时间:2024-03-21 11:48:54
导语:在生物材料发展前景的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:功能高分子材料;研究现状;发展前景
一、功能高分子材料的概念及开发意义
功能高分子材料,是指具有一定传递或存储物质、信息及能量作用的高分子和高分子复合材料。这使得功能高分子材料不仅具有原来的力学性能,同时还兼具如光敏性、导电性、化学反应活性、生物相容性、选择分离性、能量转换性等一系列其他特定性能。按照其功能划分,功能高分子材料主要可分为4类:①物理功能:具体包括超导、导电、磁化等功能;②化学功能:具体包括光的聚合、降解、分解等;③生物功能:具体来说包括生理组织及血液的适应性等;④介于化学、物理之间的功能:主要是指高吸水、吸附等功能方面。
功能高分子材料由于具备特殊的功能,受到了各个领域的广泛重视,特别是其不可替代的诸多特性都为很多领域的技术进步提供了基础和前提,甚至已经因此而诞生出了一批先进的、符合社会发展潮流的新产品。因此,当前各国都加大了对功能高分子材料的人力物力财力投入,面对时间各国的竞争,我国也需要尽快加大对功能高分子材料的研发力度,从而摆脱我国国防、电子、医药和其他尖端领域严重依赖国外功能高分子材料市场的困境。
二、功能高分子材料的研究现状分析
目前针对功能高分子材料的研究和应用现状,主要集中于功能高分子材料的光功能、电功能、生物功能以及反应型功能应用这几个方面:
1.光功能高分子材料
目前的光功能功能高分子材料的研究和应用主要体现在光固化材料、光合作用材料、光显示用材料以及太阳能光板这几个方面,这些具体的应用能通过对光的吸收、储存、传输、以及转换功能,实现对光能的有效利用。例如,目前已经能够通过光功能高分子材料的运用实现光传导来帮助植物的光合作用。此外,运用光功能高分子材料实现手机的太阳能充电也已经成为现实。
2.电功能高分子材料
电功能高分子材料,除了具备良好的导电性能外,其电导率还能根据应用状况的不同,在半导体、金属态和绝缘体的范围进行变化。此外,由于电功能高分子材料一般密度较小、易于加工,同时具备良好的耐腐蚀性,在当前的工业领域中也被广泛的应用。
3.生物功能高分子材料
生物功能高分子材料在生物领域被广泛的应用。如常见的有,由生物功能高分子材料所制成的人体植入物(视网膜植入物、脑积水引流装置等)以及人体义肢等。
4.反应型功能高分子材料
这种高分子材料是一种具备很强化学活性的高分子材料,能够有效的促进化学反应。它是通过对构建高分子骨架,并将小分子反应活性物质通过离子键、共价键、配位键或物理吸附作用进行骨架填充,以实现高分子功能才能的强化化学合成与化学反应的效果。
三、功能高分子材料的发展前景及趋势分析
功能高分子材料具备很多优势特征,这些都使得其更加符合经济发展和社会发展的需求,这也使得功能高分子材料的研究工作在各国的竞争中日益白热化。而去随着投入的不断深化,和技术的不断完善。新型功能高分子材料必然在我们的尖端科学及日常生产生活中扮演越来越重要的角色。功能高分子材料的几种发展趋势。
1.复合高分子材料
目前,功能高分子材料正逐步由均质材料向着复合高分子材料的方向发展,同时其材料的功能也向着多功能材料的方面发展。复合高分子材料往往是在一种基体材料(如金属、陶瓷、树脂等)上,加入增强或增韧作用的高聚物,再通过将多相物复合成一体,就形成了新的复合高分子材料,这种高分子材料能够充分发挥各相的性能优势,因此具有广泛的发展应用前景。在今后的发展中,航天科技、医疗卫生、生活家居、甚至汽车制造等领域,都需要各种高性能的复合高分子材料。
2.环境友好型高分子材料
经济的粗放发展,给整个地球h境都带来了深重的灾难,而随着人们对环保问题的日益重视,各国对各种材料的生态可降解性要求也日益突出。因此,环境友好型高分子材料的开发和深入研究工作,也引起了各国的重视。当前,生物降解技术和环境友好型高分子材料技术大多掌握在发到国家,我国目前还处于追赶阶段。随着世贸组织对环保观念的更加重视,环境友好型高分子材料在产品中的应用优势也将日益显著,为了把握这一趋势,我国要积极开发研究出有自主知识产权的生物降解技术和环境友好高分子材料。
环境友好型高分子材料,通过易水解的高分子的作用在各种生物酶的作用下,能够加速材料的水解反应,帮助材料进行生物降解。这种高分子材料目前研究的重点方向在理化性能、生物相容性、降解速率的控制以及缓释性等方向。
3.隐身性能高分子材料
隐身性能高分子材料的研究应用主要在军事领域,其也是当前各国的尖端军事技术的研究方向之一。以往的隐身材料多采用超微粒子和细微粉,实践证实,通过吸收衰减层、激发变换层以及反射层等多层材料的微波吸收,能够取得一定的吸波效果,达到隐身的目的。但是,由于材料制备复杂,且雷达技术的日益发展,给隐身技术提出了更高的挑战。此后,隐身性能高分子材料必然是向着厚度更小、质量更轻、功能更多以及频带更宽的方向发展。
【关键词】生物制药 ;发展概况 ;现状 ;前景;人才需求
中图分类号:{C960}
一.生物制药的特点
1、投资大。国际上一个新药物的研制一般需2-3亿美元以上,我国生物制药业虽起点较高,但从基础技术开始新产品研制耗费的资金在5000-10000万元以上。
2、回报高。生物制药具有高回报的特点。一般来说一种新产品研制并进行大批量生产后的回报大概在10-15倍之间,新产品规模生产、上市2-3年后就可收回本金。
3、风险大。从刚开始确定生物制药项目开始,到产品临床试验,转化为大规模生产后可能因为各种生产资质到时项目失败,在业内有有句话形容生物制药行业,那就是有100家企业同时进行某种项目的研究,最总成功的也只有5-10家。
4、周期长。一个生物技术产品从头研制,到获得技术开发成功,最少需6-7年时间,再到临床运用、广泛推广还需2-3年时间,可见其开发周期相当漫长。
5、低污染。生物药品的生产制造一般在常温下进行,能源、原材料的消耗极少,对周围环境几乎不产生污染,对生态环境的改善有一定的作用。
二.国际生物制药产业发展概况
国际上的生物制药的发展是随着生物应用技术的快速发展而形成的,美国发明生物技术并被运用生物制药行业,在以后的几年中在生物制药领域取得了巨大的成功。上个世纪七十年代,世界上第一家生物制药公司以后,世界其他国家也纷纷加入到生物制药行业的研究,并将这个领域作为本国经济发展的重要途径,这些取得成功的国家主要集中于美国、日本和欧洲等发达国家。
美国、欧洲等发达国家,政府在研究经费方面大力扶持,而大多数的发展中国家则凭借政府对高新技术的扶持,准备在最有前景的领域站稳脚步走向最高点。
21世纪,世界各国都在改变科技发展的重点和战略目标,生物制药作为高科技和行业的支柱之一,是各国大力发展和扶持的行业。
三.我国生物制药业的发展现状
对中国来说,扶持本土生物制药产业的发展不仅对中国的医药领域有重要的意义,也对提升中国综合实力,建立和谐社会具有重要作用。
从生物医学产业分析,我国存在的突出问题是研发力量薄弱,技术是水平落后;另外,项目重复建设现象严重,企业规模小,设备落后。这使我国与欧美国家相比还有很大的差距。但是我国生物制药产业起步比较高,相对容易赶超世界水平。
正值我国改革开放之际,全球生物医药行业开始大发展。因此在这一新的领域的起步相对于传统行业要来得高,国际上最新的产品,经过几年消化后,我国医药企业也有自主开发和生产的能力。
总之,中国生物制药产业未来充满希望,生物制药产业将呈继续增长态势。
四、我国生物制药业的发展前景
与其他的行业相比,生物制造业可以说是生生不息,是最具潜力的医药行业。自其产业化以来,年复合增长率达到15%以上,远超全球药品市场增长率以及全球GDP成长水平。
随着全世界对生物药业需求的增加,以及其带来的效益,全球的生物制药产业以空前的速度发展。近几十年来,我国的生物制药产业有了很大的进步,发展速度远超于其他子行业。但是仍与欧美等发达国家有明显的差距,目前我国的生物制药产业在整个医药产业领域中占的比重仍不是很高。“十一五”以来,中国在生物科技创新产业化等方面实施了一系列的科研项目和工程,使中国在这一领域有了好的发展优势。宏观调控下,生物产业保持了快速发展的趋势,生物科技水平飞速提高,重大生物科技研究成果产业化的速度加快,积聚日益明显。“十二五”期间,我国我国将继续加大力度推动生物产业的发展。在此期间生物医药必将实现跨越式的发展。
五.人才需求
由于生物医药行业具有高技术、高投人、长周期、高风险的特点,我国生物医药产业虽然发展较快,却存在着严重的问题,突出表现在研制开发力量薄弱,技术水平落后;项目重复建设现象严重;企业规模小、设备落后等几个方面。因此,今后应该在人才、技术市场等方面加大投人。
培养科研开发决策、管理人才:在知识经济中,人将真正成为最活跃的因素,人和技术的结合将超越资本、设备、土地等生产要素,成为新世纪最重要的竞争武器。生物制药属于知识密集产业,对人才及其素质要求更高。不仅要注意培养新药开发人员的科研水平,更要提高新药开发的决策水平。管理水平。必须把新药开发决策、管理水平的提高,上升到与技术水平的提高相同的高度。在生物制药行业,设备比较落后,人员技术力量薄弱,所以在此行业对人员的需求量还是很大的。
【结语】
截至目前,我国的生物产业发展规划和产业技术政策,政府从上到下对生物技术研究开发的支持和政策扶持;国内的国企和私企对生物技术的关注和生物技术的开发;而我国的生物制药领域也汇集了一大批自己培养和海外归来的高学历、高素质的科学家还有企业家,这四个方面的因素对我国的生物技术产业发展有举足轻重的作用。由于生物医药产业的投资回报周期比较长,在5-8年,而我国进入生物工程领域的时间还比较短,回报周期还不没有到来。预计在二十一世纪的前期将是我国生物制药产业大丰收的时候。
【参考文献】
[1] 王飞娟 张爽 王燕. 生物制药产业的发展现状及前景[J].华章, 2011,(33):344.
1食品工业中的常见生物技术
1.1基因工程
基因工程是基于分子遗传学的理论建立的,又叫做DNA重组技术。对于来源不同的基因,基因工程根据预先设计的蓝图,借助于分子及微生物学,按照现代化的方式,实现杂种DNA分子的体外构建,通过活细胞的有效导入,完成生物遗传特性的全新转变,从而达到获得新品种的目的。在现代生物技术发展中,基因工程是关键组成,食品的包装、保藏等多个环节,都可以将该技术应用其中,实现包装材料的改变,达到降低食品生产成本的目的。同时,将基因工程应用于食品贮藏中,既是一种贮运方式的创新,也能获得食物贮藏期的有效延长。以延熟番茄为例,该种食物的生产就应用到了转基因技术,以调控乙烯合成途径这一办法来使乙烯的合成得到有效抑制,达到番茄延迟成熟、贮藏期延长的效果。
1.2细胞工程
细胞工程中涉及多项生物学理论,既包括现代细胞生物学,也包括发育、遗传学,更对分子生物学方法进行了运用。作为一种生物工程技术,细胞工程基于人们的需求,按照预先的设计,实施细胞层次的遗传操作,对细胞内含物进行重组,对细胞结构进行重组,从而实现生物功能以及生物结构的科学转变。通俗来讲,细胞工程主要是完成新物种的快速繁殖,在实现这一目标的过程中,有效应用了组织培养、细胞培养等生物学办法,引入了基因移植技术、核质移植技术等多项技术。作为一种科学研究办法,生物工程的多个领域都可以看到细胞工程的渗入。在食品工业发展中,细胞工程更是得到了广泛的科学利用。
1.3酶工程
在生物技术中,酶工程也是不可缺少的一种技术,主要实现的是物质转化。就酶本身而言,是具有一定催化作用的,在生物反应器内,利用酶的这一作用,就可以实现物质的转化。
1.4发酵工程
在生物技术组成中,发酵工程同样是不可缺少的。在发酵工程中,借助现代工程技术办法,通过对微生物特定功能的科学利用,实现对某一生产环节的有效控制,或是就此产生一种新的需求物质。
2生物技术在食品工业中的应用分析
2.1肉类食品中的生物技术
在肉类食品生产中,通过生物技术的科学应用,既可以施行对肉类食物资源的有效改造,又能够实现对肉类传统加工工艺的创新,从而使肉制品功能得到进一步增加、肉类加工深度得到更大提升,推动肉类生产的产业化发展。
2.2果蔬保鲜中的生物技术
现阶段,在果蔬保鲜技术中应用较为广泛的就是化学杀菌剂以及冷藏的处理方式了,然而,这样做也存在着很大的弊端。一方面,使用化学杀菌剂,果蔬中的残留会对食用者的健康造成一定威胁;另一方面,化学杀菌剂的长期使用,植物病原菌也会出现抗药性。鉴于此,需要用另一种果蔬保鲜处理方式来取代现在应用较为广泛的化学杀菌剂,而且,新的果蔬保鲜处理还最好是对人体健康没有毒害威胁的,同时又具有高效防腐效用的,生物保鲜技术就能够很好的满足这一要求,国内外都加强了对这一保鲜技术的研究。据相关研究显示,茄子保鲜中应用木霉发酵液能达到极好的保鲜效果。实验发现,在20℃至25℃的贮藏温度范围内,茄子果实如果被木霉发酵液处理,可以保鲜贮藏长达20天。
2.3饮品中的生物技术
在饮品生产中应用生物技术,不仅可以使饮品的风味得到有效改变,也会使饮品品质发生变化,对于产品质量的提升发挥着良好的效果。因此,在饮品产业发展中,生物技术的应用是非常广的。据相关研究发现,在南瓜汁乳酸发酵饮料生产中,以5%的乳酸菌接种量1:1.75的南瓜浆和水配比,分别向里添加7%以及0.05%的蔗糖、蛋白糖,给以40℃以及8小时的发酵条件,由此得到的饮品,不仅可以保持稳定的外观,还有着酸甜适中的独特口感,深受大众欢迎。
2.4食品添加剂中的生物技术
当前,科技术发展日新月异,在食品添加剂生产中,生物技术发挥着无可替代的作用,成为新型生产技术。在各种食品添加剂生产中,如何更好利用生物技术,成为国际研究热点。国内这方面的研究,也取得了一定成绩。比如在牛奶生产中,尤其是在双乙酸奶味香精生产中,可利用双乙酸乳酸乳杆菌进行发酵。向发酵液中,添加一定量的CuS04,可增加双乙酸活性,而添加一定量的0.1%柠檬酸钠,可抑制双乙酸还原酶。因此,制备的奶味香料,具有双乙酸的纯正奶油香味。
2.5食品包装中的生物技术
现阶段,在食品工业发展中,食品包装也更多的应用到了生物技术。而且,在包装食品毒理检测以及食品的防腐方面,生物技术应用也取得了效果。食品检测中的生物技术评价食品品质、开展食品质量监督、实施食品生产监控、加强食品研究等,在食品检验的多个环节,生物技术检测都得到了较好的应用。尤其是在食品卫生检测环节,生物技术的应用为提升食品质量做出了重要贡献。比如,对于蔬菜食品,可以通过免疫分析、活体生物分析等生物技术办法来检测药物残留。同时,在药物残留检测环节,利用生物芯片技术也能获得准确的结论。再如,对于食品中是否含有病毒污染的检测,通过核酸聚合酶连锁反应这一生物技术,可以在短时间内扩增DNA和RN断,从而获得需要的检测数量。除此之外,将基因工程应用于食品检测,通过DNA指纹技术,食品原料是否掺假就可以准确的鉴定出来。而且,通过DNA指纹技术,也能判断出牛奶饮品中是否含有微量毒素。
3生物技术应用于食品工业的前景展望
在高新技术中,生物技术虽然兴起没有多长时间,但却在社会生产发展的多个领域得到了越来越广泛的应用。对于全球性重点关注的问题,如能源问题、污染问题、粮食问题等,都可以通过生物技术的应用得到科学的解决。可以说,生物技术出现而带来的种种经济、社会效益是无法预估的。而随着生物技术的继续发展,将其运用于食品工业,也必然会出现更加广阔的发展空间。
4结语
随着科学技术的发展和生活水平的提高,人们不再满足于对纤维纺织品的一般性需求,又提出了卫生保健、舒适等性能的要求。高性能、多功能的纤维纺织品不断涌现,直接冲击着普通化纤市场。
棉逸:仿棉更超棉
我国纺织化纤工业正处于转型升级创新发展的新阶段,而棉花缺口问题已成为制约行业发展的难题。为缓解棉花等天然纤维的不足,进一步研发新一代高仿真差别化功能化纤维,推进纺织新型高附加值、超仿真织物面料系列产品创新发展,是“十二五”期间纺织化纤共同推进的一项重要战略任务。
2012年,我国化纤产量3,792万吨,其中涤纶产量3,057万吨,约占化纤总量的80%,占世界涤纶总量的70%以上。其发展速度无论是技术水平还是生产品种,远远大于其他合成材料和合成纤维。我国已成为世界上最具活力的化纤聚酯生产大国,涤纶也成为缓解棉毛丝麻等天然纤维不足的主体品种。
2011年,化纤产业技术创新战略联盟承担国家“十二五”科技支撑计划“超仿棉合成纤维及其纺织品产业技术开发”项目,旨在提升我国聚酯行业技术水品,实现多功能、高品质、低能耗、低排放的新一代聚酯(仿棉)纤维大规模市场应用,项目聚集了聚酯产业链上下游企业27家共同攻关。
东华大学材料学院常务副院长王华平表示,“超仿棉”不仅在纤维表面形态和面料风格上追求接近棉织物,重点是面料制品性能功能上超棉仿棉,尤其是与内衣和休闲运动服装密切相关的动态热湿舒适性能。
他指出,“超仿棉”不是具体某一个产品,而是聚酯一个功能化差别化方向;“超仿棉”也不是简单的取代棉,而是结合市场发展的新型产品。
未来,联盟将以宣传推广“逸绵”纤维产品,推动“逸绵”纤维及其纺织品的市场规模应用、打造可信赖的市场品牌、提升产品的附加值为目标,一方面强化新一代仿棉纤维技术创新和产品开发的方向,提升纺织品的舒适性、安全性、外观风格;另一方面,加强标准制定、质量监督认证、舒适性评价等工作,保障新产品市场推广的科学规范化、品牌化,消除消费者的心理障碍,引导消费者理念的转变。阻燃纤维:或成市场热点
阻燃聚酯纤维是一种典型的防护纤维,广泛应用于服装、家纺和产业用纺织品中,具有良好的市场前景。随着人们对火灾危害性认知程度的提高和安全意识的加强,阻燃产品的开发力度不断加大,阻燃聚酯纤维及其制品已成为我国纺织品市场的一个新热点,具有良好的发展前景。
在阻燃聚酯的基础上,开发耐久高效、多功能复合阻燃纤维及纺织品是当今阻燃功能纤维及纺织品的发展新趋势,兼具阻燃、抗菌、防螨等健康防护功能的多功能纺织品在航空、高铁等新兴领域具有极大的应用价值。
目前,大部分具有抗菌功能纤维的制备都是采用纤维改性或后整理的方法,其目的就是引人各类具有抗菌活性的基团及物质。所使用的抗菌材料和抗菌整理剂可分为无机抗菌材料、天然生物抗菌材料和有机抗菌材料等类型。
目前,阻燃聚酯纤维已成为市场的热点,而具有阻燃性能的多功能聚酯纤维更为市场所需求。将普通聚酯特殊功能化、多功能一体化,有助于提高化纤产品的附加值,增强化纤企业的竞争力。
再生化纤:变“废物”为“油田”
随着聚酯消费量的不断增长和环保意识的不断增强,高效化、无害化、密闭化、再循环、高值化回收利用纺织品及废聚酯瓶成为行业发展的一大课题。我国聚酯瓶片年存量已经近400万吨,废旧纺织品年存量已达2,300万吨,其中化纤占年存量的70%。而再生纤维的生产正是把“废物”转换成为纺织基本原料,使“废物”成了我国陆地上新的“油田”。
2012年再生化学纤维产能830万吨,产量530万吨。由于服装出口下降,使用废旧衣物原料国内有15-20%下降,估算布泡料使用量80万吨,进口整瓶/瓶片205万吨(毛片按10%12%,整瓶20%-22%折净瓶片170万吨),废丝僵料泡料25万吨,国内饮料瓶回收量2807/吨。
北京服装学院王锐表示,在再生纤维领域的研究,国外起步较早,近年来,国内发展也比较快。随着我国对于该领域的重视程度逐渐加强,在该领域的投入逐年加大,我国再生纤维总体质量与国外差距已经不大。我国与国外再生纤维领域的差距主要体现在设备上。
根据国情及行业发展规划,再生纤维的技术发展方向是,通过研究废旧纺织品、部分可纺丝塑料的智能识别及高效分离技术与装备,研发高效废旧塑料分拣技术,提高废旧纺织品的回收再生循环比例;通过开发废旧纺织品的分类与预处理技术、资源化技术,减少排放,节约资源,提高产品品质,提高生产效率,增加社会效益和经济效益;大力开发差别化、功能化再生纤维及其制品生产技术,拓展领域,并通过大力宣传提升消费者的认知,倡导健康绿色的消费理念。
王锐认为,我国再生纤维行业发展前景广阔。预计到2020年,中国再生聚酯产业将发展成为以差别化、功能化产品为主导、产业链完善、企业设备先进、产业布局合理、具有较强自主创新能力的产业集群,产业创新体系较为完善,产业特色和比较优势更加突出,成为中国传统产业改造和国内循环经济发展的典型示范产业。
生物质纤维:未来竞争力的提升点
中国是一个缺油的国家,按照现有产业规划,如果今后国内化纤工业增长所依赖的基础化工原料依然依靠进口原油加工来支持,那么行业发展难以摆脱受制于人、大起大落的困局。丰富的生物质资源是绿色化工原料的未来出路,越来越多的化工产品可通过生物质资源得到。
发展生物质纤维是化学纤维工业实现节能减排、发展低碳经济的需要。纺织工业由于其规模和涉及的范围较大,是温室气体排放较大的行业之一。化学纤维制造业消耗大量的能源,被认为属于高碳行业,因此不符合可持续发展和低碳经济的需要。在世界能源危机和倡导低碳经济的背景下,积极发展生物质纤维对实现低碳经济和节能减排,对农副产品深加工、提高农产品附加值,均具有深远意义。为化学纤维工业培育新兴产业、催生新的增长点发展提供了无限的契机,必将成为引领化纤工业发展的新潮流。
【关键词】生物降解 低碳经济 发展前景
据中国塑协塑料再生利用专业委员会介绍,我国每天买菜要用掉10亿个塑料袋,其他各种塑料袋的用量每天在20亿个以上。北京目前每年废弃23亿个塑料袋,产生废旧塑料包装垃圾14万吨,占整个生活垃圾的3%;上海每年产生废旧塑料包装垃圾19万吨,占生活垃圾总量的7%;天津每年的废旧塑料包装垃圾也超过10万吨。目前商场赠送的塑料袋主要是不可降解的,如果用作垃圾袋,将严重危害环境。塑料袋埋在地下会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘,长期污染环境。
2007年12月31日,中华人民共和国国务院办公厅下发了《国务院办公厅关于限制生产销售使用塑料购物袋的通知》。这份被群众称为“限塑令”的通知明确规定:“从2008年6月1日起,在全国范围内禁止生产、销售、使用厚度小于0.025毫米的塑料购物袋”;“自2008年6月1日起,在所有超市、商场、集贸市场等商品零售场所实行塑料购物袋有偿使用制度,一律不得免费提供塑料购物袋”。“限塑令”的约束范围有限,基本局限在大超市和大商场,但“限塑令”前这两部分塑料袋加起来也只占到塑料袋消费总量的20%左右,而对于原本就是塑料袋主要提供者的小商店、商铺和摊贩基本没有约束,仍然有大量免费的、不符合规格的塑料袋被提供给消费者[1]。这同时也可以理解为“限塑令”对于塑料袋生产商的约束力不足,使得大量不合规格的塑料袋在商场上流通。
生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。“纸”是一种典型的生物降解材料,而“合成塑料”则是典型的高分子材料。因此,生物降解塑料是兼有“纸”和“合成塑料”这两种材料性质的高分子材料。
在运用生物降解塑料袋方面,世界各国都有自己的行动。法国推出协议:使用生物基废塑料袋,法国生态部长Chantal Jonanno推出促进全国生物基可堆肥废塑料袋框架协议,政府2010年将生产含40%蔬菜基材料废塑料袋,2018年比例提高至70%,适用于整个国内消费者[2]。德国超市Aldi S・d于2009年3月起加快推行生物降解塑料袋, 这种购买袋由巴斯夫公司的生物降解塑料Ecovio制成,Ecovio由Ecoflex以及由谷物制取的聚乳酸(PLA)组成。Ecoflex为石油化学基聚酯,但因其分子结构特殊而可被微生物消化,按照欧洲标准EN 13432,它可完全被降解[3]。泰国巴斯夫公司启动一项推广生物可降解塑料袋使用的试点计划。这一试点计划于2009年7月一12月在Samut Songkhram府展开,旨在推广使用生物可降解塑料来收集家庭有机废物,并将由此生成的高质量堆肥用作有机肥料来改良土质[4]。目前,全球石油基塑料产量为1165亿t/a。在全球石油资源供给日趋紧张,以石油为原料的合成塑料所引发的环保问题日益突出的情况下,生物塑料市场需求量将迅速增长。
另外,低碳经济的发展也给生物降解塑料带来了新的发展机遇。低碳经济”概念的出现与气候变化和能源安全两大主题密不可分。它是以低能耗、低污染、低排放为基础的经济模式,是人类社会继农业文明、工业文明之后的又一次重大进步。当前低碳经济发展方兴未艾,正成为世界经济新的增长点。中国科技部、中国社科院和中国现代国际关系研究院的多位专家学者在接受记者采访时认为,发展低碳经济正成为世界许多国家抢占未来经济制高点的重要战略选择,低碳市场的快速发展将对全球产业及金融产生深远影响,进而影响世界经济的发展格局,低碳经济或将成为世界经济未来发展的新模式并形成相应的新游戏规则。因此,各生产商不断扩大产能,积极开发新品,各国著名咨询公司也纷纷对生物塑料的未来作出乐观预测。2008年11月,在德国柏林举行的第三届欧洲生物塑料会议预测,近年来全球生物塑料市场发展迅速。生物塑料无论在零售还是树脂方面都已经成为一个可观的市场,这一市场将在未来几年持续增长。
据专家预测,在今后5~10年内,我国国内将形成一个由淀粉基、PLA、PBS降解塑料为主的销售大市场,年产值达几百亿元。按照产品生命周期分析,生物塑料产品尚处于萌芽期和发展期,市场存在巨大增长潜力。其市场需求将由几大因素:国家政策、客户需求、石油涨价等决定,而这些因素和条件正在逐步形成,特别是低碳经济的兴起,更是对全球生物塑料的发展起到了显著的推动作用。同时,碳排放交易将取代石油期货交易,这也很可能促进生物塑料市场需求呈爆炸式增长。
生物分解塑料入市前应该做好市场调研、产品定位和产品质量认证等准备工作。生产者应该全面了解国内外产品生产、应用和销售现状,即应该了解国际市场需求到底有多大、各类原料的价格到底有多大的区别、原料的生产能力到底有多大。其次,要根据降解塑料的定义,正确定位生产产品,有效进行宣传。再次,要完善产品质量保证的证书工作。最后,生产企业在入市前还应根据需要做好原料的储备、流动资金的准备工作,对出口型的企业还应该注意知识产权保护等。
参考文献:
[1]张文磊,王芳芳,黄文芳.“限塑令”后居民塑料袋消费调查[J].城市问题,2009(9).
[2]法国推出协议:使用生物基废塑料袋[J].塑料科技.2010,38(3).
[3]钱伯章.德国超市流行生物降解塑料袋[J].聚酯工业.2009(3).
[4]泰国启动生物降解塑料袋推广计划[J].国外塑料.2009,9.
牙科陶瓷材料的摩擦学性能
1硬度
以往观点认为修复材料的硬度即可代替其磨耗性能,牙釉质及修复材料的过度磨耗是由于修复材料的高硬度导致的。但是就目前对陶瓷材料与天然牙磨耗的研究结果表明,相对较软的陶瓷材料对天然牙釉质的磨耗反而较硬质陶瓷材料更大[5]。对于多晶的陶瓷材料,硬度在磨耗行为中的作用不如在金属材料中那样重要,仅由硬度这一参数并不能完全代表陶瓷材料的磨耗特性。对某些陶瓷材料两者的相关性甚至被认为很差[6]。
2表面处理
修复体表面粗糙程度的不同会对牙釉质的磨耗产生影响。国外学者研究发现牙釉质的磨损量随着陶瓷材料表面粗糙度的增加而增加,未经上釉或抛光的釉质磨耗明显大于上釉或抛光者。MohammadAlbakry[7]研究了喷沙、打磨、抛光、上釉等多种陶瓷修复体制作工艺,表明抛光的陶瓷修复体表面比上釉等其他加工方法制成的陶瓷表面更光滑,挠曲强度更高,而且上釉增加了烧结次数,影响陶瓷的热膨胀系数并可引起裂纹,所以多数学者建议从对釉质的磨耗方面考虑,完成临床调磨后应以高度的抛光代替上釉,同时能使陶瓷修复体长久保持光洁表面的修复工艺技术有待进一步研究。
3组成和微观结构的影响
陶瓷由于其美学性能而被广泛应用,但近年的研究发现即使上釉和抛光改善了陶瓷对天然牙造成过度磨耗,但仍不能完全解除。国内外学者普遍认为瓷粉的组成和微观结构的不同影响对釉质的磨耗[8]。低熔烤瓷比普通烤瓷材料对釉质影响小,与普通烤瓷材料相比,低熔瓷粉具有较少量晶体相,较多的玻璃成分,其瓷粉颗粒规则而细小,易于得到高度抛光的表面,可解释其较低的磨耗性[9]。此外还可能的原因是,低熔瓷的低温操作避免了瓷冷却过程中出现的余应力及微裂。在口腔环境中影响磨耗的因素错综复杂,往往是多种因素共同作用影响陶瓷材料的磨耗性能,深入探讨材料的磨耗机制对于口腔材料的研制是非常必要的。
树脂修复材料的摩擦学性能
复合树脂材料自身耐磨性较差,对天然牙的磨损较小。随着新型树脂材料物理性能不断提高,有些树脂材料的耐磨性已接近牙釉质[10]。临床应用范围也更广泛,不仅用于牙齿的充填,而且也用于冠和桥的制作。目前在临床上树脂嵌体修复采用较多的材料之一Ceramage聚合瓷是微瓷聚合树脂,兼具瓷和复合树脂的优点。因此,与牙釉质耐磨性相近树脂修复材料具有广泛的发展前景。
展望
关键词 高分子材料 智能高分子材料 响应速率 进展
智能高分子凝胶
高分子凝胶是指三维高分子网络与溶剂组成的体系,网络交联结构使其不溶解而保持一定的形状,因为凝胶结构中含有亲溶剂性基团,使之可被溶剂溶胀而达到平衡体积。这类高分子凝胶可随环境条件的变化而产生可逆的、非连续性的体积变化。高分子凝胶的溶胀收缩循环使之可应用于化学阀、吸附分离、传感器和记忆材料等领域;循环提供的动力可用来设计“化学发动机”;网孔的可控性适用于智能药物释放体系。高分子凝胶的刺激响应性包括物理刺激(如热、光、电场磁场、力场、电子线和射线)响应性和化学刺激(如值、化学物质和生物物质)响应性。随着智能高分子材料的深入研究,发展具有多重响应功能的“杂交型”智能高分子材料已成为这一领域的重要发展方向。例如,刘锋等合成的羧基含量不同的 值敏感及温度敏感水凝胶聚(异丙基丙烯酰胺丙烯酸)及含有聚二甲基硅氧烷的聚(异丙基丙烯酰胺 丙烯酸),可使吸附在水凝胶中的木瓜酶随着生物体内环境的变化而自行完成药物的控制释放。紫外线辐射法合成的甲基丙酰胺,二甲氨基乙酯水
目前,具有化学阀功能的高分子膜应用范围还比较窄,尚依赖于新材料领域的不断发展。
形状记忆高分子材料
形状记忆高分子材料是利用结晶或半结晶高分子材料经过辐射交联或化学交联后具有记忆效应的原理而制造的一类新型智能高分子材料。形状记忆过程可简单表述为:初始形状的制品―二次形变―形变固定―形变回复。其性能的优劣,可用形状回复率、形变量等指标来评价。在医疗领域, 形态记忆树脂可代替传统的石膏绷扎, 具有生物降解性的形状记忆高分子材料可用作医用组合缝合器材、 止血钳等。在航空领域, 形状记忆高分子材料被用作机翼的振动控制材料。利用高分子材料的形状记忆智能可制备出热收缩管和热收缩膜等。近几年来, 我国已先后开发出石油化工、通信光缆等领域的热收缩制品及天然气、市政工程供水及其他管道接头焊口和弯头的密封与防腐的辐射交联聚乙烯热收缩片。聚全氟乙丙烯树脂热收缩管是一种新型的热收缩材料,具有较强的机械强度,能长期在―260摄氏度至205摄氏度下使用,并保持原有聚全氟乙丙烯树脂优异的电气性、耐化学腐蚀性 。以对苯二甲酸二甲酯、间苯二甲酸、乙二醇为原料,采用间歇聚合法可合成热收缩膜用共聚酯切片,采用双向拉伸工艺制得的新型包装膜―― ― 热收缩性双轴拉伸共聚酯膜,可用作精密电子元件及电缆包覆材料。目前,形状记忆聚氨酯、聚降冰片烯、聚苯乙烯的研究开发有着诱人的发展前景。
智能织物
将聚乙二醇与各种纤维 (如棉、聚酯或聚酰胺聚氨酯)共混物结合,使其具有热适应性与可逆收缩性。所谓热适应性是赋予材料热记忆特性,温度升高时纤维吸热,温度降低时纤维放热,此热记忆特性源于结合在纤维上的相邻多元醇螺旋结构间的氢键相互作用。 温度升高时,氢键解离,系统趋于无序状态,线团弛豫过程吸热。当环境温度降低时,氢键使系统变为有序状态,线团被压缩而放热。这种热适应织物可用于服装和保温系统,包括体温调节和烧伤治疗的生物医学制品及农作物防冻系统等领域[4] 。
当前,分子纳米技术与计算机、检测器、微米或纳米化机器的结合,又使织物的智能化水平得到了进一步提高。自动清洁织物和自动修补的织物等更加引起人们的关注 。
智能高分子膜
高分子薄膜在智能方面研究较多的是选择性渗透、选择性吸附和分离等。高分子膜的智能化是通过膜的组成、结构和形态的变化来实现的。现在研究的智能高分子膜主要是起到“化学阀”的作用。对智能高分子膜的研究主要集中在敏感性凝胶膜、敏感性接枝膜及液晶膜方面。用高分子凝胶制成的膜能实现可逆变形,也能承受一定关的静压力。目前报道的主要有聚甲基丙烯酸聚乙二醇、聚乙烯醇聚丙烯酸共混物等。高分子接枝膜可通过表面接枝和膜孔内接枝的方法来制得,其作用机理基本相同。膜的孔径变化是建立在溶质分子与接枝于膜中的高分子链的相互作用基础之上。目前,具有化学阀功能的高分子膜应用范围还比较窄,尚依赖于新材料领域的不断发展。
智能高分子复合材料
智能高分子材料在工业、建筑、航空、医药领域的应用越来越广泛。复合材料大都用作传感器元件。新的智能复合材料具有自愈合、自应变等功能。在航空领域,美国一研究所正在研制用复合材料制成的贴在机冀上的“智能皮”,以取代起飞、转向、降落所必需的尾翼和各种襟翼。这些“智能皮”可以根据飞行员和飞机电脑的指令改变外形,起到与飞机尾翼和襟翼相同的作用。在建筑领域,利用复合材料的自诊断、自调节、自修复功能,可用于快速检测环境温度、湿度,取代温控线路和保护线路。用具有电致变色效应和光记忆效应的氧化物薄膜制备自动调光窗口材料,既可减轻空调负荷又可节约能源,在智能建筑物窗玻璃领域得到了广泛应用。
其它功能的高分子材料
高分子薄膜
高分子薄膜在智能方面研究较多的是选择性渗透、选择性吸附和分离等。如壳聚糖、丝素蛋白合金膜在不同的pH值缓冲溶液中或不同浓度的Al3 +溶液中交替溶胀、 收缩的行为具有良好的重复可逆性符合作为人工肌肉的条件;而控制异丙醇 - 水体系中添加的 Al3 +浓度 ,可以控制配合物膜的溶胀 ,进而控制膜的自由体积 ,以达到作为化学阀门控制膜的渗透蒸发通量的目的。
液晶聚合物
液晶高分子通过熔融或溶解呈液晶状态,它有经成型加工而实现优良的分子排列结构的主链型将液晶规则地配置在侧链或末端,通过电场或磁场作用而控制分子排列的侧链型,通过引入含有抑制成分的液晶化合物而具有不对称识别性能和强感应性的化学活性液晶等。
目前,我国智能高分子材料的研究与开发存在着不足,与世界先进水平相比尚有相当大的差距,影响了我国信息、航天、航空、能源、建筑材料、航海、船舶、军事等诸多部门的发展,有时甚至成为制约某些部门发展的关键因素。国外智能高分子材料正处于研究开发阶段,各发达国家都对其相当重视。因此,21世纪智能高分子材料会被更加广泛的应用,从而引导材料学的发展方向。
参考文献
[1] 贡长生,张克立. 新型功能材料[M] . 北京:化学工业出版社,2001
我国国家科技兴海产业示范基地再添3支“生力军”。近日,从国家海洋局海洋科学技术司获悉,国家海洋局已将辽宁大连现代海洋生物产业示范基地、江苏大丰海洋生物产业园和福建诏安金都海洋生物产业园认定为国家科技兴海产业示范基地。至此,我国国家科技兴海产业示范基地数量上升为4个。
国家科技兴海产业示范基地是对海洋科技成果转化、海洋高技术产业发展具有示范、支撑和带动作用的企事业(群)或者具有鲜明产业特色的区域。基地以培育海洋高新技术企业、提高海洋高新技术产业化规模和促进产业聚集为目标,为实施科技兴海战略,推进产学研合作创新,促进海洋战略性新兴产业发展,推动海洋经济发展方式转变提供有力支撑。2011年底,上海临港海洋高技术产业示范基地被认定为第一家国家科技兴海基地。
据海洋科学技术司有关负责人介绍,此次审批的3个科技兴海基地的当地政府高度重视海洋经济结构战略性调整,将海洋高技术产业和战略性新兴产业作为主导产业推进,并给予专门的政策扶持。
大连现代海洋生物产业示范基地立足于海洋生物科技与产业优势,围绕海洋生物育种与健康养殖、水产品精深加工、海洋医药和生物制品研发等方面,辐射带动生态型海洋牧场先导示范区、大连名特优海洋生物良种示范区、海洋生物工程化养殖及装备制造示范区和海洋生物制品产业示范区发展。江苏大丰海洋生物产业园在耐盐植物、海藻和滩涂贝类养殖等领域具有独特的区域产业特色,规划目标明确。目前,该园区依托江苏及长三角地区雄厚的人才、资源、技术等有利条件,成功引进了几家龙头骨干企业,发展前景较好。福建诏安金都海洋生物产业园围绕海洋生物医药材料、海洋生物制品、海洋生物育种与健康养殖等特色领域,建成、在建和签约了多个海洋生物医药材料和海洋生物制品等项目。虽然目前园区的海洋生物战略性新兴产业发展尚处于初期阶段,但发展潜力很大。
国家海洋局要求,此次获批的3个基地要加大工作力度,加快基础设施、服务体系和相关产业建设,确保将土地、资金、政策等专门配套措施落实到具体项目的研发、使用和推广上,扎实完成各自的发展目标和各项任务。同时,基地还要充分利用当地资源优势,做大做强海洋生物产业,注重海洋生态环境保护,全面引领海洋经济创新发展。
Abstract: Construction and utilization of public space plays a more and more important role in the plan and construction of modern city. It embodies the characteristics of city, and is the ties of human and nature. The use of bionics riches the designing method of city public space, and is the headspring of design innovation. It promotes the use of ecological idea in landscape design, which is significant and has vast potential for future development.
关键词: 仿生设计;城市开放空间;生态设计;可持续发展
Key words: bionic design;city public space;eco-design;sustainable development
中图分类号:TU984.11+3 文献标识码:A 文章编号:1006-4311(2012)03-0083-01
0 引言
城市公共空间是城市环境的重要组成部分。随着城市文明的不断发展和城市居民生活质量的提高,人们对城市建设有了越来越高的要求,而囊括了所有供城市居民日常生活和社会生活公共使用的城市公共空间的设计则是城市设计的重中之重。设计师们从自然界中汲取灵感,以求通过模仿大自然的设计过程来解决环境所面临的问题。
1 仿生设计
自然界是人类科技进步的源泉。自然界的生物在漫长的进化过程中,为了自身的生存与发展,逐渐进化出适应自然界变化的各种本领。为了使人类更优雅地生存在地球上,设计师们开始尝试向自然界中的其他物种学习,听取他们设计上的建议。仿生设计便由此应运而生。仿生设计是以自然界万物为设计源,以其“形”、“色”、“音”、“功能”、“结构”等为研究对象,有选择地在设计过程中对这些特征原理进行综合、利用及改进,为设计提供新的思想、新的原理、新的方法及途径,以实现人类社会和自然的和谐统一。
2 仿生设计在城市开放空间中的应用形式
我国早在原始社会就有了仿生学的雏形,如古人们模仿飞禽学会了筑巢,由此躲避野兽的袭击;模仿鱼类学会了造船,由此取得水上运输的自由,等等。仿生设计发展到今天,更是在多个领域都有了突飞猛进的发展。仿生设计的源物体为自然界中的一切物种,包括人类自身。而涉及景观领域的仿生设计,主要有以下几种形式:
2.1 形态仿生 形态仿生是对具有美感的生物体的线条、形态、色彩等的直观模仿或对意境的提炼和升华。它用一种直白的方式蕴含自然哲理,表达出对自然的向往。由于具象形态容易表现情趣性、亲和性、自然性,直观地对自然对象的外观进行再现和模仿,可以传达出浓厚的情趣感和亲和力。故多应用于一些景观小品中来营造活动的氛围。如居住小区中用苗木修剪造型而成的鸟类、动物形象, 用石材等制作的人物塑像,以动植物形态塑造的园林小品等。
2.2 材料仿生 材料的仿生,就是通过对生物组成、形态、结构的研究和分析,研制出具有一定功能的人工材料,使之与周围环境协调。城市环境中最简单也最常见的一种就是仿木、仿竹、仿石材料的运用,能给人朴实、自然的感觉,可缓解人们因工作而引起的疲劳与压力,还能达到良好的视觉效果。
2.3 结构仿生 结构仿生是建筑仿生学中一个成熟的分支学科, 也是运用最为广泛的。结构仿生通过研究生物整体或部分的构造组织方式,对其力学结构和组织原则进行模仿,以解决问题。例如城市广场中常用的张拉膜结构,其灵感便是来自于昆虫轻盈的翅膀通过张拉产生力学美这一自然现象。
2.4 功能仿生 功能仿生是从功能出发,对生物的形态和结构、群落的生理机能或自然力的作用规律进行模仿。生物模拟学家Benyus认为“我们必须具备一种与这些生物体更相近的能力,那就是找到一个方法,减少材料用量,那种我们所用的材料,然后加上设计。”例如,人们模仿萤火虫的发光原理制成的冷光源可将发光效率提高十几倍,大大节约了能量;模拟自然界水体自净的过程来实现景观中水生系统的自我净化等等。
2.5 布局空间仿生 对空间布局的仿生常融合了形态、材料、结构和功能等多项仿生设计,使空间布局具有优美的构图、强烈的逻辑、完整的结构,并能够表达一个明确的主题。例如成都活水公园利用“鱼水一家”这一自然生态原理,在外形上采用了仿鱼形设计,为世人展示了模拟与再现自然环境对污水净化处理的全过程。
3 仿生设计运用于城市公共空间设计的意义
“想象要设计一个春天,想象一切和谐编排,想象那些时机、那些巧合,完全没有上对下的法则规律,或政策,或气候变迁草案,每年都这样发生。有很多争奇斗艳……空气里充满爱,有很多盛大的开场。而这些生物体,他们全都井然有序。”这是Benyus在TED演讲中描述的自然界,在这一描述中我们看到了人类所追求的和谐。大自然给我们的灵感是不会枯竭的,我们要向自然界中的生物学习如何与我们的生活环境和谐相处。仿生学的发展为我们提供了这一契机,它丰富了设计的形式语言,成为设计创新的源泉,促使生态理念运用于景观设计的更深层次。
4 仿生设计在城市公共空间设计中的发展前景
生态环境的不断恶化,使绿色未来、节能经济成为大势所趋。随着时代的变迁,环境的变化,人类逐渐发现生物界能够教给我们很多东西,仅仅认识这些生灵是不够的,与它们共处一室,不仅是为了研究,而是要从它们那里学到东西,以能够应用到人类的生活中,这可能帮助全球能源问题,减少浪费,提高能源的可持续性利用。德国著名设计大师路易吉·科拉尼说:“设计的基础应来自诞生于大自然的生命所呈现的真理之中。”自然给设计的启示不应仅仅只是视觉上的,环境系统中的仿生更重要的是研究自然生态系统如何维持自己,使人造环境具有与自然环境一样出色的功能。城市公共空间设计应将这些自然造物法则穿插运用,最大化的为人们营造接近自然的户外环境。当前人们都在追求低碳生活,但我国的城市共空间设计中还存在着许多关于环保节能方面的阻碍,但这可能是短暂的,随着材料、技术和设计水平的不断发展与提高,随着仿生设计的不断渗透,相信未来的城市公共空间一定会为人们追求低碳生活开辟更加广阔的道路。
5 结语
社会是不断发展进步的,环境的好坏可以做为衡量发展的标尺。通过向大自然学习,设计师可以模仿自然系统,不断设计出更高效的社会环境。
参考文献:
[1]申益春.论仿生形态设计在景观设计中的应用[J].规划师,2007,6:95-97.