HI,欢迎来到好期刊网!

欧姆定律的概念

时间:2024-02-04 16:56:32

导语:在欧姆定律的概念的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

欧姆定律的概念

第1篇

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

第2篇

一、 课堂教学知识量大,学生难以吸收

初中物理“闭合电路欧姆定律”这一节教学内容有过多次变动,实验教材里的内容主要有两点:一是闭合电路欧姆定律;二是路端电压和负载的关系;此外还外加了路端电压和电流的关系。因为知识点较多,课堂教学量很大,所以课堂上时间紧,学生思考和参与实践都比较少,课堂上没有充分发挥学生的主体作用。从课后反馈的情况来看,学生掌握的情况并不是太好。

因此,针对这种情况,在该课的教学中,教师可以将这一节课的内容分成两节课来讲。第一节课讲闭合电路欧姆定律,在复习电动势、内阻等概念和规律的基础上,通过闭合电路欧姆定律的推导,引出闭合电路欧姆定律。然后对照比较简单的电路图,阐述能量转化的关系以及定律的使用范围等。紧接着通过例题的讲解和课堂训练,使学生对欧姆定律有个全面的认识。在引导学生理解电流和外电阻的关系时,教师演示实验,让学生有个直观的感受,然后再加上理论分析,让学生对物理知识的认知由感性到理性。第二节课讲路端电压和负载的关系,路端电压和电流的关系,在上一节欧姆定律的基础上,导出路端电压和负载的关系U=E1+rR,仍然是先进行演示实验,后进行理论分析,让学生对路端电压和负载的关系有一个从感性到理性的认识。最后讲路端电压和电流的关系U=E―IR,先观察实验,通过改变滑动变阻器的阻值,使电路中电流表和电压表的示数同时发生变化,学生会观察到电流变大时,路端电压变小,反之电流变小,路端电压变大,再利用公式进行分析,这样可给学生留下比较深的印象。

二、演示实验,可视性较差

在演示路端电压和负载(或电流)的关系时,学生要观察电流表、电压表指针的偏转情况,由于表盘小,颜色暗,放在桌面上又有些低,所以站在后面的同学看不清楚,影响了实验效果。针对这种情况,教师可以做如下改进。

在实验课堂上做演示实验时,一方面教师可以把仪器放在一个升降台上,把台子升起来,使全班学生都能看清楚;另一方面对有些演示实验,用投影仪把实验情况投影到大屏幕上,便于学生观察;此外,如果课堂人数较少,教师还可以将演示实验改为6组学生实验,真实性、可视性都会更好。这样不仅能够达到演示实验的预期效果,也能提高学生的动手能力和学习兴趣。

三、 学生活动少,主体作用没有很好体现

在“闭合电路欧姆定律”教学中,一方面是教学内容安排得比较多,为了在规定的时间内完成任务,必须按照设定好的节奏进行,课堂上并没有给学生留下较多思考和发散的时间;另一方面,教师思想保守,教学不够大胆,认为学生物理基础较差,害怕学生不发言,出现冷场情况,或者学生课堂发言不入主题而不好收场。针对这种情况,教师可以做如下改进。

对教学内容做了相应的调整以后,就可以给学生留有更多的思考时间和发表见解的机会,如果学生在课堂上不敢发言,教师可以鼓励、引导学生融入课堂教学活动,学生说错了正好可以纠正其错误,只要学生积极思考,积极参与,勇于发言,就要给予鼓励,这是培养学生良好思维习惯的大好时机。因为,在课堂教学中,任何层次的学生都可以与他互动起来,就看教师怎样引导,如何让学生互动。当然,在实验教学中,很多实验具有安全性和特殊操作性,对于这类实验教师要规范学生的实验行为。加强学生动手实验的目的就是为了充分发掘学生的好动性、探知性,让学生从自己的角度去思考问题,让学生在张扬个性的同时,拓展创新能力。

参考文献

[1]雷光锦.《闭合电路欧姆定律》教学设计[J].昭通师范高等专科学校学报,2011,1(25):111.

[2]谢建华.浅谈“闭合电路欧姆定律”的教学[J].内蒙古民族大学学报,2011,3(15):124-125.

第3篇

关键词: 课堂引入; 欧姆定律; 兴趣; 物理学史;

良好的开端是成功的一半,引入作为一堂课的开始,是课堂教学环节中必不可少且至关重要的部分.这一环节设计的优劣直接影响到一节课的深入程度、学生进入学习的状态、学生对本节课授课知识的兴趣多少等.对于初中学生,注意力本就不容易集中,那么一个好的引入就是引起学生的学习兴趣和带领学生积极思考并真正进入课堂的关键.欧姆定律的教学一直以来都是一个难点,若仅仅是公式,学生在刚学的时候很容易记住,但是对于欧姆定律的来源以及探究的过程总是模糊的,就算教师在课堂上有过演示实验,在部分学生看来都只是因为教材是这样安排的.但其实不然,这个探究实验正是欧姆定律得出的关键.可是学生理解不到位,可能是教学哪一步不够确切.比如其中一个设计点就是引入这个探究实验,在引入时创设情境,让学生能够回到当时欧姆在探究时的过程以及条件中,结合当时的条件可能做到的以及达到的情况,这样的引入或许会让学生感同身受,从而产生更加强烈的探究欲望,达到较好的教学效果.

1、 初中物理课堂引入

课堂引入是教学过程中最重要的环节之一,教学引入恰当,可以起到事半功倍的效果;作为课堂教学的第一步,是紧扣学生心弦,激发学生兴趣最关键的一步.一方面,课堂引入具有先行组织者的作用,美国着名心理学家奥苏贝尔从学习心理学的角度分析,“当人们在接触一个完全不熟悉的知识领域时,从已知的包摄性较广的整体知识中掌握分化的部分,比从已知的分化部分中掌握整体知识难度要低些.”比如在讲解“静摩擦力”这一节课时,由于前面学生已经掌握了摩擦力的相关知识,就可以将摩擦力作为先行组织者,将其作为上位概念,再将静摩擦力直接提出,并联系其与摩擦力之间的关系,学生很容易就理解了静摩擦力的概念.另一方面,课堂引入容易吸引学生的兴趣,集中学生的注意力,初中学生的注意力本就不容易集中,在刚上课的几分钟,学生可能还处在下课所经历事情的愉悦之中,这个时候就需要教师找到一种吸引他们注意力的方法.注意力是保证学生上课的首要条件,而兴趣又是影响学生注意力的关键,爱因斯坦也曾经说过,“兴趣是最好的老师,它可以激发人的创造性、好奇心、求知欲.”所以,教师在教学引入环节中能否调动学生的学习兴趣更为关键.

在初中物理课堂中教师常用的几种引入方法:

(1)实验引入法,物理作为一门实验科学,实验在教学中起着举足轻重的作用,在引入时采用实验的方式是中学物理教师常用的,运用一些有趣的小实验,可以快速把学生吸引到课堂中来,教师既可以采用演示实验的方法,也可以让学生参与实验过程.

(2)直观导入法,直观导入可以是视频、图片、实物等,某些物理现象不一定是发生在学生周围,那就可以通过图片或录像的方式为学生展现物理现象或物理情境,这样就显得更加直观,易激发学生的求知欲.

(3)讨论引入法,一般就是选取日常生活中的某一事例,对学生进行提问或者大家一起来辩论,在这个过程中不仅导入了本堂课所要学习的知识材料,同时也让学生积极地参与了这个过程,关键是借助生活中鲜明的例子学生更容易理解,更容易将注意力集中到课堂教学中来.

(4)问题激疑法,设置疑问是教师的一种有目的、有方向的思维导向.古人云:“不愤不启,不悱不发”,教师在教学过程中要善于提出问题,有意激疑启思,活跃思维,引导学生思考,在解决问题的过程中锻炼学生各方面的能力,激发学生的求知欲,促进学生积极地学习.

(5)复习引入法,这是最便捷的引入方法,往往是在与新课联系较为密切的时候使用,起着承上启下的作用,不仅有利于学生对前面知识的巩固,更能为新知识的学习做好铺垫.例如在做液体压强的复习题时,引出浮力的知识,浮力其实就是物体在液体中受到上下的压力差而产生的,学生联系前面知识能够快速地理解浮力产生的原因而不会感觉到陌生.

(6)故事引入法,一般的故事引入都是直接引用物理学家们的故事,用榜样的力量去感染学生,唤起他们的探索热情,通过了解前辈们的物理思想、实验方法和探索精神,能够激发学生的兴趣,提高课堂教学的效果,提升学生素养[2].比如在讲解牛顿第一定律时,先给学生介绍牛顿这个人的一生,学生会由于对牛顿这个人的崇拜而愿意对其所提出的相关知识进行了解.

(7)游戏引入法,在正式上课前让学生动手做一些简单的小游戏,从而引入新课,利用游戏结果激发学生的学习兴趣.比如在讲解摩擦力这一内容的时候,可以让学生进行拔河比赛,绳子是经过教师处理过的,所以一定会产生输赢,学生心有不甘,因此就可能产生对答案的探索欲望,激发他们的学习兴趣.

2 、欧姆定律教学引入文献分析

欧姆定律是整个初中电学的重难点之一,教师在设计的时候往往需要考虑接收者的认知情况以及他们的阶段性特点等等,首当其冲考虑的便是引入部分.以下是大部分教师在欧姆定律教学设计中常用的几种引入方式.

(1)复习引入

学生在接触欧姆定律之前已经掌握了电流、电压、电阻3个物理概念,有的教师则是充分的利用学生已经有的旧知识,引导学生探讨电流、电压、电阻之间存在的关系,自然而然的导入本节课的课题.

(2)实际问题引入

在物理教学中,教师不只是让学生掌握教材知识,更重要的是引导他们运用物理知识来解决实际问题,学生只有把书本中的知识运用到生活中,才能适应社会发展的需要.有的教师会由生活当中电流受电压、电阻变化的电路来进行提问(比如收音机的音量大小是由什么来进行控制的),然后引发学生进行思考.

(3)创设情境,导入新课

初中的学生最希望得到教师的认可,对于教师提出的问题一定会争先抢答,有的教师就会抓住学生的这一特点,设置与本节课相关的问题让学生来抢答.设置如下两个问题:实验中当电压一定的时候,电流随电阻的变化情况;当电阻一定的时候,电流随电压的变化情况.根据学生的回答情况,教师进一步提出,电流、电压、电阻之间是否存在某一数值关系,教师逐步引导学生进行猜想,进而探究三者的关系得出欧姆定律.

(4)通过实验引入主题

实验的创设是根据电流在电路中会受到哪些因素的影响而发生变化,有的教师会根据学生已经掌握的知识事先设计电路图,然后改变其中的电阻看电路中电流的变化情况,实验现象与学生前面所了解的不一致,通过继续进行实验对比解释才知道电流在电路中同时还会受到电压的影响,接下来就顺理成章地引入对电流与电压、电流与电阻关系的判断.

(5)由物理学史引入

新课标中三维目标中的情感态度与价值观明确规定,要求学生掌握物理学史,学习前人的科学态度与精神.有的教师会通过介绍欧姆这个人,让学生对其有一定的了解,再提出欧姆的杰出贡献---欧姆定律.

3、 总结

通过对欧姆定律教学设计的相关文献进行分析发现,在大部分文献中采用的都是惯用的物理引入法,而其中占比最大的就是实验引入法,由于在前面学生已经学习过电流、电阻、电压等,教师在这里就可以鼓励学生进行三者之间关系的探究实验.电压和电阻的影响因素,前面的定义已经说得比较清楚了,因此,现在最为疑惑的就是电流的影响因素,然后运用控制变量法分别探究电流与电压以及电流与电阻之间的关系,从而得出欧姆定律的表达式.这种方式学生比较容易接受,同时也会感兴趣.通过这个过程学生不仅能够学到物理知识,还能在这个过程中经历实验探究的步骤,从而加强实验探究的意识,与初中物理课程所倡导的培养学生的科学探究能力是符合的,因此,实验探究法引入欧姆定律总是作为欧姆定律教学引入的首选.

初中物理课程标准中明确指出要注重对学生情感态度与价值观的培养,但是情感态度与价值观的培养不是通过一节课就能够体现出来的,需要教师不断地进行潜移默化的影响,而在物理学里面最好的方式在笔者看来就是物理学史的渗入.物理学史具有问题情境性、目标指向性、运用灵活性等特点,物理学家们的物理思想、实验方法和探索精神等不仅能激发学生的学习兴趣、启发学生,还能够提高课堂的教学效果并且提升学生的素养[1].但是通过对文献的分析笔者发现在已有的教学设计当中,很多教师就是对欧姆的一生进行简要的介绍之后就直接提出本堂课我们要做的就是对欧姆的实验进行验证,学生或许会深刻地记住欧姆这个人,这样的引入也对学生的情感态度与价值观有所渗透,但是,学生的主动性就没有那么的明显,笔者曾经也用过这样的方式进行引入,得到的结果没有显着的不同,因此,笔者又设计了另外一种方式的物理学史引入.

由于学生前面已经学习了电流的知识,教师可以提问学生:(1)电流产生的原因是什么?(2)前面已经学习了电流,对于电流是否存在和其大小我们可以用什么来进行测量?电压是形成电流的原因,初二上学期就已经学过热量之间的传递,有温度差的两个热源之间是可以直接进行热量的传递,欧姆认为电流也应该具有和热传递相似的性质,既然热是受到温度差的驱动,那电流也应该受到某种驱动力而且应该是正比的关系,现在我们知道这个驱动力其实就是电压;对于电流的测量学生知道用电流表,接下来教师就可以对欧姆定律的发现历程进行介绍.当电流被发现后的很长一段时间电流表才出现,在电流表出现之前,能够检测电流的是一种叫检流计(原理就是电流的磁效应)的仪器,现在又一个问题了,只有检流计也没有办法去得知电流的大小.欧姆这个人最明显的特征就是善于思考,“既然检流计可以测量电流是否存在,在此基础上继续研究是否可以得到电流大小.”前人已经发明了静电计可用来测静电力(这是我们后面即将学到的)——库仑定律(静电力与距离的平方成反比),他就根据检流计的原理以及测静电力的扭秤相结合,制成了电流扭力秤,结构很简单,就是一个小磁针和一根直导线,当直导线通上电流之后,电流产生的磁场就会影响小磁针转过一定的夹角,并且发现扭转角度与电流强度成正比,通过角度还可以得出电流的大小.那么如果现在学生就有这样一个电流扭力秤,除了用它可以得出电流的大小,那还可以对其充分利用,进行实验的改造,在我们已有知识的基础上.有的学生肯定会想到电阻的大小与金属材料的关系,改变金属材料看所得电流的变化,这样又解决了电流与电阻之间的关系[3].这是在解决问题的过程中发现了电流、电压、电阻之间的关系,爱因斯坦曾经说过“提出一个问题往往比解决一个问题更加重要,提出新的问题,新的可能性,从新的角度去看待问题,却需要创造性的想象力,而且标志着科学的真正进步.”欧姆就是在不断发现问题的过程中得出了欧姆定律,这整个教学过程看上去没有物理知识,很多教师可能会觉得浪费时间再加上还有的是学生还没有学过的知识,其实不然,学生的接受能力远远比我们想象的要多,这样的介绍让学生明白欧姆定律其实就是一个电流的探究过程,其实是在这个过程中不断地创新思考,不断地提出新的问题,最后得出三者之间的关系I=UR.为了加强学生的理解,笔者建议这个引入过程可以将PPT、教师的描述、板书结合起来使用,效果可能会更好.

参考文献

[1] 丁江铃,谢元栋,纪熙.爱迪生与特斯拉之争引入中学物理教学的意义[J].物理通报,2019(2):116

第4篇

/

关键词:欧姆定律;教学设计;传感器;DIS 线性元件;非线性元件;伏安特性;屏幕广播

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2015)6-0073-6

1 教学内容分析

(1)教材分析:“人教版”高中物理(选修3-1)第二章《恒定电流》中的第3节《欧姆定律》,教材首先回顾了初中学过的电阻的定义式及欧姆定律,然后重点阐述了导体的伏安特性,并分别描绘了小灯泡、半导体二极管的伏安特性曲线,对比了它们的导电性能。

(2)《课程标准》要求:①观察并尝试识别常见的电路元器件,初步了解它们在电路中的作用;②分别描绘电炉丝、小灯泡、半导体二极管的I-U特性曲线,对比它们导电性能的特点。

2 教学对象分析

(1)学生在初中已经学习过的电阻的测量、电压的调节等电路的相关基础知识,为本节实验方案设计打下了基础;

(2)初中已经学习过的欧姆定律基础知识,为欧姆定律的深化理解起了铺垫作用;

(3)学生具备了一定的探究能力、逻辑思维能力和归纳演绎能力。

3 教学目标

3.1 知识与技能

(1)了解线性元件及其特点;

(2)理解欧姆定律及其适用条件;

(3)了解非线性元件及其特点。

3.2 过程与方法

(1)通过亲历“导体伏安特性曲线”描绘的全过程,进一步熟知科学探究的各环节;

(2)通过描绘导体伏安特性曲线,体会图线法在物理学中的作用;

(3)初步掌握传感器、DIS(数字化信息系统)的操作和使用方法。

3.3 情感态度与价值观

(1)通过使用传感器和DIS(数字化信息系统),增强数字化、信息化科学意识;

(2)通过与同学的讨论、交流、合作,提高学生主动与他人合作的意识;

(3)通过多媒体教学网络广播系统共享实验结果,享受分享和成功带来的喜悦、提高学生合作共享意识。

4 教学重点

(1)线性元件与欧姆定律

(2)线性伏安特性曲线的理解与应用

5 教学难点

(1)实验方案的设计与电路连接、DIS(数字化信息系统)的使用;

(2)非线性伏安特性曲线的理解与应用。

6 教学策略设计

6.1 《课程标准》要求

(1)观察并尝试识别常见的电路元器件,初步了解它们在电路中的作用;

(2)分别描绘电炉丝、小灯泡、半导体二极管的I-U特性曲线,对比它们导电性能的特点。

这是采用传统的教学手段一课时不可能实现的教学目标!而采用传感器和DIS(数字化信息系统)获取导体的伏安特性曲线,利用现代化信息技术,不仅大大提高了课堂教学效率,而且增强了学生数字化、信息化科学意识。

6.2 本节课设计了四个探究环节

(1)探究环节一:描绘金属导体(合金丝绕成的5 Ω、10 Ω电阻)伏安特性曲线

该环节包括实验设计、电路连接、数据收集、数据的图线法处理,得出金属导体的伏安特性曲线是“过原点的直线”的实验结论。其中,包含了科学探究的“提出问题、设计实验、数据收集、分析论证、结论评估”诸多环节,使学生进一步熟知科学探究的各环节。

(2)探究环节二:线性元件与欧姆定律

(3)探究环节三:描绘小灯泡(二极管)的伏安特性曲线

(4)探究环节四:非线性元件与非线性伏安特性曲线的理解与应用

其中,环节一、三均采用两组差异化的实验器材――合金丝绕成的5 Ω与10 Ω电阻,小灯泡与二极管。这样设计,既提高了实验效率,又使实验具有了普遍性。而通过寻找两组不同曲线的异同,又能自然总结出线性元件、非线性元件的概念和特点。

6.3 本节课采用小组合作形式

使学生通过与同学的讨论、交流、合作,提高学生主动与他人合作的意识;通过多媒体教学网络广播系统共享实验结果,享受分享和成功带来的喜悦,提高学生合作共享意识。

7 教学设备

25组描绘导体伏安特性曲线器材、“友高”数字化实验系统、多媒体教学网络广播系统、多媒体课件展示、实物投影仪、半波全波整流、滤波线路板。

8 教学过程

引入新课

【教师】

实物投影:整流、滤波线路板,介绍元件、功能。

引入课题:该线路板为何能实现如此神奇的功能呢?那就要求设计者对各元件的性能非常了解,而导体的伏安特性就是其中一项重要的性能。

【学生】

观察、思索、好奇、兴奋。

【设计说明】

激发学生研究导体伏安特性的兴趣。

新课教学

探究环节一:描绘金属导体伏安特性曲线

(一)提出问题

【教师】

(1)今天我们就首先探究金属导体(合金丝绕成的5 Ω、10 Ω电阻)的伏安特性。

(2)划分四个研究小组,每组六台电脑。

【学生】

熟悉小组成员,选出小组长。

【设计说明】

小组合作。

(二)设计实验

(1)方案设计

【教师】

导体的伏安特性曲线――用横轴表示电压U,纵轴表示电流I,画出的I-U图线叫做导体的伏安特性曲线。

注意解决三个问题:

①如何测量导体的电流、电压?

②如何改变导体的电流、电压?

③怎样描绘导体的伏安特性曲线?

【学生】

分组讨论:

①达到实验目的所需的实验器材;

②画出实验电路图、概述实验方案。

【设计说明】

①提高学生的实验设计能力;

②利用学生在初中已经学习过的电阻的测量、电压的调节等电路的相关基础知识。

(2)方案论证

【学生】

小组长说明实验器材。

【教师】

展示实验器材实物图(图1)。

【学生】

小组长投影实验电路、简述实验方案。

【教师】

展示实验电路(图2)。

(3)方案改进

【教师】

在数字化时代,我们利用电压传感器、电流传感器替代电压表、电流表,利用“友高”数字化实验系统替代手工记录和坐标纸来完成此实验探究(图3)。

【学生】

阅读《描绘导体伏安特性曲线》操作指南。

【设计说明】

采用传感器和DIS,提高效率,完成传统实验器材不可能完成的任务。

(三)数据收集

(1)分组实验

【学生】

分组实验:1、2组10 Ω电阻;3、4组5 Ω电阻,同组成员相互协作。

【教师】

①指导学生打开软件、实验模板、传感器调零,按操作指南要求收集数据、保存实验,暂不关闭等待分享实验数据(图4)。

②巡回指导。

④利用多媒体网络广播系统了解各组实验进度情况。

(2)成果分享

【教师】

通过广播系统向全体同学展示4个小组的实验结果。

【学生】

观察、对比。

【设计说明】

采用两组差异化的实验器材,既提高了实验效率,又使实验具有了普遍性。而通过寻找两组不同图线的异同,又能自然总结出线性元件的概念。

(四)结论评估

【教师】

请分析两图线的异同。

【学生】

(1)两图线均为过原点的直线――线性元件。

(2)两图线的斜率不同――电阻值不相等。

探究环节二:线性元件与欧姆定律

(一)线性元件

【教师】

(1)金属导体的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的元件称为线性元件。

那么,线性元件有什么特点呢?

【学生】

观察、思考后回答。

(2)通过同一线性元件的电流强度与加在导体两端的电压成正比。

【教师】

展示两个电阻的伏安特性曲线(图5)。

【学生】

观察、思考后回答。

(3)电压一定时,通过导体的电流强度与导体本身的电阻成反比。

【教师】

线性元件这两大特点你联想到哪条规律?

【学生】

齐答:欧姆定律。

【设计说明】

线性元件与欧姆定律两知识点自然衔接。

(二)欧姆定律

【教师】

内容:通过导体的电流强度跟加在导体两端的电压成正比,跟导体本身的电阻成反比。

适用范围线性元件金属导体电解液纯电阻电路

【学生】

回顾、归纳。

【教师】

情感教育:介绍欧姆及其实验装置(图6),阐述原创性实验的开拓性及对科学发展的重大影响!

【学生】

好奇、兴奋。

探究环节三:描绘二极管小灯泡伏安特性曲线

(一)提出问题

【教师】

下面我们分四小组、两大组分别描绘二极管和小灯泡的伏安特性曲线。

【学生】

更换器材、连接电路(图7)。

(二)数据收集

(1)分组实验

【学生】

分组实验:1、2组二极管;3、4组小灯泡,同组成员相互协作。

【教师】

①指导学生打开软件、实验模板、传感器调零,按操作指南要求收集数据、保存实验,暂不关闭等待分享实验数据。

②巡回指导。

③利用多媒体网络广播系统了解各组实验进度情况。

(2)成果分享

【教师】

通过广播系统向全体同学展示4个小组实验结果。

【学生】

观察、对比。

【设计说明】

采用两组差异化的实验器材,提高了实验效率,而通过寻找两组不同图线的异同,又能自然总结出非线性元件的概念。

(三)结论评估

【教师】

请分析两图线的异同(图8)。

【学生】

(1)两图线均为曲线――二极管为非线性元件。

(2)两图线的弯曲方向不同――二极管的电阻随电压升高而减小;钨丝的电阻随电压升高而增大。

(四)知识点辨析

【教师】

钨丝(小灯泡灯丝)属于金属导体,但其伏安特性曲线为何呈现曲线?(图9)

【学生】

因为灯丝温度变化范围过大。

【教师】

动画:手工绘制钨丝伏安特性曲线。

可以看出:曲线起始端温度变化很小,呈现线性。

探究环节四:非线性元件

(一)非线性元件的概念

【教师】

(1)气态导体和二极管的伏安特性曲线不是直线,这种元件称为非线性元件。

(2)对非线性元件,欧姆定律不适用。

(3)非线性元件的电阻除了由材料本身决定外,还与加在其两端的电压有关。

【学生】

观察、思考。

【设计说明】

实验与知识点自然衔接。

(二)非线性伏安曲线的理解与应用

(1)跟踪练习――非线性伏安曲线的理解

【教师】

①小灯泡通电后其电流I随所加电压U变化的图线如图10所示,P为图线上一点,PN为图线在P点的切线,PQ为U轴的垂线,PM为I轴的垂线,则下列说法中正确的是( )

(2)拓展练习――非线性伏安曲线的应用

【教师】

②一小灯泡的伏安特性曲线如图11所示,将该灯泡与一个R=6 Ω的定值电阻串联,接入输出电压U=3 V的恒压电源,如图12所示,试求通过小灯泡的电流强度。

【学生】

解析:在小灯泡的伏安特性曲线中做出U=3-6I 的图线(图13)。

从两图线的交点求出通过小灯泡的电流强度为I = 0.22 A。

【设计说明】

拓展学生解题思路,增强学生图线法解决问题的意识!

课堂小结

【教师】

引导学生回顾、归纳总结。

知识小结:线性元件、欧姆定律、非线性元件。

方法小结:实验探究、图线法、数字化。

【设计说明】

比知识更重要的是方法!

作业布置

【教师】

(1)课本P48页2、3、4题。

(2)请你设计一套描绘二极管完整伏安特性曲线(含正、反向电压)的方案。

(3)网上查阅欧姆定律的发现历程。

【设计说明】

三道作业分别对应“知识与技能、过程与方法、情感态度与价值观”三维目标。

参考文献:

[1]张金权.DIS数字实验系统与物理探究教学整合的策略[J].物理教学探讨,2013,(11):56.

第5篇

关键词:欧姆定律;探究案例;教学设计;解读反思

一、教育背景与设计理念

2011年教育部颁布了经修订的《义务教育物理课程标准》(以下简称“新课标”),这是我国义务教育新课程实验取得阶段性成果的标志,更是广大新课程实践者10年经验的总结,定稿后的新课标必将作为指导性文件引领新课改持久深入健康地发展。

为实践新课标所倡导的“提倡教学方式多样化,注重科学探究”的崭新教学理念,我们在总结反思“自主·探究·合作”课堂教学模式的基础上,更加突出“以人为本”的教学思想,以新编苏科版物理教科书为载体,进一步改进《欧姆定律》一节的探究案例设计。在教学设计和实施过程中力图体现以下理念:一是学生发展为本;二是比结论更重要的是过程;三是把思考还给学生。

二、内容分析与学情简析

《欧姆定律》一节编排在学生学习了电流、电压、电阻等概念,电压表、电流表、滑动变阻器使用方法之后,这既符合由易到难、由简到繁的认知规律,又保持了知识的结构性、系统性。欧姆定律作为一个重要的物理规律,反映了电流、电压、电阻三者间的相互关系,是电学中最基本的定律,是分析解决电路问题的金钥匙。欧姆定律是电学的教学重点,也是新课标规定的重点内容之一。

学生通过电阻和串、并联电路的学习已初步掌握了实验探究的基本程序:观察现象—提出问题—猜想假设—方案设计—实验探究—归纳总结—解释现象,初步具备了设计实验方案的能力、动手操作能力和思考与质疑、交流与讨论的学习习惯,对“自主·探究·合作”教学模式已初步适应并产生了兴趣。了解学生的学习现状和发展潜能,便于确定学生的“最近发展区”,从合适的教学起点出发,有针对性地进行教学。

三、探究案例与设计解读

(一)学习目标

1.知识与技能。①掌握欧姆定律及其表达式,并能进行简单的计算;②学习运用“控制变量法”研究问题,培养知识迁移的能力;③进一步学会使用电压表、电流表和滑动变阻器。

2.过程与方法。①进一步实践实验探究的一般程序和方法;②注重实验探究方案设计的思考与改善。

3.情感态度与价值观。①培养学生的科学态度和探索精神;②联系欧姆定律的发现史,渗透锲而不舍科学精神的教育;③体验分工合作、团结互助精神。

解读:依据新课标倡导的三维教学目标设计学习目标,把传统的“教学目标”改为“学习目标”更能突现学生的主体地位。这里的学习目标是指:“学生从学习的起点出发,在教师的引导、支持和促进下,通过自己积极、主动和创造性的学习能够达成和检测的目标。”学习目标的编写和描述要具有针对性和可操作性。

(二)重点与难点

1.教学重点。探究实验的操作,用数学方法正确得出实验结论;理解欧姆定律的内容及其表达式、变换式的意义。

2.学习难点。运用数学方法处理实验数据,建立和理解欧姆定律;运用欧姆定律解决简单的实际问题。

解读:以知识为本的传统教学观注重教师教的重点与难点,而以学生发展为本的新课标教学观,则注重学生学的重点和难点,注重探究电流和电压、电阻关系的过程和方法,体现了“比结论更重要的是过程”这一新课标理念。

(三)教学媒体

1.教师用具。投影设备、多媒体课件等。

2.学生用具。多媒体教学软件,干电池4节、电流表、电压表、滑动变阻器、开关各1个,阻值不同的定值电阻3只、导线若干。

解读:投影设备主要用于展示各组设计的探究性实验方案和实验数据的处理,以利于小组间交流、沟通与提升。多媒体课件包括:演示实验电路图的动画幻灯片;数据处理的表格和图像;调光电灯工作原理。

(四)教学过程

1.复习设疑,激发探究欲望。(1)提出问题:①既然电压是形成电流的原因,那么导线中的电流与两端的电压有何关系呢?②既然电阻对电流起阻碍作用,那么导体中的电流与它本身的电阻有何关系呢?(学生举手或随机点名回答。)(2)猜想设疑:同学们对电流与电压、电阻的关系作了各种猜想,那么这三者究竟有怎样的数量关系呢?点出本课主题“欧姆定律”。

解读:①在学生猜想的过程中,教师耐心倾听而不要急着下结论,可让学生互评,以面向全体学生,体现多元评价,发挥评价的发展。②复习旧知是为了导入新知,引起认知冲突,激发探究欲望,为后续的科学探究活动提供“脚手架”,体现了“教师是学生学习的组织者”。

2.设计实验方案,进行实验探究。(1)知识准备:教师向学生介绍“控制变量法”,说明研究电流与电压、电阻间的关系时,必须保持其中一个变量(例如电阻)不变,再通过改变电压,观察电流是如何变化的。设问:在研究电流与电阻关系时,必须保持 不变,通过改变 ,来观察 的变化。(2)方案设计和交流:在学生了解科学实验的设计过程(明确研究目的,确定研究方法,设计合理的实验方案)后,通过同桌讨论,利用提供的仪器,设计一个实验方案。选派几组学生上台交流设计的实验方案,教师简单评析后,投影实验电路图,介绍有关仪器,特别强调滑动变阻器在实验中的作用。(3)实验探究:学生分组实验,实践和体验“控制变量法”,加深对欧姆定律的感性认识。(4)各组处理实验数据,进行分析、归纳得出初步结论。新教材增加了利用实验数据描绘函数图像的方法,理解成正比、成反比的意思,体会构建数学模型在物理研究中的运用,培养学生的科学思维能力。

解读:①把教材中的教师演示实验改为学生分组实验,一是因为学生已初步具备做此实验的基本技能,二是使全体学生都能动手操作,参与体验“控制变量法”,突出学生的主体地位。②本节探究课把重点放在利用“控制变量法”设计与完善实验方案上,以初步培养学生的实验设计能力和创新能力。③选派小组上台交流实验设计方案,旨在引导学生发散思维,相互取长补短,促进创新思维。④教师在这阶段应不断巡视、引导,倾听学生讨论,及时给予评价和指导,以体现“教师是学生学习的参与者”。

3.总结交流,合作共享。(1)各组汇报实验结果,归纳得到两个结论:在电阻不变的情况下,导体中的电流跟这段导体两端的电压成正比。在电压不变的情况下,导体中的电流跟这段导体的电阻成反比。(2)引导得到欧姆定律及其表达式。(3)强调:欧姆定律中两处用到“这段导体”,这是强调同一导体,即电流、电压、电阻对应同一导体,而且具有同时性。

解读:这一环节以师生互动、生生互动为主。通过总结交流使学生的认识从感性认识向理性认识飞跃,学生的情感在全班共享中得到升华。同时对教师的教和学生的学进行评价反馈。这一阶段将在教师的引导下完成,以体现“教师是学生学习的引导者”。

4.巩固反馈,知识迁移。“模拟调光台灯”的工作原理,作为实验探究的有效补充。学生通过模拟实验,学会选择仪器、设计简单电路、掌握工作原理,加深对常用仪器的认识。

解读:调光台灯的模拟实验,让学生明白物理知识就在身边,物理和生产生活有密切的联系。让学生参与学习的全过程,体现“一切为了学生发展”的理念。

四、感悟与反思

(一)课堂教学设计应是一个动态生成方案

传统的课堂教学设计是以教师的教和书本知识为本位,从教师的主观判断或经验出发,侧重于教学过程的程式化、细节化的准备,这种“静态教案”不能适应动态生成的实际教学过程,不利于促进学生的发展。新课标理念下的课堂教学设计以学生发展为本,从学生的“现有发展区”出发,通过对教材内容的“二次开发”,精心设计动态生成方案,促进学生过渡到“最近发展区”。

(二)探究性学习的真谛是做到“形散而神不散”

虽然全班分成很多小组分散进行探究实验,但各组都围绕“探究电流和电压、电阻的关系”有条不紊地进行,看似无序实是有序。在这中间,教师的组织、引导和参与十分关键。教师一定要遵循“组内异质,组间同质”的原则进行分组,并对组内成员的分工提出责任分工。教师一定要给小组内每位学生分配一个角色,诸如主持人、操作者、记录员、噪音控制者、汇报人等,使每个小组成员在各司其职中自主、合作、探究学习,使每位学生都能在原有基础上有所发展。

参考文献:

[1]中华人民共和国教育部.义务教育物理课程标准[S].北京:北京师范大

学出版社,2011.

第6篇

一、电磁学的发展历程

人类很早就认识了磁现象和电现象,我国在战国末期就发现了磁铁矿吸引铁的现象,在东汉初期就有带电的琥珀吸引轻小物体的记载。但是,人类对电磁现象的系统研究,却是在欧洲文艺复兴之后开展起来的,到19世纪才建立了完整的电磁学理论。在电磁学发展过程中,涌现了无数科学家通过科学假说、实验验证、理论分析等研究过程,一步步对自然规律进行揭示。其中比较典型的有:1785年库仑定律的发现,使电学进入了定量研究阶段,真正成为一门科学;1820年奥斯特电流磁效应的发现,揭示了电流能够产生磁场;1821年安培的分子电流假说,揭示了磁现象的电本质;1831年法拉第电磁感应定律的发现,进一步揭示了电和磁的密切联系;19世纪60年代,英国物理学家麦克斯韦在总结前人研究电磁现象成果的基础上,建立了完整的电磁场理论,并成功预言了电磁波的存在,1888年赫兹的实验证实了麦克斯韦的电磁场理论,从而电磁学发展到了顶峰。

二、电磁学的知识结构和知识规律

1.知识结构

2.知识规律

“电场”一章是学好电磁学的基础和关键,基本概念多,且抽象,如电场强度、电场线、电势和电势能等。教材从电荷在电场中受力和电场力做功两个角度研究电场的基本性质,许多知识要在力学知识的基础上学习。

“恒定电流”一章是在初中基础上的充实、扩展和提高,重要的物理规律有欧姆定律、电阻定律和焦耳定律,电路的等效处理方法和实验的设计是本章的重点。

“磁场”一章阐明了磁与电的统一性,用研究电场的方法进行类比,可较好地解决磁场和磁感强度的概念。由安培力导出洛仑兹力,由洛仑兹力导出带电粒子在匀强磁场中的运动规律等,因此,分析推理是本章的特点。

“电磁感应”一章的重要物理规律是法拉第电磁感应定律和愣次定理,这部分知识中,能量守恒定律是将各知识点串起来的主线。由于楞次定律较抽象,要通过实验进行分析、归纳,需加强学生的抽象思维能力。

“交变电流”和“电磁波”是在电场和磁场基础上结合电磁感应的理论和实践。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推到电磁波,从而对物质的波动性的认识提高了一步。

三、电磁学的研究方式:“场”和“路”

电荷周围存在电场,每个带电粒子都被电场包围着,运动电荷的周围除了电场还存在磁场,磁体的周围也存在磁场。现在的科学实验和广泛的生产实践完全肯定了场的观点,并证明了电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形式,是物质相互作用的特殊方式,也是电磁运动的实质。教材中以场为主线,主要有电场、磁场和电磁场。电场强度和电势是描述电场性质的两个重要物理量。磁感强度是描述磁场性质的重要物理量。电磁感应规律是反映电场和磁场间密切联系的一种物理现象。麦克斯韦从理论上指出了变化的电场和磁场总是相互联系的,一个不可分割的统一体,这就是电磁场。库仑定律、安培定律和法拉第电磁感应定律为建立麦克斯韦理论,提供了基础和实验规律。

电路知识具有广泛的实用价值,以路为主线,主要有直流电路、交流电路(包括振荡电路)。欧姆定律是从实验中总结出来的一条重要规律,是解决电路问题的重要依据。要会分析电路的连接方式(串联或并联)及等效处理方法,电功和电功率的计算,不仅能解决直流电路问题,还可以解决交流电路的问题。

四、电磁学问题的解决途径:“力”和“能”

第7篇

关键词:物理课堂 提出问题 学生 培养

物理课堂提问是优化课堂教学的必要手段之一,也是教师教学艺术的重要组成部分。恰如其分的提问不但可以活跃课堂气氛,激发学生学习兴趣,了解学生掌握知识情况,而且可以开启学生心灵,诱发学生思考,开发学生智能,调节学生思维节奏,与学生作情感的双向交流。通过提问,可以引导学生进行回忆、对比、分析、综合和概括,达到培养学生综合素质的目的。以下几种方法广泛运用于教学活动之中,在物理教学实践中证明有比较明显的教学效果。

一、承上启下型提问

它能检查、巩固已学的知识。学过的东西该记的是否记住了,理解是否正确、完整,通过提问进行反馈,从而找出教学中存在的问题。为了便于学生接受新知识,通过提问唤起旧知识也是很重要的,教学的成败和师生的思维活动是否协调一致关系极大。每堂课的重点、难点,一般说教师是心中有数的,但在学生来说却不一定。学生的学习兴趣很重要,在引入新课时通过设疑提问激发兴趣很有必要。孔子说过:“学起于思,思源于疑。”有疑才能有思,无思则不能释疑。设疑、释疑是人生追求。由于中学生缺乏思维的灵活性和敏捷性,教师若能在其似懂非懂、似通非通处及时提出问题,然后与学生共同释疑,势必收到事半功倍的效果。如“阿基米德原理”一节的教学,一开始教师就提出:“木块放在水里为什么总是浮在上面,铁块放在水里为什么总是下沉?”学生回答:“因为铁重而木块轻。”教师接着问:“把重10牛的铁块和重10牛的木块都放进水里,为什么木块浮上来,铁块却沉下去呢?”这一问,学生对生活经验“因铁重而下沉”产生了怀疑,激起了学生思维的积极性。

二、探究性提问

这种提问能启发学生思维的灵活性,也有利于培养学生思维的深刻性。例如,对于物理概念,不直接让学生回答,而是让学生应用概念分析解决一些实际问题,并围绕重要的物理过程、理论与实际的关系,深究细追。向学生发问、追究的问题要经过周密、科学的设计。通过这样的提问,就会把学生的认识逐步引向深化,并有利于培养学生思维的灵活性。

三、巩固发散型提问

讲授完新课,学生消化了该课内容后,对本课内容提出一个或几个重点问题,引导学生对知识进行概括总结,以达到巩固知识的目的。巩固不是单纯的复述,应通过发散型提问,培养学生的发散思维。发散思维是一种创造性思维,教师若能在授课时提出激发学生发散思维的问题,引导学生从正面和反面多途径去思考,纵横联想所学知识,将提高学生思维能力和探索能力大有好处。这种提问难度较大,必须考虑学生知识的熟练程度。例如,在讲完一个例题后,启发学生一题多解地提问,或题目引伸性提问,或逆着题意进行分析。这样的提问很自然地把学生带入积极思考、讨论、探究等生机盎然的学习境界之中,对于培养学生的创造性思维和探索能力无疑是有益的。

四、比较对照型提问

在学生所学的知识中,概念相似的俯拾即是,学生往往难以区分,张冠李戴。在我们的教学中,教师如能够有意识地抓住同类概念的本质属性、引导学生进行对照鉴别异同,对培养学生思维能力有极大的帮助。例如为了区别惯性定律,我们可以设计提问:

1.惯性是什么?什么是惯性定律?

2.惯性和惯性定律相同吗?有什么区别?

五、分类归纳型提问

此类问题要求学生对具体化的知识进行本质性的概括,以拓展归纳能力。例如在进行物理“欧姆定律”这一节的总结时,可以设计提问:

1.欧姆定律的内容是什么?

2.怎样用分式表示欧姆定律?

3.欧姆定律反映了怎样的物理意义?

六、论证评价式提问

第8篇

一、辨析概念,夯实基础

任何知识的学习掌握都离不开基础知识。电学部分的基础知识多、散、要辨析清楚、固记脑中。

(一)、关于电路

1、串联、并联

初中物理中要求学生掌握最基本的两种连接方式:串联、并联。能否正确分析辨别他们对后面内容的学习至关重要。识别电路的类型,可以根据定义:“逐个顺次连接”为串联,各元件“首首相接、尾尾相接”并列地连在电路的两点间,(“首”为电流流入用电器的哪一端,“尾”指电流流出用电器的那一端)此电路为并联电路。

2、通路、开路、短路

电路中出现的这三种状态,其中通路为处处相通的电路,开路为电路中有处断开的电路,这两种状态易于接受,便于分清。但是学生对于短路的分辨显得力不从心,不知道何处短路,为什么短路。其实只要注意分析的要点即可辨出何处短路。电流具有走捷径的特点,捷径是指这条路径中电阻很小,小到可以忽略不计、即为空导线,当一根空导线,或开关、或电流表(电阻小到可以认为没有)与某个用电器并联时,电流只走空导线,开关或电流表而不走用电器,使该用电器被短路,从而不能工作。

(二)三个重要的物理量—电流、电压、电阻

1、概念辨析

电荷的定向移动形成电流,这是电流的形成定义,简单便于理解;电压是形成电流的原因,没有电压就没有电流;电阻是指导体对电流的阻碍作用,即阻碍作用越大,电流越小。

2、表示符号

电流、电压、电阻三物理量分别用I、U、R表示,而单位表示字母分别为A(安培)、V(伏特)、Ω(欧姆)。

3、工具的使用

电流表是测量电流的工具;电压表是测量电路两端电压的工具;调节电路中的电流和用电器两端的电压,可以使用滑动变阻器。

(三)电功(W)、电功率(P)

物理学中电功没有确切的定义,只是描述性的,当电能转为其它形式能时,就说做了电功。即电功就表示有多少电能转化为其它形式的能,如果知道了电功的多少,就知道了消耗多少电能。而用电器单位时间内消耗的电能叫做电功率。电功率的大小不仅取决于消耗电能的多少,也取决于所用的时间的长短。

二、理解规律,把握关键

(一)三个物理量在串、并联电路中的特点

在串联电路中:电流处处相等;电路两端的总电压等于部分电路两端电压之和;总电阻等于各导体的电阻之和。在并联电路中:干路中电流等于各支路电流之和;各支路两端的电压相等;并联电路总电阻的倒数等于各并联导体的电阻倒数之和。

(二)欧姆定律

一段导体的电流,跟这段导体两端的电压成正比,跟这段导体的电阻成反比。这个定律非常重要,一定要加强理解,熟记其使用的条件及注意事项。

(三)电功定律

某段电路上的电功,跟这段电路两端的电压、电路中的电流以及通电的时间成正比。物理学中用电路两端的电压U,电路中的电流I,通过的时间t,三者的乘积来计算电功。

(四)焦耳定律

导体中有电流通过时,导体就要发热,此现象称为电流的热效应。英国物理学家焦耳经过多年的研究,做了大量的实验,精确地确定了电流产生的热量与电流、电阻和时间的关系:电流流过某段导体时产生的热量跟通过这段导体的电流的平方成正比,跟这段导体的电阻成正比,跟通电的时间成正比。

三、疏通关系,构建框架

在掌握了上述理论知识的基础上,还要想法疏通各个物理量之间的关系,熟悉各物理量的单位及换算关系,能够快速选择相应的计算公式,列式解答。

(一)重要的计算公式

1、三个物理量的关系公式

串联时:I=I1=I2;U=U1+U2;R=R1+R2(若有几个等阻值为R0的电阻串联则R=nR0)

并联时:I=I1+I2;U=U1=U2;1/R=1/R1+1/R2(若有几个阻值为R0的电阻并联则总电阻R=RO/n)

2、欧姆定律:I=U/R

此公式中只有电流、电压、电阻三个物理量,但它的作用非常重要。在使用公式时要注意:①三个物理量都要针对同一段导体,或同一个电路而言;②三个物理量的单位都要使用国际单位,即分别为A、V、Ω;③已知其中的任意两个量都可以求出第三个量。 3、电功公式:W=Uit;电功率公式:P=UI

电功、电功率这两个物理量的计算由于欧姆定律及其变形公式的影响,使计算电功率公式特别多,在选择使用时很难选择,所以要注意选取的技巧和方法,要求的问题所在电路为串联时:电功选用公式:W=I2 Rt,电功率选用P=I2 R;而当要求所在的电路为并联时,则分别选用W=U2/R.t,P=U2/R,这样的选择都利用了所在电路的特点(电流相等或电压相等)加快解题。

4、焦耳定律:Q=I2 Rt

焦耳定律的公式与电功公式的形式基本一样,使用时同样要注意公式的选择问题,当所求问题的电路为纯电阻(除了电能转化为内能外,别无其他形式的能产生)电路时,几个公式可以任意选取;若不是纯电阻电路只可使用公式Q=I2 Rt不然的话计算有误。

(二)单位的换算

单位换算的前提条件有两个:一是记住每个物理量的单位及表示符号;二是要牢记各单位之间的换算进率。其中电流、电压、电阻这三个物理量的单位较多,注意每个物理量的任何两个相邻的单位间的换算进率都为1000。还要注意一点,由于欧姆定律及其变形公式的影响,电功、电功率,焦耳定律的公式较多,产生的单位同样很多,使用时各物理量均使用国际单位。

四、善于总结,归纳要领

下面的这些要领非常重要。

(一)串、并联电路的识别

上面已经提到区别它们的方法,在做题中要选取适当的方法,迅速作出判断。

(二)短路的辨别

把握短路现象的真正含义——电流不经过用电器回到电源的负极。注意电流的特性——电流走捷径。当在电路中发现有空导线,开关或电流表等元件与用电器并联时,相应的用电器被短路不工作。

(三)串、并联电路中的三个物理量的关系

两种电路中的三个物理量的大小关系,前面已说得较为详细,但这一点要特别重视,牢记串联时电流相等,并联时电压相等,这一点解题时作用特别大。

(四)关于解题时公式的选择

第9篇

关键词:电动机;纯电阻与非纯电阻;电路分析

在直流电路中,通过电阻的电流产生的能量转化是能量计算的重点知识,但由于不能够正确区分纯电阻与非纯电阻,导致求解中出现问题,特别含有电动机的相关计算。下面以电动机为例,来解决纯电阻与非纯电阻应用中的区别与联系。

一、过程再现及分析

含有电动机电路,有电流通过电动机时,线圈消耗电能,产生其他形式能量(内能、机械能等),该能量转化过程为电流做功的过程,即消耗电功W=UIt,电流通过线圈产生的焦耳热Q=I2Rt,那么,两者之间有何关系呢?

解决方案:假如Q=W,则UIt=I2Rt,推导出I=,即欧姆定律,而欧姆定律是需在纯电阻情况下才成立的。

分析:根据欧姆定律的适用条件,电流通过电阻产生的电能全部转化为内能,即电功等于电热,此时由欧姆定律适用的电路叫做纯电阻电路;欧姆定律不适用的电路叫做非纯电阻电路。

问题设计1:电机在受阻不转动的情况下,电压、电流和电阻的存在的何种关系,消耗的电能和产生的电热有何关系?

问题设计2:电动机在转动的状态下,电压、电流和电阻的关系有何特点,消耗的电能和产生的电热有何关系?

问题设计意图:明确辨别纯电阻电路与非纯电阻电路。

问题设计3:进一步探究电机在受阻不转动的情况下,电压、电流和热功率、总功率的有何关系?

探究结果:在纯电阻电路中,热功率在总功率中所占比重大,纯电阻电路产生的电热近似等于消耗的电功,即W=Q。

问题设计4:探究电动机在正常转动的情况下,电压、电流和热功率、总功率之间有何关系?

探究结果:在非纯电阻电路中,热功率在总功率中所占比重小。根据能量守恒,W=E+Q,即电动机消耗的电能等于产生的机械能及产生的热量的总和。

二、例题分析

工地经常用电动机提升重物,其装置如图所示,电动机两端电压为5V,电路中的电流为1A,物体A重20N,电动机线圈的电阻为r=1Ω。求:

(1)电动机正常工作时,线圈电阻消耗的热功率为多少?

(2)电动机正常工作时,电动机输入功率和输出功率各是多少?

(3)如果接上电源后,线圈被卡住,不能转动,这时通过电动机的电流,以及电动机消耗的电功率和发热功率是多少?

解析:电动机正常工作时,其电路为非纯电阻电路,其中消耗的电功率一部分转化为线圈的热功率,另一部分转化为电动机的机械功率。

(1)电动机线圈上消耗的热功率为

P热=I2r=12×1W。

(2)电动机的输入功率为消耗的电功率

P入=UI=5×1W=5W

电动机的输出功率

P出=P入-P热=5W-1W=4W。

(3)线圈被卡住后电动机不转时可视为纯电阻,通过电动机的电流

I==5A

电动机消耗的电功率

P=UI=5×5W=25W

电动机发热功率

P内=I2R=52×1W=25W

小结:由例题中不难看出U、R、P三个物理量的数值并不满足欧姆定律,而根据对电路能量转化分析,解决有关纯电阻电路和非纯电阻电路的问题,就比较清楚了。

从上面的实验探究与例题可见,含有电动机工作过程中的能量的计算,关键是要正确区分是纯电阻还是非纯电阻电路,其能量关系是:电流通过非纯电阻时,E总=Q热+E其他;电流通过纯电阻时,E总=Q热。

参考文献: