HI,欢迎来到好期刊网!

化学工程的研究内容

时间:2024-02-20 15:51:46

导语:在化学工程的研究内容的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

化学工程的研究内容

第1篇

生物化学工程基础课程结合现代分子生物学及传统生物技术,不仅有扎实的理论基础,而且结合典型产品的开发过程进行阐述,反映了现代生物技术的发展方向,体现了生物技术发展和应用的最新前沿。生物化学工程基础是随着生物科学的发展而不断更新的课程,需及时调研最新的发展方向及研究热点。该课程全面阐述了基因工程、细胞工程、酶工程、发酵工程和生化工程等课程的基础内容,其主要囊括以下几个方面。工业微生物工程:介绍微生物的特点、分类、生理、育种及培养等方面的技术和方法;代谢工程:介绍微生物次生代谢产物的代谢调控机制和方法;基因工程:介绍生物遗传的基本知识及应用现代基因工程技术改变微生物遗传特性的方法,并且介绍蛋白类药物的研发和生产过程;细胞工程:介绍应用植物组织培养和动物细胞培养生产高附加产值的花卉、药物等;酶工程:介绍工业用酶和药用酶的性质、结构、固定化及开发等方面的技术;生物反应器:介绍生物反应器的工作原理、设计方法以及应用;全面介绍生物技术的最新进展、应用以及生物技术应用过程中需要化工知识的范例。生物化学工程基础课程是在无机化学、有机化学、分析化学、生物化学基础上进行学习的。本课程对于非生物类专业学生进行了系统的生物学技术及最新研究进展的介绍,让学生了解生物学的基本思想及技术,同时将现代生物技术的应用与化学工程技术进行交叉讲授,重点说明了化学工程技术在生物工程领域可能的应用范围,使学生掌握现代生物技术的基本工艺流程及发展前沿。目前,化学工程与技术专业的学生普遍存在生物学基础知识薄弱的问题,如何在较短的学时内,将生物工程的关键基础问题讲解清楚,并且将生物工程技术和化学工程有机的结合起来,让学生充分感受到交叉学科带来的机遇和挑战,这无疑对授课教师提出了更高的要求,需要教师不断总结现有的教学模式,不断地改进教学过程和教学方法。

二、化工专业生物化学工程基础教学中存在的问题

鉴于该课程属于学科交叉,在教材选择、实验配套、讲解内容难易程度把握等方面,均需要不断地探讨和摸索。目前,该课程教学过程中存在的重点和难点问题主要有:如何在现有教材的基础上丰富教学内容,利用多媒体等手段,及时地更新课程内容并介绍最新的发展动态;如何把握教学过程中深度与广度的平衡;如何在现有基础上提高学生的学习热情,使他们能够主动深入地探讨生物工程与化学工程学科交叉所带来的机会与挑战;如何能够将课程讲解内容与生产实际结合起来,让同学们切实体会到化学工程在生物产品生产过程中的应用;如何鼓励学生在假期或平时寻找一切机会去生物制品生产企业进行实践,从中体会化学工程技术在生物产品生产中的具体应用。

1.教材很难在深度和广度间平衡

目前,本课程所选教材为化工出版社的《生物化学工程基础》(工科专业适用,李再资主编,2006年版本),该教材在国内高校化学工程专业有较为广泛的应用,具有简单明了、讲解清楚的特点,适合于生物工程专业以外的其他专业使用。但是该教材也存在诸多不足之处,如教材内容仍然没有摆脱理科教学的模式和框架,生物工程原理的讲解深度不足,同时,教材对于化学工程与生物工程如何结合方面的内容也讲解得太少。为了做好生物化工导论的教学工作,必需结合化学工程专业学生的特点和研究应用实例,选择相关学科的教材作为补充,以便在授课过程中增加相应的内容,进而提高学生的理解和吸收程度。

2.实验环节缺乏

现在的课堂教学仍然以教师讲授为主,学生处于被动接受的状态。由于生物化工导论是理论与实践紧密结合的课程,而教学实验环节缺乏,学生往往很难理解生化反应及其应用过程。所以,需要进一步改变传统的课堂教学模式,可以采用讲授与讨论相结合、课堂内外相结合、理论与实际相联系等多种教学形式,利用先进的多媒体技术和网络技术,丰富和活跃教学过程,激发学生的学习热情,提高整体教学质量。同时,也可以通过讲解学生身边的研究实例,调动学生的积极性,并且配备一些实验讲解及生产实习来提升学生的兴趣和理解程度。

三、生物化学工程基础课程教学的几点体会

笔者从2001年开始一直从事生物化学工程基础的教学工作,课程面向对象主要为化学工程与工艺专业、过程控制专业及分子工程专业的学生,每年选修人数在200人以上。在授课过程中,注重以产品为例,说明化学工程技术在生物产品开发过程中的重要性,从而加强了学生对于化学工程知识应用于生物工程领域的信心。另外,注重将理论内容与本校化工学院及兄弟院系的科研内容进行融会贯通地讲授,大大提高了同学们对于该课程的理解和热爱,也促进了学生对于生物工程与化学工程有机结合的全新认识。在教学实践中,结合介绍天津市著名生物工程企业大量需要化学工程的实例,力求让同学们明白,生物工程的下游产业化的实质就是化学工程的应用。教学实践也使笔者体会到,要完成好该课程的教学任务,需要授课教师熟悉生物化学、生物工程、化工原理等教学内容,更需要授课教师不断总结教学经验,以便逐步提高教学质量。

1.建设教学团队,认真调研学习

授课教师需要组织强有力的课程建设小组,对国内外工科类生物化工导论课程进行调研,包括其他院校的教改情况、已有的化工类的生物化工导论教材、学生本人对课程内容及授课方式的期望、相关专业对该课程的反馈信息等诸多方面。授课教师还需要吸收先进的教学思想、技术与内容,借鉴国内外其他院校教学情况,结合专业设置的特点和实际,总结教学经验与效果。针对面向21世纪的教学和培养要求,要认真总结化工类本科生生物化学工程基础课程的教学内容、教学计划及教学方式及教学中的注意事项,要通过对其他优秀或重点课程的学习观摩或邀请教学经验丰富的老教授亲临课堂指导等多种途径,进行教育素质训练,以提高教师的授课水平。

2.提供并选好主讲教材和高水平的辅助教材

针对现有的试用教材,及时引入前沿科学和技术的最新成果,筛选、引进配套的辅助教材(包括国外教材),编写与之相配的教学大纲。李再资老师主编的生物化学工程基础教材知识点全面,重点内容详尽。除此之外,我们还注重推荐国内知名的生物化学、生物工程、工业微生物学等相关教程以及国外英文原版教材作为课外辅助教材,建议学生每人手里都有一本英文原版教材。另外,在每次授课结束时,都提前告之下次课程内容的基本点和重点,要求学生提前做好预习或难点标注,注重发挥学生自身学习的主动性和积极性,使他们永葆学习的热情和动力。实践表明,学生通过使用英文教材独立预习课程,他们的专业英语水平也会得到快速提高,为今后使用英语完成相关工作任务打下良好的基础。

3.探索新的授课模式和教学手段

多媒体教学可以让学生通过图和动画直观地理解生物过程和反应机理,也可以直观地学习生物工程科学研究和生产的各个环节。为此,要完善多媒体系统,适时增加课堂教学信息量。同时,可以采用启发式、讨论式、研究式等教学方法,将课堂讲授与课外辅导相结合,培养学生的创新与自学能力。如果能够将课程讲解内容与生产实际结合,将课堂讲授内容与具体的实验相结合,加强与学生交流,深入探讨生物工程与化学工程学科交叉所带来的机会与挑战,必将会进一步激发学生学习的积极性,提高教学质量。

4.课堂讲授内容与前沿性专业知识紧密结合

在大学课堂里,让学生随时了解相关学科的前沿进展是一个重要的授课内容。因此,在每节课学习重点知识的过程中,需要用最新发表的相关研究进展信息丰富课堂内容,使学生了解学科前沿和发展方向。比如,在介绍酶的开发过程时,可介绍量子力学、分子动力学和计算机工具在研究酶的反应过程和机理中的应用,并且把研究中的困难展示给大家,激发学生探究和追寻科学发展的欲望,吸引他们投入到生命科学的研究和生物技术的开发中去。同时,也可以介绍酶的生产过程中所面临的问题和挑战,鼓励学生用化工知识尝试解决生产中的问题。

5.鼓励课堂教学和生产实践结合

生物化学工程基础偏向实际应用,课堂讲授内容需要与具体的生产实践相结合,因此,要让同学们切实体会到化学工程的知识在生物制品生产过程中的应用。另外,要积极联系生物工程方面的生产企业,组织同学们进行参观,结合课堂教学内容,让同学们充分体会到化学工程技术与生物工程技术学科交叉的意义和重要性,鼓励感兴趣的同学去相关的生物工程企业进行短期实习,了解生物工程产品的生产原理、生产流程和注意事项,体会化学工程技术在生物产品开发和生产过程中的重要地位。

6.培养学生良好的学习方法

第2篇

关键词:化学工程基础;课程改革;人才培养

中图分类号:G642.0?摇 文献标识码:A 文章编号:1674-9324(2012)05-0027-02

“化学工程基础”是理科院校化学专业的专业基础课程,主要内容为化学工程的基本原理和化工生产的各种单元操作,包括化工过程的动力学原理、热力学原理、能量守恒与转换原理、质量传递原理以及相应过程的控制机理、操作方法、影响因素、设备结构和工艺过程等,具有与生产实践紧密联系的特点,应用性很强,是理科化学类专业唯一的一门工程技术课程。

一、人才培养的要求

当代化学工业对化学化工类人才的培养提出了更高的要求。如何培养基础理论知识扎实、工作适应性强、具有创新能力的人才,是综合性大学化学化工教学改革面临的重要课题。目前,综合性大学化学与应用化学专业每年都有相当一部分毕业生进入化学、化工和制药等企事业单位业从事研究开发或工程技术工作,这种趋势还会随着创新性国家的建设而逐年增长。化学工程基础是综合性大学化学专业的专业基础课,也是唯一的一门工程技术类课程,该课程的教学改革与实践对于理工学科交叉与学生综合素质的培养是综合性大学化学与应用化学专业其他课程所不能替代的。在充分发挥综合性大学基础理论研究优势的同时,通过对理科专业化学工程基础课程教学内容的更新、充实和调整,为化工类企事业单位培养和造就具有开拓创新精神、胜任科学研究与工程技术工作、适应性强的化学化工专业人才。

二、教学内容与教学方法的优化

以创新教育思想为指导,研究改革化学工程基础课程教学内容和教学方法,建立培养学生创新能力的化学工程基础课程内容新体系。动量传递、热量传递、质量传递与化学反应工程(“三传一反”)仍将是化学工程基础教学的核心内容,应不断充实更新才能反映学科发展现状和适应社会经济需求。化学和化学工程学是支撑物质转化相关工业的学科,前者研究分子之间发生反应的可能性、必要的条件和产物的结构,后者研究物质的流动、质能传递及其对反应过程与产物的影响。

1.优化更新教学内容,反映体现学科发展与技术进步。化学工程基础作为理科化学专业的工程技术课程,其教学内容除了动量传递、热量传递、质量传递与化学反应工程以外,还应当及时反映和体现学科的发展与技术进步。根据授课学时,突出教学重点,优化教学计划,精选教学内容。以化学工程学的基本观点、基本原理和基本方法为核心,结合典型化工过程,理论联系实际,使学生在有限的教学学时内,掌握本门课程的基本知识,熟悉研究与应用对象,为今后从事化学化工专业技术工作打下坚实基础。在其他科学技术的带动和社会需求的推动下,化工分离技术近年来取得了很大进步。新技术不断涌现,膜分离和超临界流体萃取等新型分离技术就是其中的代表。我们在教材的编写和课堂教学中,有意识地加入这些内容,便于学生从课堂上了解新的科学知识,拓宽学术视野。

2.引导学生建立工程技术与技术经济观点,提高学生综合素质。科学与技术的交叉和渗透,要求我们培养的学生不仅要掌握扎实的基础理论知识,还要学会运用所学的理论解决工程实际问题。综合性大学理科化学专业的学生基础理论知识比较扎实,在课堂教学中,我们根据教学内容,结合工程实际,启发学生从工程实际问题出发,强调工程实际的特点,突出工程实践的技术经济问题,灌输学生节能减排与绿色环保的理念,训练学生综合运用数学、物理与化学等多学科知识,综合分析化工单元操作与工业装置中涉及的复杂问题,培养学生的工程技术思维方法与工程设计等综合素质。

3.改进教学方法,提高教学效率。化学工程基础课程的课堂教学内容涉及化工单元操作与工艺过程。综合性大学化学专业的学生一般没有见过真实的化工设备,对化工厂与化工设备和装置缺乏感性认识,通过多媒体教学技术和传统课堂教学方法,可以促进学生感知与思维、理论与实践的结合,提高学生对化学工程基础的学习兴趣,激发他们的学习热情,使他们由不熟悉、不了解化工企业与装置转变为喜欢应用学科、乐于进入与应用密切相关的教师实验室开展业余科研。为此,我们一方面利用多媒体的优点,在课堂教学中放映一些设备的实物图像。另一方面,在有关课程中增加了实习参观环节,组织学生到石油化工厂、有机化工厂和精细化工厂等企业参观实习,增强学生对加热炉、精馏塔、泵、换热器等主要化工设备的感性认识。

三、教学团队与课程体系的建设

以先进的教学理念为先导,以高水平的教学团队为根本,以科学的课程新体系为核心,以优良的规划教材为保障,强化教学团队的建设,使所有主讲教师成为教学改革的高水平运动员和创新教育的优秀教练员。

1.建设高水平教学团队。从事课堂和实验教学的主讲教师也要承担高水平的科研项目,提高教师的科研水平。我们承担“化学工程基础”的主讲教师都具有教授职称并担任博士生导师,承担了一些科学研究项目。同时,也积极思考和实践课程的教学改革,奠定了学生创新能力培养的坚实基础。没有高水平的教学团队,不可能进行教学改革的实践,更不可能培养出具有创新精神的学生。

2.构建工程教育、创新教育的课程体系。夯实基础,将理科化学知识和工程知识有机结合。理科化学基础课程、化工过程开发、化学工程基础及多门专业课程的开设,可将学生所学知识形成知识链。重视对学生业余科研和毕业论文的指导,吸引对化学工程有兴趣的同学来实验室和博士研究生、硕士研究生一起进行科学研究,培养学生的创新意识和对科学研究的兴趣。通过毕业论文阶段的培养,加强了学生对知识的掌握和运用,特别是对“应用”和“工程”概念的强化。近年来,来我们化工实验室进行业余科研和毕业论文的学生每届都在十人以上,占理科化学专业学生的5%作用。

3.将科研成果向教学实践转化,形成教学促进科研、科研反哺教学的良性循环。构建应用学科人才培养、现代科技发展相适应的“基础性、综合性、工程性、创新性”体系。我们承担了国家和企业的一些化工类科研项目,特别是在水与废水处理、化工分离和国防化学等方面取得了一些科研成果,我们注意将教师的科研成果和科研实践融入课堂教学。从事课堂教学的主讲教师与实验课指导老师一起合作,将“渗透汽化膜分离”编入了实验教材和开展了教学实验,受到学生的欢迎。

化学是实验性很强的学科,化学工程作为一个共性的工程学科,我们应充分利用科学技术发展和教学改革带来的机遇,加强化学与化学工程的结合,为国家培养更多复合型创新人才。

参考文献:

[1]严世强.化学工程基础课程教学改革的认识与实践[J].大学化学,2003,18,(1):29-31.

第3篇

化学工程与工艺专业的定位

1.化学工程与工艺专业的性质及培养模式

化学工程与工艺专业属于工科专业,授予工学学士学位。由于化学工业的相关领域极为广泛,化学工程与工艺专业涉及的专业方向也就非常多样化,各高校的化学工程与工艺专业特点亦不尽相同。我校近年来根据社会经济、工业发展的需求趋势,兄弟院校化学工程与工艺专业方向的设置,以及我校原有的相近专业优势,设置了能够体现我校特色的化学工程与工艺专业方向,逐步建立了适合我校化学工程与工艺专业的教育培养模式。2008年,我校化学工程与工艺专业已有7届本科毕业生,其学生就业形势良好,社会反馈积极.在制定教学计划的工作中加强教学内容和课程体系的改革,加强实践教学环节,目的在于进一步提高教学质量,培养适应能力更强的化学工程与工艺人才。

2.化学工程与工艺专业的任务

根据化学工程与工艺专业的性质,化学工程与工艺专业的任务是培养学习化学工程学与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练.具有对现有企业的生产过程进行模拟优化、革新改造,对新过程进行开发设计和对新产品进行研制的基本能力。由于涉及化工的学科和领域很多,化学工程与工艺专业除了让学生学习一般应用化工的基本知识和基本技能外,还应该结合本地区、本行业及本校的实际情况,重点学习化工在某个或某几个领域中的具体应用,以便形成不同高校应用化工专业的特色专业方向.

3.化学工程与工艺专业的业务培养目标

本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。

4.化学工程与工艺专业的课程设置

为了使不同高校既有统一的规范,又有不同的专业特色,根据应化学工程与工艺专业的任务和业务培养目标,化学工程与工艺专业的毕业生应该具有较扎实的化工理论基础,较宽的化工应用知识以及一定的工程技术基础,从而该专业的课程设置(公共课、基础课除外)应由基础化学课、工程基础课和专业方向课3部分组成。基础化学课包括:无机化学、有机化学、分析化学、物理化学等。工程基础课主要包括:化工仪表与自动化、化学工程基础、电工电子学等。专业方向课:可根据具体方向选择专业化学课,如电化学工程方向可选理论电化学、化学电源工艺学、电解工程和电镀工程等。精细化工方向可选择化工工艺学、化工分离工程、化学反应工程等。另外实践性环节包括基础实验、综合实验、提高实验、生产实习、毕业实习和毕业论文等。

我校化学工程与工艺专业方向

就专业方向而言,化学工程与工艺专业的性质是工科。化学工程与工艺专业应该是培养具有较扎实及宽广的化学工程理论基础知识,特别注意培养学生的动手能力及解决实际问题的能力。教学计划的总体设计中要体现应用型人才所具备的工程技术基础知识,重视实验、实践、实习、毕业论文等环节。设置专业发展方向,结合广西经济发展的需要,建立在合理利用广西及学校的资源及适应科技发展、注重社会需求基础上。据此,我校化学工程与工艺专业专业方向设定为:电化学工程与精细化工。

第4篇

【关键词】:化学工程;系统;和谐;辩证法

自然界中的和谐系统比比皆是,大至宇宙,小到原子;地球生态系统是和谐的,动植物群落是和谐的,人类社会体系是和谐的,健康的人体更是一个绝妙的和谐体。所有这些和谐系统遵循着同样的辩证综合的规律,具体可以归纳出三条:1.统一律;2.层次律;3.进化律;所有和谐系统具有同样的性质:1.开放性;2.自组织性;3.非线性;4.无限发展性[1]。当爱因斯坦把大半生致力于统一场论时,其哲学上的需要相对物理学上而言或许要来得大,面对物理学的系统和谐,理论规则的分立是不能令他觉得满意的。而化学工程的发展是不是因循同样的哲学历程呢?

在化学工程作为学科开始被重视之前,化学工业已具有了相当的规模,各种具体的工程与工艺都被独立开来,在认识上是被分为各门特殊的知识,因此,当国外高等院校在十九世纪末开始设置"化学工程学"时,开设的课程大多是学习当时化学工业的各种工艺学,"化学工程"的概念在当时还是相当模糊的,在理论上充其量是化学与机械的一种混合(amalgam)。然而这种理论混合的模式在德国人看来却是很正统的,即使在今天,他们也避免专论"化学工程",而是称之为"过程工程"(ProcessEngineering),这一名称实际上要比"化学工程"的范畴更广,甚至更为准确,凡是涉及一定流程与工艺的领域都是适用的。但我们习惯上还是沿用"化学工程"的名称。

二十世纪开始,化学工业迅猛发展,在社会经济中占的比重越来越大,客观上需要化学工程学科的发展和支持。随着生产力的发展,人们对事物运动规律性的认识也愈来愈深化,愈来愈有概括性。伴随着其他领域科学技术的快速进步,人们逐渐认识到化学工业中各门看似不相干的工程和工艺中存在着共同的物理特性。1901年,美G.E.的Davis《化学工程手册》的发表,初步提出了"化工物理过程"的原理。1900年始,以合成氨、纯碱、燃料等为代表的近代化工厂出现,如1913年,德哈勃-博施法高压合成氨技术的产业化,星火燎原的,化学工业呈现出巨大的发展前景。到了二十年代,美MIT的一些学者提出:不管化工生产的工艺如何千差万别,它们在众多的典型设备中进行着原理相同的物理过程。1920年,美MIT成立了第一个严格意义上的化工系,时W.K.Lewis任系主任。1922年美国化工学会认同了新的见解,引出了"单元操作"(UnitOperation)的概念,这一概念在苏联时期和我国则广泛称为"化工原理"。

1900年始的"分离工程"研究使"单元操作"的概念日趋成熟。被称为单元操作的过程主要有流体流动、传热、干燥、吸收、蒸发、萃取、结晶和过滤等,以这些单元操作作为研究和学习的主要内容,是化学工程学科在二十世纪前半期发展的核心,其理论迅速成为发展化学工业的重要基石。这种把千变万化、千差万别的过程和工艺概括成"单元操作"是生产力发展到一定水平的反映,是化学工程学从"个性"到"共性"的第一个哲学性概括,是在一个系统整体性把握的高度上建立了一门技术科学,体现了系统科学发展的和谐统一规律。

随着"单元操作"概念的确定,另一方面,化学工程学科中重要支柱之一的"反应工程"亦逐渐浮出水面。从最初的德Winkler流化床煤气化炉的应用到德Bergim-Pier三相液化床煤液化工艺的开发,又到1931年丁纳橡胶和氯丁橡胶的投产,化学工业上发展的高峰持续不绝,1940年美国FCC炼油开发成功,成为石油化工的起点。直到1957年,欧洲第一届反应工程会议,明确提出"反应工程"的概念,成为化学工程学科的重要组成部分,是化学工程学的进一步和谐统一。"反应工程"的建立,乃至今日仍备受困扰的"过程放大效应"问题,及从"逐级放大"到"数模放大"的研究都带动了"化工过程系统工程"的发展,并共同体现了系统科学发展的和谐层次律。

就在"反应工程"发展的同时,"单元操作"得到了更加深刻的认识,人们发现各单元操作之间存在着更为普遍的原理,"过滤只是流体传动的一个特例;蒸发不过是传热的一种形式;吸收和萃取都包含着质量的传递;干燥与蒸馏则是传热加传质的操作……"[2]于是单元操作可以看成是传热、传质及流体动量传递的特殊情况或特定的组合。这种认识的深化过程并没有停止,人们进一步又发现了动量传递、热量传递和质量传递之间的类似性。于是从二十世纪50年代开始,人们综合了以往的成果,开始用统一的观点来研究三种传递过程。1960年,美威斯康辛大学(Univ.Wiscosin)的R.B.Bird教授出版了《TransportPhenomena》一书,系统地采用统一的方法来处理三种传递现象,从此化学工程学科的核心过渡到了"三传一反"的系统性概念。"三传"的研究是系统科学和谐进化律的又一体现,使化学工程学达到了一个新的整体性高度,这种高度的和谐统一是对客观世界本质性的认识,并在学科上反映出了系统科学的基本原理和性质,其影响力是普遍性的,是跨学科的,不仅使"传递原理"成为化学工程学的重要基础,同时在生物工程、机械、航天和土木建筑等工程学科上也具有重要意义,并日益成为工程专业共有的一门技术基础课,只是侧重点有所差异而已。

至此化学工程学科自身经历了一系列的演化和发展,并在短短的一个世纪中达到了一个前所未有的高度,涵括了众多的生产和应用领域,如医药、化肥、能源、材料、航天、冶金、日用化学品等,每年为社会提供数以亿吨计的千百万种产品,是人们衣、食、住、行须臾不可离开的物质基础,为社会繁荣作出了巨大贡献。然而事物总是一分为二的,从人类发展最为激动人心的口号"征服自然"到今天庞大的工业化进程,地球自然生态系统遭遇了前所未有的严峻局面,这之中,化学工业是造成大规模环境污染及恶性重复污染的主要过程之一,化学工程学科需要肩负起新的使命。1990年,"生态化工"(Eco-ChemicalEngineering)的概念提出来了,相应在化工生产和过程工艺中提出了"清洁化工"和"绿色化工"的概念,因时应势,化学工程学开始了系统科学的自组织过程,这也是和谐系统对立统一发展的需要。在系统科学看来,自组织是和谐系统的基本性质之一,只有自组织系统能通过外部和自身内部的不断协调、整合,在适应环境的同时保持自己的特性并产生新的功能。从自发到自觉地,化学工程学吸收了自组织的理论,不断在广度和深度上充实、完善和发展。随着新世纪的到来,世界正发生着全球性的变化,经济、社会、环境和技术等领域都面临着新范畴新理念的变更和冲击[3]。化学工程学科需要因应时展而改变传统的限制,不断有新的概念提出来,如化学工程应是伺机而待的专业(aprofessioninwaiting);化学工程师必须"besteepedintechnology",能够创新、开发、变换、调控和适应取代;化学工程学科要从"ProcessEngineering"达到"ProductEngineering"再到"FormulationEngineering"。进一步的综合认为,化学工程学关注着同时发生在非常广泛的时空跨度内的现象,必须具备多尺度、多目标的方法来达到过程的总体优化。涵括了五个方面[4,5]:

①Nanoscale(纳观尺度):研究量子化学、分子过程与分子模拟等。

②Microscale(微观尺度):研究微粒、气泡、液滴、控制界面胶束和微流力学规律等。

③Mesoscale(介观尺度):研究换热设备、反应设备、塔器以及传统的"单元操作"和"三传一反"等。

④Macroscale(宏观尺度):研究生产装置和生产过程等。

⑤Megascale(兆观尺度):研究环境过程和大气生态过程等。

于是化学工程学的核心转变到了"多尺度、多目标择优"的概念,化学工程学科又到达一个新的和谐统一的高度,进入了更高层次的系统工程领域。

新的发展的深度促使化学工程学科作出了一定尺度的"分化",然而这还远未结束,人们对世界的认识还在不断探索不断深入,一个更深刻更普遍也更一般的问题已经触到了化学工程学科的神经,触到了化学工程学的认识本质,并促使化学工程学需要有新的"融合"。这一问题就是"非线性及其包涵的混沌原理",相对于"线性"是人类认识客观世界的基本工具,"非线性"则是客观世界的本质特征,是"线性"反映的目的,是从科学角度看待世界的一种和谐统一;而在对"混沌发展"的研究表明,"混沌运动的普遍存在,揭示了自然界中实际系统发展演化的新行为,混沌态的自相似性使这种时间演化表现为一种空间结构,而且以其不同空间尺度上的相似性,揭示了系统复杂运动的统一性。这种统一性是一个观察"整体"的问题,只有在长时间范围(因为混沌运动是一种长时间行为)和更高层次复杂性中才能显现出来。"[6,7]这一问题涵盖了自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。马克思曾经预言:"自然科学往后将会把关于人类的科学总括在自己下面,正如关于人类的科学把自然科学总括在自己下面一样:它们将成为一个科学。"从这一角度上,"非线性"问题是这种过程一体化的契合点以及整体认识论上的共性[8]。当站在这种整体性的高度上,化学工程学科获得了全新的视野和更强大的分析解决问题的能力,并最终具有了学科融合的基础。

在整个化学工程学科的孕育、诞生和发展过程中,始终交织着学科的"分化"与"融合",除了上述尺度(scale)上的分化以外还有着所谓的石油化工、精细化工、高分子化工等专业上的分化;另一方面,作为近代工程技术,它又是自然科学(化学、物理等)和技术科学(机械、材料等)的融合。正如物理学家普朗克(Planck)所指出的:"科学是内在的整体,它被分解为单独的部分不是取决于事物的本身,而是取决于人类认识能力的局限性,实际上存在着从物理到化学,通过生物学和人类学到社会学的连续的链条,这是任何一处都不能被打断的链条。"事实上,当化学工程学科的核心发展到"非线性混沌系统"时,实现科学的融合已是其客观系统性的需要,它需要强有力的非线性解算能力和综合分析能力。基于人工智能和神经生物学的人工神经网络(ArtificialNeuralNetworks)技术为这种系统性的融合提供了新的思路和途径。人工神经网络特有的信息处理能力在愈来愈多的领域中展现出广阔的应用前景,它具有如下特点[9,10]:

①学习:神经网络可以根据外界环境修改自身行为,这使它比其他任何方法接受自身感兴趣的外界信息更敏感。

②概括:经过学习训练后,神经网络的响应在某种程度上能够对外界信息的少量丢失或自身组织的局部缺损不再很敏感,反映了神经网络的健壮性(鲁棒性),即工程上说的"容错"能力。

③抽取:神经网络具有抽取外界输入信息特征的特殊功能,在某种意义上可以说它能"创造"出未见的事物。

④模拟:神经网络由众多的神经元组成,以并行的方式处理信息,大大加快了运行速度,可以逼近任意复杂的非线性系统。

当然,神经网络并非十全十美,其自身的发展就曾经历过相当曲折的过程,但是,人工神经网络(ANNs)特性的融合将是化学工程学科发展到非线性核心系统的自组织适应和需要。例如采用神经网络设计的控制系统,适应性、稳定性和智能性均较好,能处理复杂工艺过程的控制问题,也使得化学工程师不但也是机械工程师,还首先是系统工程师,并能从最一般的非线性原理出发,解决实际过程的创新、应用、开发、生产等问题。

生产力的不断发展,科学技术的持续进步,人类认识自然和改造自然的不断深化,化学工程学科必将不断"分化"和"融合",体现出和谐系统的无限发展性质。

参考文献

[1]李立本.系统的和谐与和谐观[J].自然辩证法研究,1998,14(5):39.

[2]韩兆熊.传递过程原理[M].浙江:浙江大学出版社,1988,11:3.

[3]季子林,陈士俊,王树恩.科学技术论与方法论[M].天津科技翻译出版公司,1991,9:115.

[4]金涌,汪展文,王金福,等.化学工程迈入21世纪[J].化工进展,2000,(1):5-10.

[5]黄仲涛,李雪辉,王乐夫.21世纪化工发展趋势[J].化工进展,2001,(4):1-4.

[6]张生心,梁仲清.从量子混沌再看物理学的统一性[J].自然辩证法研究,1996,12(10):8.

[7]苗东升.系统科学精要[M].中国人民大学出版社,1998,5:20.

[8]成思危.试论科学的融合[J].自然辩证法研究,1998,14(1):2.

第5篇

1.1背景

武汉科技大学是由武汉钢铁学院等隶属于原冶金工业部的三所在汉高校通过合并和改名而来。1998年,根据国家高等教育管理体制改革需要,学校成为第一批实行“中央与地方共建,以湖北省人民政府管理为主”的划转院校。划归湖北省管理后,学校立足于湖北建设、面向中南地区、辐射全国。武汉科技大学化学工程与工艺专业始建于1958年,原名为“炼焦化学专业”,1985年改为“煤化工专业”。1992年,按“煤化工”、“城市燃气”和“炭素材料”三个专业分别招生。1996年,随着教育部大学本科专业目录的调整,“煤化工”、“城市燃气”和“炭素材料”三个专业归并为“化学工程与工艺”专业[1]。总之,化学工程与工艺专业以煤化工(焦化)为特色,是武汉科技大学的传统特色专业。武汉科技大学是我国焦化专业人才的摇篮,所培养的焦化专业人才遍布全国各地,且大多成为企业的技术骨干或领导。为了适应市场经济形势、进一步提高人才培养质量和扩大毕业生的就业面,需要不断完善培养目标,加强基础理论知识的教学和采用多学科复合型培养模式,对多学科交叉课程进行整合和调整;强化工程实践能力、动手能力和创新能力的培养;在采用宽口径和重基础培养模式的同时突显专业特色。

1.2目标

所构建的化学工程与工艺专业课程体系能适应社会发展的需要,培养出具有宽厚基础理论、合理知识结构、较强创新能力、较全实践技能和明显煤化工特色的复合型化工类高级工程技术人才。毕业生能在焦化、炭素材料、燃气、石油化工、精细化工、环境保护等行业从事生产管理、工程设计、技术开发和科学研究等方面的工作。

2课程体系建设

2.1整合与优化原有课程

2.1.1整合《工程力学》与《化工设备机械基础》

武汉科技大学化学工程与工艺专业在课程整合之前,所开设的《工程力学》学时数为82。《工程力学》是整个课程体系中学时数很大的课程之一,且有些内容对化学工程与工艺专业并不是十分重要。为了增加学生社会的适应能力,加大学生的知识面和提高综合素质,经过仔细研究和综合权衡,决定压缩一些已开设课程的学时和增加一些新的课程。《工程力学》就是这次课程体系改革的压缩对象。考虑到《工程力学》与《化工设备机械基础》关系最密切,就将压缩后的《工程力学》与《化工设备机械基础》整合成一门课程,取名为《化工设备与材料》。整合的《化工设备与材料》定位为化学工程与工艺类专业一门综合性的机械类技术基础课,其内容包括工程力学、化工设备材料与焊接和化工容器设计三大部分。其任务是使学生具备基本工程力学知识,了解化工设备的选材要求及常用材料的特性,了解和掌握化工设备的设计计算方法和过程及典型设备的结构设计与计算,强化化工类专业本科生对化工设备的机械知识和设计能力。整合后的《化工设备与材料》总学时数为46,其中工程力学部分由原来的82学时压缩到16学时,为其它课程腾出66学时[2]。

2.1.2整合《化工设计》与《化工技术经济》

很多学校将《化工设计》是列为化学工程与工艺专业的一门专业必修课。课程主要介绍化工工艺设计的基本知识和方法,包括原料路线、技术路线的选择,工艺流程设计,物料衡算、能量计算,工艺设备的设计和选型,车间布置设计,化工管路设计,非工艺设计项目的考虑和设计文件的编制等内容。学习该课程可提高综合运用已学过的化工原理、物理化学、化工热力学、反应工程、分离工程、化工工艺学和机械制图等方面知识解决化工工程实践问题的能力。武汉科技大学化学工程与工艺专业原来的课程体系中没有设置这门课,主要是因为受总学分和总学时的限制,没有富余学时来开设这门课,现在通过整合《工程力学》与《化工设备机械基础》腾出66学时,学时的问题已得到解决。所腾出66学时不能全部用于开设《化工设计》,经过仔细研究后决定将《化工设计》与已开设的《化工技术经济》进行整合,取名为《化工工程设计与技术经济分析》,定位为专业基础课,学时数由原来的18调整为54。

2.1.3优化《能源化学》

《能源化学》是化学工程与工艺专业的专业基础课,其前身为《煤化学》,为了拓宽学生的就业面,重新整理了传统课程的教学内容,在煤化学课程的基础上,将其它一些主要能源也引进来,从而形成了能源化学课程,总学时数为54,其中实验学时数为8。经过几年的教学实践后发现,由于教学内容较多,该课程的教学时数过于紧张,尤其是实验学时严重不足。在本次课程体系建设中,将该课程的理论教学内容和实验教学内容进行分离和单独设课。实验教学内容取名为《能源化学实验》,学时数为18;理论教学内容仍用原来的课程名称,学时数为46。

2.1.4优化《能源化学工学》

《能源化学工学》是化学工程与工艺专业模块1(煤化工模块)的主干专业课程,由《炼焦学》和《炼焦化学产品回收与加工》整合而成。以前的课程体系设置时为了强调重基础,对该课程的学时进行了大幅压缩,总学时数为54,其中实验学时数为18。经过几年的教学实践后发现,该课程的教学时数压缩过大,对教学效果产生较大影响,用人单位的反馈意见也证实了这一点。在本次课程体系建设中,将该课程的理论教学内容和实验教学内容进行分离和单独设课。实验教学内容取名为《能源化学工学实验》,学时数为18;理论教学内容仍用原来的课程名称,学时数为46。

2.1.5优化《高炭化学与碳材料工程基础》

如前所述,炭素材料曾是武汉科技大学化工类的招生专业之一。在化工专业课程体系中设置炭素材料类的课程也是一大特色,这种特色为化工类毕业生的就业提供了更多机会。每年都有化工类的毕业生在炭素材料行业中就业,在全国的主要炭素企业中都有武汉科技大学化学工程与技术学院毕业的校友。但有一段时间为了强调重基础,弱化了炭素材料课程的教学,仅开设了《碳材料工程基础》,而且还是任意选修课,教学时数只有28学时。根据毕业生和用人单位的反馈意见,在本次课程体系建设中,决定优化该课程的教学设置,将该课程定位为指定选修专业课,教学时数增至44,课程名称改为《高炭化学与碳材料工程基础》。

2.2增设《化工CAD绘图与识图》

工程图纸是工程技术上用来表达设计思想和进行技术交流的主要手段,任何工程技术方案的实施,都必须以其为依据,因而被喻为“工程界的技术语言”。很多学校的化工类专业都开设计《化工制图》这门课程,主要内容有化工工艺图和化工设备图两大部分,用于培养学生阅读和绘制化工专业图样的能力。同时,它也为学生完成毕业设计和适应今后工作需要提供了不可缺少的基本能力。武汉科技大学化学工程与工艺专业原课程体系中只设置了《机械制图》,没有开设《化工制图》。根据毕业生和用人单位的反馈意见,在本次课程体系建设中,决定增设《化工CAD绘图与识图》这门课程。该课程由《化工制图》和《Auto-CAD绘图》整合而成,内容包括:AutoCAD绘图软件及其应用、工艺流程图、设备布置图、管道布置图和化工设备图,教学时数为36,其中14学时为上机实践学时。

3教学方式改革

3.1在实践中培养学生的动手能力和创新能力

依托湖北省煤转化与新型炭材料重点实验室,通过开设本科生创新性实验与创新性研究等课外实践活动,为培养学生的动手能力、创新能力提供保障。鼓励和扶持本科生进行实验技能和化工设计竞赛。本科生从三年级开始下到实验室,参与到指导教师的实际科研项目中去,熟悉科研过程,锻炼实践技能,培养创新能力。

3.2组建和培养教学团队

原来大多数专业课都只有一名任课教师,待其退修或调离工作岗位后再找教师接替。现在每门课至少有两门任课教师,一般采取以老带新的模式,且任课教师都要有工程实践经验。如《能源化学》教学团队,由2名老教师、1名中年教师和2名年轻教师组成,其中3名教师具有博士学位,4名教师有正教授职称,2名教授为博士生指导教师。已有8名没有工程实践经验的年轻教师被派到河南、云南等地焦化企业进行了3个月实践锻炼,回校后教学效果有了明显提高。

3.3多种途径组织实践教学

近年来,化学工程与工艺专业建立了一批相对稳定的教学实习基地。考虑到专业特色和培养方向的要求,实习基地以武汉平煤武钢联合焦化有限公司为主体。该公司在国内具有技术力量雄厚,生产工艺先进的特点,并具有较高的管理水平。同时,该公司可以说是焦化的一部“百科全书”,建有4.3m、6m、7.63m焦炉,所采用的配套工艺也有多种,是一个相当理想的焦化特色化工专业教学实习基地[3]。但是现在化学工程与工艺专业的招生人数越来越来多,一年的招生人数达280人之多。一个焦化公司能一次接纳这么学生去实习已经勉为其难,实习过程只能用走马观花来形容,很难深入下去。为了解决这一问题,采取了一系列措施,如下厂前先给学生分工段介绍现场工艺流程和主要设备,播放现场录制的录像,开发主要设备的三维数字模型供学生在电脑进行自主观察、解剖和组装,购置计算机仿真培训软件供学生在电脑上进行仿真操作。

第6篇

关键词:化工单元仿真;生产实习;化学工程与工艺

基金项目:石家庄学院教学改革研究项目(JGXM-201107B)

中图分类号:G64

文献标识码:A

原标题:化工单元仿真技术在化学工程与工艺专业实习中的应用研究

收录日期:2013年1月31日

化学工程与工艺专业是培养从事化工工程设计、化工技术开发、化工生产技术管理和化工科学研究等方面工作的工程技术人才。本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。石家庄学院化工学院化学工程与工艺专业是河北省级重点发展学科。石家庄学院化工学院从2007年开始与石家庄炼油厂、以岭药业等企业共建生产实习基地,积极开展化学工程与工艺专业的生产实习的教学活动。为了更好地开展生产实习的实践教学活动,在石家庄学院教务处教改项目(JGXM-201107B)的支持下,从2012年开始,我院化学工程与工艺教研室积极开展了化工单元仿真技术在本专业生产实习中的应用研究,取得了良好的效果。

一、生产实习的意义

生产实习主要是指高校工科学生(主要指高年级大三或大四的学生),在工厂生产现场主要以技术员或管理人员的身份,直接参与企业相关的生产过程,它的重要意义主要体现在以下几个方面:

(一)理论联系实际。高校学生以实际工作者的身份,直接参与工厂的生产过程,既可以运用已有的知识技能完成一定的生产任务,又可以学习和本专业相关的实际生产技术知识及管理知识。

(二)思想教育。生产实习是对工科学生进行思想政治和道德品质教育的有效途径。在生产实习中,可以生动具体地对学生进行劳动观点教育,培养学生热爱劳动、认真负责及爱岗敬业的劳动精神。

(三)检查教学质量。通过生产实习,不但可以检查工科学生对于专业知识的理解及实际技能的水平,更重要的是通过生产实习的检验,对课堂教学质量做出一些基本的分析和估计,作为全面评价教学质量、改进学校教育工作的重要依据。

二、传统生产实习存在的问题

传统的生产实习主要包括实习动员、厂级安全教育、实习报告与考核等内容,它的弊端主要体现在以下几个方面:

(一)教学方式呆板。传统的生产实习,通常是工厂派个技术员给学生讲一讲工艺流程,然后带学生看看生产过程,而不允许学生动手操作,学生只能走马观花地表面了解工厂的工艺流程。学生通常只是抄一抄图纸,看一看设备,而对于实际的工厂生产情况却了解不多。

(二)生产实习质量不高。由于学生在实习现场基本上只能“看”、“听”、“写”。刚进厂实习的时候,还能认真地学习,时间一长,就失去了刚进厂的新鲜性,就会觉得无事可做,因而生产实习后期,学生通常是纪律涣散,管理困难,影响了整个生产实习的质量。

(三)生产实习成本过高。化学工程与工艺专业的生产实习一般要5~7天,除了要支付实习单位数额不菲的实习经费,期间的交通及食宿费用也较高,这对于实习经费短缺的高校压力很大。如何利用有限的实习经费,更好地开展实习教学活动,是每个高校面对的问题。

三、化工单元仿真系统

(一)化工单元仿真系统介绍。化工单元仿真系统是以计算机为手段,通过建立化工过程的动态数学模型再现真实化工装置系统特性。它是建立在化工工艺、自动化仪表、化工设备等学科基础上的综合性技术,可以模拟化工生产装置运行中的开车、停车、故障处理等工段操作过程,可以提高操作人员的理论水平和实践能力。

(二)化工单元仿真在生产实习中的应用。石家庄学院化工学院于2010年9月从北京东方仿真公司引进1套大型化工生产工艺-乙醛氧化制乙酸工艺。乙醛氧化制醋酸装置是乙醛装置的配套工程,起始原料为乙烯,乙烯氧化生成乙醛,再由乙醛为原料氧化生成醋酸。本软件是参照大庆三十万吨乙烯一期工程-大庆醋酸装置设计,年生产能力为成品醋酸10万吨/年。该生产工艺,工艺复杂、设备齐全、自动化程度高,很适合于化学工程与工艺专业学生的生产实习。根据课程需要,我们选择乙醛氧化制乙酸工艺作为本专业学生生产实习的项目。

四、化工单元仿真系统引进到生产实习中的优势

(一)有利于提高学生的实际操作技能。化工生产过程的特点是整套装置的工艺流程长,设备数量大,所以工程技术人员的综合素质和能力对于化工产品的产量、质量、经济效益的程度影响越来越大。而学生在生产实习中很难有直接动手的机会,这是化工类专业实践教学中所面临的特有困难。而化工单元仿真实验和实际化工生产工艺相结合,提供化工单元操作、过程控制仿真、全工艺过程操作等实训,满足培养化学工程与工艺专业的工艺技术、计算机应用、自动控制、过程装备等岗位的综合能力。

(二)培养学生的化工职业思想。在学习化工单元仿真软件的同时,要对学生进行化工职业教育,使学生清楚地认识到本行业在国民现代化建设中的地位和作用,从而热爱本专业,树立为我国化学工业现代化建设做贡献的雄心壮志,引导学生传承化工行业职员守纪律、爱岗敬业的好作风。通过化工单元仿真软件的学习,使学生具有按计划有序工作的良好习惯和严谨的科学态度,并具有刻苦钻研技术、勇于克服困难和积极向上的精神。

(三)化工单元仿真运行成本低。建设化工仿真实验室的总成本只有中试车间费用的五分之一。将化工单元仿真软件引入到化工原理实验教学中,使用周期长,可大大减少学校在培训工作中的人力及物力消耗,且易于维护。我们教研室在化工仿真实验室还安装了AutoCAD、Chem-CAD、ChemOffice等应用软件,可以满足化工学院其他专业学生的使用,充分利用现有设备,进一步降低其整体运行成本。

五、结论

化工单元仿真教学是运用先进的教学思想和现代化的教学手段,培养学生的实际动手能力,为化学工程与工艺专业人才高质量的培养提高提供了保障。

主要参考文献:

[1]靳海波,宋永吉,赵如松等,化学工程与工艺专业实习改革与实践[J],求实,2010,2

第7篇

[关键词]无机及分析化学;能源化学工程;模块化;教学改革

当前,大多数工科专业将无机化学和分析化学的课程内容进行重新组合,形成无机及分析化学。通过系统地学习和掌握化学的基本概念、基本理论以及化学基础知识,培养学生对化学的兴趣和解决化学问题的能力。无机及分析化学中的化学热力学、化学动力学、物质结构、四大平衡理论是要求必须掌握的。这些基本理论和知识在能源化学中的应用是很基础的东西,能为后续专业课程的学习奠定良好的化学基础。[1]我们所开设的新专业能源化学工程,主要研究方向为:能源清洁转化、煤化工、环境催化、绿色合成、环境化工。它以化工的理论与技术为应用基础,围绕新能源利用与化学转化,实现能源利用和可持续发展。重视与提高课堂教学质量和推动无机及分析化学实验在培养学生动手能力与实验创新能力方面起着重要作用,是无机及分析化学课程改革必须直面的棘手问题。因此,进行模块化优化无机及分析化学教学内容、多方面激发学生学习无机化学的兴趣、充分利用现代多媒体技术革新教学方法、培养学生的知识运用能力、有效提高无机及分析化学课程教学质量,可以满足社会及区域经济的发展对人才的需求和素质教育的要求。

一、模块化优化无机及分析化学教学内容

所谓课程模块,描述的是围绕特定主题或内容的教学活动的组合,或是一个内容上及时间上自成一体、带学分、可检测、具有限定内容的教学单元,它可以由不同的教学活动组合而成。模块化教学强调理论教学、实践、练习、研讨的同步式一体化的教与学,强调在专业教学过程中,把理论、实践等环节紧密结合。基于以上课程模块化的考虑,将无机化学和分析化学两门课程的教学内容进行模块化教学(见表1)。由于将无机化学和分析化学的课程内容打乱后进行重新组合,导致概念和知识点多,各章节之间存在较强的独立性。[2]因此,要合理安排大一第一学期的教学内容,这样有助于学生转变思维方式和学习方法。

二、多方面激发学生学习无机及分析化学的兴趣

兴趣是最好的老师,良好的学习兴趣是主动学习的原动力。要学好无机及分析化学,激发学生的兴趣至关重要。[3]在绪论教学过程中,要做好本课程的介绍及发展前景和学生学习心理方面的工作,在无机化学教学中建立好教师、学生和教材三者之间的相互关系。第一,在绪论课上介绍无机和分析化学发展过程及发展前景,让学生认识到学习本课程的重要性,以达到激发学生学习兴趣的目的;接着主要介绍无机及分析化学的作用及学习方法和相关考核办法。第二,阐明化学与人类生活密切相关的环境、能源、材料以及人类社会生活中的热点问题,以此为载体深入浅出地介绍化学与人类生活、社会发展的关系。第三,在专业导论课上强调无机及分析化学是能源化工类相关专业的基础课,能为以后的专业课学习和将来从事工作奠定基础。第四,通过新生认知见习,让学生在参观相关无机化工企业中获得感性认识;在平时的课堂教学中,利用一些贴近生活的例子解答知识疑惑,激发学生的学习兴趣。第五,建立合作学习小组,布置课后课题作业,利用网络资源学习无机及分析化学,查找相关资料完成课程论文作业。

三、充分利用现代多媒体技术革新教学方法

在无机及分析化学教学中,利用现代多媒体技术革新教学方法能提高教学效果。要面对的教学问题有:课前制作精美的多媒体课件,发挥多媒体课件的优势;主讲教师课堂讲授“动”与“静”结合,活跃课堂气氛;不可彻底忽略传统的板书;进行多媒体技术与传统教学技术相结合,有效提高课堂教学效果。[4]第一,使用多媒体技术教学可以模拟化学反应历程,让学生清晰地看到原子或分子的拆分及重新组合的过程,化抽象概念变为具体事物,这样可以加深学生对化学概念的理解。如,Flas制作了各种类型分子杂化轨道(sp,sp2,sp3,dsp2等)的形成过程。第二,采用多媒体教学手段展示教学重点、难点,实现人机对话,有助于学生理解和记忆课本内容。第三,进行多媒体教学时,应以学生为主体,但教师依然是教学活动的组织者和引导者。

四、培养学生知识的运用能力

通过学校组织学生参加各类化工学科竞赛活动是调动能源化学工程专业学生对无机及分析化学基础课程兴趣的重要举措。[5]第一,积极组织学生参加广西各类化学实验技能竞赛,坚持开展国家级、省部级大学生创新创业实验项目。第二,为了鼓励和培养大学生创新能力,学院组织学生参加化工年会化工论文竞赛。第三,开放实验室,鼓励学生积极参与到开放实验室的研究课题;设立创新实验基金,由学生自由申请,对实验取得阶段性成果的学生给予创新基金资助。此外,改革无机化学教学方法,必须将传统的验证性实验转变为新型的探究性实验,通过探究性实验培养学生的创新能力。在导师的指导下,学生在设计实验方案中能够开发智力、培养良好的实验素养,锻炼自学能力。

五、适应能源化工专业要求方面的改革

能源化学工程专业是一个综合性、实践性很强的专业,在理论教学上要求学生掌握能源化学工程基础理论和相关技能。在实践教学上,应明确教学过程中的内容重点和难点,尤其是热力学方面的内容应该重点详细讲解,使学生更好地理解能源转化及利用过程中的一般规律,为低碳环保使用能源奠定基础。我们针对实践性很强的能源化学工程专业,依据其专业的特点实施校内实训和校外实习相结合,使课程实验、课程设计、毕业设计、社会实践活动等环节能为培养具备高素质的能源化学工程专业人才服务。此外,我们还完善校内实验实训和校外实习基地的建设,向企业提供人才培养方案,共同建设与加强人才培养方案中的实践性教学环节。在实践评价体系的建设中,收集专家评价、教师评价、实习接收单位评价、系(分院)自评、学生评价等信息,做到以评促建。

六、结论

本文针对我校能源化学工程专业开设的无机及分析化学课程,在优化教学内容、激发学生兴趣、利用各种教学方法、培养学生能力以及适应专业要求方面对教学环节进行了总结和探究。加强基础理论知识教学使学生具备扎实的实践技能,进一步培养学生的创新能力,提高教学质量,能为培养能源化学工程专业创新型人才奠定基础。

[参考文献]

[1]韩洪晶,杨金保,刘淑,等.能源化学工程专业本科生创新能力培养体系的建立与实践[J].教育教学论坛,2013(15):228-229.

[2]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(3):145-146.

[3]朱清,李成胜,张征林.无机及分析化学教学改革初探[J].化工时刊,2013(4):49-50.

[4]芮光伟,蒋珍菊,岳松.无机及分析化学课程教学改革与实践[J].高等教育研究,2007(3):75-76.

第8篇

关键词:工程教育专业认证;化学工程与工艺专业;教学改革

作者简介:毕颖(1978-),女,辽宁营口人,沈阳化工大学督导中心,讲师。(辽宁 沈阳 110142)

基金项目:本文系2012年辽宁省普通高等教育本科教学改革研究项目的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2014)05-0057-02

专业认证是由专业性认证机构组织该专业领域的教育工作者对专业性教育学院及专业性教育计划实施的专门性认证,其目的是保证与提高专业教育质量。《华盛顿协议》是最早的工程教育本科专业认证的国际互认协议,1989年由美国、英国、加拿大、爱尔兰、澳大利亚、新西兰6个国家的工程专业团体发起成立,旨在通过校准、系统的工程教育本科专业认证保证工程教育质量,为工程师资格国际互认奠定基础,是国际工程师互认体系的六个协议中最具权威性、国际化程度较高、体系较为完整的“协议”,也是加入其他相关协议的门槛和基础。目前共有15个正式成员、5个预备成员。

一、我国工程教育专业认证概况

我国的工程教育认证始于2006年5月,由教育部、人事部、中国工程院、中国科协相关行业管理部门和行业协会(学会)代表组成了教育部授权的全国工程教育专业认证专家委员会,2013年1月中国正式提交加入《华盛顿协议》申请,同年6月中国科协代表我国顺利加入《华盛顿协议》,被接纳为预备成员。

开展工程教育专业认证旨在构建工程教育的质量监控体系,推进工程教育改革,进一步提高工程教育质量;建立与注册工程师制度相衔接的工程教育专业认证体系,构建工程教育与企业界的联系机制,增强工程教育人才培养对产业发展的适应性,促进我国工程教育的国际互认,提升国际竞争力。教育部自启动工程教育专业认证试点以来,专业认证工作的认同度不断提高,越来越受到各高校的欢迎,促进了被认证专业的建设与交流,取得了良好的效果。目前我国已经有96所高校129个专业点通过了“专业认证”。

二、我国化学工程与工艺专业认证发展情况

中国的化学工业诞生于1927年,经过70多年的发展已经成为国民经济的支柱产业之一。1998年教育部按照厚基础、宽专业、高素质、强适应性的专业调整精神,将原有的化工类大部分专业整合为化学工程与工艺专业。化学工程与工艺专业覆盖了以前的化学工程、化学工艺、高分子化工、精细化工、生物化工(部分)、工业分析、电化学工程、工业催化、高分子材料等专业,培养出的专业人才可直接到化工、炼油、制药、能源、冶金、轻工、材料、环境等工业部门从事科学研究、技术开发、工程设计、技术管理和教学等工作。

化学工程与工艺专业认证试点工作组成立于2006年,截止到2012年已对天津大学、清华大学、北京化工大学等17所高校的化学工程与工艺专业进行了认证试点工作,其中延长有效期的高校有8所。2013年将对我校、中国石油大学、内蒙古工业大学、四川理工学院等高校的化学工程与工艺专业进行认证。如表1所示。

表1 截至2012年我国通过化学工程与工艺专业认证的高校

年度 学校 年度 学校

2012 浙江大学 2010 中国石油大学(华东)

四川大学 武汉工程大学

中国石油大学(北京) 华南理工大学

吉林化工学院 2009 浙江大学

南京工业大学 南京工业大学

2011 合肥工业大学 吉林化工学院

郑州大学 2008 大连理工大学

大连理工大学 华东理工大学

化工理工大学 2007 中国石油大学(华东)

浙江工业大学 北京化工大学

2010 天津大学 2006 天津大学

清华大学 清华大学

北京化工大学

三、开展化学工程与工艺专业认证的必要性

化学工业是国民经济的支柱行业,随着我国经济的持续增长,化工行业飞速发展,化工专业范围的扩大和跨学科发展愈来愈明显,而且成为高新科技不可缺少的工程专业。化学工程与工艺专业是化学工程、化学工艺的综合学科,随着经济的发展,日趋体现出知识更新速度快、影响范围广、多学科渗透、新兴学科涌现等特点。高校作为孕育优秀工程人才的摇篮,是化工行业的主要人力资源,在开展工程教育中应紧密联系行业发展现状,及时把握行业发展趋势,在加强理论知识的基础上加强工程实践能力的培养,更好地服务社会。所以,把工程教育认证引入到高校专业设置和发展的过程中,根据国家经济发展对人才的实际需要,及时调整人才培养方案,密切与社会用人单位联系,培养满足国家经济社会需要的专业人才。工程认证既是对办学情况的检验,也是国家政策导向的风向标。

四、化工专业教学改革措施

以行业发展需求为动力,以工程专业认证标准为依据,以构建“化工特色”为导向,围绕培养综合型化工类人才,建立具有比较优势的化工专业的有机整体。

1.更新教育理念,适时调整培养计划

长期以来,各高校培养人才的落脚点就是“宽口径、厚基础”的专门人才,人才培养形式单一,结果人才培养重视理论教学,轻视工程实践训练,注重专业知识的传授,轻视综合素质与能力的培养,不重视社会人文、经济、环保等方面知识的作用。随着经济的转型、社会的转型,需要高校培养出以应用为核心的创新型人才、复合型人才,这是对教育观念、对教育本质和教育使命新的认识。高效需要以“高素质、创新型”工程人才培养为根本,打通人才培养的多个环节,探索化学工程与工业专业多元化人才培养模式。

2.优化课程体系

聘请相关工程企业专家和专业教师一起对专业进行职业岗位工作分析,按照企业的工作流程、岗位技能和综合素质的要求确定课程结构、选择课程内容、开发专业教材,将企业最需要的知识、最关键的技能、最重要的素质提炼出来融入课程之中,形成“基于工作过程系统化、资格标准融入化、专业技能递进化”的课程体系。加强专业交叉融合,优化课程体系,加大与生物、制药、资源、能源、材料、环境、信息等学科专业的融合,培养高素质复合型人才。

3.建立一支高水平的师资队伍

高质量的教学效果取决于高质量的任课教师。加强师资培训,使教师从传统的“知识传播者”向“技能培训者、人才开发者、职业教练和心灵导师”的角色转变,建设一支具有专业结构、年龄梯队的教师队伍,并形成梯队式师资储备。教师要加强自身学习,关注掌握学科前沿知识,及时更新授课内容,融入前沿知识,做好学生的学科领路人。定期或不定期安排技术骨干为青年教师召开讲座和交流座谈会,组织青年教师去企业参观生产过程,增加教师实践经验和工程实践能力。鼓励在校教师走向社会,参与社会实践,可以通过到企业攻读博士后、挂职锻炼及科研合作等形式培养青年教师的工程实践素质。将企业经验丰富的工程师聘请为卓越工程师的现场指导教师,从而实现校企合作,共同打造一支双师主体、专兼结合、结构合理、素质优良的教学团队,形成校企合作共建课堂、共同培养高素质技能型工程人才机制。

4.加强实践教学,培养学生的工程实践能力

CDIO教育理念是近年来国际工程教育改革的最新成果,是工程人才培养模式的一次重大探索。CDIO教育模式代表了Conceiving(构思)—Designing(设计)—Implementing(实现)—Operating(运作),它以产品研发到产品运行的生命周期为载体,让学生在实践中主动地将应用与课程之间紧密联系的方式学习。借鉴CDIO成功的教育经验,在化工专业建设过程中,一是注重加强校企合作,构建实践基地;二是通过设立实验示范中心、重点实验室以及科研成果转化平台等,搭建校内的实践平台;三是开放实验室,共享实验设备和资源。

科学设计实践教育教学体系,注重研究与加强教学体系和教学手段的改革。突出知识体系的完整性、人才培养的渐进性、知识能力素质培养的融合性、校内外教学的统一性、教学内容和方式的开放性、学生学习的主体积极性、与企业学习实践的贯通性等。实践性教学环节贯穿教学过程的始终,将校内实践和校外实践有机结合。

5.制订完善实践教学评价体系

工程实践教学的评价一直是实践教学环节的瓶颈,因为实践教学的模式与课堂理论教学差距较大,主要原因是教学环境具有不确定性、考核形式多样、学生个体工作量化标准难建立等,使得实践教学的考核不够客观,从某些方面也影响了学生实践学习的积极性与主动性。为了避免实践教学流于形式,使实践教学真正落到实处,还必须建立一套完整的、可操作性强的实践教学评价体系,其中非常重要的一个环节是将职业资格培养引入到实践教学评价体系中。为了加强本科生的工程实践经验,美国、法国、德国都将职业教育作为本科教育非常重要的内容。机制专业也相应增设AutoCAD认证、SolidWorks认证、Pro/ENGINEER专业认证、UG认证等软件工程师职业培训内容。企业需要的是独立工作的专门人才,经各种软件工程师的培训及从“通才”到“专才”的后续教育,是工程师培养的有力保证,经过职业资格培养的高校毕业生能够更快地入独立工作状态,很受企业欢迎。

6.完善毕业生的调查与跟踪机制

要实现建立动态调整的人才培养方案,需要学校、用人单位和行业部门共同合作,完善毕业生的调查与跟踪机制和渠道畅通的反馈体系,及时、准确、全面地了解人才培养过程的薄弱环节并有效加以改进,不断提高人才培养质量。

高校应该抓住工程教育认证契机,立足本专业的特点,结合企业及社会对专业人才的需求,以实际工程为背景,以工程技术为主线,以培养学生务实的工作态度和启发学生的创新思维为最终目的。加强校企合作,解决目前工程实践教学环节存在的问题和不足,着力提高学生的工程意识、工程素质和工程实践能力,培养在化工相关行业领域中具有创新精神的高素质应用型人才。

参考文献:

[1]欧阳杰,王志欣.化学化工类本科生工程实践能力培养模式探讨[J].科技资讯,2008,(21):134-135.

[2]王韵芳,樊彩梅,郝晓刚,等.化学工程与工艺专业卓越工程师培养计划的构想[J].化工高等教育,2012,(5):8-10.

第9篇

【关键词】“华峰班” 化工 工程教育

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2012)14-0005-01

石油和化学工业是我国国民经济的重要组成部分,我国化学工业的发展和技术的进步、化工园区及延伸产业链的发展,以及石化产业的可持续发展都需要大量化工技术人才,这就要求我们培养的化工人才要更多地贴近石化行业。而目前的化工教学乃至专业实验过于通识化、程序化、模型化,学生通过化工专业的学习,无法掌握解决实际问题的能力。本文总结了温州大学化工专业教师近几年来的科研方向,并对“华峰班”的3+1教学改革试点和对温州大学化工专业的教学和实验进行了一些创新,提出了一些比较实用的教学和实验思路。

一 构建以知识群落为基础的专业课程体系,切实推进课堂教学和实践教学模式的变革

化工专业课程体系主要由化工热力学、传递过程原理、化学反应工程、分离工程、化学工艺学、化工设计六门课程组成,构成了化学工程与工艺核心专业课的主体。化工专业实验是化工专业课程体系的重要组成部分,也是化学工程与工艺专业必修的实践性课程。它是从工程与工艺两个角度出发,既以化工工艺生产为背景,又以解决工艺或过程开发中所遇到的共性工程问题为目的。现行的化工专业实验过于简单模型化,学生很难通过实验锻炼其分析和解决实际问题的能力。引进计算机仿真技术与现行化工专业实验结合,虽然拓宽与发展了工程实验的内容和可操作性,但工科学生真正的实践动手能力却得不到锻炼,更无从谈起培养学生的创造性思维方法。

本次改革的尝试从整合教师科研室、化工专业实验室和校外实践基地的硬件与软件教学资源开始,逐步建立理论教学与课内外实践教学融于一体的教学体系和平台。具体的做法如下:

第一,把部分课堂教学移入科研室进行,面对正在运行的科研装置进行现场教学。这样的教学模式将科研中涉及的化学工程基本原理,通过设备运行、教师讲解、学生操作这一过程,实现教师、设备与学生对话,使学生获得感性认识的同时,加深对化学工程原理的理性认识,并且对化学工业的科学研究前沿有一定的了解。例如,将工业催化中“固体催化剂颗粒内的质量传递”的教学内容与反应工程中“固定床反应器”一节的部分内容进行融合,以“固定床反应器及催化剂颗粒的内、外扩散消除”为教学内容,带学生参观并操作正在运行的固定床反应器,现场对学生进行讲解高压固定床反应器的内扩散、外扩散的消除方法,并让学生利用高压固定床进行石油化工的加氢脱硫实验研究。学生在这个过程中真正认识到一些基本的化学工程原理。回到课堂上,再结合文献,系统地讲解教材中没有涉及的消除内、外扩散的几种方法。这一教学和实验过程的统一不但提高了学生的学习兴趣和动手能力,又使学生接触到了科学研究的前沿内容。

第二,利用参观见习、生产实习的良好机会,在车间装置上进行现场教学。

在不到三年的时间里,学生积极参与教师的科研实践。化工专业教师的部分科研设备用于专业实验教学、课题研究内容部分纳入专业实验课教学内容,实现了科研与教学的高度融合。提高了学生学习的自主性、研究性、实践性和创造性。

二 温州大学特色的“华峰班”化工专业教学改革

作为地方院校,温州大学的办学宗旨是以培养创新应用型人才为主,服务地方经济和社会的发展。为提高学生在工作方面的能力,温州大学从学生的实际出发,基于企业和学校的实际情况,探讨并实现了“华峰班”学生教学与上岗实践的运行机制,深入推进了校企合作办学,基本实现了“双赢”和共同发展。其主要措施如下:

第一,在培养方案中,设置“华峰班”模块课程。在工程专家的指导下,根据企业的需要对培养方案进行部分修改,增设华峰提出的部分课程,使得学生在校期间所学的基本知识和专业理论更贴近于华峰实际的应用。在这种战略方针下,学生在企业的环境中真正做到知识和能力之间的无缝连接,缩短了岗位过渡时间,增加了学生的工程实践能力。

第二,丰富“华峰班”的内涵建设。明确学生进入企业进行生产实践过程中各个环节的具体内容和时间安排。细化学生在每个环节、每个时间段的具体任务,明确入驻教师和企业工程师的具体任务和职责。企业专门派一位工程师作为学生的导师,两者相互合作交流,并定期将学生的进展情况作阶段性总结,明确下一阶段的任务和职责,并对学生暴露出的一些问题进行批评指正。

参考文献

[1]余国琮、李士雨等.“化学工程与工艺”专业创新人才培养方案的制定与实践[J].天津大学学报,2005(1)

[2]高璠、高鑫等.将科研项目引入化工专业实践教学环节的尝试[J].实验室研究与探索,2007(6)

[3]张林香、王俊文等.化工专业实验教学改革的实践与探讨[J].实验室科学,2007(2)

[4]段东红、刘世斌等.化工类本科专业课程体系实践性教学环节改革方案的探索与实践[J].化工高等教育,2007(1)