pb,磷肥次之,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中 As 和 Cd 污染严重。农用塑料薄膜生产应用的热稳定剂中含有 Cd、Pb,在大量使用塑料大棚和地膜过程中都可以造成土壤重金属的污染。

4.污水灌溉 污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水 包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。

5.含重金属废弃物堆积含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。由于废弃物种类不同,各重金属污染程度也不尽相同,如铬渣堆存区的 Cd、Hg、Pb 为重度污染,Zn 为 中度污染,Cr、Cu 为轻度污染。

6.金属矿山酸性废水污染金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,可以被酸溶出含重金属离子的矿山酸性废水,随着矿山排水和降雨使之带入水环境(如河流等)或直接进入土壤,都可以间接或直接地造成土壤重金属污染。

二、土壤中重金属污染物现行治理方法

1.工程治理方法

工程治理是指用物理或物理化学的原理来治理土壤重金属污染。主要有:客土是 在污染的土壤上加入未污染的新土;换土是将以污染的土壤移去,换上未污染的 新土;翻土是将污染的表土翻至下层;去表土是将污染的表土移去等。

2.此外淋洗法

用淋洗液来淋洗污染的土壤;热处理法是将污染土壤加热,使土壤中的挥发性污染物(Hg)挥发并收集起来进行回收或处理;电解法是使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走。以上措施具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点。

3.生物治理方法

生物治理是指利用生物的某些习性来适应、抑制和改良重金属污染。主要有:动物治理是利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的重金属;微生物治理是利用土壤中的某些微生物等对重金属具有吸收、沉淀、氧化和还原等作用,降低土壤中重金属的毒性,如原核生物(细菌、放线菌)比真核生物(真菌)对重金属更敏感。

4.植物治理

利用某些植物能忍耐和超量积累某种重金属的特性来清除土壤中的重金属;目前已发现400多种,超积累植物积累Cr、 Co、 Cu的含量一般在 0.1% Ni、 Pb 以上,积累 Mn、Zn 含量一般在 1%以上。生物治理措施的优点是实施较简便、投资较少和对环境破坏小,缺点是治理效果不显著。

5.化学治理方法

化学治理就是向污染土壤投入改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量, 改变 pH、 和电导等理化性质,Eh 使土壤重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。

三、总结

土壤重金属污染首先应从源头抓起,控制污染源,土壤重金属的污染已经达到相当严重的程度,要充分认识土壤重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点。土壤质量问题是经济可持续发展和社会全面进步的战略问题,它直接影响土壤质别、水质状况、作物生长、农业产量、农产品品质等,并通过食物链对人体健康造成危害。对土壤质量的保护便是对耕地生产能力的保护,更是提高土地利用效率的强有力措施之一。对于我国这样一个人口众多的农业大国,开展国土质量调查评价,对土壤重金属污染物进行试验研究,开发耕地污染的治理方法和技术,显得更为必要和迫切。

参考文献

[1]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报, 2004,35