HI,欢迎来到好期刊网,期刊咨询:400-888-9411 订阅咨询:400-888-1571证券代码(211862)

智能科学与技术论文

时间:2022-02-10 23:48:33

导语:在智能科学与技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

智能科学与技术论文

第1篇

中图分类号:G642 文献标识码:A

1 引言

智能科学技术”专业是国家教委在2006年设置的新专业,代码;080627S,属于工学电气信息类。现已有南开大学、西安电子科技大学等12所高校获准招生。

智能科学技术是信息科学技术的核心和现代科学技术的前沿和制高点,涉及自然科学的深层奥秘,触及哲学的基本命题。智能科学技术的研究将对国民经济、社会进步、国家安全生产产生深刻而巨大的影响,并将为智力革命、知识革命和信息革命建立理论基础,为智能系统的研制提供新概念、新思想、新途径。智能科学的兴起和发展标志着对人类为中心的认知和智能活动的研究已进入新的阶段。目前,国际上对智能科学及其相关学科的研究高度重视。我国对该领域的发展特别关注。

智能科学与技术在一定程度上代表着信息技术的前沿,其理论研究与应用开发对我国现行的教育与教学理念提出了挑战。在现有的教育体系中增加智能理论和智能技术教学,对全面地培养学生的信息素养、创新的思维方式及激发学生们对信息技术未来的追求具有积极的意义。因此,为适应智能科学与技术的深入研究和社会对从事智能化产品研发人员的迫切需求,在本科阶段设立相应的“智能科学与技术”专业是十分必要和及时的。因此,我校设立“智能科学与技术”专业是适应了社会发展要求的,必将为河北乃至全国的社会、经济发展作出巨大的贡献。

近5年来,我校自动化系先后从事的包括11项国家级项目在内的70余项科研课题,发表的近200篇学术论文,均不同程度地与“智能科学与技术”领域相关,积累了深厚的学术基础。由于良好的办学队伍和实验条件,由我校申报的“智能控制技术与装置教育部工程研究中心”已经通过省级审查上报,因此,学科已经具备了承办“智能科学与技术”新专业的条件。

2 办学条件

2.1 师资状况

从我校办学发展来看,“智能科学与技术”专业的设立主要来自于近年来“自动化”专业在“智能化”和“信息化”方向的逐渐发展,以及“自动化”专业与“信息工程”、“计算机科学与技术”等专业的交叉。受专业发展特色和学时等因素的限制,仅靠在原有“自动化”专业课程中增设新课已经难以满足相关领域人才培养的需要,因此可以说“智能科学与技术”专业是由量变积累超出“自动化”专业领域而质变派生出的一个新专业。基于此原因,“智能科学与技术”专业主要由自动化系中抽调人员组织专业课程阶段的教学任务,专业基础课程阶段的教学任务则由电工电子教学中心等单位系协助完成。

由于我校“智能科学与技术”专业是由“自动化”专业发展派生出的新专业,两个专业多门课程的教学内容是相同的,因此“智能科学与技术”专业可以得到“自动化”专业的协助,从而避免多数新专业先期出现的师资力量欠缺问题。

2.2 相关支撑专业

“智能科学与技术”专业的主要相关支撑专业有“自动化”、“信息工程”、“计算机科学与技术”等,其中与同属电气信息类的“自动化”专业关系最近。考虑到我校的具体情况,在新专业的办学初期,“智能科学与技术”专业和“自动化”专业在科研、办学经费、研究生培养等方面的统筹安排上统一划归省重点学科“控制理论与控制工程”管理。两个本科专业的教学与学科的总体发展相互协调和支持,共同进步。

2.3 实验条件

由于“智能科学与技术”和“自动化”两个专业多门专业课程的教学内容是相同的,因此“自动化”专业的多个本科生实验室可以与“智能科学与技术”专业共用,包括:微机原理与微机控制技术实验室、控制理论实验室等,可完成“自动控制理论”、“现代控制理论”、“微机原理”、“微机控制技术”和“单片机原理与应用”等多门专业基础课程的实验。

2.4 生源及就业形势

智能科学与技术已经成为信息技术创新的重要增长点,其广泛的应用前景日趋明显,如智能化电器、智能化楼宇、智能机器人、智能化机器、智能化物流等,所培养的学生正是目前高新技术研究及产业发展急需的人才,同时这类人才也会对传统产业的提升起到积极的作用,就业前景广阔。在招生生源和毕业生就业方面均具备比较好的条件。

3 近期办学规划

3.1 师资队伍建设

在师资建设方面,需要采取积极的人才战略,走引进和培养并重的道路,注重引进和培养具有智能信息处理或智能控制研究背景的人才。同时,聘请人工智能领域经验丰富的专家、教授对本专业的实验及教学进行指导,积极鼓励教师们的学术交流活动。

3.2 实验室建设

(1)利用自动化专业的微机原理与微机控制技术实验室、控制理论实验室等,完成“智能科学与技术”专业本科教学环节中“自动控制理论”、“现代控制理论”、“微机原理”、“微机控制技术”、“单片机原理与应用”5门课程的实验。

(2)建设“智能信息处理实验室”,以通用实验平台的模式用于“数字信号与数字图像处理”、“软件工程”、“数据库与数据挖掘”等课程的实验和上机。

(3)利用教师在承担智能科学与技术相关领域科研课题中购置的相关实验设备和仪器,满足学生在毕业设计阶段和参加科技创新活动中对实验设备的需求。3,3新专业课程体系建设

(1)积极向已经设立“智能科学与技术”专业的南开大学、北京科技大学等高校学习,通过广泛的调研,使新专业的教学体系和课程内容逐步合理化。

(2)紧跟科技发展新趋势,突出“智能科学与技术”新专业的特色,注重学生实践能力的培养,在智能化电器、智能化楼宇、智能机器人、智能化机器、智能化物流等方面培养社会急需的特色人才。

(3)在控制科学与工程一级学科硕士点下设立“智能科学与技术”的相关研究方向,加强该专业的学术梯队建设和人才培养,促进学院整体教学科研的和谐发展。

4 培养方案

4.1 培养目标

我们努力使学生德、智、体、美全面发展,具有坚实的数学、电子、计算机、自动控制和信息处理的基础知识,系统地掌握智能科学的基础理论、基础知识和基本技能与方法,受到良好的科学思维、科学实验和初步科学研究的训练,具有分析问题和解决问题的能力,以及知识自我更新和不断创新的能力。学生能适应智能科学与技术的飞速发展。在个人素质方面,具有全面的文化素质、良好的知识结构和较强的适应新环境、新群体的能力,并具有良好的语言和计算机运用能力。

4.2 基本要求

使学生系统地掌握“智能科学与技术”的基础理论知识,以适应自动化、智能信息处理与技术等方面的工作需求;掌握电路与系统的基本理论和实验技术,具备分析和设计电子设备的能力;掌握信息获取、处理的基本理论和方法,具有系统设计、集成、应用的基本能力;了解智能科学与技术领域的学科前沿、最新进展和发展动态;了解自动化和信息系统及网络技术的应用现状和理论前沿,具有研究开发新系统、新技术和各种智能化工程装备的初步能力。

4.3 主要课程

我校“智能科学与技术”专业的主要规划课程包括电路、电子技术、微机原理、自动控制理论、现代控制理论、嵌入式系统、软件工程、计算机网络、数字信号与数字图像处理、智能控制、数据库与数据挖掘、人工智能概论、信息管理系统等。

在课程的设置上,我校适应社会发展需求,突出“工学并举”实践能力的培养,开展有自身特色的“智能科学与技术”本科生教学。区别于北京大学等高校的智能理论算法为主、南开大学等高校的智能信息处理为主、西安电子科技大学等高校的通信工程应用为主的办学主导方向,突出河北工业大学地方工科院校的自身特色,以培养学生研究开发新系统、新技术和各种智能化工程装备的基础能力为目标,设置相关的课程。其中,学科基础课程、专业必修课程和专业选修课程安排如表1~表3所示。

第2篇

关键词:智能科学与技术专业;课程体系;教材建设

继2004年北京大学率先在国内建立“智能科学与技术”本科专业之后,2005年,北京邮电大学、南开大学和西安电子科技大学;2006年,首都师范大学、北京信息科技大学、武汉工程大学和西安邮电学院;2007年,北京科技大学、厦门大学和湖南大学;2008年,河北工业大学和桂林电子科技大学;2009年,重庆邮电大学和大连海事大学;2010年,中南大学和上海理工大学先后经教育部批准先后设立了“智能科学与技术”本科专业[1-2]。在中国人工智能学会教育工作委员会的指导下,自2002年起,各相关专业教师定期召开智能科学与技术教育学术研讨会,并出版教育论文专辑,大力推进了我国智能科学与技术教育的健康、快速发展,并对我国智能科学技术的人才培养和学科建设起到了极大的带动作用。

作为一个发展中的新兴专业,目前各高校仍主要结合自身基础和特点建设该专业。如南开大学以智能技术与智能工程为核心专业课程[3];北京科技大学从社会需求角度出发,以提高学生软件实践能力为切入点[4];河北工业大学根据相关专业的就业现状,以提高学生硬件实践能力为着力点[5]。为了解决南开大学、北京科技大学和河北工业大学3所高校共同面临的课程体系和教材建设等问题,三校教师分别于2010年6月16日和8月2日在南开大学、河北工业大学进行了两次研讨,现将研讨成果汇总于此。

1研讨背景

“智能科学与技术”专业自开办以来,不可避免地要回答如下3个方面的问题:

1) 来自用人单位的问题:“智能科学与技术”专业是做什么的?与其他专业相比优势何在?

2) 来自学生及家长的问题:“智能科学与技术”专业是学什么的?与其他专业相比优势何在?

3) 来自教师自身的问题:“智能科学与技术”专业应该教什么?与其他专业相比优势何在?

无论是做什么、学什么还是教什么,归根到底是课程体系和教材内容。无论是研究生课程下移(带来学生接受知识的困难),还是在其他专业教学体系基础上做简单的增、删、改(带来学生知识结构的凌乱),都是不行的,长此以往的后果将是没有优势,只有劣势。

南开大学、北京科技大学和河北工业大学3所高校的“智能科学与技术”专业建设都源于自动化专业基础,而且都具有典型的工科特色;同时3所高校分别是教育部直属“985”高校、教育部直属国家“优势学科创新平台”建设项目试点高校和河北省属“211”高校,3所高校的“智能科学与技术”专业分别于2006、2007和2008年招生。3所高校在“智能科学与技术”专业建设上的异同特点以及地域便利的条件,为优势互补、交流融合提供了机遇。

2课程体系

根据研究任务的不同,智能科学技术涵盖的内容可以划分为智能科学、智能技术、智能工程三个层次[6]。

1) 智能科学:主要任务是研究人的智慧,建立人机结合系统理论,并用其模拟人的智慧。

2) 智能技术:在智能科学的框架内创建人机结合智能系统所需要的方法、工具和技术。

3) 智能工程:利用智能科学的理念和思想,充分运用智能技术工具创建各种应用系统。它是当前新技术、新产品、新产业的重要发展方向、开发策略和显著标志。

根据上述智能科学技术的划分,智能科学与技术专业的课程体系同样划分为理论、技术与工程应用3个层次,具体框架如图1所示。

需要说明的是,由于课时、学时等因素的限制,有些课程需要包含未列入课程的部分内容。如智能科学与技术概论课程内含系统论的简要介绍;智能控制系统包含可编程序控制器、智能传感器、智能执行器等内容;智能工程包含若干典型智能系统实例。

3教材建设

经南开大学、北京科技大学和河北工业大学3所高校的讨论,一致认为工科专业应以技术和工程应用两个层次为核心,并将人工智能导论和智能信息处理两门课程的教材合并为智能技术。同时,根据南开大学侧重理论、北京科技大学侧重软件、河北工业大学侧重硬件的原则进行分工,编写对应课程的教学大纲和教材内容。

3.1智能技术

本课程包括智能计算和计算机视觉两部分,分别介绍以对人脑的物理结构进行模拟为主要特征的联接主义智能技术和以模拟人类视觉处理为主要特征的计算机视觉两部分。它是智能技术的主干内容;也是实现智能技术、组成智能系统的重要工具,属于本专业本科生的专业基础课。通过智能技术的学习,学生应能够掌握智能技术的基本原理和方法。通过课堂讲解、,并配合一定的作业练习、上机实验等环节,学生应初步具备运用智能技术和方法分析和解决问题的能力。本课程拟定90学时,其中授课54学时,实验36学时。

教材内容包括智能计算和计算机视觉两部分,智能计算部分包括神经网络、模糊理论和遗传算法/蚁群算法,计算机视觉包括计算机视觉导论、计算机视觉理论基础、图像预处理、图像分割、物体识别、图像理解、双目立体视觉、三维视觉技术、主动视觉。

神经网络讲授单个神经元(感知器)的动作原理,与实际生物神经元的对应关系;讲授BP神经网络的组成,网络的特性和对非线性函数的模拟功能;介绍BP算法的优、缺点;讲授H网络的组成结构,H网络在解决优化问题的优越性。模糊理论讲授模糊集合的概念,建立隶属度函数的概念;介绍模糊规则的建立原则,模糊规则与模糊系统收入输出量之间的关系;介绍模糊化以及模糊量精确化的几种常用方法。遗传算法和蚁群算法只作简要介绍,重点介绍这两种算法的特点和成功的应用实例,使学习者有一个感性认识,明确这种类型算法的“迭代”特点以及总体最优目标与个体行为之间的联系。

计算机视觉理论基础主要介绍Marr的视觉计算理论、图像的相关知识、傅立叶变换基础;图像预处理主要介绍像素亮度变换、几何变换、直方图修正、局部预处理、图像复原;图像分割主要介绍阈值处理方法、基于边界的分割方法、基于区域的分割方法;形状表示与描述主要介绍链码、使用片断序列描述边界、尺度空间方法、基于区域的形状表示与描述;物体识别主要介绍知识的表示、统计模式识别、神经元网络、遗传算法、模拟退火、模糊系统;图像理解主要介绍并行和串行处理控制、分层控制、非分层控制;双目立体视觉主要介绍双目立体视觉原理、精度分析、系统结构、立体成像、立体匹配、系统标定;三维视觉技术主要介绍结构光三维视觉原理、光模式投射系统、标定方法、光度立体视觉、由纹理恢复形状、激光测距法;主动视觉主要介绍从阴影恢复形状、从运动恢复结构、主动跟踪。

3.2智能控制理论与技术

本课程是“智能科学与技术”专业的一门重要专业课程,目的是使学生了解智能科学与控制理论结合所产生之智能控制理论的基本概念和应用价值;使学生熟知当前主流智能控制技术的种类,并掌握模糊控制、神经网络控制以及进化计算、群体智能的基础知识,了解智能技术与传统控制方法的结合点;加强MATLAB仿真实验的训练,以使学生更好地理解基础知识,培养学生使用高级智能控制方法解决实际控制问题的能力。本课程的学习将使学生加深对控制理论的理解,明晰智能技术在控制中的应用技巧,也为本科生继续深造打下基础。本课程拟定64学时,其中授课54学时,实验10学时。

教材内容包括智能控制概论,介绍智能控制的发展历程和应用领域,简介几种重要的智能控制方法;专家控制,简介专家系统的基本结构,讲授专家PID控制器的原理与设计方法;模糊控制,讲授模糊数学基础知识、传统的模糊控制原理和控制器设计与实现方法、模糊PID控制的两种形式,特别是PID控制参数的模糊整定技术;神经网络控制,讲授前馈神经网络和递归神经网络中几种典型的网络模型以及学习算法、基于神经网络的线性系统辨识技术、神经网络逆模控制等;进化计算与控制,讲授进化计算的概念、遗传算法的原理及其与其他智能方法的结合,介绍遗传机器人学;群体智能与控制,讲授蚁群算法的基本原理及其在控制问题中的应用,介绍群体机器人学。

3.3单片机原理与应用

本课程是“智能科学与技术”专业的一门专业课程,目的是使学生了解单片机的组成原理及常用控制算法的实现;掌握51系列单片机指令系统和一般汇编程序设计编写方法;熟悉常用的单片机硬件扩展技术;在此基础上,熟练掌握控制算法的单片机程序编写与调试。本课程拟定54学时,其中授课38学时,实验16学时。

教材内容包括单片机系统概述,介绍单片机定义、单片机发展过程及单片机硬件结构;单片机指令系统及程序设计,介绍指令系统和汇编语言程序设计;硬件资源及接口技术,介绍硬件资源和接口技术;单片机使用技术,介绍抗干扰技术、C语言应用程序设计;依次介绍PID控制器、状态反馈控制器、模糊控制器、系统辨识、卡尔曼滤波、滑模控制器、最优控制器、鲁棒控制器、自适应控制器、神经网络控制器的历史沿革、基本原理、常用形式和单片机具体实现方法。

3.4嵌入式系统

本课程以当前主流的嵌入式系统技术为背景,以嵌入式系统原理为基础,以嵌入式系统开发体系为骨架,以嵌入式控制系统开发为目标,较为全面地介绍嵌入式系统的基本概念、软硬件的基本体系结构、软硬件开发方法、相关开发工具、应用领域、热门领域的开发实例以及当前的一些前沿动态,为学生展示较为完整的嵌入式控制系统领域概况。本课程拟定64学时,其中授课48学时,实验16学时。

教材依据嵌入式控制系统的特征,将控制算法、嵌入式系统硬件、操作系统、应用程序设计及组态软件作为统一的技术平台介绍,突出嵌入式技术在控制系统中应用的特点,重点介绍嵌入式控制系统软硬件、电路、操作系统、实时性、可靠性等特性,从软件体系结构及开发的角度出发,强调实时调度、Bootloader、BSP、嵌入式实时多任务系统设计、交叉开发与仿真开发等关键技术,并特别引入了工业控制中需要的电磁兼容性设计和大量的典型嵌入式控制系统实例设计。通过本课程的学习,学生不但可以学会使用工具开发嵌入式软硬件,而且可以从总体角度选择适当的技术和方法,全面规划和设计嵌入式系统。

3.5智能工程

本课程是“智能科学与技术”专业的一门核心专业课程。面向智能技术的实际应用,着眼于解决工程应用中的技术问题,从典型系统设计案例分析出发,通过大量实验提高学生的工程实践能力。本课程拟定36学时,全部为授课学时。

教材内容包括智能工程概论,介绍智能工程现状、工程设计原则和工程实际流程;常用传感器原理,介绍传感器一般特性、光电式传感器和视觉传感器;典型智能系统设计案例,包括智能移动机器人、智能电梯群控电梯等系统。

3.6智能机器人

课程通过对一个具有代表性的仿人机器人的拆解,将知识点拆解成6个主要教学模块:1)机器人控制模块,介绍各类控制模块的原理与组成;2)机器人运动系统,介绍电机与舵机的原理与控制方法;3)机器人动作系统,介绍机器人各部件的协调控制;4)机器人视觉系统,介绍典型的超声波、影像传感器的原理与识别算法;5)机器人表现系统原理,介绍人与机器人的交互原理;6)机器人通信系统原理,介绍机器人之间的数据与信息传递方法。学生学习时,能够与基础知识相联系,并能掌握机器人这门技术,为从事机器人产品研发工作打下坚实的基础。本课程拟定54学时,其中授课44学时,实验10学时。

教材面向“智能科学与技术”专业,同时兼顾信息类专业学生编写,根据这类专业学生的知识结构和特点组织内容。从具体的机器人控制需求出发,将自动控制的基本理论和机器人控制特点相结合,讲授机器人控制系统的组成、规律、特点和设计方法。理论上反映当前的最新进展,内容上考虑初学者的需求,侧重普及性、实用性和新颖性,结构体系符合信息类和控制类专业学生的特点,力求简洁、清楚,对技术的叙述遵循目标、问题、理论依据、实现方法、实际情况、发展方向的方式。做到重点突出,符合实际,满足需要,指导性强。

3.7智能控制系统

本课程是“智能科学与技术”专业的一门专业课程,使学生了解智能控制系统的基础知识;掌握智能控制系统中最新的智能传感技术、智能控制器、智能执行能执行器及智能网络与接口技术;掌握智能控制系统中多个关键硬件装置的识别及其使用。通过学习多个智能控制系统的开发实例,学生应掌握智能控制系统的设计方法与技术,坚实地掌握最新智能控制系统知识,提高理论联系实际的能力,并为学习其他课程的打下坚实基础。本课程拟定64学时,其中授课48学时,实验16学时。

教材内容包括概述,介绍智能控制系统的基本概念、基本内容和机构及其发展趋势;智能传感系统,讲授智能数据采集技术、传感器智能化的数据处理方法、多传感器信息融合的方法、智能传感器实现方法与典型实例;智能控制器设计,讲授基于单片机的智能控制器设计及其应用、基于高性能嵌入式ARM的智能控制器设计及其应用、基于PLC的智能控制器设计及其应用;智能电动执行器,讲授智能电动执行器的硬件实现技术,软件设计技术以及典型的智能电动执行器实例及其应用;智能网络与接口技术,讲授无线传感器智能网络,工业现场总线网络以及智能传感器、智能控制器和智能执行器的网络接口实现技术;智能控制系统设计实例,综合利用前面的知识设计网络化智能压力传感器的系统设计、基于声音定位的智能机器人系统设计、基于微机电惯性传感器的汽车多路况智能防撞系统的设计、大型设备的PLC智能控制系统设计。

4结语

通过南开大学、北京科技大学和河北工业大学3所高校的研讨,我们凝练出较完整的“智能科学与技术”专业课程体系,体现出本专业的特色;提出可供3所高校共同使用的教学大纲和教材内容,体现出学生培养的工程实践导向。这些研究成果可以为开办“智能科学与技术”专业的兄弟院校进一步研讨提供蓝本,也可以为筹建该专业的高校所参考。

注:本文受到北京科技大学教学研究会第六批教学研究课题、北京科技大学教育教学研究基金青年教师教育教学研究立项项目、河北工业大学教改项目(2010-12)支持。

参考文献:

[1] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[J]. 计算机教育,2009(11):10-14.

[2] 教育部关于公布2009年度高等学校专业设置备案或审批结果的通知[S]. 教高〔2010〕2号,2010.

[3] 方勇纯,刘景泰. 南开大学“智能科学与技术”专业教学体系与实验环境建设[J]. 计算机教育,2009(11):21-25.

[4] 石志国,刘冀伟,王志良.“智能科学与技术”本科专业软件实践类课程建设探讨[J]. 计算机教育,2009(11):93-97.

[5] 刘作军,张磊,杨鹏,等. 谈我校增设“智能科学与技术”专业的设想与措施[J]. 计算机教育,2009(11):53-56.

[6] 卢桂章. 无处不在的智能技术[J]. 计算机教育,2009(11):68-72.

A Study on the Course System and Textbook Construction for the Discipline of

Intelligence Science and Technology

YANG Peng1, ZHANG Jian-xun2, LIU Ji-wei3, ZHANG Lei1

(1. Hebei University of Technology, Tianjin 300130, China; 2.Nankai University, Tianjin 300071, China;

3. University of Science and Technology Beijing, Beijing 100083, China)

第3篇

(大连东软信息学院电子工程系,辽宁大连116023)

摘要:从智能科学与技术专业的人才培养目标出发,探讨构建不断线的浸入式双语课程教学体系,阐述双语课程在课程设计、授课方法和手段、课程资源建设、师资队伍培养、课程评估评价等方面的思考和实践。

关键词 :双语教学;智能科学技术;浸入式;C语言

基金项目:2014年辽宁省普通高等教育本科教学改革研究项目“浸入式的C语言程序设计课程双语教学模式探索与实践”( UPRP20140592)。

第一作者简介:申华,男,教授,研究方向为嵌入式系统开发,shenhua@neusoft.edu.cn。

0 引 言

智能科学与技术专业是面向前沿高新技术的基础性本科专业,是国际上公认的最具发展前景的专业之一,在激烈竞争的国际环境下,先掌握智能科学技术,就有可能掌握制胜的主导权。进入21世纪以后,智能科学技术发展迅猛,新技术、新产品、新应用层出不穷,与国际先进的智能科学技术发展接轨,对于推进我国智能科学技术专业的发展以及培养高层次智能科学技术人才尤为重要。

在教育国际化、科技和经济发展全球化的趋势下,我国对精通专业知识和外语的复合型人才需求不断增加。教育部2001年颁布的《关于加强高等学校本科教学工作提高教学质量的若干意见》指出——按照“教育面向现代化、面向世界、面向未来”的要求,为适应经济全球化和科技革命的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学——这就明确提出了高等院校双语教学的要求。《2010-2020国家中长期教育改革和发展规划纲要》再次提出要扩大教育开放,提高国际交流合作水平,扩大政府间学历学位互认,支持中外大学间的教师互派、学生互换、学分互认和学位互授。双语教学已成为我国教育改革与国际接轨以及现代化高等教育未来发展的重要组成部分。

开展双语教学,是培养具有国际合作意识、国际交流与竞争能力的高素质外向型专业人才的重要手段。一般双语教学培养目标包括:阅读最新的外文技术资料和资讯,对外文文献的理解以及面对面与外国同行直接进行信息交流等。概而言之,就是培养学生的外语应用能力,保持与国外先进知识与技术的同步。

1 智能科学与技术专业的双语课程体系规划

智能信息产业具有技术和知识更新快、新产品层出不穷的特点,学生毕业后从事产品开发、生产和科研都不可避免地要接触国外先进技术,查阅外文技术资料等,若读研深造,更要经常查阅大量英文资料和科技论文,参加国际学术会议进行技术交流等,而目前工科学生普遍欠缺应用英语进行专业知识交流的能力。为培养学生应用英语学习和迅速了解国外先进智能技术、进行技术交流的能力,造就国际化智能工程技术人才,在智能科学与技术专业实施双语课程教学是十分必要的。

目前国内高校的专业英语教学可归纳为以下两种情况:

(1)理工类专业中,专业英语是历史悠久、开设较为广泛的一门课程,一般由英语教师教授。该类课程的主要问题是英语教师不具备相关理工专业的知识,所选用的科技类通俗内容与学生所学专业相距甚远,普遍处于教师不愿教、学生无意学的尴尬局面。

(2)近年来,各高校普遍尝试开设针对部分学生(如“快班”学生)的专业课程双语教学,由理工科专业教师讲授。这些双语课程绝大多数是将某门专业课改为双语教学,很少有高校从专业培养目标人手,系统设计构建双语课程体系。

正如语言的学习需要一个缓慢、长期、渐进的过程一样,外语应用能力的培养也需要通过一系列双语课程的学习逐步开展和提升。从智能科学与技术专业的人才培养目标出发,构建大学期间双语课程不断线、面向全体学生的双语教学体系,通过有针对性的双语课程立体化培养,使学生既达成专业培养目标的要求,又符合国际化复合型人才的需求。

基于智能科学与技术专业的课程体系,考虑英文在课程中的应用比例,兼顾双语课程实施的难度,可设计软件开发和硬件开发两条专业课程主线(如图1所示),实现学生双语能力的系统化培养。

根据智能科学与技术专业的培养目标,双语课程的软件主线主要选择程序设计类课程,这是因为程序本身必须符合英文语法规则,再加上程序编译器、编译信息提示和帮助文档皆为英文,非常适合以英文为工作环境;硬件主线选择以电路图、芯片手册等作为主要技术资料的核心课程,这些知识内容以直观的图表作为载体,双语教学中语言障碍带来的影响可以被降至最低。

2 双语教学师资队伍的建设与培养

教师是双语教学最直接的实施者,教师的语言水平和教学能力直接关系到双语教学的成败。从实际教学活动上看,双语课程的授课教师要有丰富的教学经验、扎实的学科知识以及深厚的学术造诣和研究能力,能充分理解运用原版教材,把握学科前沿;同时还要求具备较高的外语水平,能在课堂上熟练地在双语之间进行切换,准确地表达专业知识。也就是说,承担双语授课的教师不仅专业精深、英语好,还要能用英语表述专业知识、解析专业词汇,并具备良好的教育教学管理能力。

目前,我国高校还没有学科专业或机构专门针对双语师资进行培养,而双语教师的匮乏已成为制约双语教学发展的瓶颈。为更好鼓励双语教学,培养双语师资队伍,大连东软信息学院2012年就制定颁布了《双语教学管理办法》,从教师的口语培训、双语课程级别的认定、双语课程的建设、双语课程的奖励和双语课程的效果评估等多个方面,对双语课程的教学进行系统规划和管理。

师资培训采取脱岗培训、在岗培养等方式,选拔英语基础较好、教学经验丰富、教学效果好的教师有计划地开展外语培训,提高教师的英文水平并学习国外先进的教学理念。同时,引进高水平的双语教学人才,优化师资队伍的学历结构、职称结构、年龄结构和知识结构,形成双语教师梯队。还应鼓励教师间互相听课,定期开展研讨,在课程负责人带领下采用导师制帮助新教师进步与成长。

双语课程实施根据难易程度,划分为A、B、C三个级别,均采用外文原版教材及外文课件。A级课程课堂教学中全部使用外语,课程考核全部使用外文并要求学生用外文作答;B级课程课堂教学中使用外语授课达到50%以上,至少50%的课程考核使用外文并要求学生用外文作答;C级课程课堂教学中使用外语授课达到30%以上,至少30%的课程考核使用外文并要求学生用外文作答。根据教师双语授课能力、课程难易程度以及授课对象的接受程度,各个专业选择申请开设相应级别的双语教学课程,学校设有专门的双语课程评估委员会对申请进行评估,并安排试讲。

3 双语课程的教学设计

双语教学的实施存在两个难点,一个是课程知识目标的达成,另一个是引入双语教学后对学生专业学习带来的影响,克服语言障碍实现课程培养目标的达成是实施双语教学的最大挑战。针对不同类型的双语课程,须精心设计教学内容,使教学内容的讲授既符合专业知识的特点,又能有效减轻语言障碍带来的困扰。

程序设计类课程因其自身特点使得双语教学这种新的教学形式实施起来更加有效。很多程序设计语言(如C语言、C++语言、Java语言等),其语言表述、语法结构和算法逻辑与英语思维较接近,而且程序的开发环境也是以英文版本居多,即使是汉化的中文版界面,程序在设计调试过程中的编译信息和错误提示信息也都是用英文表达。在学习这些语言时,不需要进行汉语的翻译,只需对其英文本意进行直译,这是该类课程适合双语教学的最主要原因和最大优势。另外,程序类课程中采用双语教学,学生在对专业知识的相关术语和英文表述有了一定的了解和掌握后,当程序设计和调试过程中遇到问题时,可以较好地理解提示信息,大大提高程序调试效率。因此,双语教学对程序设计类课程的学习有明显的帮助和促进作用。

以第一门双语课程C语言程序设计为例,根据该课程培养目标的定位,学生需要掌握基本的C语言语法,并应用C语言进行编程实践,解决实际问题。基于该目标,须对课程理论知识和实践内容进行优化,综合C语言程序设计的知识点,将C程序作为C语法的载体,以编程实践贯穿整个教学过程;同时,基于课程内容的不同模块,可安排与实际应用联系紧密、由简入繁的程序设计项目,设计出符合学生理解能力和认知规律的教学内容;此外,兼顾知识衔接和教学学时等方面的要素,合理安排章节内容,将理论授课和编程实践有机结合,使学生理解、掌握基本理论知识并进行编程实践。

4 双语课程教学方法与手段

双语教学对于学生来说最大难度在于外语环境的适应,包括听、说、读、写等多个方面。经过几年的探索,笔者在双语课程中采用浸入式( Immersion)教学模式,取得了较好的效果。浸入式教学模式最早起源于加拿大的一种外语教学模式,教师在课堂上不但用第二语言教授第二语言,而且用第二语言讲授部分学科课程。也就是说,第二语言不仅是学习的内容,而且是学习的工具。浸入式教学使传统的、孤立的外语教学向外语与学科知识教学相结合的方向转变。

专业课程的双语教学就是要使用外语作为工具来开展专业学科知识的学习,因此,采用浸入式的教学模式极为适合。当然,鉴于学生的外语接受能力以及教师用外语描述专业知识的难度,初步可以采用中英文混合式教学。首先,教师使用常用英语组织课堂、管理课堂;其次,课程中涉及到的各种教学仪器、图表、

关键词 汇等用英语来表达;再次,课程所涉及的专业术语用英语介绍给学生。而其他的重点知识内容,可以中文表述为主,英文表述为辅。随着双语教学进程的推进,学生慢慢适应双语教学课堂氛围后,教师可以逐渐加大使用英语讲解学科知识内容的比例,最终达到完全使用英语进行专业知识教学。

以C语言程序设计课程为例,遵循浸入式双语教学的基本思路,课程内容回顾、课程内容小结、一些图文并茂的应用性内容的讲解、课堂提问等环节均采用全英文授课方式,但一些理论性较强、较难理解的内容,则应视学生的掌握情况减少英语讲解的比例。同时,作业、习题、实验、试题和开发环境( Turbo C)也全部采用英文。这样,学生在课内和课外的所有学习环节中主动或被动地浸入到纯英文的学习环境中,从不适应到适应,从不习惯到习惯,学生也逐渐适应双语学习的形式,甚至觉得英文对专业知识的表述更加简单、直接,易于理解。

从具体的教学手段上,理论知识可以借助多媒体和计算机技术开展教学,比如使用多媒体和动画等手段使知识内容形象化展现,提高课堂教学效率。同时采用Turbo C编译器对程序进行在线编译、调试,将程序运行过程实时展示给学生,既有助于学生理解程序语法的功能,又能直观动态地反映程序的执行过程。在实验和实践环节,运用案例教学和程序设计项目教学,以提高程序设计能力为重点,精讲多练,引导学生运用C语言编程解决实际问题。

5 双语课程教学资源开发

双语教学的基本原则是尽量使用原版外文教材和参考资料。原版外文教材的内容体现了理论的前瞻性,有利于学生了解专业前沿理论知识和最新发展动态。另外,选择原版外文教材给学生营造了一个全面接触专业外语的环境,包括准确使用专业词汇、准确表达专业内容。只有使用原版外文教材,才能真正使双语教学从形式和内容上与世界主流技术和专业思想保持一致。

当然,由于国外教材是根据西方的文化习惯和思维方式编写的,直接阅读可能会对大部分学生造成很大学习压力,甚至会使其迷失于茫茫英语海洋中,严重影响学习专业课程的积极性。为此,在使用英文原版教材的基础上,最好由授课教师开发基于原版外文教材的纯英文电子课件,作为原版教材的简化版本学习资料,这样学生以电子课件为纲,再阅读原版教材就会很容易把握知识的难重点。此外,还可根据教学目标设计纯英文的实验项目和习题,使学生在学习过程中不得不“浸入”到英文环境中去,随着学习进程的不断推进,语言障碍就会越来越小,部分学生甚至在学习过程中会逐渐形成英语思维习惯。

以大连东软信息学院电子工程系开设的C语言程序设计双语课程为例,课程选择Michael Vine的《C Programming for the Absolute Beginner》作为教材,该教材以程序讲述语法,同时精选大量程序范例,在保持知识系统性的同时增加趣味性,尤其适合初次学习C语言的读者使用。课程组基于该教材开发了全套英文课件,编写了涵盖各个章节的全英文实验指导书,开发了基于万维考试系统的C语言全英文试题库,还基于网络给学生提供大量丰富的外文参考资料以及与课程有关的电子文档和视频资料,方便学生自主学习。

6 双语课程的教学效果评估与反馈

双语课程作为一种新的教学类型,在实施过程中须采取全流程的监控措施对教学效果进行评估,以保证双语课程教学质量的持续提高与改善。教学质量管理与保障部专门成立双语教学督导教师队伍,针对双语课程,系统地收集和分析资料,进行课程效果评估,分析判断双语课程教学质量的高低、教学目标和教学方法的有效程度,并给出相应的反馈用于指导今后的教学活动。具体可从以下两个方面全程监控双语教学质量:

1)双语教学过程监控。

通过每学期3次网上调查问卷,了解学生对双语教学的满意程度,收集大量关于学生学习的反馈信息。督导教师进课堂听课,通过文字记录、课堂录音等形式,对课堂情况(包括外语发音、表达、语速、课堂感染力、学生专注程度等)进行记录和评估.并通过教学质量管理平台将相关信息及时反馈给授课教师和开课系部,以便掌握学生的学习需求,及时调整和优化双语教学活动。

2)双语教学效果评估。

跟踪学生的学习效果,了解双语授课对学生专业能力的提高程度。从短期目标来看,要关注学生经过双语课程学习后掌握的技能及其掌握程度,可通过课程考核来分析;从长期目标来看,应关注毕业生在工作中的外语应用能力、国际化工作环境的适应能力以及运用外语解决问题的能力等是否得到提升。

7 结语

双语教学要遵循“循序渐进、因材施教”的原则,根据学生的外语认知水平,选择适合的教学方法和手段,逐步开展和提升;要注重实效,不能以牺牲学生专业能力为代价,单纯追求双语课程的开设率;还须深入研究双语课程的特点,从师资队伍建设、教学设计、教学方法与手段、教学资源建设、教学效果评价与反馈等多个维度探索适宜的双语教学模式,顺利推进双语教学,保证学生既获得先进的科学技术和前瞻性的专业知识,又系统培养专业外语应用能力和获取新知识、新资源的能力,以培养全面发展的复合型、国际化人才,为全球化经济改革建设服务。

参考文献:

[1]程昕.课程语言特点与双语教学模式选择实证研究[J]外语与外语教学,2011(2): 62-65.

[2]黄崇岭,双语教学核心概念的解析[J]外语学刊,2008(1): 137-139.

[3]百度百科.浸入式教学[EB/OL].[2015 -06-02], baike.baidu.com/view/2551697.htm.

第4篇

关键词:神经网络;智能;计算;应用研究

中图分类号:TP393文献标识码:A文章编号:1009-3044(2008)20-30326-02

Application of Neural Network Forefront

LI Bing-fu1,2

(1.Zhanjiang Normal College, Zhanjiang 524048, China; 2.Chongqing University, Master of the Computer College, Chongqing 400030, China)

Abstract: The rise of neural networks, has been on the cognitive and intellectual nature of the computer industry and basic research has produced an unprecedented excitement and great role. Therefore, in all fields has greatly applied research.

Key words: Neural Networks; Intelligent; Computing; Applied Research

1 引言

神经网络是一门模仿人类神经中枢――大脑构造与功能的智能科学,利用物理器件来模拟生物神经网络的某些结构和功能,即由许多功能简单的神经元互联起来,形成一种能够模拟人的学习、决策和识别等功能的网络系统。他具有快速反映能力,便于对事物进行适时控制与处理;善于在复杂的环境下,充分逼近任意非线形系统,快速获得满足多种约束条件问题的最优化答案;具有高度的鲁棒性和容错能力等优越性能。

神经网络的崛起,已对认知和智力的本质的基础研究乃至计算机产业都产生了空前的刺激和极大的推动作用。因此在各个领域都有很大的应用研究。

2 神经网络(ANN)的研究内容

1) 理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法;2) 实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径;3) 应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。

3 神经网络在各领域的应用研究

3.1 智能机器领域的应用研究

智能机器领域的应用研究主要是进一步研究调节多层感知器的算法,使建立的模型和学习算法成为适应性神经网络的有力工具,构建多层感知器与自组织特征图级联想的复合网络,是增强网络解决实际问题能力的一个有效途径。重视联结的可编程性问题和通用性问题的研究,从而促进智能科学的发展。通过不断探索人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。

智能的产生和变化经过了漫长的进化过程,我们对智能处理的新方法的灵感主要来自神经科学,例如学习、记忆实质上是突触的功能,人类大脑的前额叶高度发育,它几乎占了30%大脑的表面积,在其附近形成了人类才出现的语言运动区,它与智能发育密切相关,使神经系统的发育同环境的关系更加密切,脑的可塑性很大,能主动适应环境还能主动改造环境,人类向制造智能工具方向迈进正是这种主动性的反映。脑的可塑期越长,经验对脑的影响就越大,而人类的认知过程很大程度上不仅受经验主义的影响,而且还接受理性主义的模型和解释。因此,对于智能和机器的关系,应该从进化的角度,把智能活动看成动态发展的过程,并合理的发挥经验的作用。同时还应该从环境与社会约束以及历史文化约束的角度加深对它的理解与分析。

神经网络是由大量处理单元组成的非线性、自适应、自组织系统,它是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境-问题-目的”,有极大的诱惑力与压力,它的发展方向就将是,把基于联结主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机的结合起来。在21世纪初,智能的机器实现问题的研究将有新的进展和突破。

3.2 神经计算和进化计算的应用研究

计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。例如Church、Kleene、Godel、Post、Turing等数学家都给出了可计算性算法的精确数学定义,对后来的计算和算法的发展影响很大。50年代数学家Markov发展了Post系统。80年代以后,神经网络理论在计算理论方面取得了引人注目的成果,形成了神经计算和进化计算新概念,激起了许多理论家的强烈兴趣,大规模平行计算是对基于Turing机的离散符号理论的根本性的冲击,但90年代人们更多的是批评的接受它,并将两者结合起来,近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断探索新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息社会,对信息的获取、处理和传输问题;对网络路由优化问题;对数据安全和保密问题等等将有新的要求,这些将成为社会运行的首要任务,因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,建立具有计算复杂性、网络容错性和坚韧性的计算理论。

基于人类的思维方式的转变:线性思维转到非线性思维。神经元、神经网络都具有非线性、非局域性、非定常性、非凸性和混沌等特性,故此在计算智能的层次上进行非线性动力系统、 混沌神经网络以及对神经网络的数理研究。从而进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。此外,神经网络与各种控制方法有机结合具有很大发展前景,建模算法和控制系统的稳定性等研究仍为热点问题,而容忍控制、可塑性研究可能成为新的热点问题。开展进化并行算法的稳定性分析及误差估计方面的研究将会促进进化计算的发展。把学习性并行算法与计算复杂性联系起来,分析这些网络模型的计算复杂性以及正确性,从而确定计算是否经济合理。因而关注神经信息处理和脑能量两个方面以及它们的综合分析研究的最新动态,吸收当代脑构象等各种新技术和新方法是十分重要的。

离散符号计算、神经计算和进化计算相互促进或者最终导致这3种计算统一起来,这算得上是我们回避不了的一个重大难题。预计在21世纪初,关于这个领域的研究会产生新的概念和方法。尤其是视觉计算方面会得到充分地发展。我们应当抓住这个机会,力求取得重大意义的理论和应用成果。

3.3 神经网络结构和神经元芯片的应用研究

神经网络结构的研究是神经网络的实现以及成功地实现应用的前提,又是优越的物理前提。它体现了算法和结构的统一,是硬件和软件的混合体,这种硬软混合结构模型可以为意识的作用和基本机制提供解释。未来的研究主要是针对信息处理功能体,将系统、结构、电路、 器件和材料等方面的知识有机结合起来,建构有关的新概念和新技术,如结晶功能体、最子效应功能体、高分子功能体等。在硬件实现上,研究材料的结构和组织,使它具有自然地进行信息处理的能力,如神经元系统、自组织系统等。神经计算机的主要特征是具有并行分布式处理、学习功能,这是一种提高计算性能的有效途径,使计算机的功能向智能化发展,与人的大脑的功能相似,并具有专家的特点,比普通人的反应更敏捷,思考更周密。光学神经计算机具有神经元之间的连接不仅数量巨大而且结合强度可以动态控制,因为光波的传播无交叉失真,传播容量大,并可能实现超高速运算,这是一个重要的发展领域,其基础科学涉及到激光物理学、非线性光学、光紊乱现象分析等,这些与神经网络之间在数学构造上存在着类似性。近年来,人们采用交叉光互连技术,保证了它们之间没有串扰,它有着广阔的发展前景。在技术上主要有超高速、大规模的光连接问题和学习的收敛以及稳定性问题,可望使之得到突破性进展;另一种是采用LSI技术制作硅神经芯片,以及二维VLSI技术用于处理具有局部和规则连接问题。在未来一、二十年里半导体神经网络 芯片仍将是智能计算机硬件的主要载体,而大量的神经元器件,如何实现互不干扰的高密度、高交叉互连,这个问题可望尽早得到解决。此外,生物器件的研究正处于探索之中,研究这种模型的理论根据是当硅集成块和元件间的距离如果接近0.01微米时,电子从邻近元件逸入的概率将很有限,便产生“隧道效应”的现象,它是高集成电路块工作不可靠的原因之一。而生物芯片由于元件是分子大小的,其包装密度可成数量级增加,它的信号传播方式是孤电子,将不会有损耗,并且几乎不产生热。因此,它有更诱人的前景。随着大量神经计算机和神经元芯片应用于高科技领域,给神经网络理论和方法赋予新的内容,同时也会提出一些新的理论课题,这是神经网络迅速发展的一个动力。

4 结束语

近年来,我国“863”计划、攻关计划、“攀登”计划和国家自然科学基金等,都对神经网络的研究给予了资助,吸引了大量的优秀青年人才从事神经网络领域的研究工作,并促进我国能在这个领域取得世界上的领先地位。在21世纪科学技术发展征程中,神经网络理论的发展将与日俱增。

参考文献:

[1] 阎平凡.人工神经网络的容量、学习与计算复杂性[J]. 电子学报,1995,23.

第5篇

人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。? 

本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。?? 

一、兼顾课程内容的统一性和差异性?? 

人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。? 

知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。? 

同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。? 

这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。 

??二、实施分层次教学?? 

各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。? 

本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。? 

非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。? 

给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。 

??三、案例驱动,寓教于乐?? 

采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。? 

例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。? 

又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。? 

在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。? 

为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。? 

此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。 

??四、结语?? 

以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。? 

人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。 

 

参考文献? 

[1] 

蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.? 

[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.? 

[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.? 

第6篇

人工智能技术及其应用的发展历史虽然只有短短的50余年,但是它作为信息技术的前沿领域,对社会经济和发展的影响却越来越大。在基础教育课程改革的大潮中,许多国家意识到基础教育领域开展人工智能教育的必要性,努力把人工智能列入技术类教育的教学内容中。作为师范类院校,教授人工智能课是有必要的。? 

(1)为部分优秀的学生将来做更深入的研究打坚实的基础。在面向知识经济的今天,研究获取、表示和使用知识的人工智能学科越来越受到人们的重视。目前人工智能研究被列为中国高技术领域的重点之一。以专家系统为代表的智能化系统在信息技术中也占有重要地位。因此在高等教育中开展人工智能教育和智能化系统的研发,不仅是计算机科学的应用,也是促进各学科服务于国民经济发展的必然趋势。为使人工智能的理论、方法和技术的研究与应用普及和深入,教育重心必须要下移,即从研究生教育向本科教育普及。开展本科层次人工智能普及教育的有效途径之一是在本科高年级开设相关选修课。开展人工智能教育,不仅能够更好地发挥高等院校的育人和科学研究功能,而且能为学生拓宽专业路径,扩大自主学习空间和发展个性创造条件,同时也为营造一个使学生不仅有宽厚、扎实的理论基础,且具综合分析和解决问题能力的环境。? 

(2)为将来从教的学生积聚大量的知识。英国早在1999年,人工智能课程已经作为选修课出现在中学的信息与通讯技术(ICT)课程中。许多中小学还通过机器人竞赛活动来激发中小学生学习人工智能的兴趣,使学生不仅提高了用信息技术解决问题的能力,而且培养了多种思维方式,获得了更多的创新空间。美国现行的中学信息技术课程设置中,将人工智能的内容作为“媒体与技术”层面对12年级学生的要求。澳大利亚的部分中学开设的信息处理与技术课程,人工智能、信息系统、算法和程序设计、社会和伦理道德、计算机系统分别作为5个主题共同构成了该课程的教学内容。在该课程的大纲中规定,人工智能部分的教学内容在高中第3学期为12年级的学生开设,教学时间为10周。? 

在我国,多年以来中学奥林匹克信息学竞赛中一直包含有人工智能相关的题目,涉及启发式搜索、博弈、智能程序设计等问题。2003年4月,我国教育部正式颁布《普通高中技术课程标准(实验)》,首次在信息技术科目中设立了“人工智能初步”选修模块,标志着我国高中人工智能课程的正式起步。? 

我国的新课程标准颁布后,教育部评审并通过了分别由教育科学出版社、广东高教出版社、地图出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并开发了相应的教辅材料,包括教师用书和配套光盘等。为了配合中学人工智能课程的实施,国内也推出了一些适合中学生学习与体验的人工智能软件和网络资源。另一方面,一些高校的本科生、研究生也逐步关注中学人工智能教育的开展并将其作为毕业论文的研究选题。一些师范院校适应形势要求,已为师范生开设了与此相关的选修课程。? 

2 人工智能的教育及教学条件现状? 

通过对本人多年的教学过程进行总结,我校的《人工智能》课程教育现状可总结为如下几点:? 

(1)理论知识充裕。但与实践相脱节,特别是在智能科学技术的教育教学方面。尽管知识面相当广泛,而人工智能理论的普及教育以及智能技术的开发与应用仍然十分滞后。? 

(2)同其它普通高等院校一样,在本校,人工智能技术的研究与应用尚未普及,甚至比不上其它院校。这不利于培养学生的科研兴趣及创造精神。? 

(3)缺乏配套实验教材,实验教学内容缺乏,无法培养学生的研究能力和创新能力。只有开设实验项目,才能使人工智能的相关知识具有研究性和综合性。? 

(4)对中小学智能教育的深度及教学方式、教学特点缺乏研究。做为师范类院校,我认为在对学生进行基础知识教育的基础上,要紧抓中小学智能教育的特点对师范类学生进行相关的教育与培训。? 

相对于教育现状,我校的《人工智能》课程教学条件现状要稍好一些,其状态如下:? 

(1)教材使用国家级规划教材,此教材非常系统地介绍了人工智能的基本原理、方法和应用技术,适合本科及研究生使用。在我们的授课过程中,也会适当为学生提供相关的国内其他先进教材,如中南大学蔡自兴教授的《人工智能及其应用》等。? 

(2)为了促进学生自主学习,我们准备了多种类型的扩充性学习资料,加强学生主动学习的意识,包括:课程相关杂志和书籍目录,以及部分重要的参考文献,与人工智能相关的网络资源如优秀BBS、新闻组、网址等。 它们包括了大量的文献资料、本领域研究的前沿动态等。 使用表明,学生非常乐于查阅这些资源。 使学生能通过使用这些资源进行一些人工智能程序设计,探讨一些问题,在课堂讨论中展示他们的收获。? 

(3)校园网的普及与不断优化使本课程有优良的实践性教学环境,能充分满足教学需要。我们拥有较充足的多媒体教室和网络教室,为实现本课程教学提供了物质保障。在网络资源建设方面,全校办公室、教室、学生宿舍和教师宿舍都以宽带网相连,这些硬件设备对本课程教学发挥了重要作用,使本课程教学质量得以明显提高。? 

3 人工智能教学方法及手段的改革? 

针对我们现在所采取的教学方法,我认为存在许多不足,如教学方式比较单一,教学内容偏重理论讲解等,为此,提出以下教学方法的改革:? 

(1)通过多种途径激发学生的学习兴趣。课程的学习效果,直接受到学生兴趣和参与意识的影响。一般来讲,《人工智能》作为一门前沿课程,开始学生学习兴趣很大,当开始接触到抽象理论知识及部分算法时,学生往往感到不易接受。 我们通过各种途径和方法, 激发和培养学生的学习兴趣,包括鼓励学生参与某部分知识的扩充性资料查找,预留一定时间请学生负责对此内容进行讲解,布置学生对某个基本成型的实验进行纠错及验证,降低问题解决的难度。学生因此产生兴趣从而做更深度研究。? 

(2)进行启发式教学。 我们可以尝试在教学过程中不断提出问题请学生思考,启发学生求解这些问题,鼓励学生提出自己的猜想和解决方案,然后摆出教材中的解决方案,并与同学所提出的观点进行分析和比较,这足以加强学生学习的主动意识和参与意识,提高学生学习的积极性。? 

(3)课堂辩论与交互式教学。 组织课堂辩论,讨论的议题可定位为譬如人工智能是否能超过人类智能等有争议的问题。学生通过对这些问题展开激烈争论,激发了学习潜能,明确了学习目标。当然师生间的交流方式还有很多,如邮件互发、QQ留言等,也可在课程网站中的互动平台进行交流。? 

(4)分层次因材施教。 在授课过程中,通过对每个具体学生的学习进度、课堂作业情况进行及时评估,对学生提出进一步的学习建议和指导, 实现个性化的教学。 对优秀学生探讨,可以在教学设计和实验设计中要求其选作部分探索性、创新性的功课和实验,以发挥学生个性优势。对于有意于将来从事中小学教育的学生可以在机器人及人工智能技术发展现状等知识层面对其做问题讲解。而那些看似缺乏兴趣的学生,我们可以用多媒体手段如播放人工智能相关电影及科学小片引起其兴趣,实行逐步引导的教学过程。? 

另外,我们可以尝试双语教学。 采用中文教材和讲授的同时,注重在课程中的关键词同时用英文表示,并适当指定英文参考短文和英文参考书。使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。我们也可以在教学内容安排上,注重理论联系实际,将一些人工智能网络上的虚拟实验给学生进行课外上网练习,从而使学生了解算法的具体运行过程, 通过参与达到知识的理解,掌握基本方法和技术。? 

 

根据现有的条件,我们在教学中可以采用多媒体教学和网络课程教学相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等特点,构筑以学生为主体的《人工智能》课程现代教学模式。 对于抽象知识,可通过动画和视频演示,通过声音和图像展示人工智能的历史、人物和前景,做到学生直接而深刻地看到知识的内涵外延。网络课程能较好地实现交互并使学习过程情景化,通过网络课程的课堂练习和章节练习,教师可以评价学生的学习情况,并给学生提出学习建议,从而提高学生的研究力和创新力。我们也可以给学生播放中学《人工智能》课程课堂教学录像,以使学生看到初高中学生的知识范围及深度;同时给学生播放现有的《人工智能》科学成果,让学生看到理论背后的实践;也可以播放科幻片,激发学生想象的翅膀从而有兴趣把人工智能作为将来深造的方向。《人工智能》是一门较新的课程,改进教学方法和手段不仅要靠教师,也应增加硬件设备的投入。如果人工智能能采用智能辅助教学系统或机器人辅助教学过程逼真、形象,一目了然,这样可大大提高学生的学习效率,尤其是提高学生的观察判断能力、发现问题和解决问题的能力。? 

4 人工智能实践教学设计的探讨? 

我们可以在教学过程中,适量开设一些实验和设计,提高学生的动手能力,并加深他们对理论知识的理解,降低理论的抽象度,提升理论的实用性。在近两年的教学过程中,我们会适量加入一些人工智能语言的教学过程。例如,在讲解了“野人与传教士过河”等问题后,我们可以让学生使用Visual Prolog或者C ?++?对算法进行实现;在讲解 TSP 问题的遗传算法解决案例后,指出编码方案、初始种群大小、进化代数、交叉率变异率等因素对求解结果的影响,并要求学生通过实验的方式来分析、理解这些问题,并提出“寻找更有利的解决方案”等问题。把学生的兴趣激发后,为解决这些问题,学生会在课外主动查阅相关文献、相互讨论以实现他们所设计的方案,这样既培养了学生善于钻研和勇于创新的精神又提高了学生的实践与创新能力。? 

参考文献:? 

[1] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1).? 

[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教学中的应用与探讨[J].广东工业大学学报:社会科学版,2008(8).? 

第7篇

【关键词】情感计算;适应性学习;适应性网络学习系统

【中图分类号】G434 【文献标识码】A 【论文编号】1009―8097 (2008) 12―0091―03

传统的网络教学系统(或学习系统)虽然可以在web环境下实现认知层面的个性化教学,但往往只重视学习内容的适应性,忽视了学生在学习过程中表现出来的情感状态,以致学生在学习过程中缺乏情感投入,造成严重的情感缺失,甚至产生反感情绪,严重影响网络学习的效果。一个真正个性化的适应性学习系统不仅应当是有智能的,而且还应当是有情感的。

情感是人类的基本经验,它同理性思维和逻辑推理能力一样,在我们的日常生活、工作、交流、处理事务和决策中扮演着重要的角色[1]。情感在认知和人机交互中起着关键性的作用,让计算机具有情感实质上就是让计算机在与人的交互中具有智能和敏感的能力。如果计算机具备了类似于人类的情感能力,能够感知和表达情感,那么人与自然、人与计算机就能达成一种和谐。因此,可以说情感计算是建立这种和谐人机环境的基础之一。

所谓的情感计算是与情感相关、来源于情感或能够对情感施加影响的计算[2]。情感计算技术将有助于改变目前传统网络教学中的情感缺失问题,是解决目前网络学习适应问题的有效突破口。

一 适应性学习理论及网络学习适应性现状

适应性学习(Adaptive Learning)是指为了提高学生学习的适应性,通过学习环境的自身调整来适应学习者的个性特征和认知水平,满足学习者个别需要的学习过程。因此,适应性学习主要包括:(1)学习者可以选择学习支持工具来定制自己喜欢的学习环境。(2)根据学习者的需要,适应性学习可以提供灵活的学习方法,动态地呈现学习内容[3]。现阶段主流的适应性学习模式主要包括3个关键环节:学习诊断、学习内容的动态组织和学习策略的选择[4]。

适应性学习系统的研究以人工智能科学、认知科学和思维科学为理论基础,通过研究人类学习思维的特征和过程,来寻求学习认知的模式[5]。在适应性学习过程中,学生能够自己组织、制订并执行学习计划,能控制整个学习过程,对学习情况进行评估。学习系统要能够满足学生进行个性化学习的需求,提供适应性的学习诊断、适应性的导航及适应性的内容呈现。学生在系统提供的环境中,可以自由选择学习方式。系统会根据学生与系统的交互情况及学生的学习状态、历史记录,适时地给学生以引导,帮助学生完成学习目标。同时还应该适时地对学习者的情感状态做出反应,使学习者快乐地学习,防止由于情感交流缺失造成情感障碍问题。适应性学习系统要充分考虑学生学习行为的个性化特征和情感需要,给学生提供个性化、和谐的人机交互环境,最终达到因材施教的目的。但目前所设计的“适应性学习系统”或“适应性教学系统”往往忽略学习者情感这一重要因素,仅仅实现了认知层面的个性化教学,出现了大量学习适应不良问题等,情感缺失问题尤为严重。所谓情感缺失[6],就是指由于教师和学生、学生和学生分离,使得学生和学生不能像常规教育那么及时地、面对面地交流,学生在学习过程中的某些问题得不到解决,在心理上存在困惑而得不到帮助。这样,如果学生长时间面对冷漠的电脑屏幕而感受不到交互的乐趣和情感的激励时,就会产生反感情绪,从未造成各种各样的学习适应问题。

二 基于情感计算的适应性网络学习系统理论模型

在教与学的过程中,人类的表情和语言是丰富的,当教师讲授的内容学生能够理解和接受的时候,会出现情绪高涨的状态,学生会用微笑的表情或欢快的语言来表示。反之,情绪会低落,学生可能会用眉头紧锁、目光呆滞、低沉丧气等方式来表示他们无法理解讲授的知识。学生的这些情感表现是很重要的反馈信号,为了在网络学习环境中,有效地解决情感交流匾乏问题,本文提出了基于情感计算技术的适应性网络学习系统理论模型,如图1所示。该系统将对学生的情感信号进行捕捉和识别,并以此作为重要依据,判定学生的情感状态和对所学知识的接受情况。系统通过访问学习者特征数据库和相关知识库,主动收集、分析来自学生的反馈信息,从而给出合理的、个性化的学习方案,并能不断地调整和修正学习方案,实现和谐人机交互功能和真正的学习自适应。

上述模型是在传统的适应性学习系统模型的基础上加入了情感计算技术,系统更加具有智能性和友好性,能更好地反应学生的学习状态和情感状态,最终提高学习质量,完成学习任务。该系统可以实现以下功能:对学生的情感信息进行捕捉和识别,并以此作为动态调整学习策略的重要依据;情感虚拟教师可以与学生进行情感交流,实现人机情感交互;根据学生学习时的情感表现和学习历史,适时调整学习内容和内容的难度等,真正实现适应性学习。

该系统分为五大模块:用户登录模块、情感交互模块、评价模块、适应性学习过程模块及数据库模块。

1 用户登录模块

这部分是用户与计算机的接口,主要负责用户的身份验证。学习者初次登录系统时要进行注册,这是实现适应性学习的基础。获取的用户信息存储在用户特征数据库中,主要包括注册用户的基本情况(如注册号、姓名、性别、年龄等)、受教育背景(如学历、学位、进修情况)等。同时,初次登陆系统的学习者还必须进行学习风格测试和知识的前测,收集的学生学习风格特征和知识特征信息被记录到相应的数据库中。

2 情感交互模块

该模块由可进行情感交互的虚拟教师和情感识别两部分组成,是本系统模型的特色部分。情感教师可以在用户学习过程中实现人机的情感交互,情感计算服务器对收集到的情感信息分别进行情感识别,涉及到的情感识别技术主要包括面部表情识别,语音情感识别、姿态情感识别和生理指标情感识别。系统通过统计方法计算出学习者在该学习阶段中所表现出来的情感种类和比例,识别出学习者的整体情感反应,并做出合理的情感评价和认知评价。

用户的整个学习过程是通过与可进行情感交流的虚拟教师(智能)进行交互而进行的,系统将学生的交互信息分为“奖励”和“惩罚”两种信号,这些信号作为系统的输入信息,通过虚拟教师的情感模型刺激系统产生出符合人类情感变化规律的情感信号,并用动画的效果进行表情输出,从而改变传统网络学习的呆板界面,实现和谐的人机交互。

3 评价模块

该模块的评价信息来自四个方面:

(1) 用户首次登录时,系统根据学习者填写的学习风格测试问卷和知识前测问卷得出学生的认知风格特征和知识掌握情况,并对此做出认知评价。

(2) 情感计算终端实时监测学习者在学习过程中的情感表现,并将收集到的人脸表情、语音情感、姿态信息以及生理指标信息等传递给情感计算服务器。在一段学习结束后,自动统计出所出现的情感种类及各种情感所占比例,系统在认知心理学理论的支持下形成情感评价和认知评价。

(3) 系统根据存储在数据库中的学生学习风格、知识特征以及情感数据等信息对学习者的状态做出适时评价。

(4) 学习者根据自己的学习经历,对自己的学习过程和学习结果的满意程度做出自我评价(即反思的过程)。

4 适应性学习过程模块

初次登录时,学习者的学习风格特征被记录到学生学习特征库中,知识特征记录到学生的知识特征库中。系统根据学习者选择的学习目的和学习历史记录进行自适应诊断学习的起点,学习起点的确定为后面的学习内容的适应性呈现提供了依据。起点确定之后,学习者就进入了学习状态。在学习过程中需要为学生配置一个摄像头,系统会通过情感识别技术分析摄像头所捕获的学生的情感信息,并根据情感模型判断学生的学习状态,然后给出相应的提示和合理的建议。如果学生的情绪为烦躁不安,则可能是学习内容难度过大,这时就应该提示学生注意调整一下学习内容的难度。

学习开始,系统会根据学习者的知识模型来提供适应性的导航和帮助,引导着学习者浏览合适的页面内容。比如,对己经掌握的知识点的链接添加相应的标志,还没有学习的知识点的链接可以不用展开或隐藏起来,即将学习的知识点的链接也可以用相应的标志来标注,以引导学习者的学习方向。

在学习过程中,学习者可以根据自己的情况适当的修改自己的学习风格特征和知识特征,以使系统更好的适应学习者的个性化需求。在学习过程中,如果学习者遇到困难可以向在线帮助模块发出请求,如果系统中己经存在问题的解决方案,则系统会给学习者提供反馈信息,从而为学习者提供帮助。如果系统的常见问题中没有发现与学习者问题相似的问题,系统则会根据学习者知识模型为困难学生找到对这部分的内容已经掌握的其他学习者,以帮助他进行学习,这样就避免了传统的协作学习中的盲目性。

为了检验学习者的学习情况,及时地更新学生的知识特征库,学习者可以进行自适应测试,系统会自动引导学习者继续学习新内容或对没有掌握的旧知识进行补习。

学习系统的适应性引擎模块会追踪学习者的整个学习过程,并记录学习者的学习状态,如学习历史记录、学习路径、掌握情况等,以不断更新学习者知识特征。

5 数据库模块

该模块主要包括四个部分:

(1) 学生情感数据库:即学生的动态情感数据资源,包括面部表情、语音情感、姿态情感和生理指标等;

(2) 学生学习特征库:存储了学生的通用信息以及学习风格、知识水平和偏好的学习策略等;

(3) 学生知识特征库:学生的认知能力、认知风格、领域知识掌握情况的表征;

(4) 领域知识库:按照不同形式组织的教学最小单元及其属性的集合。

其中,学生情感数据库、学生学习特征库和学生知识特征库是该系统中学生模型的基本组成部分。

上述适应性网络学习系统融入了情感建模、情感识别及情感表达等情感计算的相关技术,从而使传统的适应性学习更加个性化和人性化,使网络学习这种学习方式成为学习者获取知识的主渠道。

三 结束语

情感计算技术应用到网络学习领域,还处于初级阶段,面临的挑战是多方面的。情感计算技术是人工智能领域的新技术,迄今为止,相关研究在人脸表情识别,姿态分析、语言情感表达和识别等方面取得了一定的进展,提高了人机界面、人机交互的和谐性[7]。但由于缺乏大规模动态情感数据资源,情感计算的发展受到了一定的限制。本文所构建的基于情感计算技术的适应性网络学习系统模型也只是在理论层面提出的,还需要相关技术的支持。但我们相信,随着技术的不断发展和成熟,能够理解人的情感,与人进行自然、亲切交互的情感计算机在不久的将来将会出现。将情感计算融入到网络学习过程中,通过与学习者“对话”给予学习者情感鼓励和情感补偿,并根据学习者的情感反应,适时帮助学习者调整学习内容和学习策略,是必要的,也是可行的。我们下一步的工作将是基于本文所构建理论模型,运用相关情感计算技术和计算机技术开发出具有适应和情感交互能力的网络学习系统。

参考文献

[1] D Coleman.Emotional diligence[M].America:Bantam books,1995.

[2] Picard R.W.Affective Computing[M].London,England:MIT Press,1997.

[3] 余胜泉.适应性学习――远距离教育发展的趋势[J].开放教育研究,2000,(3):12-15.

[4] 孙音弦.网上适应性学习的支持系统研究[D].上海:华东师范大学,2003.

[5] MG Lee.Profiling students’ adaptation styles in Web-based learning [J].Computer and Education, 2001, 36(2):121-132.

第8篇

葛先雷 南京化工职业技术学院

【摘 要】在机器人避障问题中,为了便对周围的事物和环境作出判断,机器人在不同的方向上都安装有传感器。由于不同的传感器上接受着不同的信息,传感器越多,对同一事物反馈的信息越多,必然会引起冲突现象的发生,直接影响了机器人对周围事物的正确判断和避障的效率。因此,冲突分解能力的好坏就成了机器人准确、高效避障的关键。在各种冲突分解算法中,树形算法是一种较有效的分解方法,所以本文以轮式机器人的避障问题作为研究对象,在对典型障碍物避障试验中大量试验数据分析的基础上,使用了二叉树冲突分解的方法对避障问题进行了分析和研究,运用基于二叉树冲突分解的避障方法,并且在单片机轮式机器人上进行了实验验证。

【关键词】机器人;避障;冲突分解;树形算法;二叉树

1.引言

机器人作为人类的新型生产工具,在减轻劳动强度,提高生产率,改变生产模式,把人从危险、恶劣、繁重的工作环境下解放出来等方面,显示出极大的优越性。机器人的应用越来越广泛,几乎渗透到所有领域。

2.硬件设计

2.1 机器人系统的构成

基于传感器路径规划的机器人是一面行走,一面规划。当碰到未知障碍物时就进行回避[2]。机器人系统的结构由机器人的机构部分、传感器组、控制部分及信息处理部分组成。机器人的外貌有的像人,有的却并不具有人的模样,但其组成与人很相似。机构部分包括机械手和移动机构,机械手相当于人手一样,可完成各种工作;移动机构相当于人的脚,机器人靠它来”走路”。感知机器人自身或外部环境变化信息的传感器是它的感觉器官,相当于人的眼、耳、皮肤等,它包括内传感器和外传感器。电脑是机器人的指挥中心,相当于人脑或中枢神经,它能控制机器人各部位协调动作;信息处理装置(电子计算机),是人与机器人沟通的工具,可根据外界的环境变化、灵活变更机器人的动作。

2.2 单片机控制原理介绍和分析

单片微型计算机就是将CPU、RAM、ROM、定时/计数器和多种接口都集成到一块集成电路芯片上的微型计算机。因此,一块芯片就构成了一台计算机。它已成为工业控制领域、智能仪器仪表、尖端武器、日常生活中最广泛使用的计算机。

在单片机机器人中,单片机相当于机器人的大脑和指挥中心,是机器人中最重要的部分。在内部它控制机器人上各个部件的协调动作;对外部,通过采集和分析机器人上的各种传感器传回的数据,随着外部环境变化,不断的进行信息反馈和调整,以便灵活调整机器人的动作,顺利完成预定的任务。下面是AVR单片机结构方块图(图1),也是大多数单片机机器人大脑的基本结构。

图1 AVR单片机结构方块图

2.3 轮式寻迹机器人各组成部件控制原理

2.3.1 伺服电动机的控制原理

机器人控制的电机一般分为“闭环控制”和“开环控制”两大类,开环常用的是步进电机,闭环控制上常用的是伺服电机。伺服电动机是一种根据控制信号的要求而执行动作的电动机。在自动控制系统中作为执行原件。它将输入的电压信号转变成转轴的角位移或角速度,因此非常适合于单片机控制。标准的微型伺服电动机有三条控制线,分别为电源、地及控制线。电源线和地线用于提供内部的直流马达和控制线路所需的能量,电压一般在4V~6V之间。

2.3.2 光栅位移检测传感器控制原理

光栅是等节距的透光和不透光的刻线均匀相间排列构成的光学元件,也可说是一种在基体上刻制有等间距的均匀分布条纹的光学元件。光栅的表面刻有规则排列和规则形状的刻线,这些刻线可以是透光的(透射式)或不透光的(反射式)。常用的光栅传感器的刻线多属于黑白型的,这种刻线(或称栅线)的白色宽度为a,黑色宽度为b,通常情况下a=b。一般a+b称为光栅栅距,或称为光栅常数。

当光栅运动时,光电元件测条纹的移动,通过脉冲计数得到位移的度量。

光电传感器原理:电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。光电传感器在一般情况下,有三部分构成,它们分为:发送器,接收器和检测电路。

图2 光电传感器原理图

2.4 移动机器人实验各组成部分介绍平台组成

2.4.1 平台组成

机器人实验平台由底盘、兼容51平台AVR-ISP下载实验板(带ATmega8515L)、2个红外线避障传感器、232串口、1个寻迹传感器、PS/2键盘口、低惯性强力减速电机、车轮编码盘组合、蜂鸣器、七段数码LED显示器等部件组成[1],如图3。

图3 机器人实验平台

2.4.2 程序设计

编程环境:

Microsoft Windowns XP sp2操作系统

ATMEL CodeVisionAVR单片机编程开发环境Version 1.24.1d standard

AVR-ISP编程下载程序PonyProg2000 Version 2.06c Beta

首先我们将S10、S01、S00三种情况先看作成功避障,未成功避障(),首先我们先建立如下的规则:

①S00、S10、S01、S11四种情况的优先等级所示:

②当优先等级相同的情况出现时,随机选择向左或向右旋转。

③在任何情况下,如果碰到S00出现,则选择S00分支,不再进行判断,直接跳出循环。

④α定义为探测角,β定义为旋转角,且β=2α

⑤右手法则:如果出现S10的情况,即左侧光感检测到障碍物,右侧光感没有检测到障碍物,则机器人向右旋转β度角。左手法则:如果出现S01的情况,即左侧光感没有检测到障碍物,右侧光感检测到障碍物,则机器人向左旋转β度角。

⑥当连续出现内容相同的同优先级情况时,后几次的旋转方向与第一次相同。

图4 成功避障程序流程图

机器人避障实验结果的轨迹如图5场景1~场景5。

图5 机器人避障实验结果的轨迹

3.总结

在避障过程中,移动机器人常会面临无法事先预测的复杂环境以及环境本身的瞬息变化。目前移动机器人基本上都是依靠传感器来对外界的环境进行感知和判断,由于使用单光感收集到的信息量太少,经常不能对周围的环境和障碍物进行准确的判断。为了准确的判断机器人所处的环境和障碍物的情况,在当前的移动机器人上,一般都使用多个传感器同时对环境和障碍物进行感知和判断。由于多个传感器的同时存在,每个传感器发回处理器的信息存在冲突的现象经常发生而且不可避免,严重影响了机器人的避障效率和准确性,导致在避障问题上还存在不少问题。本文使用二叉树冲突分解的方法对机器人避障的问题进行研究和分析,实现机器人的高效和安全避障,是在这一领域有益的探索。

参考文献:

[1]CAPETANAKIS J I.Tree Algorithms for Packet Broadcast Channels[J].IEEE Transactions on Information Theory,1979,25(5):505-515.

[2]黄建成,谢海,徐秉铮.分解信息包冲突的随机树形协议[J].通信学报,1983,4(3):21-28.

[3]赵东风,李必海,郑苏民.二叉树形冲突分解算法研究[J].电子科技大学学报,1996,25(8):260-264.

[4]赵东风,宗容.三叉树形冲突分解算法研究[J].应用科学学报,2000,19(1):89-91.

[5]黄华伟,赵东风,候芬.二叉树形冲突分解改进算法分析[J].云南大学学报(自然科学版),1999,21(1):

67-70.

[6]历茂海,洪炳.一种鲁棒的室内移动机器人定位方法[J].计算机工程与应用,2005,4.

[7]周浦城,洪炳,杨敬辉.基于混沌遗传算法的移动机器人路径规划方法[J].哈尔滨工业大学学报,2004,36(7).

[8]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480.

[9]景奉水,谭民等编.船体分段位姿找正对接系统――一个多机器人协调操作系统的实现[J].自动化学报,28(5).

[10]北京大学信息科学技术学院智能科学系,林飞(硕士研究生学位论文,导师:刘宏,查红彬).基于实时全局视觉的足球机器人比赛数据分析系统[D].2004,5.