HI,欢迎来到好期刊网!

纤维混凝土

时间:2023-02-06 14:31:20

导语:在纤维混凝土的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。

纤维混凝土

第1篇

[关键词]桥梁工程;钢纤维混凝土;施工技术

中图分类号:TU74文献标识码: A

随着桥梁工程建设的不断发展,钢纤维混凝土作为一种新型材料以性能的优越性被广泛应用于桥梁工程中,并取得了良好的效果。因此,重视钢钎维混凝土技术的总结运用显得尤为必要。

1 钢纤维混凝土的主要特性

1.1 抗裂、抗剪性能强

传统混凝土开裂荷载与极限荷载无明显差异,但钢纤维混凝土即使出现开裂荷载,其荷载还是能够保持增大趋势。在一定程度上来说,如果钢纤维混凝土体积增大,那么其开裂荷载、极限荷载与韧性均能增大。对钢纤维混凝土的剪切性能进行直接剪切试验检验,实验数据结果表明:钢纤维混凝土基体错动移位后,仍然具有良好的承载能力,承载强度为400~800mpa[1]。

1.2 抗冻、耐磨性能强

钢纤维具有较强的伸缩能力,可以随着温度的变化伸缩,因此,对比传统混凝土,钢纤维混凝土能够很好的抑制由于温度应力导致的桥梁桥面裂缝和扩张情况,这表明钢纤维混凝土抗冻、耐磨性能强。

1.3 抗压、抗拉、抗弯、抗冲击性能强

钢纤维混凝土主要由钢纤维和传统混凝土构成,在混凝土中,钢纤维不规则分布,这样的分布有利于加强钢纤维混凝土抗压、抗拉、抗弯、抗冲击性能。实验研究钢纤维混凝土在桥梁施工中的应用,结果表明:在混凝土中适当加入钢纤维,可以有效提高50%~150%抗弯与40%~50%单轴抗拉的极限强度,若钢纤维在混凝土中的含量为0.8%~2.O%,抗冲击可达普通混凝土的50~100倍极限强度。在钢纤维混凝土中,钢纤维消耗量很小,比例约为0.8%~2.0%,钢纤维本身并不能有效提高混凝土抗压强度,但在混凝土中适当加入钢纤维后,混凝土整体抗压破坏形式出现明显变化,虽然受到破坏后会碎,但不会散,因此混凝土结构抗压性能显著加强。

1.4 改善混凝土变形性能

在混凝土中适当加入钢纤维,可以有效改善混凝土长期收缩变形性能,且能显著提高混凝土抗拉弹性模量,此外,还能使混凝土收缩率降低10%~30%。

2 钢纤维混凝土配合比设计

钢纤维混凝土施工配料主要有水泥、卵石、砂、钢纤维、外加剂、掺合料等,水泥选用型号规格为P.O.42.5的普通硅酸盐水泥;卵石型号规格为5~25mm,含泥量低于1%;砂型号规格为中砂,含泥量低于3%;钢纤维型号规格为长度60mm、直径0.9mm,最低抗压强度为1000N/m2型号规格为泵送剂;掺合料型号规格为I级粉煤灰。钢纤维混凝土的配料选用标准为:

2.1 加强控制钢纤维长径比,钢纤维长度不宜过长,最佳直径为0.45mm~0.70mm,以保证钢纤维混凝土力学性能尽可能符合施工和易性要求。

2.2 适当采用减水剂或外掺剂,使混凝土施工和易性得到改善,同时降低水泥用量及成本。

2.3 必须确保钢纤维无油污、锈渍、碎屑与杂质等。

2.4 钢纤维品种与基材强度相适应,且抗拉极限强度不低于500MPa。

2.5 钢纤维混凝土中钢纤维最佳含量为0.5%~2.O%。

2.6 采用10mm~20mm粒径的主骨料,确保钢纤维与基体结合的牢固度。

2.7 采用搅拌机拌和钢纤维混凝土时,其砂率应比相同标号同类传统混凝土高,而且控制钢纤维长径比为50~80[2]。

3钢纤维混凝土施工技术

3.1摊铺、整平

①将钢纤维连续、均匀在面板中摊铺。

②通过分散机均匀分散钢纤维后,加入搅拌机。

③摊铺时掺和物塌落度应保持一致。

④投料搅拌时采用先干后湿方式,并严格控制搅时间。

⑤摊铺同一道路作业时,应尽可能持续摊铺与浇筑。摊铺工作完成后,必须进行整平、初步压实工作。

3.2 振捣

纵向条状集束排列钢纤维,可以加强混凝土边缘的密度。采用机械振捣钢纤维混凝土,可以增加其强度与密实度,有效保障钢纤维混凝土路面的强度与抗裂性。在机械振捣过程中,应按照一定顺序和频率进行振捣,不能出现过振、漏振等问题,而且钢纤维严禁出现空洞、沟槽等现象。

3.3 整形

钢纤维混凝土的特点主要有纤维分布不规则、含砂率大、粗骨料稀等,为免钢纤维外露,应采用机械进行抹平整形。与此同时,采用压纹机压纹技术,可以避免或减少拉毛与拆模后出现的钢纤维外漏、外露现象。

3.4 施工注意事项

①加快施工进度或适当增加水分,可使钢纤维混凝土延迟凝结、硬化。

②为免影响钢纤维混凝土强度,运输和摊铺时间必须在规范要求范围内。

③摊铺或浇筑过程中,必须经过科学计算,才能增加掺和物,如水、外加剂等。

4钢纤维混凝土施工技术运用

4.1 桥梁工程中的运用

桥梁工程在使用的过程中,在时间周期的作用下,受到来自地面上部的荷载力比较大,经常需要承载很大的重力,并且在结构方面的特殊性,所以钢纤维混凝土应用的比较广泛。主要应用的部位是在桥梁和墩台的外部位置喷射五到二十厘米厚的钢纤维混凝土,以此来提高桥梁的承载力。在长期的使用过程中,可以有效的加强桥梁的强度,抗压力等相关方面的性能,避免桥梁发生裂缝等现象。

4.1.1 桥面铺装

在桥面铺装钢纤维混凝土,可提高桥面耐久性、抗裂性与舒适性,增强桥梁刚度与抗折强度,并减少铺装厚度,使结构自重降低,很好的改善桥梁受力状况。此外,还能有效提高桥面抗冲击力,加强混凝土结构和伸缩缝间的连接强度,减少桥面出现坑槽、剥落、裂缝等情况,有效延迟桥梁损坏速度[3]。

4.1.2 桥墩结构局部加固

在长期动载作用下,若桥墩、桥面板出现裂缝、表层剥落等问题,为满足桥梁结构抗震性与整体性要求,可采用转子型喷射机向出现问题的部位喷射5cm~20cm钢纤维混凝土。桥墩结构局部加固方式为:①采用10%掺量的剪切钢纤维;②喷砂或凿毛旧混凝土表面,加强新旧混凝土整体密实性、牢固性;③为提高早期抗裂性能,适当采用硫铝酸盐快硬水泥、TS型速凝剂。

4.1.3 桥梁上部承载部位

采用钢纤维混凝土加强桥梁上部应力集中的部位,可有效改善桥梁结构受力性能,控制结构变形的同时降低结构自重,使桥梁结构逐渐呈现轻型化、大跨度发展趋势。在桥梁上部结构采用钢纤维混凝土,可以提高结构承载力与抗变形性能,而且能减少上部结构材料用量与下部墩台数量,进而有效降低施工造价,提高经济效益。

4.2 道路工程的运用

在道路施工工程中,可以根据实际状况的不同,将钢纤维混凝土施工进行分类,主要有复合式、碾压式和全截面式。

使用钢纤维混凝土的优势是要比普通的混凝土节省材料,以全截面式为例的话,可以节省将近一半的材料;在双向行驶的车道工程中,不需要进行纵缝的设置,各横缝的间距保持在50cm之内,间隔距离在20cm~30cm之间;三层式复合路面施工时,钢纤维混凝土材料的掺入量最好保持在0.8%到1.2%左右。而双层式的路面施工是指将钢纤维混凝土材料铺设在道路路面的上部位置,路面的施工厚度最好占整个路面厚度的40%到60%左右。

5 结语

随着人类社会的快速发展,桥梁工程的建设日益加快,桥梁的运用越来越广泛,而广泛应用于桥梁施工中的钢纤维混凝土质量需要随之提高,所以,重视钢钎维混凝土的施工技术,重视钢钎维混凝土的质量控制点十分重要,只有这样,才能保证工程质量,确保安全。

[参考文献]

[1] 邹孟义.桥梁施工中钢纤维混凝土的施工技术分析[J].广东科技,2010年06期

[2] 张湘文.桥梁施工中钢纤维混凝土的施工技术分析[J].四川建材,2008年02期

第2篇

论文摘要:钢纤维混凝土的高强等显著优点,使其在大跨度桥梁、高层建筑、隧道等工程应用中具有巨大的技术经济优势和突出的社会效益,正成为现代混凝土的一个重要发展方向。本文主要介绍了从钢纤维混凝土的配备材料到泵送和施工等方面的控制技术。

1.原材料配比方面的质量控制

1.1单位水泥用量

在保持水灰比不变的情况下,单位体积混凝土拌合料中,如水泥浆用量愈多,拌合料的流动性愈好,反之,较差。在钢纤维混凝土拌合料中,除必须有足够的水泥浆填充的空隙外,还需要有一部分水泥浆包裹骨料和钢纤维的表面形成层,以减少骨料和钢纤维彼此间的摩擦阻力,使拌合料有更好的流动性。

1.2水泥

水泥品种对混凝土的可泵性也有一定影响。一般宜采用硅酸盐水泥、普通硅酸盐水泥以及矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,但均应符合相应标准的规定。

1.3钢纤维

在一定范围内,钢纤维增强作用随长径比增大而提高。钢纤维长度太短起不到增强作用,太长则施工较困难,影响拌合物的质量,直径过细易在拌合过程中被弯折,过粗则在同样体积率时,其增强效果较差。

1.4粗集料

粗集料的级配、粒径和形状对于混凝上拌合物的可泵性影响很大。级配良好的粗骨料,空隙率小,对节约砂浆和增加混凝土的密实度起很大作用。因而泵送混凝土应用较多的国家,对粗集料的级配都有规定。

1.5细集料

又称细骨料,用于填充碎石或砾石等粗骨料的空隙并共同组成钢纤维混凝土的骨架。在保证钢纤维混凝土强度相同时,粗砂需要的水泥用量较细砂为少。显然,当水泥用量相同时,用粗砂配制的混凝上强度要比用细砂配制的混凝土强度为高。

1.6减水剂

减水剂可分为普通减水剂和高效减水剂。普通减水剂是一种对规定和易性混凝土可减少拌和用水量的外加剂,这种减水剂一般为可溶于水的有机物质。它可以改变新拌和硬化混凝土的性能,特别是提高混凝土的强度和耐久性。

1.7其它掺合料

除去水、水泥、粗细集料、粉煤灰等材料外,在搅拌时还可加入其它掺合料,如矿渣、超细粉等。

2.钢纤维混凝土施工方面控制

2.1泵送混凝土的质量控制

泵送混凝土的连续不间断地、均衡地供应,能保证混凝土泵送施工顺利进行。泵送混凝土要按照配合比要求、拌制得好,混凝土泵送时则不会产生堵塞。因此,泵送施工前周密地组织泵送混凝土的供应,对混凝土泵送施工是重要的。

泵送混凝土的供应,包括泵送混凝土的拌制和泵送混凝土的运送。泵送混凝土宜采用预拌混凝土,在商品混凝土工厂制备,用混凝土搅拌运输车运送至施工现场,这样制备的泵送混凝土容易保证质量。泵送混凝土由商品混凝土工厂制备时,应按国家现行标准,《预拌混凝土》的有关规定,在交货地点进行泵送混凝土的交货检验。

拌制泵送混凝土时,应严格按混凝土配合比的规定对原材料进行计量,也应符合《预拌混凝土》中有关的规定。

混凝土搅拌时的投料顺序,应严格按规定投料。如配合比规定掺加粉煤灰时,则粉煤灰宜与水泥同步投料。外加剂的添加时间应符合配合比设计的要求,且宜滞后于水和水泥。泵送混凝土的最短搅拌时间,应符合《预拌混凝土》中有关的规定,一定要保证混凝土拌合物的均匀性,保证制备好的混凝土拌合物有符合要求的可泵性。

搅拌好的混凝土拌合物最好用混凝土搅拌运输车进行运输。现在大量使用的是搅拌筒6-7m,的混凝土搅拌运输车。用搅拌运输车运输途中,搅拌筒以3-6r/min的缓慢速度转动,不断搅拌混凝土拌合物,以防止其产生离析。

搅拌运输车还具有搅拌机的功能,当施工现场距离混凝土搅拌站很远时,可在混凝土搅拌站将经过称量过的砂、石、水泥等干料装入搅拌筒,运输途中加水自行搅拌以减少长途运输中混凝土坍落度的经时损失,待搅拌运输车行驶到临近施工现场搅拌结束,随即进行浇筑。

2.2混凝土泵送施工质量控制

开始泵送时,混凝土泵应在可慢速、匀速并随时可反泵的状态。待各方面情况都正常后再转入正常泵送。正常泵送时,泵送要连续进行,尽量不停顿,遇有运转不正常的情况,可放慢泵送速度。当混凝土供应不及时时,宁可降低泵送速度,也要保持连续泵送速度,但慢速泵送的时间不能超过从搅拌到浇筑的允许延续时间。不得己停泵时,料斗中应保留足够多的混凝土,作为间隔推动管路中的混凝土之用。

3.喷射混凝土施工控制

(1)上料速度要均匀、连续、适中,始终要保持喷射机进料斗中有一定的贮存量,并及时清除振动筛上大粒径粗骨料和杂物;

(2)喷射过程中,喷射手后方的助手应及时协助喷射手,理顺混凝土管。避免喷射手在更换方向时使混凝土管产生急拐弯,引起堵管;

(3)喷射手在操作喷嘴时,应尽量使喷嘴与受喷面垂直距离0.8-1m,喷射压力保持在200-500kPa左右,才能保证有效施工喷射作业时喷射手要时刻注意观察喷嘴情况,一旦堵管,要让助手立即与操作司机联系停机关风,检查管路是否畅通;

(4)在喷射作业时,坍落度要根据实际情况进行调整,喷上部时坍落度控制在8cm,喷边墙时坍落度控制在12cm;

(5)在施工喷射混凝土时,侧墙壁由下至上部由一侧末端开始向另一侧延续,喷射混凝土的一次喷射设计厚度在5cm以内,在第二次喷混凝土作业时,完全除去附着在第一次喷射混凝土面的异物,喷射混凝土的操作人员要使用护具注意安全;

(6)喷射混凝土的连接部分,应在需要连接的部分约13cm以前厚度开始变薄,在受喷面各种机械设备操作场所配备充足照明及通风设备;

(7)喷射钢纤维混凝土厚度一般比普通混凝土薄,水泥含量多,因此要经常保持适当的环境温度和受喷面湿润以防干缩裂缝。

结语

钢纤维是当今世界各国普遍采用的混凝土增强材料,它具有抗裂、抗冲击性能强、耐磨强度高、与水泥亲合性好,可增加构件强度,延长使用寿命等优点。钢纤维在水泥制品中的应用尽管起步比较晚,但其发展速度却相当迅猛。目前钢纤维增强混凝上己广泛应用于公路路面、桥梁、隧洞、机场道面、建筑、水利、港工、军事及各种建筑制品等混凝土领域,它有着极大的生命力。应用前景十分广阔,并朝向高性能与超高性能方向发展。

参考文献:

第3篇

关键词:混凝土;纤维;增强理论

中图分类号: Q539 文献标识码: A 文章编号:

1纤维对混凝土的作用

1.1阻裂作用

纤维可阻碍混凝土中微裂缝的产生与扩展,这种阻裂作用既存在于混凝土的未硬化的塑性阶段,也存在于混凝土的硬化阶段。水泥基体在浇注后的24 小时内抗拉强度低,若处于约束状态,当其所含水分急剧蒸发时,极易生成大量裂缝,此时,均匀分布于混凝土中的纤维可承受因塑性收缩引起的拉应力,从而阻止或减少裂缝的生成。混凝土硬化后,若仍处于约束状态,因周围环境温度与湿度的变化,而使干缩引起的拉应力超过其抗拉强度时,也极易生成大量裂缝,在此情况下纤维仍可阻止或减少裂缝的生成。

1.2 增强作用

混凝土不仅抗拉强度低,而且因存在内部缺陷而往往难于保证。当混凝土中加入适当的纤维后,可使混凝土的抗拉强度、弯拉强度、抗剪强度及疲劳强度等有一定的提高。

1.3 增韧作用

纤维混凝土在荷载作用下,即使混凝土发生开裂,纤维还可横跨裂缝承受拉应力,并可使混凝土具有良好的韧性。韧性是表征材料抵抗变形性能的重要指标,一般用混凝土的荷载——挠度曲线或拉应力——应变曲线下的面积来表示。另外,还可提高和改善混凝土的抗冻性、抗渗性以及耐久性等性能。应该强调的是纤维混凝土中纤维的作用。并非所有纤维都能同时起到以上三方面的作用,有时只起到其中两方面或单一方面的作用,这与纤维品种、纤维性能、纤维与混凝土界面间的黏结状况以及基体混凝土的类别和强度等级等因素密切相关。

2纤维增强混凝土的基本理论

2.1 纤维间距理论

纤维间距理论是1963年由美国J.P.Romualdi, J.B.Batson和J.A.Mandel等[1-3]人提出来的一种阐述纤维增强混凝土的理论。该理论是在线弹性断裂力学基础上,假定混凝土的破坏是因为其内部的微裂纹、微孔洞等初始缺陷,在外力作用下产生的应力集中造成的。钢纤维混凝土的增强效果与纤维间距有关,采用如图2.1所示的模型来说明混凝土中掺入纤维后强度提高的原因。

图2.1 纤维间距理论模型

假定单向连续纤维增强混凝土的纤维在拉应力方向呈棋盘状分布。设纤维平均间距为s,半径为a的裂纹发生在四根纤维所围成的区域中心。由于拉应力的作用,在临近裂缝的纤维周围将产生如图2.1所示的粘结力分布,起着约束裂纹开展的作用。

根据Griffith理论,由于存在粘结应力,裂缝尖端的总应力强度因子为

式中:

——外力作用下无钢纤维时的应力强度因子;

——钢纤维掺入后粘结应力产应力强度因子;

——沿纤维方向施加的均匀拉应力;

——纤维阻裂产生的反向应力。

若为临界应力强度因子,当时,材料发生断裂破坏。Romualdi根据试验得到钢纤维混凝土的抗拉强度计算公式为

式中:

为钢纤维混凝土的抗拉强度;

为与裂纹形状有关的常数;

纤维间距理论是一种经验型的钢纤维混凝土增强理论。虽然它是一种大家非常熟悉钢纤维混凝土增强理论,但其本身也存在一些明显的缺陷。首先,它忽略了纤维自身的复合增强效应,其次纤维间距理论忽略纤维长度对增强效果的影响。因此只能定性地对纤维增强原理作一物理上的阐述。

2.2界面应力传递的剪滞理论

一般当纤维长径比减小时,纤维与周围基体的应力、应变场因纤维的不连续发生了改变,纤维对基体的增强效果下降,短纤维端部应力和分布对短纤维复合材料性能的作用逐渐显得重要。1952年,H.L.Cox为求解复合材料的界面应力,提出了所谓的剪滞理论,其基本原理是纤维受到的轴向应力由其界面上的剪应力来平衡[4-5]。基本假定如下:

(1)基体与纤维都保持在弹性范围内;

(2)界面厚度无限小;

(3)纤维与基体的界面为理想粘结,即界面上应变连续;

(4)纤维周围材料的性能不受界面的影响;

(5)纤维呈有规则排列。

通过假定,可求出在基体上作用有平行于纤维方向的应力作用下,纤维长度方向z处(如图2.2所示),纤维的拉应力和界面剪应力:

式中:

——纤维半径;

——基体应变;

——纤维的弹性模量;

Gm——基体的弹性剪切模量;

、——纤维的拉应力和界面剪应力。

图2.2z位置处纤维拉应力和界面剪应力图

由式(2-3)和图2.2可知,纤维拉应力在其端部(z =1/2)为0,在纤维中点为最大;剪应力在纤维端部最大,在中点几乎减少为0。这些结果表明,由于纤维端部的某段长度没有承担足够的荷载,将使得在同样外荷载条件下长度为1的纤维中的平均应力小于连续纤维中的平均应力。纤维的增强效果随平均长度的减小而下降,这是因为纤维总长度的更大比例没有充分承载。纤维可能达到的最大应变值为作用于整体复合材料上的应变,因此,纤维中的最大应力为。为了达到这一值,纤维的长度必须大于临界长度Lc。图2.3的简图表明,对长度大于LC的纤维端部区域未充分受载的长度为1/2L。

图2.3为不同长度纤维承受应力的分布图。对长度为临界长度Lc的纤维,有如下平衡条件:

式中:

——纤维拉伸屈服应力;

——界面屈服应力;

ac——纤维临界长径比。

可见,复合材料的应力是在段靠界面剪切应力逐步传递给纤维,故称为载荷传递长度,是复合材料应变(应力)函数,最大值由上式纤维的极限强度来确定。要达到纤维的最大应力值,纤维长度必须大于临界纤维长度或达到临界长径比,且大于临界长度的纤维端部亦未充分受载,其长度为。纤维长度小于Lc,复合材料破坏时,纤维应力达不到极限值,故不能充分发挥纤维的增强作用。只有当纤维长度L>Lc时,复合材料中的纤维才有可能发生拉断破坏,即;对于L

当纤维长度L>Lc,复合材料破坏时,纤维被拉断;当纤维长度L

图2.3不同长度纤维受力分布

由于荷载传递需要很强的界面粘结,因此,主要依赖于界面的粘结强度。但纤维端部很高的剪应力会导致多种形式的破坏:

(1)界面剪切脱粘;

(2)基体的内聚破坏;

(3)纤维的内聚破坏;

(4)基体的剪切屈服。

这些破坏形式要依赖于与这些过程相关的相对破坏强度。除界面粘结强度外,复合材料增强效果还与纤维本身的强度有关,纤维强度是限制增强效果的另一重要因素。纤维端部的最大界面剪切力与纤维中部(纤维长度大于Lc时)的最大拉应力之比,可由本节纤维拉伸应力与界面剪切应力公式(2.3)得到:

从以上分析可以看出短纤维复合材料中纤维均有端部效应基体应力通过界面逐渐传递给纤维,当纤维长径比较小时,纤维的增强作用不能得到充分的发挥,而荷载传递长度与界面屈服应力密切相关。剪切滞后法推导的式(2.3)基本上反映了短纤维应力分布、界面剪切应力分布的规律。

3 结语

在混凝土中掺加纤维,既保留了新拌混凝土优异的工作性能,又能增加其抗拉强度、弯曲韧性等力学性能,符合新型建筑材料的要求。纤维混凝土的应用可减小结构构件的尺寸,从而节约材料、降低造价,更主要的是纤维混凝土增强了结构的使用性能,大大降低了维护费和维修费,带来的综合经济效益是相当可观的。

参考文献:

[1] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999, 10

[2] 杨鹏.钢纤维混凝土在受弯构件中的应用[J].福建建筑2001, (s1) : 81-82

[3] 覃维祖 ,杨文科 关于纤维混凝土应用的讨论[J].混凝土2004年第12期(总第182期)15

第4篇

关键词:喷射 钢纤维混凝土 质量控制

钢纤维混凝土是由水泥、水、中粗砂、骨料、钢纤维及必要时掺入外加剂或掺和料按一定比例配制而成。钢纤维混凝土具有良好的综合力学性能,钢纤维的加入可提高混凝土的强度、韧性及抗裂性,使混凝土的特性由脆性向弹塑性过渡,是目前国内外比较先进的外掺料。钢纤维按材质分为普通碳素钢和不锈钢两种类型,一般多用普通碳素钢钢纤维。这项技术发展以来,在隧道和地下工程中的衬砌支护、矿山巷道的软岩支护、建筑物与桥梁的修补加固、水工建筑的面板防渗加固处理等很多工程项目上得到应用。

一、喷射钢纤维混凝土的材料质量要求

1、水泥和水灰比:钢纤维喷射混凝土施工的首要要求是有良好的工作性,即混凝土拌和物有较好的流动性、保水性、粘聚性。水泥水化之后,胶合料覆盖在集料和钢纤维表面,减少了摩擦阻力,形成良好的流动性,促使钢纤维混凝土与受喷面粘结;水泥的强度与钢纤维喷射混凝土的强度基本上成正比例关系,但是高标号的水泥增加施工成本,水化热大,不利于混凝土强度的增长。

一般混凝土的抗压强度与灰水比成正比例的关系,但对于钢纤维喷身混凝土,其喷射时的水灰比与到达受喷面的混凝土的水灰比有一定的差异。而且水灰比过大,水泥的水化反应充分,但是混凝土拌和物易离析、泌水,混凝土硬化后收缩变形大;水灰比过小,富余的水泥颗粒多,干喷工艺增加粉尘和回弹率,且钢纤维喷射混凝土是喷敷成层状的,粘结不好。因此,水灰比既要使钢纤维喷射混凝土有良好的流动性和强度,又不能使钢纤维喷射混凝土离析、泌水,增加回弹率,造成浪费。

2、集料:钢纤维喷射混凝土所用集料包括粗集料和细集料两种。粗集料为钢纤维喷射混凝土提供支架作用,对于混凝土的强度起主要作用,卵石表面光滑,与水泥胶合料的粘结不如碎石,但相对碎石来说可以减少对喷射设备的损伤。同时水泥浆体与单个石子之间界面的过渡层周长和厚度都很小,不容易形成大的缺陷,有利于界面强度的提高,有利于混凝土弹性模量的增长和耐久性的提高。细集料起填充空隙作用,其细度模数和砂率影响混凝土的粘聚性和流动性。砂子的比表面积大于同等质量的石子的比表面积,需要水泥浆的数量多,流动性随着砂率的增大越来越好。

3、钢纤维:钢纤维在喷射混凝土中的不均匀分布提高了混凝土的弯拉强度、韧性和阻裂能力。实验证明,钢纤维喷射混凝土开裂后仍具有一定的负荷能力。常用钢纤维的弹性模量为200GPa,抗拉强度为380~1300MPa,极限延伸率3 %~30 %。不均匀分布在喷射混凝土中的钢纤维由于自身的高强度以及与集料的粘结,提高了混凝土的整体密实程度和耐久性。钢纤维的长径比是影响钢纤维增强增韧效果的重要参数,也影响喷射混凝土的工作性。这两方面有时是相互矛盾的,因为通常使用的表面粗糙、两端带钩的钢纤维增强、增韧效果好,但施工时,分散较为困难,容易结团,影响施工效率。

4、外加剂和掺和料:干喷法和湿喷法施工,都要求喷射混凝土拌和物的干料或是湿料在喷嘴处与速凝剂等混合喷出后,在很短时间内凝结。施工时,常用速凝剂或高效减水剂等缩短喷射混凝土的凝结时间,尤其是初凝时间。如达不到要求,则混凝土与受喷面粘结不够,回弹率增加,钢纤维混凝土密实程度不高,混凝土的强度和耐久性无法保证,经济性也不好

二、喷射钢纤维混凝土施工

1)混凝土拌制、存放和运输。钢纤维在拌和料中的分布均匀性,不仅与原材料和搅拌工艺有关,而且受搅拌机械和投料方法影响更大。试验表明:采用强制搅拌机比自落式搅拌机效果好。本隧道施工中因受机械设备影响而采用自落式搅拌机。投料时采用先投水泥、砂和碎石,在拌和过程中分散加入钢纤维的方法进行拌和,拌和时间不少于2min.。

钢纤维混凝土施工时,喷锚料应尽量随拌随用,掺入速凝剂时存放时间不得超过20min,不掺入速凝剂时干混合料存放时间不超过2h,否则被视为废料,不可再行使用。在运输和存放过程中不得淋雨、流入水或混合杂物。

2)喷射作业。混合料通过胶管长距离的高速输送,在喷头处已稍有分离,水在距受喷面lm 左右处加入,喷射应根据其当前标定的给水速度调整水阀,按混凝土配合比设计确定的水灰比供水。喷射混凝土时,喷枪要垂直正对工作面,连续平稳地自下而上水平横向移动,喷头一圈压半圈的旋转喷射。

在施工时还应注意风压对喷射钢纤维混凝土的影响。在混合料输送时,采用适当的风压是钢纤维均匀分布、减少回弹损失的主要条件。风压太大钢纤维的分布就不均匀。试验表明,钢纤维混凝土喷射堆中心的钢纤维含量为喷堆周边的85.3%,这种现象产生的主要原因是由于料流喷出后,分布在料束外缘的钢纤维在接近受喷面前被横向气流吹至周围(其中部分钢纤维落地,部分钢纤维滞留在喷堆周边),因此,降低风压则横向气流的压力和流速也会降低,这样不仅会减少钢纤维的回弹损失,也会改善钢纤维分布的不均匀性。一般混合料输送距离在100m以内时,喷射风压控制在0.15~0.2MPa为宜。

3)养护。混凝土施工质量的好坏,受养护的影响相当明显。因此在混凝土喷射完毕后要及时洒水或喷水雾养护。避免因养护不及时而导致喷射钢纤维混凝土的质量不合格。

三、质量控制措施

在实际施工中,无论是施工设备的操作、施工进度的掌握、施工材料的控制都离不开现场人员。施工人员的熟练程度、专业知识的掌握、责任心影响钢纤维喷射混凝土的施工质量。钢纤维喷射混凝土的施工环环相扣,尤其对于干喷法施工工艺,大多是远距离操作,混凝土拌和料的拌和与运输、钢纤维的掺加工艺控制、喷射混凝土时水量的控制等将对施工质量产生严重影响。加强施工现场的管理与协调显然是必要的。

第5篇

关键词:钢纤维混凝土;配合比;设计

中图分类号:F407.9文献标识码:A

随着国民经济建设和公路交通事业的飞速发展,城市道路和国道干线公路上的车辆荷载及密度越来越大,行驶速度越来越快,致使路面的损坏也日趋严重起来。特别是对损坏的桥面而言,它不仅翻修投资大,且施工周期较长,严重影响交通畅通及行车安全。如用普通水泥混凝土修复桥面缺陷是脆性大、易开裂、抗温性差,板块容易受弯折而产生断裂,所以就要求桥面应有足够的抗压强度和厚度。

一、概述

五河淮河大桥1974年6月开始施工,1977年10月大桥全部竣工,淮河大桥全长1,031.3m,由主桥、南、北引桥3部分组成,主桥为6孔预应力筋混凝土T型钢构,其中4个主孔,每孔跨径90m,2个过渡孔,每孔跨径60m。南北引桥均为跨径30m的预应力钢筋混凝土简支梁桥,其中南岸引桥8孔,北岸引桥10孔,另一孔为跨径5.5m的简支板梁式连接孔,具体跨径组合为:5×30+1×5.5+5×30+1×60+4×90+1×60+8×30,台背长2×2.9。以下结合五河淮河大桥桥面铺装钢纤维混凝土的应用加以分析总结。

二、钢纤维混凝土的特点

本标段钢纤维混凝土采用的是由水泥、集料、粉煤灰、外加剂和随机分布的短纤维掺配而成一种新型高强复合材料。掺加了泵送剂的钢纤维混凝土在桥面施工中起到早强缓凝作用。与普通混凝土相比,其抗拉、抗弯、抗裂及耐磨、耐冲击、耐疲劳、韧性等性能都有显著提高,它不仅可使桥面减薄,缩缝间距加大,改善桥面的使用性能,延长桥面使用寿命,缩短施工工期。用钢纤维混凝土修筑桥面,就是将钢纤维均匀地分散于基体混凝土中(与混凝土一起搅拌),并通过分散的钢纤维,减小因荷载在基体混凝土引起的细裂缝端部的应力集中,从而控制混凝土裂缝的扩展,提高整个复合材料的抗裂性。同时,由于混凝土与钢纤维接触界面之间有很大的界面粘结力,因而可将外力传到抗拉强度大、延伸率高的纤维上面,使钢纤维混凝土作为一个均匀的整体抵抗外力的作用,显著提高了混凝土原有的抗拉、抗弯强度和断裂延伸率。

三、桥面改建设计方案

(一)病害分析。近年来,交通量大且超重车辆多,原设计荷载等级为汽-15,挂-80,在承受超重荷载的情况下,变形大,导致桥面受拉而出现裂缝。桥面砼已达到其疲劳强度,抗压和抗弯拉功能已大量丧失,无法承受外界荷载对其产生的作用而出现损坏。砼风化严重,出现脱皮、开裂、渗水等病害,逐步发展成坑槽、坑洞。

(二)桥面结构设计。本次桥面铺装改造采用:1、双钢混凝土桥面铺装,即C40钢纤维混凝土,钢纤维用量70kg/m3,同时配置防裂钢筋网,直径为10mm圆钢筋自行绑扎加工成钢筋网片,纵横间距为10cm×10cm(绑扎);2、设计横坡为1.0%。

四、钢纤维混凝土配合比设计

(一)设计依据

1、公路水泥混凝土路面设计规范(JTG D40-2003);2、公路水泥混凝土路面施工技术规范(JTG F30-2003);3、普通混凝土配合比设计规程(JGJ55-2000);4、公路工程集料试验规程(JGJ E42-2005);5、硅酸盐水泥、普通硅酸盐水泥(GB175-1999)。

(二)C40钢纤维砼材料。水泥产地:蚌埠海螺、规格型号:P.O42.5级;碎石产地:安徽省泗县、规格型号:4.75-26.0mm碎石;砂产地:安徽明光、规格型号:中粗砂;粉煤灰产地:河南永城、规格型号:IFA-I级;外加剂产地:南京、规格型号:UC-II高效泵送剂;钢纤维产地:宜兴市军威、规格型号:波纹型DM-02;水:饮用水。(表1)

碎石采用连续级配,技术等级不应低于II级,由于集料级配对混凝土的弯拉强影响很大,主要表现在振实后,集料能够逐级密实填充,形成高弯拉强度所要求的嵌挤力;另一方面集料级配对混凝土的干缩性为敏感,逐级密实填充的良好级配有利于减小混凝土的干缩;砂采用中粗砂,技术等级为II级,细度模数为2.8,属II区;水泥采用散装普通硅酸盐42.5,各项指标送检检测均合格;粉煤灰符合I级粉煤灰指标要求;泵送剂、钢纤维及拌和用水均送有质资的检测部门进行检验合格。

(三)计算初步配合比

1、计算砼的配置强度fcu。o设计要求砼强度fcu,k=40Mpa(标准差δ=6.0Mpa)。试配强度:fcu,o=fcu,k+1.645δ=40+1.645×6.0=49.87Mpa。

2、计算水灰比W/C。计算水泥实际强度。采用海螺P.O42.5级普通硅酸盐水泥fcu,k=42.5Mpa,水泥富余系数γ取1.13。水泥实际强度为:Fce=γ×fcu,k=1.13×42.5=48.03Mpa。

3、计算砼水灰比。砼的配置强度fcu,o=49.87Mpa,水泥强度fce=48.03Mpa,可查JTGF30-2003表5.0.4回归系数aa、ab选用表:aa=0.46,ab=0.07;W/C=(0.46×48.03)/(49.87+0.46×0.07×48.03)=0.43。

耐久性校核。查JTGF30-2003表4.2.2-2钢纤维混凝土满足耐久性要求最大水灰比0.44,按规范要求取钢纤维混凝土基体的水灰比的计算值与规定值两者中的小值,取水灰比W/C=0.43。

4、确定用水量MWO。钢纤维采用波纹型DM-02,厚×宽×长(mm)=0.5×0.5×32 长径比为59,按设计文件要求的钢纤维混凝土配合比选取每方混凝土钢纤维用量为70kg/m3。

要求砼拌和物坍落度75-90mm。碎石最大粒径为25mm,查表选用水量取MWO=205Kg。

5、单位水泥用量MCO。MWO=MWO/W/C=205/0.43=477,设计砼所处环境属于经受冻害和除冰剂的钢筋砼,查JTGF30-2003表4.0.4得最小水泥用量为320/m3,按强度计算单位水泥用量为477/m3,符合强度要求,故采用单位水泥用量为477/m3。粉煤灰取代水泥率取10%(符合相应标准),超量系数取1.5,粉煤灰取70,水泥取407。

6、确定砂率βS。集料采用碎石的最大粒径为25mm水灰比W/C=0.43,查JTGF30-2003表4.0.2取砼砂率βS=38%。

7、粗细集料单位用量(MsO、MgO)

假定每立方米砼重:2450

MsO+MgO=2450-205-477=1768

MsO=1768×38%=671

MgO=1768-671=1097

8、外加剂单位用量的确定。外加剂采用产地:南京UC-II高效泵送剂,添加用量为水泥用量的1.3%,即外加剂的单位用量为6.4/m3。

9、每m3砼材料用量。水∶水泥∶砂∶碎石∶粉煤灰∶外加剂∶钢纤维=205∶407∶671∶1097∶70∶6.4kg∶70kg=1∶1.99∶3.27∶5.35∶0.34∶0.03∶0.34。

(四)验证强度。为了验证C40钢纤维水泥砼的强度,拟定三个不同的配合比,其中一个为了按上述得出的基准配合比,另外两个配合比的水灰比值,比基准的配合比分别增加、减少0.02。

试配一:水灰比为W/C=0.45,砂率βS=40%

MwO∶McO∶MsO∶MgO∶粉煤灰∶外加剂∶钢纤维=205kg∶385kg∶680kg∶1110kg:70kg:6.4kg:70kg=1∶1.88∶3.32∶5.41∶0.34∶0.03∶0.34

试配二:水灰比为W/C=0.41,砂率βS=40%

MwO∶McO∶MsO∶MgO∶粉煤灰∶外加剂∶钢纤维=205kg∶430kg∶663kg∶1082kg∶70kg∶6.4kg∶70kg=1∶2.10∶3.23∶5.28∶0.34∶0.03∶0.34

通过对几种不同水灰比的7天及28天强度来看,水灰比为W/C=0.41,7天平均抗压强度达到53.5MPa,28天平均抗压强度达到58.4Mpa,坍落度为90mm;水灰比为W/C=0.43,7天抗压强度达到50.2MPa,28天抗压强度达到57.4MPa,坍落度为110mm;水灰比为W/C=0.45,7天平均抗压强度达到40.5MPa,28天平均抗压强度达到48.5MPa,坍落度为130mm。以上几种不同的水灰比强度都能达到设计强度要求,但从设计强度上考虑,项目部决定采用水灰比为W/C=0.43的设计配比。

项目部在本桥的主桥上现浇了一块于桥面铺装层同样的钢纤维混凝土与试验室内试块做为同样对比,现取芯送检做7天抗劈裂强度来看平均强度4.23Mpa,7天抗压强度平均强度为41.1Mpa。试验室标准养护室内7天抗折强度为4.92Mpa,28天抗折强度为5.57Mpa,3天平均抗压强度为41.1Mpa,7天抗压强度平均强度为48.9Mpa,28天抗压强度平均强度为59.0Mpa。以上数据可以看出受桥面行车挠度及外观的影响,现场强度要比试验室内强度要低。

本次搅拌的为JD-1500型砼拌和机,运输采用砼搅拌车进行运输,设计的坍落度为120mm,通过对不掺加钢纤维和掺加钢纤维,两种拌和出来的成品料,坍落度指标完全不同。试验人员在搅拌站做出的坍落度和桥面上做出的坍落度相差为30~40mm。

五、施工工艺

在保证桥面车辆单向通行的前提下,所采取的半幅施工方法,先切割老桥面铺装层再进行人工破除,清理老桥面铺装层后,对桥面进行施工放样测量,控制两侧伸缩缝高程。铺筑厚度控制在边口最薄处厚度在8cm以上。清理后进行植筋、绑扎钢筋、立模完进行浇筑砼,用土工布进行养生,养生期10d左右,待强度测试达设计要求时开放交通。

六、施工质量控制

施工前对各种原材料进行质量检验。在施工过程中,应检查钢纤维混凝土的配合比是否符合设计要求,尤其是对钢纤维混凝土搅拌时的投料顺序、拌和时间,以及钢纤维混凝土浇筑过程中摊铺和振捣质量进行有效控制,确保钢纤维在混凝土中分布均匀,达到良好的力学性能。按施工规范要求对每一工作日浇筑的混凝土制作抗压试件。与普通混凝土一样,钢纤维混凝土也应加强早期养护。

七、结束语

(一)能有效控制路面裂缝,延长使用寿命,经济效果显著。

(二)加大缩缝间距,减少缩缝养护成本,提高行车舒适性。

(三)钢纤维混凝土面层厚度可比普通混凝土减少30%~50%,有效缩短施工工期。

(四)早期强度高,对桥面修复改建可提前开放交通。

(五)粘聚性、和易性特别好。

(作者单位:蚌埠市公路管理局五河分局)

主要参考文献:

[1]高丹盈,赵军.钢纤维混凝土设计与应用.中国建筑工业出版社,2003.

第6篇

关键词:纤维素纤维;抗渗性能;抗冻性能;抗裂性能;耐久性

中图分类号:U444文献标志码:A文章编号:

1672-1683(2015)001-0096-03

Research on durability of High-strength cellulose fiber reinforced concrete

LIU Jie1,ZHANG Jian-feng2,PENG Shang-shi2,XIAO Kai-tao2

(1.Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project,Beijing 100038,China;2.Changjiang River Scientific Research Institute,Wuhan 430010,China)

Abstract:Efect of cellulose fiber on permeability resistance,freeze-thaw resistance,and early cracking resitance of high-strength concrete was investigated in this paper.The experimental results indicate that permeability resistance are improved and inhibited because of the addition of cellulose fiber.The freeze-thaw resistance was scarcely changed,but the plastic cracks of the concrete during the early period are inhabited which mean that freeze-thaw resistance are improved.When the water-cement ratio is the same,there are almost no changes on concrete durability of different the largest particle size of aggregate.

Key words:cellulose fiber;permeability resistance;freeze-thaw resistance;cracking resitance;durability

1概述

南水北调是优化我国水资源配置,促进经济社会可持续发展的重大战略性基础工程。大型输水渡槽作为关键的控制性工程,其结构不仅要有足够的强度和承载力,还应具有良好的抗裂、抗渗和抗冻等耐久性能。南水北调中线湍河渡槽作为世界上最大的U型输水渡槽工程,其对渡槽混凝土的耐久性能要求更高。但高强混凝土由于水泥用量大,水胶比低,使得混凝土的温度收缩和自收缩大[1-2],这将导致混凝土结构极易开裂。混凝土一旦出现裂缝,就会破坏结构的完整性,降低混凝土的耐久性[3]。

纤维素纤维作为一种新型的工程用纤维,与传统的聚丙烯等合成纤维相比,其直径和比表面积更小,因此其与水泥浆体的黏结力更强;此外纤维素纤维作为一种木质纤维,本身就具备极好的亲水性,在新拌混凝土中能够吸附一部分自由水,而且纤维基体内部有天然空腔,能够储存一定量的自由水,在水泥水化的过程中,这两部分水分会缓慢释放,促进水泥继续水化,补偿混凝土的收缩[4];此外纤维素纤维的抗拉强度和弹性模量也比传统的合成纤维更大。本文结合南水北调中线干线湍河渡槽工程,研究掺纤维素纤维高强混凝土的抗渗、抗冻和抗裂等耐久性能,以为掺纤维素纤维高强混凝土更广泛应用提供一定的技术依据。

2原材料及配合比

2.1原材料

试验水泥采用中国联合水泥集团邓州中联水泥公司生产的“中联”牌42.5普通硅酸盐水泥,水泥物理性能试验结果见表1;粉煤灰为河南鸭河口粉煤灰开发有限公司生产的I级粉煤灰,粉煤灰品质检验结果见表2;细骨料为天然砂,取自湍河渡槽工程施工现场张坡砂场,粗骨料为人工碎石,取自鄂沟西石料场;外加剂采用上海马贝建筑材料有限公司生产的SP-1聚羧酸减水剂和PT-C1引气剂。

试验采用上海罗洋新材料科技有限公司生产的UF500纤维素纤维。纤维性能检测结果见表3。

2.2配合比

混凝土设计强度等级为C50,水胶比为0.30,二级配混

表1水泥的物理性能

表2粉煤灰品质检验结果

表3纤维检测结果

凝土骨料组合选择为中石∶小石=55∶45,由于渡槽的配筋密集,钢筋间距较小,为了更好的满足现场浇筑要求,因此还选择骨料最大粒径为30 mm和25 mm的配合比,骨料最大粒径为30 mm或25 mm时,中石∶小石=50∶50,具体配合比见表4。

表4混凝土配合比

3试验结果及分析

3.1纤维素纤维对混凝土力学性能的影响

不同配合比的混凝土抗压强度、轴拉强度、极限拉伸值和拉压比结果见表5。从表中可知,掺入纤维素纤维后,抗压强度基本无明显变化,7 d轴拉强度则提高了7%,28 d轴拉强度则提高了4%,7d极限拉伸值基本相同,28 d极限拉伸值则提高了10%;7 d拉压比提高了8%,28 d拉压比仅提高了3%;随着骨料最大粒径的降低,28 d龄期的拉压比也有降低的趋势。实际上拉压比和极限拉伸值在一定程度上表征了混凝土的抗裂性能,一般认为极限拉伸值和拉压比越大,混凝土的抗裂性能越好,而掺入纤维素纤维的混凝土拉压比和极限拉伸值都有一定的增加,说明纤维素纤维对提升混凝土抗裂性能是有利的。

表5混凝土力学性能试验结果

3.2纤维素纤维对混凝土抗渗性能的影响

混凝土28 d龄期的抗渗性能部分试验结果见表6。试验结果表明,掺入纤维素纤维后,混凝土的渗水高度和相对渗透系数都有一定程度的降低,渗水高度降低了20%,相对渗透系数降低了约36%,降低幅度并不是很大主要是由于高强混凝土胶凝材料用量大,本身就比较密实。相同水胶比,不同骨料最大粒径的混凝土抗渗性差别不大,其中最大粒径为20 mm的混凝土抗渗性最好。

由此可见,掺入纤维素纤维可以明显改善高强混凝土的抗渗性能,这主要是因为纤维的掺入增加了拌和料的刚性,减少集料沉降,减少了泌水通道的形成,增加了流体由泌水通道进入混凝土内部的难度[5];此外,纤维还能限制混凝土基体收缩,阻止微裂缝的形成与扩展,并且还能改善孔结构,增加混凝土基体的密实程度,从而提高其抗渗透能力[6]。而且纤维素纤维内部特有的天然空腔,能够储存一定量的自由

表6混凝土抗渗性能试验结果

水,在水泥水化的过程中,这两部分水分会缓慢释放,促进水泥继续水化,补偿混凝土的收缩。N.Banthial等人[7]系统研究了混凝土试件在不受压力荷载、受不同压力荷载作用下,纤维素纤维对混凝土的抗渗性能的影 响。其研究结果表明:在不受压力荷载作用下,纤维素纤维的掺入能够明显降低混凝土的渗透性能;在受压力荷载作用下,当压力 从0增加到0.3(为试件的抗压强度)时,素混凝土与纤维素纤维混凝土的渗透性都明显降低;随着压力的增加并超过一临界值时,素混凝 土的渗透性快速明显增加,纤维素纤维混凝土的渗透性虽然也增加,但是其抗渗性还是要优于 相应不加压力荷载的情况 。

3.3纤维素纤维对混凝土抗冻性能的影响

混凝土28 d龄期的抗冻性能部分试验结果见表7。试验结果表明,混凝土的质量损失率随冻融循环次数的增加而增大,相对动弹模量随冻融循环次数的增加而降低,掺入纤维素纤维后,混凝土的质量损失率和相对动弹模量基本没有变化,说明在冻融循环初期,尤其是200次循环前,纤维素纤维对改善混凝土抗冻性能的作用并不显著,这是因为早期混凝土的初始缺陷对其抗冻性能的影响要比纤维明显。相同水胶比,不同骨料最大粒径的混凝土抗冻性差别不大。

表7混凝土抗冻性能试验结果

3.4纤维素纤维对混凝土抗裂性能的影响

混凝土抗裂性的平板试验装置及测试方法最早由日本大学笠井芳夫(Yoshio KASAI,1976年)和美国圣约瑟(San Jose)州立大学的kraai(1985年)提出[8],此后平板试验装置的尺寸有所变化。在对混凝土因塑性收缩和干燥收缩而引起开裂问题的研究中,美国密西根州立大学Parviz Soroushian等人采用了一种弯起波浪形薄钢板提供约束的平板式试验装置。此方法也被ICC-ES推荐为检测合成纤维混凝土抗裂性能的标准方法(AC 32-2003)。

混凝土平板法抗裂试件的试验结果见表8,平板法试件

表8混凝土平板法抗裂试验结果

的开裂参数见表9。

表9混凝土平板法试件的开裂参数

试验结果表明,掺入纤维素纤维后,混凝土的开裂时间延后了40 min,最大裂缝宽度减小达60%以上,平均开裂面积减少70%,单位面积的裂缝数目减少50%,单位面积的开裂面积降低更是降低85%,抗裂等级也明显提升,这说明可有效抑制混凝土早期塑性收缩,提高混凝土的抗裂性能。相同水胶比,不同骨料最大粒径的混凝土抗裂性能之间相差较小。一方面这是因为存在于混凝土表层的纤维阻止了表面水分的迁移,从而降低了毛细管失水收缩形成的毛细管张力;另一方面数量众多的纤维在混凝土中形成了三维乱向分布,纤维与水泥基之间的界面黏结力、机械咬合力等增加了混凝土塑性和硬化初期的抗拉强度[10],从而有效地抑制早期收缩裂缝的产生和发展。

4结论

(1)纤维素纤维的混凝土拉压比和极限拉伸值都有一定的增加,其中极限拉伸值的增加幅度较大,可达到10%;抗渗性能也能得到明显改善,渗水高度降低了20%,相对渗透系数降低了约36%,但对混凝土早期抗冻性能的作用不明显。

(2)纤维素纤维能推迟混凝土开裂时间、减少开裂面积和裂缝数目,有效抑制混凝土早期塑性收缩,提高混凝土的抗裂性能。

(3)相同水胶比,不同骨料最大粒径的混凝土对混凝土力学性能、抗渗性能、抗冻性能和抗裂性能影响较小。

参考文献:

[1]

覃维祖.混凝土的收缩、开裂及其评价与防治[J].混凝土,2001(7):3-7.

[2]李北星,周芳,王长德,夏京亮.纤维素纤维对渡槽C50混凝土的性能影响[J].混凝土,2010(5).

[3]杨华全,李文伟.水工混凝土研究与应用[M].北京:中国水利水电出版社,2005.

[4]李光伟.纤维素纤维在水工抗冲磨高性能混凝土中的应用[J].水利水电技术,2011(10):124-127.

[5]Zollo,R.F.,Ilter,J.A.and Bouchacourt,G.B.,“Developments in Fibre Reinforced Cementand Concrete”,Proc .RILEM Symposium,FRC86 (Ed .Swamy et a1.),1986(1).

[6]邓世杰,张杰,唐儆泽,等.纤维对混凝土抗渗性能及硬化水泥浆体孔结构的影响[J].港工技术,2007(3):34-37.

[7]N Banthia,A Bhargava.Permeability of stressed concrete and of fiber reinforcement.

[8]Paul P.Kraai.A proposed test to determine the cracking potential due to drying shrinkage of concrete.Concrete Construction.September,1985:75-778.

第7篇

关键词:钢纤维 混凝土 性能 应用

钢纤维混凝土就是在普通混凝土中掺入适量钢纤维而成的一种新型复合材料,近年来在国内外得到迅速发展。它克服了混凝土抗拉强度低、极限延伸率小、性脆等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,已在建筑、路桥、水工等工程领域得到应用。

一、钢纤维的基本性质

1.钢纤维的类型及特征参数

钢纤维按材质分,有普通碳钢钢纤维和不锈钢钢纤维,其中以普通钢钢纤维用量居多;按外形分有长直形、压痕形、波浪形、弯钩形、大头形、扭曲形;按截面形状分有圆形、矩形、月牙形及不规则形;按生产工艺分有切断型、剪切型、铣削型及熔抽型;按施工用途分有浇筑用钢纤维和喷射用钢纤维。

为满足钢纤维的增强效果与施工性能,通常采用钢纤维长度为15~60mm,直径或等效直径为0.3~1.2mm,长径比为30~100,纤维的体积掺量为0.5%~2%。

2.钢纤维的主要性能

钢纤维的主要性能包括抗拉强度与黏结强度。试验表明,由于普通钢纤维混凝土主要是因钢纤维拔出而破坏,并不是因钢纤维拉断而破坏,因此钢纤维的抗拉强度一般能满足使用要求,而其与混凝土基体界面的黏结强度是影响钢纤维混凝土性能的主要因素。黏结强度除与基体的性能有关外,就钢纤维本身而言,与钢纤维的外形和截面形状有关。

二、钢纤维混凝土的基本性能

国内外对钢纤维的作用机理和钢纤维混凝土的基本性能做了大量的研究,现归纳如下:

钢纤维混凝土中乱向分布的短纤维主要作用是阻碍混凝土内部微裂缝的扩展和阻滞宏观裂缝的发生和发展。在受荷(拉、弯)初期,水泥基料与纤维共同承受外力,当混凝土开裂后,横跨裂缝的纤维成为外力的主要承受者。因此钢纤维混凝土与普通混凝土相比具有一系列优越的物理和力学性能。

1.强度和重量比值增大

这是钢纤维混凝土具有优越经济性的重要标志。

2.具有较高的抗拉、抗弯、抗剪和抗扭强度

在混凝土中掺入适量钢纤维,其抗拉强度提高25%~50%,抗弯强度提高40%~80%,抗剪强度提高50%~100%。

3.具有卓越的抗冲击性能

材料抵抗冲击或震动荷载作用的性能,称为冲击韧性,在通常的纤维掺量下,冲击抗压韧性可提高2~7倍,冲击抗弯、抗拉等韧性可提高几倍到几十倍。

4.收缩性能明显改善

在通常的纤维掺量下,钢纤维混凝土较普通混凝土的收缩值降低7%~9%。

5.抗疲劳性能显著提高

钢纤维混凝土的抗弯和抗压疲劳性能比普通混凝土都有较大改善。当掺有1.5%钢纤维抗弯疲劳寿命为1×106次时,应力比为0.68,而普通混凝土仅为0.51;当掺有2%钢纤维混凝土抗压疲劳寿命达2×106次时,应力比为0.92,而普通混凝土仅为0.56。

6.耐久性能显著提高

钢纤维混凝土除抗渗性能与普通混凝土相比没有明显变化外,由于钢纤维混凝土抗裂性、整体性好,因而耐冻融性、耐热性、耐磨性、抗气蚀性和抗腐蚀性均有显著提高。掺有1.5%的钢纤维混凝土经150次冻融循环,其抗压和抗弯强度下降约20%,而其他条件相同的普通混凝土却下降60%以上,经过200次冻融循环,钢纤维混凝土试件仍保持完好。掺量为1%、强度等级为CF35的钢纤维混凝土耐磨损失比普通混凝土降低30%。掺有2%钢纤维高强混凝土抗气蚀能力较其他条件相同的高强混凝土提高1.4倍。钢纤维混凝土在空气、污水和海水中都呈现良好的耐腐蚀性,暴露在污水和海水中5年后的试件碳化深度小于5mm,只有表层的钢纤维产生锈斑,内部钢纤维未锈蚀,不像普通钢筋混凝土中钢筋锈蚀后,锈蚀层体积膨胀而将混凝土胀裂。

三、钢纤维混凝土设计与施工规程说明

我国于1996年出版了《钢纤维混凝土试验方法》CECS13:89和《钢纤维混凝土结构设计与施工规程》CECS38:92,但本规程只对钢纤维混凝土结构不同于混凝土结构设计与施工的专门要求作出规定。在进行钢纤维混凝土结构设计和施工时,尚应与《水工钢筋混凝土结构设计规范》SL/T191-96和《水工混凝土施工规范》DL/T5144-2001配合使用。

四、钢纤维混凝土在水利水电工程中的应用

1.支护工程

钢纤维混凝土由于抗拉、抗弯、抗剪强度高,能承受较大的围岩和土体的变形作用而保持良好的整体性,因此可用于隧洞支护、山体护坡等工程。如浙江省开化县齐溪水电站有压隧洞在两个工程段内采用喷射钢纤维混凝土衬砌,使围岩能在较大程度上发挥作用,减少了衬砌厚度,由原来的钢筋混凝土衬砌厚度500mm减至钢纤维混凝土喷衬厚度60mm,省去了钢筋加工和绑扎工程量,同时不需立模和回填灌浆,造价由每延米1175元减至398元,施工工作量减少3/4。工程至今正常运行。

2.储水、防渗、输水管道工程

钢纤维混凝土由于抗裂性能好、收缩率低,因而防水、防渗性能较好,可用于低压输水管、蓄水池、地下室防渗等工程。而在储水和防渗结构中钢纤维混凝土可作防水层,有时也可兼作结构层代替钢筋混凝土。如浙江省余姚岭水库混凝土坝面多次出现裂缝、下游面局部出现渗水,在混凝土面层采用喷射钢纤维混凝土,厚度50mm,达到了防渗效果,与高频振荡钢丝网水泥砂浆防渗面板相比,具有工艺简单、施工方便、造价低等优点。

3.高速水流冲刷磨损部位

钢纤维混凝土具有较高的抗冲磨、抗气蚀能力,因此可用于溢洪道、消力池、闸底板等承受高速水流作用的部位。如:大渡河支流南桠河石棉二级电站,该电站是引水式径流电站,1965年建成发电。当年汛期后,冲砂闸底板和护坦被冲成深槽,最深处达0.7m,埋设的28mm钢筋全部磨断,1968年和1969年先后两次用辉绿岩铸石板、环氧混凝土、呋喃混凝土进行修补加固对比试验,除环氧混凝土在一个汛期内磨损10~50mm外(后来也被冲毁了),其余材料不到一个汛期全部被砸碎冲掉。1977年在毁坏处采用硅锰渣铸石板、改性环氧砂浆、胶乳水泥砂浆、MC尼龙板、高强混凝土、钢纤维混凝土等材料进行补强试验,结果表明钢纤维混凝土是较好的抗冲耐磨材料。

4.处于腐蚀环境中的构件

钢纤维混凝土具有良好的耐腐蚀性能,可用于海水等腐蚀环境中的闸门、输水管道等构件的防蚀层或结构层。

5.动力荷载作用部位和抗震结构节点

由于钢纤维混凝土具有较高的抗拉强度、断裂韧性和抗疲劳等性能,因此,可用于承受动力荷载的机墩、抗震结构的框架节点等部位。

6.复杂应力部位

钢纤维混凝土中的钢纤维一般呈三维乱向分布,沿每个方向都有增强和增韧作用。钢纤维对混凝土结构复杂应力区增强是非常有利的,而且容易浇筑成型,比钢筋更能适应各种复杂的结构形式。此外,钢纤维限制混凝土裂缝的作用也是钢筋不能相比的。因此,可用于大坝内廊道、泄水孔等孔口复杂应力区和牛腿等受弯构件的抗剪以及板的抗冲切部位等。

7.部分应用钢纤维混凝土的水利水电工程

浙江省淳安县河村水库泄洪洞支护,浙江省文成县百丈际水电站引水隧洞、葛洲坝二江泄水闸、三门峡泄水排砂底孔、贵州乌江渡水电站、江西大港水电站的工程修补,湖南省永川市向阻坝渡槽局部槽身加强,浙江省玉环县四海闸闸槽二期,三峡临时船闸闸槽二期,杭州市德胜坝闸门门体等。钢纤维混凝土在以上工程应用均取得良好效果。

五、结 语

①钢纤维混凝土的优越性能及在水利水电工程中成功的应用表明:钢纤维混凝土不但可以解决钢筋混凝土难以解决的裂缝、耐久性等问题,而且用于输水隧洞等工程可以大幅度降低造价。因此,钢纤维混凝土在水利水电工程中具有广阔应用前景。

②目前钢纤维混凝土在应用中主要的问题是钢纤维生产成本较高,造成钢纤维混凝土初始造价较高。为了使钢纤维混凝土得到广泛应用,一方面,应努力降低钢纤维生产成本从而降低钢纤维混凝土的造价;另一方面,在应用时,不应只计一次性投资,而应考虑钢纤维混凝土的优越使用性能、较低的维修费和使用寿命延长等综合经济效益。

参考文献

1 赵国藩,彭少民,黄承逵等.钢纤维混凝土结构.北京:中国建筑工业出版社, 1999.11.

2 张春漪.钢纤维喷射混凝土试验研究及其应用.钢纤维混凝土结构设计与施工规程专题研究报告集.大连理工大学,1990.

第8篇

Abstract: The paper introduces the impact of steel fiber on concrete's mechanism strengthening and further discusses its impact on mechanical property and durability of concrete. At last, the author describes his expectation on the development of steel fiber reinforced concrete.

关键词:钢纤维混凝土;增强机理;力学性能;耐久性

Key words: steel fiber reinforced concrete;mechanism strengthening;mechanical property;durability

中图分类号:TU528 文献标识码:A文章编号:1006-4311(2010)21-0143-01

1钢纤维对混凝土的增强机理

钢纤维对混凝土的增强机理,一种是运用复合力学理论。最先将复合力学理论用于钢纤维混凝土的有:英国的R・N・Swamy,P・S・Mangat等。该理论将钢纤维混凝土简化为钢纤维和混凝土两相复合材料,复合材料的性能为各相性能的加和值。复合力学理论仅适用于钢纤维混凝土初裂前的情况,一旦基体开裂,该理论就不能适用了。

另一种是建立在断裂力学基础上的纤维间距理论。纤维间距理论的主要代表有:J・P・Romualdi,J・B・Batson和J・A・Mandel。该理论建立在线弹性断裂力学的基础上,认为混凝土内部有尺度不同的微裂缓、空隙和缺陷,在施加外力时,孔、缝部位产生大的应力集中,引起裂缝的扩展,最终导致结构破坏。而在脆性基体中掺人钢纤维后,有效地提高了复合材料受力前后阻止裂缝引发与扩展的能力,达到纤维对混凝土增强与增韧的目的。

2钢纤维对混凝土的物理力学性能的影响

2.1 钢纤维混凝土抗压性能一般情况下,钢纤维对提高混凝土的抗压强度不明显,在钢纤维混凝土结构的保守设计中,钢纤维对混凝土抗压强度的改善作用可以忽略。

2.2 钢纤维混凝土抗拉性能钢纤维混凝土试件的劈裂抗拉强度随钢纤维体积率的增加而增加。

2.3 钢纤维混凝土抗弯性能钢纤维增强混凝土的抗弯性能主要包括初裂弯拉强度、弯拉强度、弯曲韧性和弯拉弹性模量等,其中初裂弯拉强度是反映钢纤维增强混凝土初裂前阻裂能力的指标,弯拉强度是路面、道面等工程设计与工程质量检验和验收的主要指标。通过对钢纤维增强混凝土在弯曲荷载作用下的初裂弯拉强度、弯拉强度、弯曲韧性及弯拉弹性模量等抗弯性能的实验,并与普通混凝土相比较表明:钢纤维增强混凝土抗弯性能比普通混凝土有显著的提高和改善。

2.4 钢纤维混凝土抗剪性能混凝土的抗剪性能以抗剪强度为衡量指标。影响钢纤维混凝土抗剪强度的主要因素有混凝土基体、钢纤维的品种、体积率、长径比及界面黏结状况等。

2.5 钢纤维混凝土抗冲击性能钢纤维增强混凝土的冲击试验,目前国内外尚无统一的方法,常用的有受压冲击法和受弯冲击法两种,受弯冲击法比较能反映钢纤维增强混凝土的特性。总之,在冲击荷载作用下,普通混凝土一旦裂缝出现,随即引起崩塌,其初裂和破坏时的冲击次数(冲击耗能)相近。钢纤维增强混凝土则随体积率的增大,不仅初裂次数增多,冲击耗能增大,初裂强度提高,而且破坏时呈多点开裂,且裂而不断。初裂与破坏冲击次数(冲击耗能)随钢纤维的体积率、长径比及基体强度等级的增大而提高。

2.6 钢纤维混凝土弯曲疲劳性能当混凝土中掺入适量的钢纤维时,钢纤维将明显的提高抗疲劳性能。钢纤维混凝土疲劳方程与素混凝土疲劳方程的最大不同点是包含了钢纤维体积率、钢纤维长径比,即在混凝土基材中掺入不同体积率和长径比的钢纤维。因此,钢纤维混凝土的疲劳性能不仅受混凝土基材疲劳特性的影响,而且与钢纤维的体积率、长径比有很大关系。其中长径比是影响疲劳寿命的重要因素。我国有关设计规范中,没有钢纤维混凝土疲劳应力系数的规定,只是简单套用较早的普通混凝土路面的疲劳方程,加上钢纤维的体积率和长径比对疲劳性能的影响。

3钢纤维对混凝土耐久性的影响

3.1 钢纤维混凝土的抗冻性根据赵国藩等著的《钢纤维混凝土结构》,钢纤维体积率对混凝土的抗冻性影响十分明显,其影响程度与混凝土基体强度等级或W/C大小有关。通过大量的实验结果可知:钢纤维对高W/C的混凝土比对低W/C的混凝土有更好的抗冻效果。因为W/C越大,抗冻能力越低,钢纤维对提高这类混凝土的抗冻效果就越突出。

3.2 钢纤维混凝土的抗渗性由大量实验结果可知:钢纤维的掺入对于混凝土的抗渗性有很大的改善。混凝土的抗渗性与其内部的微裂缝有很大的关系。掺入钢纤维后,由于纤维与混凝土之间的粘结作用,纤维降低了原生裂缝的发生;纤维的存在使得裂缝不能直通,阻碍了次生裂缝的发展。当裂缝得不到发展而停留在微裂缝的阶段,即可有效地阻止水的渗透,从而提高了混凝土的抗渗性 。

3.3 钢纤维混凝土的耐磨性研究指明,在混凝土中掺入钢纤维,其耐磨能力高于混凝土基体的耐磨能力。采用钢纤维混凝土强度等级为CF35,中砂,碎卵石,钢纤维掺量为1%,制成50mm×50mm×50mm的钢纤维增强混凝土试件与同类配合比的普通混凝土试件,同时在国产耐磨机上进行实验,每转动10min,取三次磨耗损失质量的平均值。实验结果表明,钢纤维增强混凝土的磨耗损失比普通混凝土的磨耗损失降低了30%左右,因此,钢纤维增强混凝土更适用于有耐磨要求的桥面、路面、溢洪槽以及工业厂房地面等。

3.4 钢纤维混凝土的抗腐蚀性钢纤维混凝土一般采用低水灰比、低渗透性配合比,混凝土质量一般较高,钢纤维又能阻碍和约束裂缝的产生和发展。所以,腐蚀介质很难侵入钢纤维混凝土内部,一般认为钢纤维混凝土具有良好的抗锈蚀性。钢纤维混凝土的工程应用有三十多年的历史,至今未见因钢纤维锈蚀而造成严重劣化或工程失效的报道。

4钢纤维混凝土的发展

与普通的混凝土相比,钢纤维造价较高,若能开发出更好的钢纤维制造工艺,用较少的钢纤维量达到更好的性能,必能降低成本,进一步推广钢纤维混凝土的应用。同时,钢纤维混凝土的增强机理并不完善,纤维间距理论忽略了纤维自身的耦合作用,复合材料理论忽略了纤维复合带来的耦合效应,都有应用局限性,需待进一步的探讨和研究。理论研究的不断深入,也必将使钢纤维混凝土有着更为广阔的工程应用前景,促进我国钢纤维混凝土的研究再上一个新的台阶。

参考文献:

[1]赵国藩,黄承逵.纤维混凝土的研究与应用[M].大连:大连理工大学出版社,1992.

第9篇

关键词:高温;纤维;混凝土;力学性能

我国城市化水平的迅速提高,带动建筑业的飞速发展。房屋密集程度加大,高层超高层建筑越来越多,人口居住密度不断增大,建筑物发生火灾的概率明显加大。建筑物一旦发生了火灾,将给人民群众的生命财产和安全造成巨大的损失[1,2]。据统计,现阶段我国每年发生的火灾中,建筑火灾占火灾总数的一半以上,直接经济损失占火灾总损失的80%以上[3]。混凝土以其取材方便、制备简单、适应性强等特点,被作为结构的主导材料大量应用于土建工程中,并且还将会长期占据土木工程领域的主导地位。纤维混凝土是以混凝土为基体,以金属纤维或有机纤维增强材料组成的一种水泥基复合材料,最常见的纤维就是钢纤维、聚丙烯纤维及二者混杂使用[4~6]。掺入的纤维可以有效地克服混凝土抗拉强度低、易开裂、抗疲劳性能差等固有缺陷[7,8]。聚丙烯纤维混凝土、钢纤维混凝土及混杂纤维混凝土在工程中实际都有大量的应用,因此研究其高温后的力学性能变化十分有必要。研究普通混凝土、聚丙烯纤维混凝土、钢纤维混凝土及混杂纤维混凝土在高温后力学性能的变化及残余值,对火灾后建筑物的安全评定及加固提供指导。

1原材料及试验方法

1.1原材料

江西海螺P•O42.5普通硅酸盐水泥;江西德安碎石,5~20mm连续级配;赣江中砂,细度模数2.7,含泥量0.8%。聚丙烯纤维由长沙博赛特建筑工程材料有限公司提供,性能参数如表1所示:钢纤维来自浙江博恩金属制品有限公司,性能参数如表2所示。

1.2试验方法

抗压强度试件采用100mm×100mm×100mm模具成型,抗折强度试件采用100mm×100mm×400mm模具成型。1d后脱模,在标准养护室中养护至28d龄期进行相应测试。高温炉升温速度为10℃/min,分别升高至200℃、400℃、600℃和800℃,保持3h以保证试件内外温度一致,加热结束后自然冷却,7d后进行力学性能测试。

1.3混凝土配合比

以强度等级为C40混凝土为研究对象,研究其高温后力学性能的变化。配合比如表3所示,其中纤维量按照体积掺量掺入。

2结果与讨论

2.1纤维混凝土高温后抗压强度变化

普通混凝土及纤维混凝土在20℃、200℃、400℃、600℃和800℃后抗压强度值及抗压强度残余率如图1、图2所示。如图1所示,普通混凝土及纤维混凝土抗压强度值都随着温度的升高而降低,在相同温度条件下,各组混凝土抗压强度值的大小都呈现如下规律:普通混凝土<聚丙烯纤维混凝土<混杂纤维混凝土<钢纤维混凝土。如图2所示,普通混凝土及纤维混凝土抗压强度残余率都随着温度的升高而降低,在相同温度条件下,各组混凝土抗压强度残余率变化规律与强度值变化规律有所不同:普通混凝土<聚丙烯纤维混凝土<钢纤维混凝土<混杂纤维混凝土。这说明纤维混凝土较普通混凝土具有更高的耐高温性能。不同温度条件下,各组混凝土受温度影响也不尽相同。200℃时,普通混凝土抗压强度残余率为79%,而纤维混凝土都保持在85%~88%之间;400℃时,普通混凝土抗压强度残余率只有54%,纤维混凝土达到70%~73%;600℃时,普通混凝土和聚丙烯纤维混凝土的抗压强度残余率为38%左右,钢纤维混凝土和混杂纤维混凝土抗压强度残余率大于50%;800℃时,普通混凝土和聚丙烯纤维混凝土的抗压强度残余率为23%左右,钢纤维混凝土和混杂纤维混凝土抗压强度仍具有33%残余。普通混凝土随着温度的增加,都呈现出明显的强度损失;当温度小于400℃时,纤维混凝土都具有很高的抗压强度残余率,当温度大于400℃时,聚丙烯纤维混凝土抗压强度残余率显著降低;钢纤维混凝土和混杂纤维混凝土在不同温度条件下,都具有较高的抗压强度残余率。

2.2纤维混凝土高温后抗折强度变化

普通混凝土及纤维混凝土在20℃、200℃、400℃、600℃和800℃后抗折强度值及抗压强度残余率如图3、图4所示。如图3所示,各组混凝土抗折强度值都随着温度的升高而降低,在相同温度条件下,各组混凝土抗折强度值的大小与抗压强度具有相同规律,不同的是,钢纤维混凝土和混杂纤维混凝土的抗折强度明显高于普通混凝土和聚丙烯纤维混凝土。如图4所示,各组混凝土抗折强度残余率都随着温度的升高而降低;200℃、400℃和600℃条件下,各组混凝土抗折强度残余率规律相同:混杂纤维混凝土<钢纤维混凝土<普通混凝土<聚丙烯纤维混凝土,温度为800℃时为:普通混凝土<聚丙烯纤维混凝土<混杂纤维混凝土<钢纤维混凝土。钢纤维混凝土和混杂纤维混凝土的抗折强度在各个温度条件下都明显大于普通混凝土及聚丙烯纤维混凝土;聚丙烯纤维的掺入使得混凝土抗折强度略有增长,但不明显;钢纤维和混杂纤维显著增加了混凝土的抗折强度。在800℃条件下,钢纤维混凝土的抗折强度仍大于7MPa,与20℃时普通混凝土抗折强度相差不大(8.3MPa)。

2.3机理分析

混凝土及纤维混凝土在高温后力学性能发生明显变化,究其原因主要分为以下两方面:一是混凝土自身原因,另一个是不同种类纤维的理化性能不同。200℃时,自由水和物理结合水逸出,Aft发生分解,水化产物有所减少,水泥浆的热膨胀,会导致骨料水泥浆体界面处原始裂纹的发展,从而导致混凝土强度衰减[9,]。400℃左右时,水泥浆体中的水化硅酸钙和水化铝酸钙开始脱水,同时大量水蒸气的外逸冲刷和挤胀作用,又扩大了裂纹和孔隙,使水泥浆体中孔隙平均尺寸和微裂纹迅速增大,混凝土力学性能进一步降低。500℃时,水泥石中的氢氧化钙晶体受热分解,引起吸热反应,孔隙含量急剧增加[10];硅质骨料中的二氧化硅晶体发生相而体积膨胀,骨料体积的增加使得骨料与水泥浆体之间的裂缝增大。600℃时,孔隙水完全失去,混凝土宏观破坏开始,因而其力学性能大幅下降,在600~700℃之间C-S-H凝胶分解[11]。800℃时石灰岩骨料膨胀、开裂,并产生二氧化碳气体,混凝土强度进一步降低。聚丙烯纤维熔点较低(168℃),在高温下熔解而失去作用,但因其液态体积远小于固态所占空间,于是形成众多小孔隙,并由于聚丙烯纤维分散的均匀性及纤维细小且量又多,使得混凝土内部孔结构发生了变化,孔隙的连通性加强,为混凝土内部水分的分解蒸发提供了通道,从而缓解了由于水分膨胀所形成的分压,使内部压力大大降低,从而降低了水蒸气的冲刷和挤胀作用,降低裂纹的扩展[12]。因此在温度小于400℃时,聚丙烯纤维混凝土强度显著大于普通混凝土。钢纤维熔点高,自身力学性能受温度影响较小,另外,钢纤维的桥接作用和阻裂作用限制了混凝土在温度急剧变化和高温环境下产生的体积变化,减轻了混凝土内部微缺陷的引发和扩展,使混凝土在高温条件下表现出较好的力学性能[13]。

3结论

(1)混凝土及纤维混凝土的抗压强度、抗折强度及其残余率都随着温度的升高而降低。(2)纤维的掺入对混凝土高温力学性能具有改善作用,聚丙烯纤维在温度不超过400℃时改善作用显著,钢纤维在800℃时改善作用仍明显。(3)混杂纤维混凝土高温后抗压强度残余率最高。

参考文献

[1]李海江.2000-2008年全国重特大火灾统计分析[J].火灾科学,2010(18):64-69.

[2]王亚军,黄平.2005年9-10月国内安全事故统计分析[J].安全与环境学报,2005,12(6):123-125.

[3]王慧芳.聚丙烯纤维高强混凝土高温性能研究[D].太原:太原理工大学,2011.

[4]陈润锋,张国防,顾国芳.我国合成纤维混凝土研究与应用现状[J].建筑材料学报,2001,4(2):167-173.

[5]杨成,黄承逵,车轶,王伯昕.混杂纤维混凝土的力学性能及抗渗性能[J].建筑材料学报,2008,11(1):89-93.

[6]王冲,林鸿斌,杨长辉,等.钢纤维自密实高强混凝土的制备技术[J].土木建筑与环境,2013,35(2):129-134.

[7]LauA,AnsonM.Effectofhightemperaturesonhighperformancesteelfiberreinforcedconcrete[J].CementandConcreteResearch,2006(6):1698-1707.

[8]QianCX,Patnaikuniindubhushan.Propertiesofhigh-strengthsteelfiber-reinforcedconcretebeamsinbending[J].CementandConcreteComposites,1999(21):73-81.

[9]YeG,LiuX,SchutterGD,etal.Phasedistributionandmicrostructur-alchangesofself-compactingcementpasteatelevatedtemperature[J].CementandConcreteResearch,2007,37(6):978-987.

[10]PiastaJ,SawiczZ,RudzinskiL.Changesinthestructureofhardenedcementpasteduetohightemperature[J].MaterialsandStructures,1984,17(4):291-296

[11]柴松华,杜红秀,阎蕊珍.高强混凝土高温后轴心抗压强度试验研究[J].硅酸盐通报,2013,3(11):2341-2345.

[12]柳献,袁勇,叶光.聚丙烯纤维高温阻裂机理[J].同济大学学报,2007,35(7):959-964.