时间:2022-03-05 15:24:29
导语:在信号自动化论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:PLC,modbus,自动化
1、引言
Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。论文参考,modbus。
此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。
因此,Modbus协议具有适用性广泛,使用灵活,同时还具备实时纠错等多种优点,应用在打印适配板与PLC通讯中可以自如的设定其数据格式,并有效防止打印乱码等打印故障的产生。
2、设计方法
本设计采用打印适配板作为主站,S7-200 PLC做从站的方式,由打印适配板主动读取PLC中的数据,并根据数据内容来决定打印的格式、时间、打印字符内容。
2.1 modbus通讯帧的结构
本设计采用消息帧采用RTU模式,其结构如下:
① 因其消息发送至少要以3.5个字符时间的停顿间隔开始,所以其起始位为T1-T2-T3-T4。
② 设备地址标示主机下从站的地址,如可以将从站S7-200地址 设为16(如右图)。
③ 功能代码为该消息所要实现的功能
例如:一从主设备发往从设备的消息要求读一组保持寄存 器,将产生如下功能代码:
0 0 0 0 0 0 11 (十六进制03H)
对正常回应,从设备仅回应同样的功能代码。对异议回应,它返回:
1 0 0 0 0 0 11 (十六进制83H)
除功能代码因异议错误作了修改外,从设备将一独特的代码放到回应消息的数据域中,这能告诉主设备发生了什么错误。
④从主设备发给从设备消息的数据域包含附加的信息:从设备必须用于进行执行由功能代码所定义的所为。这包括了象不连续的寄存器地址,要处理项的数目,域中实际数据字节数。
⑤当选用RTU模式作字符帧,错误检测域包含一16Bits值(用两个8位的字符来实现)。错误检测域的内容是通过对消息内容进行循环冗长检测方法得出的。CRC域附加在消息的最后,添加时先是低字节然后是高字节。故CRC的高位字节是发送消息的最后一个字节。
2.2 modbus协议的通讯周期
查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。论文参考,modbus。论文参考,modbus。
如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。
2.3 PLC modbus库初始化的设置
其中:
Mode: 输入数值1将端口0指定给Modbus协议并启用协议;将输入数值0指定给PPI,并禁用Modbus协议。
Addr:S7-200作为从站的地址。论文参考,modbus。
Baud:通讯的波特率。
Parity: 0-无奇偶校验,1-奇数奇偶校验,2-偶数奇偶校验。
Delay: 数通过将指定的毫秒数增加至标准Modbus讯息超时的方法延长标准Modbus讯息结束超时条件。
MaxIQ: 参数将供Modbus地址00xxxx和01xxxx使用的I和Q点数设为0至128之间的数值。数值0禁用所有向输入和输出的读取。
MaxAI: 参数将供Modbus地址03xxx使用的字输入(AI)寄存器数目设为0至32之间的数值。数值0禁用模拟输入的读数。
MaxHold: 参数设定供Modbus地址04xxx使用的V内存中的字保持寄存器数目。
HoldStart:即打印适配板存取V内存中保持寄存器的起始地址。设置为&VB100,而MaxHold为25,所以VB100-VB200将被打印适配板所使用,编程时需避免与其冲突。
2.4 打印适配板的控制
打印适配板会持续读取VB100-200中所储存的信息,以做出其动作判断。因此,向规定地址中写入数据,就可以控制打印系统的运行。
如将”20”送入VB125,即可启动打印板的数据记录
VD136,VD140,VD144即为数据被打印适配板所读取的地址。
打印适配板将打印报表的格式固化在打印板中,接受到数据采集结束信号以后,会将本次数据储存,并在接到打印信号以后将其打印在报表的固定位置。论文参考,modbus。
3、结束语
Modbus工业协议因其适用性广泛、简单易用,通讯较为可靠等优点,在现代自动化设备与工业控制领域得到了广泛的应用。而在传统的PLC数据打印方式中,数据受到干扰时微打无法判断接收的是否正确,经常造成打印异常,表现为乱码、微打不打印等故障。论文参考,modbus。采用Modbus协议以后,就可以有效的避免这些问题的产生,使得需严格数据保存的自动化设备的可靠性得以保证。
参考文献
[1]SIEMENSSIMATICS7-200可编程序控制器
[2]MODBUSoverseriallinespecificationandimplementationguideV1.0modbus.org
[3]华镕编著从Modbus到透明就绪—施耐德电气工业网络的协议、设计、安装和应用机械工业出版社2009
[4]中国国家标准化管理委员会基于Modbus协议的工业自动化网络规范中国标准出版社2004
【关键词】中压宽带 电力线 通信接入方式 信道特征 测试 分析
一、中压电力线路的结构与特征
中压电网构成相对简单。与低压线路相比,它能够克服距离长短的限制,噪音较低,然而,供电系统仅适合于几十赫兹低频信号传输,如果进行高频信号传输,附加宽带PLC的使用,就会产生一系列影响信号传输质量的不良因素,如:通信串扰、信号泄漏、信号的干扰等,解决这些问题的唯一方法就是发明更加高端、更为先进的PLC接入设备与调制方式。其中宽带PLC中压耦合接入设备成为重点探究的对象,经研究其符合我国电网结构与特征。我国电网结构与数据图如下所示:
从上图可看出:我国电网结构包括:高、中、低三个层次级别,变压器将各个等级层次连接起来,这无疑成为了高载频数据通信的一大障碍,所以,要想解除变压器的限制,就要通过分级接入的方式来处理PLC宽带链接,也就是要根据各个电压级别层次来对应设计出适应性的接入设备。如图展示,只有在中低压中间设置合适的接入设备,才能确保远距离通讯的实现。
二、中压宽带PLC系统接入方式
这一系统接入涵盖PLC 以及同其他宽带通信网络(互联网服务供应商)之间的接口, 传统的互联网与这一接口链接起来得到相关的数据信息,其中包括传输信号于中压线路的设备接口,这些传输的信号需要途经MV-PLC主调制设备以及MV耦合装置这两项设备。
MV-PLC主调制设备是对中压与低压连接处的接口进行调节,主要作用为将中压线中所附带的宽带PLC数据信息进行转换与调制,直接目标为低压线路,终极目的为网络用户。下面就第一个中压PLC实验线路展开测试,把这一测试当作理论探究的依据。
三、中压线路信道测试与分析
(一)测试的目的与结果分析
目的:研究出更先进的设计依据以及技术储备为宽带PLC逐步发展到中压线路打下基础,为全程中压线路长距离接入做好技术与信息资源上的准备。
(二)测试结果分析
1.阻抗特性分析
经过实践的操作运行得出:中压10kv配电线路的阻抗性能会受到测量方位、时间以及频率等的影响,会随着它们去变化,变化幅度由数十到上百的量,通过高频信号发生器所出现的正弦电压信号,设定1MHZ-30MHZ的频率范围,在500KHZ的频率间查看阻抗变化。通过采集V1、V2来对应计算出线路的阻抗值。下图为测试整理后得出的中压线路输入阻抗变化图:
2.噪声特征分析
经过实践测试得出:中压线路的有色背景噪声大概在―60dBV/hz―80dBV/hz,同低压线路的平均噪音对比起来,大约多出10 dBV/hz。而且其窄带扰乱性噪音则更高。而且测试发现:中压线路中各个测试点有色背景噪声的PSD数值间没有很大差别,其窄带干扰也发生在小于25MHZ的范围内。由此可见,展开对线路上噪声频域以及进行时等方面的分析是十分必要的。
3.衰减性分析
与低压线路相比,中压线路更容易发生衰减现象,而且相对严重。大概每100米衰减8―11db,但是,在1.7千米线路范围内也能够顺利进行通信。当将调制解调器的功率放大时,在各个测试长度中都能够达到信息传输与通信通话等目的,实现了通讯水平的提高。各个测试点距离下的测试内容与数据如下图:
四、总结
为了提高通信质量与水平就要促进宽带PLC系统向着中压电力线路前进,经过不断的实验与测试来提供大量宝贵的信息数据资源,并且在阻抗性、衰减性等加以发展与更新。
参考文献:
[1]丁道齐把握世界通信发展趋势确立电力通信发展战略[期刊论文]-电力系统自动化 1999(07)
[2]王乔晨;郭静波;王赞基低压配电网电力线高频噪声的测量与分析[期刊论文]-电力系统自动化 2002(01)
论文摘要:文章要介绍的是变电站综合自动化系统的发展趋势和重要性,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析。
一、 概述
电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善变电站综合自动化系统,是电力系统发展的新的趋势。
二、 系统结构
目前从国内、外变电站综合自动化的开展情况而言,大致存在以下几种结构:
(一)分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。目前,还存在在抗电磁干扰、信息传输途径及可靠性保证上的问题等。
(二)集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
软件复杂,修改工作量大,系统调试烦琐。
组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。
(三)分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)和就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即变电站层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
可扩展性和开放性较高,利于工程的设计及应用。站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。
三、常见通讯方式
目前国内常采用以太网通讯方式,在以太网出现之前,无论RS-232C、EIA-422/485都无法避免通信系统繁琐、通讯速度缓慢的缺陷。现场总线的应用部分地缓解了便电站自动化系统对通信的需求,但在系统容量较大时依然显得捉襟见肘,以太网的应用,使通讯问题迎刃而解。常见的通讯方式有:
双以太网、双监控机模式,主要是用于220-500kV变,在实现上可以是双控机+双服务器方式,支撑光/电以太网;单以太网,双/单监控机模式;双LON网,双监控机模式;单LON网,双/单监控机模式。
四、变电站自动化系统应能实现的功能
微机保护:是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护应具有下列功能:故障记录;存储多套定值;显示和当地修改定值;与监控系统通信。根据监控系统命令发送故障信息,动作序列。当前整定值及自诊断信号。接收监控系统选择或修改定值,校对时钟等命令。通信应采用标准规约。
数据采集及处理功能:包括状态数据,模拟数据和脉冲数据
状态量采集。状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信号、事故跳闸总信号、预告信号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。
模拟量采集。常规变电站采集的典型模拟量包括:各段母线电压、线路电压,电流和有功、无功功率值。馈线电流,电压和有功、无功功率值。
事件记录和故障录波测距。事件记录应包含保护动作序列记录,开关跳合记录。
变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。
控制和操作功能。操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
防误闭锁功能。系统的自诊断功能
系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。
数据处理和记录。历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有:
断路器动作次数;断路器切除故障时截断容量和跳闸操作次数的累计数;输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间;独立负荷有功、无功,每天的峰谷值及其时间;控制操作及修改整定值的记录。
根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现。
人机联系系统的自诊断功能。系统内各插件应具有自诊断功能,自诊、断信息也像被采集的数据一样周期性地送往后台机和远方调度中心或操作控制中心与远方控制中心的通信。
本功能在常规远动“四遥”的基础上增加了远方修改整定保护定值、故障录波与测距信号的远传等,其信息量远大于传统的远动系统。还应具有同调度中心对时,统一时钟的功能和当地运行维护功能。
【关键词】智能家居;嵌入式技术;语音识别;智能化控制
一、前言
1980年在室内设计领域人们开始提出“智能家居”的构想[1],该构想提出之初只是为实现对住宅内部的监控与管理。随着网络技术的发展,这一构想逐渐加入了网络通信、信息家电、设备自动化等内容。这一构想是将系统、结构、服务和管理融为一体,实现高效、安全、便利、环保的居住条件。
二、智能家居的概念
智能家居是指将家庭中的各种智能化设备如家用电器、通讯装置、家庭安防设备连接到家庭区域的智能化平台上,这一连接通过家庭总线技术实现。通过该连接对远程监控及管理家庭各项事务。实现智能家居的基础是家庭网络建设,主要联网方式为有线、无线两种。智能家居是实现对家庭照明系统、家电控制、安防的远程控制,使家居环境在无人的条件下得到管理。
三、智能家居系统的工作原理
智能家居系统中家庭网络终端是连接到PSTN上的,当用户通过家庭电话对家用电器进行控制时,web服务器接收到由浏览器传输来的信号,然后管理中心的主机系统将信号传输给网络终端,相关的家用电器接受来自网络终端的信号完成对家用电器的远程控制。控制完成后网络终端将控制后的信息传输到管理中心主机系统,管理中心将这一信息写入管理数据库,并将最终控制信息反馈到用户系统,如图1,智能家居控制系统工作流程图。
四、嵌入式技术在智能家居控制系统中的应用
(一)嵌入式语音识别在智能家居控制系统中的应用
大量词汇连续语音识别和小词表嵌入式语音识别是目前语音识别的两个方向,智能家居控制系统中主要运用的是小词表嵌入式语音识别[3],主要体现在智能遥控、语音控制,儿童智能玩具等方面,由专门的硬件系统来保证小词表嵌入式语音识别的正常运行。首先对设备进行语言信号的输入,然后经过预处理及语言信息特征的提取得到一组能够反应该语段信息的信号模型,然后将该信号模型输入系统的语言信号模型库进行信号匹配,最后得出此次语言信号的控制结果,将该结果作用于所控制的设备。简单来说嵌入式语音识别的工作原理为:语言信号采集信号预处理信号特征提取模式匹配信号输出。
1.信号预处理。语言信号具有非平稳性,任何外界条件都会对信号产生干扰,比如气流、噪音等。在信号的预处理阶段要剔除这部分不在控制信号内的干扰用因素,提取正确的控制信号。
2.信号特征提取。通过对语音声学参数的计算,运用声学特征计算方法得出提取的语言信号中反映控制参数的信息。线性预测系数、线性预测倒谱参数及Mel倒谱系数为常用的三种语言信息控制参数。
(二)嵌入式技术在家庭安防系统中的应用
安全防护智能化及消防报警的自动化是智能家居控制系统中的重要组成部分[4]。当家中出现破门入室、火灾等紧急情况时安全防护系统及消防报警系统能够自动启动,保证家庭成员的快速安全撤离。在智能化防护与消防报警系统中,信号感应器位于室内当发生紧急情况比如火灾时,位于室内的信号接收器接收到烟雾信号,将信号经过处理分析后传输到管理中心,管理中心将信号传输到网络终端,由网络终端下达应变信号即向值班室发出警报同时由安装在室内的消防喷头喷水灭火。
(三)嵌入式技术在家电设备智能化中的应用。家电设备智能化是智能家居控制系统得以实现的前提。根据用户对于家电智能化的需求对家庭电器产品进行智能化控制,比如早晨伴随着优美的闹钟铃声床帘缓缓拉开,使住户在睁眼的一刻感受到清晨第一缕阳光的照射,此时早餐以悄无声息的准备,豆浆机正在准备鲜美的豆浆,面包机在烤面包等等。这一切的起始信号都是闹钟铃声,将各个电器连接在一个系统中,当闹钟铃声响起时,系统接收到这一信号,通过信号的传输与转换将控制信号输出作用于各个电器,实现清晨的智能化生活。
(四)嵌入式技术在家居智化管理中关于节能环保方面的应用。现在社会的发展使人们的节奏越来越快,在家中呆的时间越来越短,因此为了资源的节约对于家居智能化的控制越来越受到人们的重视,比如白天工作时间家里没人不需要开暖气但又怕晚回家时家里太冷,可以考虑远程控制,通过电话或电脑对家里的暖气系统进行控制,在回家前一小时将暖气开启,这样及节省了资源回家是有不至于太冷。再比如累了一天回家看看电视休息一下,此时房间内的灯光系统会根据用户需求调节出最适合的光线强度,电视机可以自动调节出于环境相匹配的模式等。这一系列智能化的信号基础都是用户的需要与感知。
五、结束语
家是温馨的代名词,但现在人们生活压力大、节奏快,已没有充足的时间去营造温馨的家庭氛围,同时越来越多的人选择独居生活,老年人无人照顾等问题使家庭生活接受着改革。智能家居控制系统发的产生与发展是网络社会带给我们的福音。营造温馨的氛围不再需要提前回家,对老人生活不放心也可以通过远程监控及其他的安全措施来保证他们的人身安全。家居智能化正在一步步走进我们的生活,即使现在不是每家都能系统化的享受智能化,也多多少少拥有智能化的家电。
参考文献:
[1]原林,于伸《嵌入式技术在智能家居控制系统中的应用》自动化技术与应用 2006年第25卷第1期;
[2]李新伟《智能家居检测与控制终端的研究与设计》山东大学硕士学位论文;
[3]刘荣辉《基于智能家居控制的嵌入式语音识别系统研究》广东工业大学硕士学位论文;
关键词:发电厂;电气综合;自动化技术;发展;
中图分类号:TM6 文献标识码:A 文章编号:
引言
发电厂装机容量受热负荷大小、性质等制约,机组规模要比目前火电厂的主力机组小很多,但是其生产原理及系统组成与火电厂是一致的。随着电力技术的不断发展,发电厂的电力自动化控制水平也随之提高。所谓电气自动化,是一项集计算机技术、数据传输技术、控制技术、现代化设备及管理于一身的综合信息管理系统,旨在改进供电的可靠性、安全性和服务质量,提高工作效率,减轻运行人员的劳动强度,降低运行和管理费用,是电力投资的重点。
1.电厂电气综合自动化技术的现状分析
自20世纪90年代起,我国确定火电厂电气系统使用接人DCS系统的计算机控制,由人工监控到计算机自动化的监控的过渡,这就是电厂电气综合自动化技术的开端。接入DCS系统的电厂系统设备,具有广阔的发展空间,研究方案、成果也较多。其中分为集中式和分层式的两种不同技术实现方式。集中式是通过硬接线方式,模拟电气量和开关量信号,并通过硬接线电缆各自分别接人DCS系统的输入、输出通道。分层式则是采用数字通信的总线技术,在DCS系统内接入各微机型智能保护测控装置来实现,这种方法是电厂电气综合自动化技术发展的总趋势,设备都采用分层式的实现方式,因其真正实现了电气系统监控自动化的功能。下面分别对集中式设计电气自动化方式与分层式自动化设计方式作个阐述。
1.1集中式电气自动化设计分析。集中式是通过硬接线的方式,相对较为传统、落后。通过转化了强电信号为弱电信号,在空接点和直流信号下,模拟电气量和开关量在硬接线电缆下,与DSC系统的输入、输出设备相连接,由此可发挥DCS系统监控电气设备的功能。DCS系统的输入、输出设备的连接又可分为两种方式,即直接接入方式和远程接人方式。直接接入方式通过电缆连接电子间集中阻屏,远程接入方式则通过现场设远程采集柜实现数据集中处和设备相距较远情况下的连接,DCS控制系统的连接是在通信方式下完成。也就是,直接接人方式、远程接入方式是两种在本质上没有区别的连接方式。
1.2集中式的特点。电气量的的采集集中组屏,易于管理,设备运行环境好,硬接线方式简易,响应速度快等。但同时也有不完善的地方,由于通过电缆硬接线连接,电缆使用量较大,所占空间较大,长电缆容易相互干扰、电能损耗量大,又影响DCS系统的稳定性、可靠性。DCS系统的费用高,投资成本高,限制了接入DCS系统的设备数量,仅有几个重要的设备是连接DCS系统,而其他设备没能
实现自动化,实际电厂内电气综合自动化的水平较低。再加上所有信息采集量都基于DCS系统下进行处理,工作量大会影响系统的风险系数,系统使用的可靠程度也随之降低。并且,DCS系统的调试环节靠后,而根据集中式的技术实现方式,难以满足倒送厂用电要求。缺少电气监控的主设备系统,稍微复杂的电气系统运行的管理较难把握,综合自动化监控技术尚未达到。
1.3分层式电气自动化设计分析。电气综合自动化技术的分层式技术使用,由3层组成,分别是站级监控层、通信层、间隔层。其中,站级监控层则是在通信技术,实现对间隔层的数据管理及信息交换。信管理机、光纤或电缆网络构成网络层,在现场总线技术下实现了各种功能,如数据汇总、规约转换、转送数据及传控制命令等。终端保护测控单元组成间隔层,设计时使用电气一次回路或电气间隔方法完成,在各个开关柜或其他一次设备附近分布安装各测控单元和保护单元。
1.4分层式技术的特点。就地安装间隔层测控终端,在较少的占地面上,提高各装置的独立性、灵活性、可靠性。交流采样的方式得到的模拟量数据,节约电缆使用,从而减少了成本支出。又由于分层技术较好的抗干扰能力,使得采集数据的精确性上升。这样,有较广的空间采集更多数据,监测的分析数据较为完善,远距离修改保护定值和复归信号得以实现,检修维护工作较为简单。分层式技术在原有的基础上,具有较为广阔的发展空间,体现在对系统的扩展和维护上。依据分层式技术特点,单个故障不影响周边设备的运行,维修成本降低。电气监控主站的设立,能独立的进行调试和投运工作,就能实现倒送电,同时还具备其他的有利条件,提高了系统的监测规模和水平。
1.5分层式技术的关键。(1)间隔层终端测控保护单元。以间隔层一次设备为单位,分层式技术得以发挥,设立配置测控保护单元。配置测控保护单元是用于保障电厂的用电系统发挥的关键技术,该单元有较高的灵敏性、可靠性、速动性和选择性要求,而集中式所使用的DCS系统操作不适用,而一般采用专用保护装置。电厂用电系统的保护装置由线路、电厂中的电动机综合保护测控装置和其他装置构成。能提高实时数据采集、计算机保护、远程数据控制和故障的记录功能。(2)通信网络。基于ECS系统的操作环境较差,所以通信网络是一项关键技术,能直接影响电气自动化监控系统的整体发挥。现阶段使用较多仍是电缆现场总线网络方式,而光纤通信则逐渐被使用。通信网络通过通信管理机双机热备用或双通道备用原则配置,一旦数据通信网络有问题出现,系统能自动切换至冗余装置或通道,增强系统的可靠性。(3)设立监控主站。监控主站能监控和管理将电厂用电
系统,配置成单机或双机或多机系统,由发电机机组的容量和运行管理要求而定。配置的软件有前置机软件、实时数据库软件、人机界面软件和图形建模软件等组成,实现了监控系统、管理系统、管理数据、应用及分析等功能。
1.6电厂电气综合自动化技术的发展趋势。以太网能快速传输数据、成本低廉、容量大、网络技术灵活等优势成为电气综合自动化的网络通信技术的最佳选择。嵌入式技术实现工业化的以太网,具有强大的功能和广阔的发展空间,因此嵌入式以太网是电气综合自动化系统络通信的主要发展方向。
2 对发电厂电气自动化改造的几点意见
第一,事先要规划好发电厂电气自动化的改造,把握科学、合理,节约的原则,提前准备好需要改造和更新的设备。同时,要综合考虑诸如继电保护装置,断路器、五防系统等设备在型号、盘位布置、预留接口方面将来接入综合自动化系统的问题。只有这样,对电气自动化的改造才能合理又节省了人力物力。
第二,在设计电气自动化的过程中要把握实用的原则。由于发电厂现有的监控、远动、五防、保护等设备装置其原理和性能的不同,在进行改造时要整体上把握,综合考虑,避免出现功能重复的设备并列运行。
第三,改造的目的是为了发电厂将来更好的高效运行,因此,电气自动化改造要
注重远期目标。比如,有的发电厂由于老化或厂房实际条件的限制,不可能所有的监控设备都可以纳入电气综合自动化系统的改造中。就需要在改造时,把这些不具备改造的设备考虑到,在整体框架下,预留接口,便于后期的改造。
结束语
在科学技术日新月异的今天,发电厂电气部分的综合自动化是一种趋势,对于它的成功改造,将会大大的提高发电厂的自动化水平。同时,采用电气综合自动化技术,能够节约大量的成本,提高电气系统的可靠性。
参考文献
[1]武成龙 数字化变电站自动化系统探讨[期刊论文]-中小企业管理与科技2009(6)
[2]王海东.杨楠.张国龙发电厂直流系统浅析[期刊论文]-山东煤炭科技2008(4)
关键词:PLC 立体仓库 存取指令
中图分类号:TP23 文献标志码:A 文章编号:1674-098X(2014)07(a)-0254-02
立体仓库的设计是为了提高仓库作业的自动化管理水平,越来越多的现代化立体仓库普遍运用了自动控制系统,这一系统的仓库布置和设计,与使用机械化操作的设施是一样的,不同之处在于所有的叉车移动由计算机或可编程序控制器来指导和监控。在作业时,所有的搬运移动都被输入计算机,由可编程序控制器来分析搬运需求和安排设备,这样可以确保有效的移动和减少空载移动。叉车移动由安装在叉车上的终端来控制,自动控制搬运系统具有明显的优势,因为该系统在不需大量投资的情况下,可获得自动化分选的益处,并提高生产率。
1 立体仓库模型的设计要求
(1)控制面板上的开关及按钮功能及仓位号见图1和表1。
(2)执行送指令
①选择欲送仓位号,按动仓位号对应按钮,控制面板上的数码管显示仓位号。
②按动送指令按钮,观察送入动作(若被选择仓位内已有汽车,则该指令不被执行)。
③指令完成后,机械自动返回。
④零号仓位已无汽车,则下一个送指令(误操作)将不被执行。
(3)执行取指令
①选择欲取仓位号,按动仓位号对应按钮,控制面板上的数码管显示仓位号。
②按动取指令按钮,观察取出动作(若被选择仓位内无汽车,则该指令不被执行)。
③指令完成后,机构自动复位。
④零号仓位已有汽车,则下一个取指令(误操作),将不被执行。
2 立体仓库的程序及设计思路
2.1 总设计思路
按下仓位号按键及相应的操作按键(“取”或“送”)后,系统判断货台及各个仓位上是否有物。如果进行“取”操作,在系统判断完成货物台无物及要取的相应仓位上有物的情况下(若这两个条件其中一个不满足。则操作不执行),机械运行到相应仓位处,取出货物,再自动返回零位;如果进行“送”操作,再系统判断完货台有物及要送的响应仓位上无物的情况下(若这两个条件其中的一个不满足,则操作不被执行),机械运行到相应的仓位处,送入货物,再自动返回零位。
2.2 I/O分配
见表2。
2.3 总程序控制流程图,如图2所示
3 结语
以上就是本论文主要讨论的立体仓库各部分的设计思路,通过梯形图的编制,实现了12个仓位货物自动存取动作。
参考文献
[1] 天津职业技术师范学院源峰科技公司.FP0可编程序控制器使用手册[M].
[2] 黄贤武,曲波,刘文杰.传感器实际应用电路设计[M].电子工业出版社,1997-06.
【关键字】智能化住宅,防盗,防火,报警系统
中图分类号:[F287.8] 文献标识码:A 文章编号:
一.前言
智能住宅(Intelligent Building)目前的提法很多,日本、美国、欧洲、新加坡等国家。以及国际智能工程学会的提法都不尽相同。我国与日本的情况比较相近.日本机电工业协会住宅智能化分会把智能化住宅定义为:综合计算机、信息通信等方面的最先进技术,使建筑物内的电力、空调、照明、防灾、防盗、运输设备等协调性的工作。实现建筑物自动化(BA)、通信自动化(CA)和办公自动化(OA),将这三种功能结合起来的建筑,就是智能化住宅。
二.智能化防盗防火报警系统的必要性
1.随着计算机技术的不断发展,新观念和新技术不断更新.这些将对智能化住宅的发展有了更高和更新的要求.也要求在智能住宅的建设中要不断地增加标和功能。住宅自动化系统也叫建筑设备自动化系统(Buiding Automation System,BAS),是智能住宅建筑不可缺少的一部分,其任务是对建筑物内的能源使用、环境及安全设施进行监测、控制.以提供一个既安全可靠、节约能源、舒适宜人的工作或居住环境。
2.特别是随着我国国民经济的迅速发展,安防系统的相对滞后已经严重阻碍了我国国民经济的发展。伴随着我国各个行业的智能住宅化。这种矛盾越来越突出。因此,强调把防盗防火自动报警系统纳入到建筑智能化住宅系统中、提高住宅自动化水平,迎合当前通过住宅自控技术实现更多、更高要求的需要。是符合世界发展潮流的.也是当前发展的紧迫问题。
3.本研究的防盗防火自动监控报警系统应用了现代化的控制部件与设备,查询了人们无法实时检查的环境.将住宅建筑物中的重要场景传输到一个或多个监控系统并显示。使在无人值守的各类情况下及时观察、了解灾情、监控盗情、记录窃情与相关的暴力犯罪行为。它可以通过遥控摄像机及其辅助设备(镜头、云台、门禁、防盗探头等)直接观看被监视场所的情况。同时,监控系统还可以与消防报警等其他安全技术防范体系联动运行,使防范能力更加强大。该监控系统的另一个特点是可以把被监视场所的图像及声音全部或部分地记录下来,为日后对某些事件的处理及分析提供了方便条件及重要依据。
三.工作原理
1.防盗探测器原理
防盗探测器是由红外与微波探测器组成的双鉴探测器,教之以往的微波或红外单信号探测器,其误报率明显下降,原理示意图1所示。
图1 防盗探测器原理示意图
双鉴探测器工作时将探测到的红外和微波两种信号经过与非门处理后送单片机,即只有同时检测到两个探测器输出端口为高电平信号时,自动报警器才会响应盗情报警信号,否则不报警。在红外探测器中,通过菲涅尔透镜的分割方式的改变可以降低由于小宠物引起的误报,从而弥补了微波探测器监视面积较大的弱点;但红外探测器对环境温度的变化比较敏感,而微波探测器所检测的只是活动的目标,所以对于如果只是温度变化引起的干扰并不会被自动报警器响应。通过这样双重的检测就进一步减小了外界干扰,降低了报警信号误报的发生率。
2.防火探测器原理
防火探测器是由温度探测、光电感烟探测和一氧化碳探测构成的复合型火灾探测器。多传感器设计思想解决了传统防火探测器一直存在的误报率高的问题,增强了火灾探测的可靠性。在报警系统中对火灾信号的检测采用多传感器/多判据的火灾探测技术,将探测器探测到的多元火灾探测信息经单片机进行综合判断,在软件设计中加入了神经网络智能算法,防真实现了多元同步智能探测。
四.自动监控报警系统组成介绍
1.系统的组成
系统主要由前端信息采集系统、信息传输控制系统、远程拓展系统信息管理系统和自动报警系统组成,如图l所示。
图2 控制中心设计原理框图
(一)前端信息采集系统:主要由图像信息采集和探头信息采集两部分组成。图像信息采集部分是监控系统的主要部分,是整个系统的“眼睛”.它把监视的内容变为图像信号传送到控制中心的监视器上显示并实时存储。探头信息采集通过各种监控探头(如红外线防盗探头、消防探头、门禁探头等1实时监控各个探头信息点的实时状态,通过信息传输控制系统送达信息管理系统判断处理。包括摄像机、镜头、云台、智能球形摄像机探头、红外探头.玻璃破碎感知器或门磁开关等。
(二)信息传输控制系统:主要传输前端各信息监视点的实时状态信息.并对所采集系统中各数据采集点控制,包括传输线缆、光纤传输、同轴电缆传输、网线传输、无线传输。
(三)远程拓展系统:包括IP监控、远程监控、网络监控、视频会议等技术交流。
(四)信息管理系统:负责处理由前端监视摄像采集系统采集的信息数据。通过信息管理系统,将传送过来的图像信息显示在监视器上,记录所有的图像及监控信息。计算并生成对所采集监控信息的信息处理结果,受理台显示发生警情的用户的相关信息。系统包括dvr硬盘录像系统、视频矩阵、画面处理器、切换器、分配器、报警主机。
(五)自动报警系统:对信息管理系统得出的警报事件.将需要处警的报警事件转发到1 10指挥中心或有关的处警单位。
2.设备配置
(一)控制中心需对前端监控探头等进行实时监控和记录。考虑到监控效果要求比较高、图像质量要求清晰稳定,控制中心采用3台全实时(回放、监视都是25帧,秒)的16路的嵌入式硬盘录像机进行实时监控、录像,嵌入式硬盘录像机是完全脱离PC平台设计的,彻底杜绝了病毒的入侵,启动迅速、性能稳定,系统参数及程序在断电时也不会丢失。
(二)硬盘录像机本身不带硬盘,为了能够保存一段时间内的录像资料.至少需给每一台硬盘主机配备2块500G硬盘(硬盘占用空间按0.15G/小时/路来计算)。
(三)可以自选配备l台音视频矩阵,由至少8台监视器组成电视墙.可以多点监控、指定监视器监控等。嵌入式硬盘录像机的输出信号首先输入到视频矩阵,然后通过视频矩阵输出到监控电视墙上。
(四)要实现同一时间硬盘录像机的录像功能和电视墙的监视功能。需将输入信号一分为二.选配音视频分配器4台。
(五)为了实现视频控制矩阵、主控计算机能够并行控制前端的摄像头和云台.需要一个系统协议转换器(BL―D322C)。
(六)考虑到多个用户同时访问网络将带来流量瓶颈等问题,使用视频服务器来进行中转。让视频服务器提供强大的负载能力。
3.报警功能
自动报警器组成框图如图3所示,主要包括拨号模块、语音模块、电话接口模块、键盘密码显示模块以及电源模块。
用户端的防范现场,一旦有人入侵或发生火灾等紧急情况时,与之相应的报警探测器(各种防火、防盗及手动报警按钮等)则立即向用户端自动报警器发出报警信号。接到警情事件后,自动报警器立即进行确认(多次巡检中断信号),若50s后无人解除警情同时警情确认无误后,进行事件的现场声(蜂鸣器)、光(LED)报警。
同时用户端自动报警器自动向有关部门拨打预先设置好的报警电话号码,进行语音报警。在用户端自动报警器的面板上设有LCD显示器、键盘以及三色警灯(LED),三色警灯分别指示火灾或红外/微波双鉴的防火报警、正常工作及系统出现故障的状态,即报警灯(红)、工作灯(绿)和故障灯(黄)。
正常时LCD显示时间,事件发生时锁定显示当时时间。用户端报警器同时具有探头故障报警功能,避免由于探头掉电而漏报,出现故障时点亮故障灯;如果判断探头掉线(被剪断),则声光报警。如果出现误触发而报警时可以通过触发延迟时间(50s定时器)去接触,另外用户端自动报警器还具备状态信息(如有无交流电、备用电池电量是否不足等)上报的功能,可以对预设的普通电话、手提电话实现报警。
4.实现过程
警报接收与处理主机也称为防盗主机,是报警探头的中枢,负责接收报警信号、控制延迟时间、驱动报警输出等工作。将某区域内的所有防盗防侵入传感器组合在一起.形成一个防盗管区,一旦发生报警就可在防盗主机上一目了然地反映出区域所在。防盗主机目前以多回路分区防护为主流。优越的系统更可显示出警报来源是该区域内的哪一个报警传感器及所在位置。以便采取相应的接警对策。现代的防盗主机都采用微处理器控制,内有只读存储器和数码显示装置,普遍够编程并有较高的智能,主要表现为:
(一)以声光方式显示报警,以人工或延时方式解除报警:
(二)对所连接的防盗防侵入传感器,可根据需要而设置成布防状态或撤防状态.也可用程序编写控制方式和防区回路性能:
(三)可接多组密码键盘,可设置多个拥护密码,以进行保密防窃:
(四)遇有警报时,其报警信号可以经由通信线路。以自动或人工干预方式向上级部门和保安公司转发.以快速沟通信息或组网:
(五)可程序设置报警连动动作,即遇有报警时,防盗主机的编程输出端可通过继电器接点闭合执行相应的动作。
(六)电话拨号器同警号、警灯一样,都是报警输出设备。可通过电话线把事先录好的声音信息传输给某个人或某个单位。
五.结束语
智能化住宅防盗防火自动监控报警系统对于住宅的安全十分重要,因此对于这方面的研究具有重要的意义和价值。
参考文献:
[1]田思源; 胡楠; 矫亮; 刘飞; 姚玉霞 智能化住宅安防自动监控报警系统的研究农业网络信息2010-07-26期刊
[2]郑艳琼; 马渝昆; 李昂 城市火灾自动报警监控系统发展应用中国消防产品年鉴2007/01/01年鉴
[3]张吉春 高洁 安全防范与智能住宅 (被引用 4 次) [期刊论文] 《中国人民公安大学学报(自然科学版)》 PKU -2006年1期
[4]潘兴华 魏东 基于LonWorks技术的住宅自控系统开发 (被引用 1 次) [期刊论文] 《仪器仪表标准化与计量》 -2006年2期
【关键词】电气自动化;控制系统;设计要点
随着现代化技术的高速发展,人们平均生活平的不断提升,快节奏、高质量和节能已经成为当今社会的主流思想。同理,电气自动化控制系统的设计也是以这三点为最终目标,创建高效率、高质量、高水平的电气自动化控制系统。下面简要介绍电气自动化控制系统的现状以及该系统的设计要点。
1电气自动化控制系统概述
1.1电气自动化控制系统的现状
电气自动化控制系统已经逐步在我国各个领域中广泛应用,为我国工业生产以及统一化管理提供可靠的技术支持。该控制系统利用计算机网络技术很大程度上提高生产效率和精确度,也使得应用、检修更加简单、便捷。电气自动化控制系统通过电缆将计算机、CPU智能仪表等主要设备相连接,利用中央控制器对其统一控制管理,随着计算机网络技术的不断发展,电气自动化控制系统逐渐向信息化、智能化的方向发展。
1.2电气自动化控制系统的特点
电气自动化控制系统是以计算机技术为基础的现代化技术,随着近几年飞速的发展已经取得很大的进步,其一般具有工作效率高、精确度高、可靠性高、抗干扰性强、批量连锁防护功能和反应敏锐的优势,但是该控制系统与传统控制系统相比,其信息量少、操作频率低、控制对象局限等缺点,需要我们进一步研发,不断优化电气自动化控制系统。
1.3电气自动化控制系统的功能
电气自动化控制系统的功能主要包括自动控制和保护功能、检测和维修的功能、监视功能和测量功能。自动控制和保护功能是指电气自动化控制系统对设备的控制与保护,例如设备出现故障,该系统自动启动安全开关切断设备电源,保护设备;在该系统控制过程中,设备可能出现不可预知的故障,因此也要具备自动检测故障以及维修的功能;监视功能是利用传感器等设备,检测人眼无法察觉的变量,通过收集的各个变量来判定该设备是否处于正常状态,还可以检测设备周围环境质量;测量功能是利用测量仪器对线路相关参数进行测量,确实掌握设备运行的相关参数,实现电气自动化控制。
2电气自动化控制系统的基本结构
电气自动化控制系统主要由间隔层、通讯层和监控层三个层次组成。间隔层位于电气自动化控制系统的底层,该层需要针对系统所控制的对象进行设计;通讯层位于系统的中间层,是系统实现网络传输的关键,在间隔层与监控层之间建立通讯渠道;监控层位于系统的最顶层,该层是实现自动化控制系统的核心部位,是由现场控制层、信息管理层、中心监控层和远程设备层等部分组成。
3电气自动化控制系统的设计要点
3.1数据采集模块的设计
监控系统中分别体现不同的功能,现场控制层主要负责数据采集、相关控制参数的设置等内容。我们以数据采集模块设计为例简要分析其设计要点:数据采集模块的设计主要分为模拟量数据采集、数字量数据采集和电能量数据采集三个部分。在交流电路中模拟量数据采集某个周期内交流电压信号、电流信号的瞬时值,并将模拟值通过A/D转换,后经过运算处理,得到被测电压的有效参数;数字量数据的采集,其中主要包括断路器运行状态、隔离开关状态、继电器保护信号等数字量的采集;电能量数据的采集包括有功电能与无功电能数据。数据采集模块中的模拟量数据、数字量和电能量数据需要通过数据传输模块处理、传输至采集系统,数据采集系统对相关数据进行实时记录,并将数据信号传输至上层系统,上层系统接收系统,发出控制命令,并将该信号转换为其他模块可识别的信号,从而实现各个模块之间的相互通讯。
3.2数据传输模块的设计
数据传输模块是给基于多通道数据传输通道模式进行设计,数据传输模块主要负责类型、性质、传输目的等不同参数进行处理,同时完成接受数据的分析处理,将分析后的数据传输至电气自动化控制系统的应用平台。数据传输模块设计时需要注意在保证数据传输质量的前提下提高数据传输的效率,尽可能降低数据传输的网络环境要求,即将传输的数据通过通讯模块后,将其直接传送到数据分析系统,在数据分析系统中对其进行分类打包,然后将其送入该数据专用的传送通道进行传送,该类传输数据具有不同类型传输具有相对的独立想和完整性。
3.3监控系统的设计
监控系统的设计方式主要分为集中监控、远程监控和现场总线监控三种设计方式,每种设计都具备其各自的优缺点,我们在这里浅要分析:集中监控设计具有便于维护、控制站防护要求低、系统设计简单。集中控制系统主要是将该系统各个功能集中在处理器上,因此处理器需要承担很大的负担,处理器任务过重很可能影响其处理器的运行速度。随着电气自动化控制系统的控制对象逐渐扩充,该处理器的任务越加沉重,从而造成主机冗余下降、电缆数量增加、增加成本、可靠性降低等一系列问题;远程监控系统的设计可以很大程度上节约成本,例如电缆费用、安装费用等。该系统相对于集中控制系统更为可靠与更佳灵活,但是该系统的通讯量相对较低,仅适用于小型系统监控,不适用于企业全体电气自动化控制系统的实施;现场总线监控设计是对以太网、现场总线等计算机网络技术的充分应用,该设计方式的系统更具针对性,不同间隔具有不同功能,该设计方式具有远程监控的所有优势,同时还可以进一步降低成本,例如隔离设备、I/O卡件、模拟量变送器等费用的降低,智能设备与系统通过通讯线进行连接,一定程度上降低安装成本等。各个装置、功能都具有相对的独立性和完整性,装置之间仅仅用网络连接,具有很强的灵活性,其中任意装置出现故障,并不影响系统中其他设备的运行,大大提升系统的可靠性,因此该设计方式广泛受到现代化市场的欢迎,具有降低成本、提高效率、维护便捷、灵活性高、可靠性高等优势。
4结束语
综上所述,电气自动化控制系统目前已经走入现代化市场,受到各大企业的热烈欢迎,为了提升企业自身的竞争实力,紧跟时代的步伐,其系统设计的合理性、创新性是该系统的关键之一,从而进一步提升我国工业自动化综合水平。
参考文献
[1]许子瑜.电气自动化控制系统的设计要点分析[J].电子制作,2015(9X):70.
[2]刘志勇.浅谈电气自动化控制系统的设计要点[J].大观周刊,2012(36):78-79.
[3]郑浩.建筑电气自动化控制技术的应用研究[J].山西建筑,2015(23):120-121.
关键词: X射线测厚仪二十辊轧机厚度控制
中图分类号:O434文献标识码: A
Abstract:This article analyzes briefly the application research of 20-Hi mill thickness control system of X -ray thickness gauges and its measuring principle, system frame,performance index and some points of maintenance.
1 引言
随着中国钢铁业突飞猛进的发展,发展高精尖和高附加值的产品是每个钢铁企业所面临的现实问题。生产高附加值产品不容置疑需要相应的高精度生产设备和先进的控制系统。二十辊可逆式冷轧机由于其轧制压下率大,轧制控制精度高以及高产量等优点在轧钢行业显现出其独特的优势,我国近年来引进的二十辊轧机已广泛应用于冷轧行业尤其是不锈钢的冷轧行业。然而,对二十辊轧机来讲,几乎所有的带钢厚度控制系统和关键测量仪表包括X射线测厚仪均为国外引进,所以如何使用好控制系统和测厚仪,使其为生产更好地服务,如何在消化吸收国外先进控制和测量技术的基础上,有效地服务于国内轧机的厚度控制,是摆在所有从事轧制厚度控制理论研究和实际应用领域研究的工程技术人员面前的一个大课题。正是出于这种考虑和理念,本论文从二十辊轧机厚度测量、厚度控制系统的角度出发,以酒钢不锈钢公司引进的二十辊轧机及德国IMS公司的X射线测厚仪为主要研究对象,简要描述了二十辊轧机厚度控制系统、测厚仪的测量原理、系统配置,性能指标和维护要领。论文中还对控制系统硬件、软件配置等进行了较为详细和系统的论述与研究,其目的是在掌握现有系统的基础上力求有所进步,为以后的维护工作打下良好的基础。
2二十辊轧机厚度控制系统
二十辊轧机的控制系统由四个部分组成,分别为基础自动化控制、顺序控制、机架工艺控制、介质控制。从控制系统的自动化组成的角度来考虑,二十辊轧机的控制大致有两部分组成,即基础自动化系统(L1 级)、过程自动化系统(L2 级)和传动控制系统等。顺序控制和工艺控制均属于基础自动化级的范畴,同样传动控制系统也可以归为基础自动化的组成部分。机架工艺控制包括带钢厚度自动控制和带钢板形控制,本文主要针对厚度控制进行研究。
为了保证带钢的纵向厚度公差,获得高精度的产品,现代二十辊轧机都配备了自动厚度控制系统。自动厚度控制系统是轧机整体自动化控制系统的一部分,也是工艺控制中最关键的控制系统之一。自动厚度控制系统由测量系统、控制系统和矫正厚度偏差的执行机构组成。测量系统主要有两台X射线测厚仪分别安装在二十辊可逆式轧机的出入口,辊缝位移测量仪表索尼磁尺安装在压下液压缸上,速度测量仪表增量式脉冲编码器安装在出入口板形辊电机上。控制系统由PLC控制器FM458,远程I/O 站及上位监控计算机等部分组成。执行机构主要是液压压下系统,包括伺服阀放大板、液压伺服阀和执行液压缸。它们之间通过相应的网络如Profibus,Ethernet 等连接起来,形成一个相对独立的工作体系,同时和其它控制系统进行数据交换和信息共享,以满足整个轧机的控制要求。测厚仪对带钢实际轧出厚度连续地测量,根据实测值与给定值相比较后得到偏差信号,在把厚度偏差显示并记录下来的同时,把偏差信号传输到PLC中,通过功能程序计算出调节量,调节液压压下装置改变轧辊辊缝,把厚度控制在允许偏差范围内。实现厚度自动控制的系统称为“AGC”。AGC是Automatic Gauge Control 的简称。测厚仪是厚度控制系统很关键的一部分,其测量精度直接影响着产品的质量,酒钢不锈钢冷轧的二十辊轧机的测厚仪全部为技术先进、集成化程度高、性能稳定可靠、测量精度高的德国IMS公司的X射线测厚仪,为稳定生产,提高产品质量、增加产能提供了有力保障。该测厚仪还具有断面扫描功能,可以在开始轧制前通过入口测厚仪对来料断面进行扫描来判断板形。
AGC压下系统有两种模式,轧制力模式和位置模式。轧制时会根据实际情况自动切换模式。在轧机头部起车或尾部停车时,由于带钢入口厚度波动较大,故采用轧制力模式。当带钢的厚度减小时,使轧制力减小且轧出厚度变小,为了保持出口厚度不变,抬起辊缝,轧制力进一步减小:相反若入口带钢厚度增加时,轧制力增加,轧出厚度增加,为了保持出口厚度不变,减小辊缝,轧制力进一步增加。可见AGC轧制力控制是根据所检测的轧制力来进行正反馈控制。至于轧制力,是根据压下液压缸上安装的两个压力变送器的值计算所得。
位置模式有以下几种控制方法:
1)前馈控制
前馈是根据入口测厚仪测量的厚度和目标厚度比较,调节压下装置来实现厚度控制,其优点是可以提前控制,可完全去掉信号检测装置及执行机构动作所产生的滞后。缺点是开环控制,对控制结果没有反馈,不能保证轧出厚度的精度。
2)反馈控制
反馈是根据出口测厚仪测量的厚度和目标厚度比较,调节压下装置使得厚度偏差越来越小。缺点是用出口测厚仪进行带钢厚度的反馈,滞后较大,特别是低速轧制时带钢从辊缝运行到测厚仪往往需要一定的时间,滞后越大,系统越不稳定。
3)秒流量控制
秒流量控制是根据任何时候进入轧机的带钢流量和流出轧机的带钢流量恒等的原理实现的。流量方程:V0h0=Vh,其中,V0是带钢入口速度,也就是入口板形辊的速度,h0是入口带钢厚度,V和h分别是出口带钢速度和厚度。秒流量控制方法中,厚度控制的精度主要取决于带钢速度测量的准确性。
4)轧制效率补偿
轧制效率主要是在轧机加减速时进行相应补偿从而减小加减速过程中对厚度精度的影响。
上述四种方法在轧制过程中综合应用,各自发挥自己的长处,最终将带钢厚度控制在要求的精度范围内。
3 X射线测厚仪
德国IMS公司提供的X射线测厚仪是一种以X射线为载体的非接触式厚度测量系统,在不接触和无破坏的条件下对带钢的厚度完成测量,且测量精度能达到0.01μm。IMS公司对该测量系统的设计重点放在可靠性和测量质量以及改进测量精度上,并且在努力减小时间常数的同时降低信噪比。该系统配置目前了最先进的X射线技术,由X射线管在高压条件下产生X射线,可以通过独立的高压控制单元提供给X射线管稳定的高压,从而能对X射线辐射量进行最优调整,而且一旦停止高压给定,射线立即停止,没有任何残余辐射,同时测厚仪C型架上的快门机构有效的防止了X射线的外泄,因此具有很高的安全性。X射线测厚仪作为穿透式测厚仪,其一般原理见图1,X射线管在高压电场作用下产生X射线,穿透被测带板的剩余射线作用到电离室,在电离室激发电离,得到微弱电信号,经前置放大和对数放大后,进行合金、温度等相关补偿,这时候就可以有厚度绝对值输出,当然也可以给定目标厚度,进行偏差放大,得到偏差输出。偏差输出和绝对值输出都可以作为厚度信息,参与控制。其中这里用到的校准板为已知厚度和材质的标准板,用以校核环境因数,得到补偿系数,可以按照实际情况定期进行标定,在标定过程中,测量系统使用已知厚度的样板通过模型计算进行优化,标定数据存储在测量系统中,该测厚仪系统对被测带钢的钢种和化学成分进行合金补偿,同时在标定过程中对射线路径中的油污和灰尘进行补偿。
3.1 X射线测厚仪原理
X射线穿透物质时的衰减规律是X射线测厚仪测量的理论基础,光电式传感器将射线强度的变化转变为易于检测、处理和传输的电量变化。其原理如图1所示。
图1 X射线测厚仪原理图
当X射线投射到被测物后,一部分射线被被测物吸收,一部分射线穿过被测物,穿过被测物质后的射线强度,在物质成分一定的情况下,和被测物的厚度和密度有关,若被测物的密度为已知时,则可以根据检测到的射线强度来计算出被测物质的厚度。X射线测厚仪就是基于此关系原理制造而成的测厚系统。
对于X射线,在其穿透被测材料后,射线强度I的衰减规律为 I=I0e-us (式中 I0―入射射线强度;μ―吸收系数;s―被测材料的厚度)。当μ和I0一定时,I仅仅是板厚s的函数,所以测出I就可以知道厚度s。X射线测厚仪原理是根据X射线穿透被测物时的强度衰减来进行转换测量厚度的,即测量被测钢板所吸收的X射线量,根据该X射线的能量值,确定被测件的厚度。具体是当板带穿过测量空隙时, 一束精确标准的X射线撞击板带,其中一部分被板带吸收,另一部分穿透板带被探测头接收.用探测头接收的射源能量级与已知的发射能量级相比较,可以得到损失的能量级,即板带吸收的能量级. 通过对损失能量级的计算即可以算出板带厚度。经X射线探测头将接收到的信号转换为电信号,经过前置放大器放大,再由专用测厚仪操作系统转换为显示给人们以直观的实际厚度信号。
3.2 测厚仪现场设备
从现场设备来看,X射线测厚仪主要由中央控制单元、C型架、冷却水柜、接线箱、报警灯等主要部分组成,而上面提到的电气元件主要安装在C型架内。C 型架位于20辊轧机的出入口侧,这是因为20辊轧机为双向可逆式轧机,它包括机械部分、电动马达、放射源、电离室等;X射线探测头位于C型框架的上臂 ,分辨率高,响应时间短,使测量数据更精确,保证了产品质量的稳定性和可靠性。机械部分由一个C型框架、电动马达、前后限位等组成。放射源在C型架的下臂内的一个黑色铅盒中,并在上面开了一个气缸驱动的快门,用来控制放射线的通断。在C 型架侧侧面,是高压发生器、测量传感器的电子元件。
4 IMS测厚仪系统结构
X射线测厚仪作为二十辊轧机连续轧制生产的厚度检测单元,将测出的厚度值送给轧机基础自动化控制系统,参与前馈、反馈控制。其测量结果、测量精度和运行情况将直接影响轧机轧制的精度、产品质量和产量。总体上,从位置和区域来讲,该测量系统可以分为两大部分:轧机现场测量、转换部分和系统处理、控制部分。从功能来讲,可分为三大部分:电离室信号测量处理部分、射线管及高压控制部分和输入/输出信号部分。图2为测厚仪系统结构图。
图2 X射线测厚仪系统结构图
电离室有四个通道,感应X射线强度并转化为微弱的电流信号,经测量转换器放大并转变为数字电压信号后经由工业以太网,利用光纤介质快速、稳定地传输到电气室控制柜,通过测厚仪控制系统计算出厚度值,并对厚度值进行一系列计算处理后,传输给轧机控制系统的PLC,同时将该值显示到测厚仪操作员站。同时,送给轧机PLC的还有测厚仪状态信号,并从轧机PLC接收控制参数,包括轧制目标厚度、钢卷号等。根据数据通讯速度要求的不同,测厚仪系统采用了多种通讯方式,对于合金信息,目标厚度,系统状态等带钢初始化信息,速度要求不高,选用工业以太网通讯;对于厚度信息必须实时反馈给轧机AGC系统,则采用硬件接线的形式进行传送。需要说明的是,厚度信息通过模拟量以两种形式送给AGC,一种是实际厚度,另一种是偏差厚度。
高压发生器供给X射线管发射X射线所需的阴极负高压和灯丝电流,X射线控制器通过串行口控制高压发生器所提供的高压和灯丝电流大小,并通过测量反馈数据线来获得当前的射线管电流、高压、灯丝电流等实际值,用于状态监视和控制。这些数据由X射线控制器串行口输出,经由COM-Server接口转换器,转换为RJ-45接口后,送给内部网络交换机,于是便可在M-Server内的软件上显示、控制。
该测厚仪系统辅助I/O信号用工业以太网EtherCAT传输,现场的高压有无、快门状态、C型架位置、冷却水温度流量是否超限等状态信号,均通过工业以太网EtherCAT传输至电气室控制柜的工控处理机M-Client,并由前述M-Server内的软件显示出来,用于监视、处理。
测量数据从现场到电气室的传输、测量结果和状态被M-Server内软件调用、测量数据存储到硬盘、测量数据偏差及测厚仪状态数字量信号送出、设定数据的接收、两侧测厚仪之间通信等都是通过网络来实现的。如果把与测厚仪系统通信的轧机控制系统所在网络理解为外部网络,则测厚仪系统各装置之间联系则是通过内部以太网络来实现。在测厚仪系统内部,该通信网络及其终端称为MEVInet,由IMS公司开发、已经注册的标准自动化系统网络。该系统符合通用技术标准,并能在软件和硬件间提供最大化的透明度。因此,网络性能稳定,通信速度快,便于扩展,维护起来非常方便。
5 系统性能指标
二十辊轧机的测厚仪的测量范围为0.2mm~6mm,采样频率2ms。系统选用MXR161-W型号的金属陶瓷管,最大承受高压为160KV;一般设定的工作高压是最大值的一半左右,在正常工作状态下,系统采用了约85KV的管高压和3.0mA的管电流,使射线管长期工作于最大耐压的1/2处,可以有效地延长射线管的使用寿命。该射线管正常使用寿命可以达到4~6年。
现场测量装置采用C型框架,从“停车”位向“测量”位由电动马达驱动,可自由移动。快门及内部标准板的动作由压缩空气和弹簧机构组成的力平衡系统驱动,实现快门开关和标准板的进和出。X射线管用循环水冷却,可以延长其使用寿命和保证系统可靠运行。
6 结束语
本系统X射线管用循环水冷却,在日常的点检维护过程中,X射线管冷却水的温度和流量监视是重要工作之一,因为冷却的效果将直接影响到射线管性能和寿命,进而影响到测量精度和稳定性。射线管高压接头定期涂抹硅胶,以确保其良好的绝缘性,对于射线管维护和确保测量精度意义重大。轧机现场的恶劣环境,如:噪音、水、油污等,如吹扫工作不到位,将会影响X射线光路的清洁度;振动、机械移位等,将会改变测量的角度和距离(passline高度)。如果这种影响在一定范围内,则可以通过系统“校正“功能修正、消除,比如做CS标定、预吸收,不仅可以提高精度测量,也方便了日常设备的维护。X射线对人体的危害很大,在日常维护中,最安全的方式就是尽最大可能的少暴露在X射线下。
参考文献
1 德国IMS公司.操作手册(Operating Manual).设备资料,2006.