时间:2022-08-03 18:56:44
导语:在光纤传感技术论文的撰写旅程中,学习并吸收他人佳作的精髓是一条宝贵的路径,好期刊汇集了九篇优秀范文,愿这些内容能够启发您的创作灵感,引领您探索更多的创作可能。
关键词:煤矿火灾,光纤光栅,预测预报,本质安全,准分布式测温
1.引言随着我国煤矿采掘机械化和电气化程度的提高,外因火灾发生的比例也逐年增高。低压电缆着火、矿用变压器着火、架线电车电弧引燃木支护棚着火等电气火灾事故也时有发生,而且矿井中环境复杂,电气设备众多,一旦发生火灾,后果将不堪设想,具有很大的危险性。今年以来,全国煤矿已发生4起重大以上事故,其中3起为火灾事故。除“3.15”事故外,湖南省湘潭市湘潭县立胜煤矿“1.5”特别重大火灾事故,造成34人死亡和下落不明;江西省新余市庙上煤矿“1.8”重大火灾事故,造成12人死亡。论文大全。这3起火灾事故,都是因电缆及设备(移动空压机)着火引燃木支护而发生的火灾事故。
目前,矿井内采用的火灾检测设备还很少,而且大部分还是采用基于电信号传感器的测温系统。其中红外测温为非接触测量,易受环境及周围电磁场干扰,且需人工操作,无法实现在线测量,效率低下;电子温度传感器易受电磁干扰,机械的温度传感器受环境的影响也比较大,以上几种检测方法的测量效果都不是很理想。因此开发一种大容量分布式在线实时温度监测系统,来监测煤矿高耗能大型机电设备和电缆运行温度已成为当务之急。
光纤光栅温度在线监测系统是一种全新的在线温度监测报警系统,具有防爆、防燃、抗腐蚀、抗电磁干扰,在有害环境中使用安全,实现实时快速准分布式测温并定位,具有程控报警电平等特点。系统本身具有自检测、自标定和自校正功能,是光机电、计算机一体化技术。采用光纤光栅温度检测技术进行煤矿各种设备的温度实时在线检测,充分利用光纤光栅传感系统的大容量、分布式特性将是一种十分可行的方案。
2.煤矿机电设备引起火灾的原因分析煤矿机电设备引起火灾的原因是多种多样的,主要火灾是电器设备引起的火灾和电缆火灾,原因是:过载、短路、接触不良、电弧火花、漏电等原因。这些火灾起初可能致使电气设备中的绝缘材料燃烧,接着火焰传到巷道的支架、煤尘、瓦斯及矿内其它可燃材料上,这就发生矿井电气火灾。 煤矿机电设备火灾主要是由于设备负荷过大引起的。大量高耗能的设备在煤矿中长期使用,不可避免引起设备负荷过大,将使设备达到使自己失去绝缘性能的危险温度,随着温度的不断积累,最后就常常引起电气设备发火。如综掘机、采煤机、刮板输送机、皮带机、绞车、主扇以及各类大功率设备等是煤矿企业广泛使用的大型高档设备,由于长期处于满负荷工作状态,因轴承损坏造成设备相应部位逐渐发热而导致设备损坏,影响正常生产的事频繁发生。
电缆火灾主要是由于电缆接触不良,或接地不好引起的。线路中个别部分接触电阻的增加,主要是接触不良的结果。实践证明,井下电缆与电缆或者电缆与设备的连接部分(接头)做得不好,往往是矿井巷道内因电流以产生火灾最常见的原因。电缆工作尤其是过流、过载时,由于导体发热会导致电缆温度升高,如果电缆不具备良好的阻燃性能,极易引起电缆着火,在燃烧的同时可产生大量有毒有害气体,造成矿工中毒窒息,还可能引起瓦斯煤尘爆炸。因此,电缆的阻燃性能对煤矿安全生产具有重要影响。
通过对机电设备引起火灾原因的分析,可以看出机电设备等电气火灾大部分都伴随着设备,电缆局部温度的逐渐升高,是一个积累的过程,完全可以通过对易发生火灾部位进行温度检测,根据温度上升的趋势来预测电气设备和电缆的运行状态,从而在故障点及时采取措施,防止火灾的发生。
3.矿用准分布式光纤光栅温度监测系统 3.1测温原理光纤传感技术是上世纪70年代末兴起一种先进的多学科交叉技术。经过三十多年,特别是过去十几年的发展,目前已经研制出两千多种基于光纤的传感器。光纤传感器与常规的电子类传感器相比有许多独特之处[7],主要优点包括:
1)以光作为传感信号基本不受外界电磁场干扰,长期漂移小,测量精度高,因而可用来作长期可靠的连续在线检测;
2)由于不带电,因而适于在电力,煤矿,石油,天然气及其它化工行业进行安全和生产状态参数的监测;
3)由于采用光纤传输,可以超远程监测;复用能力强,可实现对一线多点、两维点阵或空间分布的连续监测;
光纤传感器上述独特优点,特别是一根光纤可以对多个点做多变量测量的能力,是电子类传感器很难实现的。在具有强电干扰、高压、易燃易爆等恶劣环境下,传统的电子传感器受到很多局限性。光纤光栅温度监测仪所用温度传感器采用一种叫光纤布拉格光栅(FBG)的光学无源器件,是一种反射式光纤滤波器件,通常采用紫外线干涉条纹照射一段10mm长的裸光纤,在纤芯产生折射率周期调制,光波导内传播的前向导模会与后向反射模式进行耦合,形成布拉格反射,即产生了一个窄带的反射峰。论文大全。窄带反射峰的中心波长称为布拉格波长,研究表明:光纤光栅的空间折射率调制周期和纤芯的有效折射率均可引起光栅布拉格中心波长的改变。因此,通过一定的封装设计,使外界温度、应力和压力的变化导致光栅中心波长发生改变,即可使FBG达到对其敏感的目的[3]。如图2所示,光纤光栅中心波长和温度有着非常好的线性关系。
图1 光纤光栅结构图
图2 光纤光栅中心波长随温度变化曲线
3.2系统组成煤矿光纤机电设备状态检测系统主要包括信号解调模块、光学扩展模块,传输光缆和传感器网络。温度传感器由光纤光栅和连接光缆组成,温度传感器安装在现场;信号解调模块和计算机安装在控制室内,温度传感器和控制室由传输光缆进行信号传输。光纤信号解调控制器通过标准通讯接口与计算机通讯,由计算机完成温度的监控。
图3光纤多点温度传感监测系统框图
由信号解调模块中光源发出的高能量光束通过光缆注入光纤光是那传感器阵列,每个光纤光栅将反射特定的波长,这些波长与各个传感器所测温度成线性关系;这些波峰将由光纤信号解调模块进行波长解调,然后根据设定的参数计算出每个传感器的测量温度值,所测温度值和各种相关信息通过标准的通讯接口实时上传给监控上位机,进行信号的显示,故障诊断、事件记录、报警控制等。
3.3 系统技术特征和主要技术参数1.系统的技术特征
光纤传感器感知温度和位置信息,完全不带电,本质安全。传感器分辨率高,测温精确,响应时间短。传感器可靠耐用,使用寿命长。
阵列复用,大容量,多点分布式测温系统;一台解调仪可带几百个传感器,大范围覆盖测温现场;节省费用。论文大全。
由于全光信号传输,不受传感器距离限制,最大传感距离达10Km,是超远程温度检测系统。
2.系统的主要技术参数:
测温范围:-10℃~+110℃;测温精度:±1℃;温度分辨率:0.1℃;温度探测器响应时间:<5s;空间分辨率:根据现场情况;每通道最大传感器点数:18个/通道;测量时间:<30s/16通道。
4.系统的应用为了解决大规模的煤矿机电设备安全监测问题,在某煤矿的地面110Kv变电所,-312水平中央变电所,地面洗煤厂配电室,井下高压电缆中间接头及地面110Kv变电所电缆间(电缆密集处)等位置,共安装了近800个矿用光纤温度传感器。系统由一个监测仪和一个监控主机组成,所有传感器通过一条多芯的光缆连接起来,结构非常简洁。通过软件我们可以方便观测所监测位置的温度状态,对预防煤矿电气火灾提供了有力的技术基础。
5.总结随着我国煤矿采掘机械化和电气化程度的提高,电气火灾成为煤矿火灾的一个重要原因。通过对煤矿机电设备引起火灾的原因的分析,认为实时检测机电设备的温度可以有效预测预报火灾事故的发生。基于光纤温度传感器建立了一套煤矿火灾实时在线监测系统,通过安装煤矿光纤机电设备状态检测系统,对煤矿供电设备及高压线路接点的温度进行了实时在线监测,有效实现了煤矿供电设备安全状态的监控和火灾的预测预报,为煤矿安全生产提供了有力保障。这种方法的研究和应用对矿井火灾监测预报具有重大的实用价值。
参考文献[1] 绕云江,王义平,朱涛,光纤光栅原理及应用[M]。北京:科学出版社,2006
[2] 郭碧红,杨晓洪,我国电力设备在线监测技术的开发应用状况分析,电网技术,23(8):65-68,1999
[3] 赵勇,光纤光栅及其传感技术[M],北京:国防工业出版社,2007
[4]林全德,浅谈煤矿井下电气火灾原因及其预防,能源与环境, 2006(04)
[5] 时训先,蒋仲安,何理,矿井电气火灾原因分析及其预防[J],矿业安全与环保,2005(01)
[6] 苏国利,等.浅谈综采工作面电缆故障的防护措施[J],煤炭技术,2002(6)
[7] 李艳秋, 曹钟中, 靳 涛. 电力电缆火灾监测及防火预警系统的研制[ J ]. 华北电力技术, 2001 (2) .
关键词:光纤技术;创新思维;能力培养
[中图分类号] G642.2 [文献标识码] A [文章编号] xxxxx-xxxx-xxxx
一、引言
自从进入二十一世纪以来,国家对先进科学技术的重视程度不断增强。科技是第一生产力成为中国当前科技行业的重要指引。创新科技与创新教育成为了国内高校关注的重要方向。光电技术作为先进的近代科技发展行业技术,也相应受到了国内高校的特别关注,光电教育随之蓬勃发展起来,在光电教育中的创新能力培养也不断深入发展。光纤作为承载了当代信息传输交换的主要媒介,在光电教育领域则格外受到青睐。国内光电教育方向几乎都从不同角度开展了光纤教育。光纤本身的诞生、发展、成熟、提高的历史进程中,也充满了令人钦佩的诸多创新节点。比如光纤之父高琨对光纤的预言、多种多样特性的光纤的研制、光纤内的波分复用、光纤放大器等等无不蕴含着简单而又引人深思的创新实践。本文将以《光纤通信》《光纤传感技术》等光纤技术类本科课程教学为平台,努力探索分析光纤中的创新活动,实时的与课堂学生共同分享光纤发展史中的创新点;共同探讨前人创新的特点与产生源泉;尤其关注引导学生的换位思考方式,努力探索当代光纤发展中的创新实践;从而在教学过程中形成课堂教学与探讨共存,学习与创新思考并进的教学模式,为专业课程教学发展改革提供一定的借鉴作用。
二、认知创新能力培养
在光纤技术类知识体系中,创新发展是光纤技术快速稳定发展壮大的重要源泉。光纤通信以及光纤传感课程的教学过程中,光纤的发展史就是一部源泉开创、艰难发展、柳暗花明、创新加速的灿烂历程。早在十七世纪,人们就发现了水柱导光的现象。日常现象衍生出了导光的弯曲玻璃棒。光学射线理论指引下,导光的玻璃纤维----光纤随之问世。由此说明,创新源于生活、并青睐于有理论知识准备的人。
相应的,光纤发展过程中几乎难以克服的困难摆在了世人面前。当时获取的导光玻璃纤维的损耗非常之巨大,仅仅能近距离的导光传输。二十世纪六十年代,高琨先生发表创新性的论文,指出了光纤损耗的根源以及可行的解决思路,只要能够提纯光纤材料,理论表明一定能够获得长距离通信可用的光纤。此外,高琨还始终致力于游说世界各国的科技公司开展低损耗光纤的研发工作。直至1970年,康宁公司按照高琨的思想,成功研制出损耗低于20 dB/km的光纤产品。榜样的力量是无穷的,很快,世界各国多个公司开展了一系列的光纤研发,到1975年,损耗0.16dB/km的常规光纤正式问世。光纤技术的发展也正式进入了快速发展阶段。因此,创新留给有扎实理论分析能力的人,创新实践留给有恒心有毅力的长期推广应用研究并坚信科学理论的人。高琨先生因此获得了2009年诺贝尔物理学奖。
光纤的发展历史中,光纤雏形的诞生以及当代光纤的问世就是典型的创新结果。我们在光纤课程教学过程中,以历史发展为主要脉络,引导学生认识、了解当时的研究背景与历程,认识创新产生的细致过程,并培养学生理解、认识前人的创新成果,为学习创新奠定基础。
三、分析创新能力培养
光纤课程的课堂讲授中,在传授知识的同时,特别关注一些学习的知识点在当年诞生时的创新。也就是说,在课堂讲授中从众多知识点中仔细梳理出的前人的创新工作,并对这些创新工作的产生缘由进行引导性研讨,通过深入的发掘分析,探究前人的创新思想产生的思维方式与知识环境基础等,为培养学生的创新思维并养成创新思维做好充分的铺垫。
光纤课程中,讲授到了光纤通信系统中,早期常用的光探测器是PN半导体光电二极管。但是,对于PN型光电二极管,从结构分析上,介绍了它的耗尽层尺寸有限,导致接收光信号被结区以外的P或N区吸收。这时,产生的电子-空穴对因结区外的电场力很小而运动缓慢,这些电荷产生的微小电流将导致PN型光电二极管对入射光信号的响应度降低,同时还额外产生了一定的时延,导致PN型光电二极管的上升时间有点长,只能用于微秒量级一下的响应系统。面对这个问题,我们在课堂上提出了一些讨论问题:“前人是如何解决的呢?”,“如果是我们面对这个问题,有没有什么解决方案?”。然后,再陈述前人的解决方案,介绍PIN型光电二极管,通过增加一层本征半导体材料,扩大了耗尽区,使得入射光充分照射在耗尽区内,而且绝缘特性使得绝大部分二极管电压落在这一层,因而其内部场强非常强。最终,PIN管的检测效率与响应速度都得到的明显的改进。这个创新的改进在于接收光结构增大改进以及绝缘材料上的压降特性应用的成果。一方面是问题出现,牵引人们思考如何解决问题,另一方面,人们充分认识了解决问题的手段并掌握了相关技术基础理论且进行了灵活运用。
通过课堂上的创新过程介绍分析阐述,引导学生在学习知识的同时,不断的考虑换位思考解决问题的方法,仔细分析前人的创新思维流的前因后果,进而养成勤学多想的思维习惯,为自身的创新思维养成做好基本的准备。
三、发展探索创新能力培养
我们的课堂不仅仅是传授知识、分析问题的课堂,也是与青年大学生共同探索新知识、创新技术的平台。传授知识的目的就是要学生掌握知识并学会运用知识,更为重要的是,在传授知识的同时,我们要引导学生探索新世界、发展新世界,培养学生具有浓厚的探索兴趣与基本的创新能力。如何培养发展探索创新能力,问题本身就始终是人类不断探索发展的课题。我们对此在课堂教学中进行了一系列的尝试性探索,着力引导学生向创新型人才的方向不断的努力。
光纤技术类课程在近年来受到了全国众多高校的重视,相应的课程也纷纷建设起来并逐渐走向成熟。光纤通信领域的巨大成就一方面给光纤类课程教学提供了充分的题材,另一方面也仍然存在着很多未知的、诱人的难题等待人们的破解。这为我们的教学实践过程中努力培养学生的发展探索创新能力提供了充分的土壤。
高速光纤通信所面临的重要问题就是如何扩容再扩容。现有光纤的色散问题、非线性问题成为限制光纤通信高速大容量的重要瓶颈之一。就此,我们在课堂上大胆进行了无限制的讨论。结合非线性四波混频问题,同学们指出了色散可以影响四波混频的成立条件。对于高功率脉冲传输,同学们建议是否可以尝试不同波长复用的脉冲在时间上交叉复用。诸如此类的问题讨论,使得课堂气氛热烈。这里讨论的问题是否能够有效或充分达到应用需求无需探究,但是,讨论的学习效果明显大大超过了简单的单向型知识传授的效果。可见,研讨教学本身尤其结合着探索创新能力培养的深度目标,将大大有助于大学本科专业知识教育与学术领域引进的教育目标的高效快速达成。
四、创新能力培养教育不能是无本之木
教学与研讨组成的创新能力培养的教学平台是大学教育的追求与近年来各个高校的建设目标。本文提出了创新能力培养的认知创新、分析创新、探索创新的三步走教学实践路线图,对创新教学具有一定的借鉴意义。但是,我们必须清醒的认识,创新能力培养不能是口号,更不能是无本之木、无水之源。
创新能力培养本身是创新思维逻辑的养成,但创新能力培养更为重要的基石就是充分的基础知识。只有学好、掌握好并能够运用好人类浩瀚知识中的一粟,才能在创新思维火花闪亮的时刻,点燃积累的知识,照亮通向创新成就的大道。
光纤技术教学中,创新能力三步走培养的过程中,我们不断强调学生做好创新必需的准备,那就是学好光纤技术基础知识。创新成就、辉煌时刻永远是留给99%的做好了充分准备的人以及1%的上帝的宠儿。我们是上帝的宠儿吗?所以我们还是努力做好充分的准备吧。
五、结束语
本文综合介绍了光纤技术课程的作用与当前大环境下的重要地位,发掘其在教学过程中培养创新思维的作用,提出了认知创新、分析创新并探索发展创新的创新思维能力培养三步走的基本思路,并特别强调了创新必然源于强大的知识背景与灵活的创新思维逻辑。希望本文初步的创新思维能力培养研讨为中国大学本科专业课程教学中的创新能力培养提供一定借鉴。
参考文献
[1]谢美华, 张增辉. 探究式教学在研究生课堂教学中的实践[J]. 高等教育研究学报,2011(02).
[2]孟洲,胡永明等. 《光纤传感技术》研究生课程改革探讨[J]. 中北大学学报,2007(02).
[3] 孙真荣. 积极推进学科交叉融合 全面提升高校创新能力[J]. 中国高等教育,2013(01).
[4] 白春艳, 谢彦红, 李金卿. 从大学数学教学改革谈学生创新能力培养[J].吉林省教育学院学报(上旬刊), 2013(06).
作者简介
关键词:光纤 通信 信息 技术
光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。随着信息科学技术的飞速发展,光纤通信技术越来越受到人们的重视,并逐步地开始普及。究竟什么是光纤通信呢?简单地说,光纤通信就是利用光作为信息载体、以光纤作为传输的通信方式。和以往的通信方式不同,光纤的材料是玻璃的,因其是电气绝缘体,不需要担心接地回路,所以光纤之间的串绕非常小;光纤通信系统的通信载体是光波,它的频率要比以往的电波高得多,再加上光纤又比同轴电缆或导波管的损耗低得多,光纤通信的容量要比微波通信大几十倍,光纤的芯很细,由多芯组成光缆的直径也很小,因此光纤通信的传输系统所占空间较小,很好地解决了地下管道拥挤的问题;另外,光波在光纤中传输,还不会因为光信号泄漏而担心传输的信息被人窃听,可谓好处多多。
1、光纤通信的发展历程
1966年,美籍华人高锟同霍克哈姆发表了关于传输介质新概念的论文,这篇论文具有划时代的意义,它奠定了利用光纤进行通信的基础,指明了利用光纤进行通信的可能性。1970年,美国康宁公司成功了研制出了损耗20dB/km的石英光纤。促使光纤通信研究的进一步发展。1976年,NTT公司继续将光纤损耗度降低,达到了0.47dB/km。1977年,美国首先推出了用多模光纤进行光纤通信实验。实现了第一代光纤通信系统。1981年,实现了第二代光纤通信系统。1984年,实现了第三代光纤通信系统。80年代后期,实现了第四代光纤通信系统。而后,利用光波分复用提高速率,利用光波来增长传输距离的系统,即第五代光纤通信系统。
2、光纤通信技术的特点
2.1 大容量、高速度
光纤通信的第一特点就是容量大,光纤比铜线或电缆有大得多的传输带宽,虽然现在的单波长光纤通信系统由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势,但是经过一系列的技术处理,单波长光纤通信系统的传输容量也在大幅增加,目前,光纤的传输速率一般在2.5Gbps 到10Gbps,还有很大的扩展空间。
2.2 损耗低
和以往的任何传输方式相比,光纤传输的损耗都是最低的,目前,商品石英光纤损耗可低于0~20dB/km,随着科技的进步,将来采用非石英系统极低损耗光纤,那么,它的损耗可能更低,这就意味着通过光纤通信系统可以跨越更大的无中继距离,这无疑就减少了中继站数目,成本也就可以大幅降下来。
2.3 保密性好
大家都知道,电波传输时容易出现电磁波的泄漏,保密性差,而光波在光纤中传输,光信号被完善地限制在光波导结构中,泄漏的射线则被环绕光纤的不透明包皮所吸收,不会出现泄漏,因而光纤通信不会造成串音,也不会被窃听,保密性非常好。
2.4 抗电磁干扰能力强
光纤材料由石英制成的,不仅绝缘性好,抗腐蚀,更重要的是抗电磁干扰能力强,它既不受雷电、电离层和太阳黑子的变化和活动的干扰,也不受人为释放的电磁干扰,可以与高压输电线平行架设或与电力导体复合构成复合光缆,也特别适合于军事应用。
另外,光纤还有很多其他的优点,比如光纤径细、轻柔、易于铺设,其原料资源丰富,成本低,其自身温度稳定性好、寿命长等等,这些特点决定了光纤将在各个领域得到广泛应用。
3、光纤通信技术的应用
3.1 光纤通信技术的分类
(1)光纤传感技术。因为光纤传感器具有耐腐蚀、宽频带、防爆性、体积小、耗电少的优点,所以其可分为功能型传感器和非功能型传感器;(2)波分复用技术。根据每一信道光波的频率不同,利用单模光纤低损耗区带来的巨大宽带资源,可以将光纤的低损耗窗口划分成为若干个信道,采用分波器来实现不同光波的耦合与分离;(3)光纤接入技术。光纤接入技术的应用十分广泛,已经应用到千家万户。光纤接入技术不仅仅可以解决窄带的业务,也可以解决多媒体图像等业务。
3.2 光纤通信技术的现实应用
现今,我国的光纤通信产业发展十分迅速,尤其是广播电视网、电信干线传输网、电力通信网等发展极其迅速,使得对于光纤光缆的需求量急剧地增加。因为广电综合信息网规模的扩大和系统的复杂难度的提升,让我们在对于全网的管理和维护以及设备故障的判定等问题上存在着很大的难度。为了解决以上存在的问题,采用了ATM+或者是SDH+光纤组成宽带数字传输系统。对于这个传输网,我们可以采用环网传输系统,也可以采用链路系统或者是用它们组成的各种不同形式满足不同需要的符合网络。我们可以采用宽带传输系统,可以将通道设置为广播的方式,这样的话,可以让人们在任何地方都可以对同样的电视节目进行下载,也可以让工作人员对下载的权限进行统一设置,更有利于管理。在全国各地目前已经具有基本规模的有线电视网络的基础上,宽带多媒体传输网络是比较容易实现的。我们可以通过数据通道或者是电信网中的语音通道来形成上行信号,也可以通过语音接入系统来完成上行信号的传送。
4、光纤通信技术发展趋势
4.1 向超高速、超大容量发展
目前10Gbps系统已开始大批量装备网络,在理论上,基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,电的40Gbps系统在性能价格比及在实用中是否能成功也还是个未知因素,可以说采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。于是人们将目光转向波分复用,采用波分复用系统可以将光纤容量迅速扩大几倍乃至上百倍,可以大大降低成本,可以方便快捷的引入宽带新业务,有望实现光联网,基于此,近几年波分复用系统发展十分迅速,预计不久实用化系统的容量即可达到1Tbps的水平。
4.2 实现光联网的全面发展
尽管波分复用系统技术有诸多好处,但依旧是以点到点通信为基础的系统,其灵活性和可靠性还不够理想,如果在光路上也能实现类似SDH 在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,并已投入商用。实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms。光联网的全面发展将对21世纪的中国产生重要的影响。
4.3 新一代的光纤
近几年来随着IP 业务量的爆炸式增长,传统的单模光纤已暴露出力不从心的态势,目前已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。
4.3.1 新一代的非零色散光纤
非零色散光纤(G.655光纤)的基本设计思想是在1550 窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要。
4.3.2 全波光纤
与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力,显然开发具有尽可能宽的可用波段的光纤成为关键。全波光纤就是在这种形势下诞生的,全波没有了水峰,光纤可以开放第5 个低损窗口,从而使可复用的波长数大大增加,使元器件特别是无源器件的成本大幅度下降,从而降低了整个系统的成本;另外上述波长范围内,光纤的色散仅为1550nm 波长区的一半,因而,容易实现高比特率长距离传输。
5、结语
在新世纪的信息技术发展中,光纤通信技术将成为重要的支撑平台,光纤通信也将成为未来通信发展的主流,光纤通信有着巨大的潜力等待人们的开发。
参考文献
[1]苏赐民.从光纤通信技术的发展中看前景[J].工业设计,2011(05).
[2]李中满.我国光纤通信技术发展现状及趋势探讨[J].现代商贸工业,2010(24).
[关键词]集输 安全 技术
中图分类号:TE832.1 文献标识码:A 文章编号:1009-914X(2016)19-0383-01
引言:管道运输因具有高能高压、易燃易爆、有毒有害、连续作业、环境复杂等特点。在使用过程中易发生因腐蚀、第三方破坏或超压等因素塑造成的泄露或管道破裂事故。导致人身伤害、设施破坏和环境污染等严重后果。因此加强安全管理具有重要意义。
1 油气管道的事故分析
大庆油田油气管道失效的主要原因为腐蚀、外部影响和材料缺陷。国外输气管道1000km的年事故发生率随时间呈下降趋势,而我国油气管道的事故率远高于发达国家。
管道由于投产至终结其事故率一般遵循浴盆曲线,所谓浴盆曲线是曲线呈浴盆状在管道投产初期因设计、施工、管材、设备等诸方面的缺陷导致事故率较高,每1000km的年事故发生率为5次左右,该阶段通常持续半年到2年。管道正常营运期事故少而平稳,该阶段的事故多为管道受腐蚀及外力破坏所致,每1000km的年事故率约为2次左右,一般持续到15到20年,管道老化阶段由于管道内磨损及内腐蚀加剧,事故明显上升,其每1000km的年事故发生率一般在2次以上,而且事故发生有意外性,修复也困难。
2 油气管道安全预警技术
为了有效的遏制日益猖獗的针对管道的破坏,防止非法开挖和第三方破坏,同时在来实施清理前,将管道沿线的地质灾害监测起来,对管道实施有效的保护,必须采用技术监控手段进行预警,目前的人工巡线,不可避免的存在密度、频度及人员问题,必须建立起有效的技术防御手段,保证管通实时处于受控状态,管道管理部门可以随时掌握管道沿线信息。
2.1 光纤预警技术
为了传输管道的实时运行数据,在管道建设期与管道同沟敷设了一条光缆,光纤管道预警系统利用其中冗余的三根单膜光纤构成基于mach-zehnder光纤干涉仪原理的分布式震动信号传感器,采集管道沿途的震动信号。
光源发出的光在光缆中传播,管道沿线管道威胁时间产生的异常震动信号被光纤感知使其中传播的光波被调制,收到调制的光信号传到光源及光电检测系统。被光电探测器将光信号转换成电信号,随后通过放大和滤波电路队信号进行处理,经过A/D转换传输到计算机中进行进一步的信号处理和分析。计算机信息处理系统对采集到的信号进行特提取、模式识别将管道威胁事件和管道沿线的行人、车辆通过等背景噪声分开,对打孔盗油,机械挖掘等管道威胁事件进行报警和定位。
目前该系统已经在中困石油港济枣等多条管线投入进行,成功的发现和定位了多起第三方对于管道的破坏,对管道巡护提供了指导,切实保卫了管道安全。该技术一套设备即可实现60km左右的管道安全预警,无需在管道沿线增加任何设备。运营成本低,具有很高的推广价值。
2.2 声波预警技术
由于很多在役管道已经运行三十多年,在管道建设期没有同沟敷设光缆。如果重新开挖设光缆无论从经济和技术上都不可行,因此光纤管道预警技术只适合于近年新建的和即将修建的油气管道的安生预警。对于在役的没有同沟敷设光缆的管道,通过检测管道上传播的声波信号实现对管道的安全预警。
油气管道由于打孔盗油,第三方开挖等原因受到破坏时,刮除防腐层、焊接盗油卡子、安装阀门、打孔等外力撞击活动引起管壁震动,这一震动沿着管壁向两侧传播。由于传播衰减、管道结腊、管道外土层吸收、拱跨、弯头等等的阻尼作用,只有特定频率成分的波才能传播较远距离,而且不同的事件引发的管道振动模式各不相同。因此通过检测特定成分的管道振动信号,即可实现对管道破坏事件的检测。
目前该技术已始在中国石油秦京、铁大等多条管道的打孔盗油、非法开挖等第三方破坏高发区的管道安全预警。该技术的投入使用已发现了多起针对管道的破坏事件,有效的保证了管道的安全,成为管道安全监测的重要工具。
2.3 地质灾害预警技术
滑坡的存在时管道运行的重要安全隐患。对滑坡及其影响下的管道进行监测预警是一种有效的、低成本的管道滑坡灾害防治方式。光纤光栅传感技术具有精度高、抗干扰、抗恶劣环境影响的特点。对监测管道滑坡有良好的适用性,还没有报道。
该技术通过在管道地质灾害多发区安装特别设计的光纤光栅传感器阵列。实现对管道滑坡区的表部位移、深部位移、管体应变及管土界面推力的实时监测,以及常规的降雨量监测、高精度GPS位移监测,有效的实现了区域多参数,多物理量的联合监测。同时还建立了监测数据的实时自动采集与远程传输系统。将监测数据发送到远程监控主机,利用管道土体相互作用的数据模型定量分析土体移动对管道的影响,从而确定不等危险程度下各检测量的阈值。当某检测量超过其阈值时,系统给出报警,提醒管道管理人员对该移动区采取减缓措施。
目前该系统已经成功的应用在兰成渝管道滑坡区的安全监测,并在汶川大地震中成功的检测了滑坡及管道的变形情况,为管道抢修提供了决策支持。
2.4 地震检波器预警技术
人员、车辆等目标在地面上运动,对地面来说就是目标对地面施加以一定的激励,对于非刚体的地球介质的变形,变形在地球介质中传播即形成地震波。有效的检测管道沿线相应于目标运动引起的地震波,对这一信号进行分析和处理就可以有效的将管道沿线监控起来,使用模式识别技术等现代人工智能技术,可以将人工挖掘、机械的非法开挖以及各种第三方破坏区别开来,因此对管道沿线地震波的监测和分析,可以对管道实施有效的保护和监控。
该技术通过在管道沿线埋设地震检波器,监测管道沿线机械开挖、打孔盗油等人为、机械活动产生的地震动信号。现场信号预处理单元对采集的震动信号进行处理并转发。中央处理单元通过三角定位法实现对管道威胁事件的定位,并启动智能分析系统,滤除管道沿线正常的震动信息,对管道保护区域内的机械开挖等威胁事件进行分类报警和定位。基于供电及通信方面的原因,该系统适合于管道重点区段的安全监控。
目前已经在多条重要管道的重要跨越段部署地震检波器矩阵,实现管道跨越重点河流的安全监控,有效的避免了管道遭到破坏后对河流的污染产生的次生灾害。
2.5 预警技术总结
油气管道安全预警系统的开发和实施有效的保证了管道安全出去受控状态。通过对不同的管道应该结合管道的实际情况部署不同的管道安全预警监测系统。
对于一条具体的管道进行安全预警技术及体系的部署首先应该在对管道进行详细调查,获得管道与河流、各级公路、铁路伴行或穿越的情况;管道距离村庄、学校、工厂的情况;管道沿线的土壤情况,管道沿线的地表占压,农民耕作情况;管道沿线地质灾害的情况;管道沿线是否有同沟铺设的光缆及光缆的成缆方式。在完成管道沿线情况分析之后,根据管道需要保护的情况结合制定管道的安全预警方案。
3 油气管道输送技术的发展与展望
进入21世纪以来,随着中国东部和西部地区油气田的进一步开发和国外油气资源的引进,我国的油气管道输送技术有了很大的发展,本论文对于管道输送安全技术进行了详细的分析与总结。对于管道的安全防护技术,我们也期待着防治技术能够更加完善,减少人员伤亡,更好的实现油气管道的运输。随着油气管道输送技术的发展,也有不断涌现的新技术,其中包括多相混输技术,高凝原油储存技术及石油物流配送方法等,我们期待着越来越多的油气管道技术的涌现,实现管道技术的长足发展。
【论文摘要】:机电一体化是一种复合技术,是机械技术与微电子技术、信息技术互相渗透的产物,是机电工业发展的必然趋势。本文简述了机电一体化技术的基本结构组成和主要应用领域,并指出其发展趋势。
现代科学技术的发展极大地推动了不同学科的交叉与渗透,引起了工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
一、机电一体化的核心技术
机电一体化包括软件和硬件两方面技术。硬件是由机械本体、传感器、信息处理单元和驱动单元等部分组成。因此,为加速推进机电一体化的发展,必须从以下几方面着手:
(一)机械本体技术
机械本体必须从改善性能、减轻质量和提高精度等几方面考虑。现代机械产品一般都是以钢铁材料为主,为了减轻质量除了在结构上加以改进,还应考虑利用非金属复合材料。只有机械本体减轻了重量,才有可能实现驱动系统的小型化,进而在控制方面改善快速响应特性,减少能量消耗,提高效率。
(二)传感技术
传感器的问题集中在提高可靠性、灵敏度和精确度方面,提高可靠性与防干扰有着直接的关系。为了避免电干扰,目前有采用光纤电缆传感器的趋势。对外部信息传感器来说,目前主要发展非接触型检测技术。
(三)信息处理技术
机电一体化与微电子学的显著进步、信息处理设备(特别是微型计算机)的普及应用紧密相连。为进一步发展机电一体化,必须提高信息处理设备的可靠性,包括模/数转换设备的可靠性和分时处理的输入输出的可靠性,进而提高处理速度,并解决抗干扰及标准化问题。
(四)驱动技术
电机作为驱动机构已被广泛采用,但在快速响应和效率等方面还存在一些问题。目前,正在积极发展内部装有编码器的电机以及控制专用组件-传感器-电机三位一体的伺服驱动单元。
(五)接口技术
为了与计算机进行通信,必须使数据传递的格式标准化、规格化。接口采用同一标准规格不仅有利于信息传递和维修,而且可以简化设计。目前,技术人员正致力于开发低成本、高速串行的接口,来解决信号电缆非接触化、光导纤维以及光藕器的大容量化、小型化、标准化等问题。
(六)软件技术
软件与硬件必须协调一致地发展。为了减少软件的研制成本,提高生产维修的效率,要逐步推行软件标准化,包括程序标准化、程序模块化、软件程序的固化、推行软件工程等。
二、机电一体化技术的主要应用领域
(一)数控机床
数控机床及相应的数控技术经过40年的发展,在结构、功能、操作和控制精度上都有迅速提高,具体表现在:
1、总线式、模块化、紧凑型的结构,即采用多CPU、多主总线的体系结构。
2、开放性设计,即硬件体系结构和功能模块具有层次性、兼容性、符合接口标准,能最大限度地提高用户的使用效益。
3、WOP技术和智能化。系统能提供面向车间的编程技术和实现二、三维加工过程的动态仿真,并引入在线诊断、模糊控制等智能机制。
4、大容量存储器的应用和软件的模块化设计,不仅丰富了数控功能,同时也加强了CNC系统的控制功能。
5、能实现多过程、多通道控制,即具有一台机床同时完成多个独立加工任务或控制多台和多种机床的能力,并将刀具破损检测、物料搬运、机械手等控制都集成到系统中去。
6、系统的多级网络功能,加强了系统组合及构成复杂加工系统的能力。
7、以单板、单片机作为控制机,加上专用芯片及模板组成结构紧凑的数控装置。
(二)计算机集成制造系统(CIMS)
CIMS的实现不是现有各分散系统的简单组合,而是全局动态最优综合。它打破原有部门之间的界线,以制造为基干来控制“物流”和“信息流”,实现从经营决策、产品开发、生产准备、生产实验到生产经营管理的有机结合。企业集成度的提高可以使各种生产要素之间的配置得到更好的优化,各种生产要素的潜力可以得到更大的发挥。
(三)柔性制造系统(FMS)
柔性制造系统是计算机化的制造系统,主要由计算机、数控机床、机器人、料盘、自动搬运小车和自动化仓库等组成。它可以随机地、实时地、按量地按照装配部门的要求,生产其能力范围内的任何工件,特别适于多品种、中小批量、设计更改频繁的离散零件的批量生产。
(四)工业机器人
第1代机器人亦称示教再现机器人,它们只能根据示教进行重复运动,对工作环境和作业对象的变化缺乏适应性和灵活性;第2代机器人带有各种先进的传感元件,能获取作业环境和操作对象的简单信息,通过计算机处理、分析,做出一定的判断,对动作进行反馈控制,表现出低级智能,已开始走向实用化;第3代机器人即智能机器人,具有多种感知功能,可进行复杂的逻辑思维、判断和决策,在作业环境中独立行动,与第5代计算机关系密切。
三、机电一体化技术的发展前景
纵观国内外机电一体化的发展现状和高新技术的发展动向,机电一体化将朝着以下几个方向发展:
(一)智能化
智能化是机电一体化与传统机械自动化的主要区别之一,也是21世纪机电一体化的发展方向。近几年,处理器速度的提高和微机的高性能化、传感器系统的集成化与智能化为嵌入智能控制算法创造了条件,有力地推动着机电一体化产品向智能化方向发展。智能机电一体化产品可以模拟人类智能,具有某种程度的判断推理、逻辑思维和自主决策能力,从而取代制造工程中人的部分脑力劳动。
(二)系统化
系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意的剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现特征之二是通信功能大大加强,一般除RS232等常用通信方式外,实现远程及多系统通信联网需要的局部网络正逐渐被采用。未来的机电一体化更加注重产品与人的关系,如何赋予机电一体化产品以人的智能、情感、人性显得越来越重要。机电一体化产品还可根据一些生物体优良的构造研究某种新型机体,使其向着生物系统化方向发展。
(三)微型化
微型机电一体化系统高度融合了微机械技术、微电子技术和软件技术,是机电一体化的一个新的发展方向。国外称微电子机械系统的几何尺寸一般不超过1cm3,并正向微米、纳米级方向发展。由于微机电一体化系统具有体积小、耗能小、运动灵活等特点,可进入一般机械无法进入的空间并易于进行精细操作,故在生物医学、航空航天、信息技术、工农业乃至国防等领域,都有广阔的应用前景。目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。
(四)模块化
模块化也是机电一体化产品的一个发展趋势,是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、信息接口的机电一体化产品单元是一项复杂而重要的事,它需要制订一系列标准,以便各部件、单元的匹配和接口。机电一体化产品生产企业可利用标准单元迅速开发新产品,同时也可以不断扩大生产规模。
(五)网络化
网络技术的飞速发展对机电一体化有重大影响,使其朝着网络化方向发展。机电一体化产品的种类很多,面向网络的方式也不同。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。
(六)绿色化
工业的发达使人们物质丰富、生活舒适的同时也使资源减少,生态环境受到严重污染,于是绿色产品应运而生。绿色化是时代的趋势,其目标是使产品从设计、制造、包装、运输、使用到报废处理的整个生命周期中,对生态环境无危害或危害极小,资源利用率极高。机电一体化产品的绿色化主要是指使用时不污染生态环境,报废时能回收利用。绿色制造业是现代制造业的可持续发展模式。
综上所述,机电一体化技术是众多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。它促使机械工业发生战略性的变革,使传统的机械设计方法和设计概念发生着革命性的变化。大力发展新一代机电一体化产品,不仅是改造传统机械设备的要求,而且是推动机械产品更新换代和开辟新领域、发展与振兴机械工业的必由之路。
【参考文献】:
1、李运华.机电控制[M].北京航空航天大学出版社,2003.
2、芮延年.机电一体化系统设计[M].北京机械工业出版社,2004.
3、王中杰,余章雄,柴天佑.智能控制综述[J].基础自动化,2006(6).
(中国农业大学信息与电气工程学院,北京100083)
摘要:农业是国民经济的基础,日新月异的信息化技术成为推进农业发展的重要力量。农业信息化按生产过程分为了产前、产中、产后的信息化,产中信息化是其中极其复杂重要的一个过程,从农业生产过程信息化、生长过程信息化以及产品管理信息化3 个方面出发,详细论述了农业产中信息化的3 个主要环节及其辩证关系,对于厘清农业信息化发展进程、加快农业科技运用于农田实践具有促进作用。
关键词 :农业产中信息化;生产过程信息化;生长过程信息化;产品管理信息化
中图分类号:S-9 文献标志码:A 论文编号:2013-0132
基金项目:国家“十一五”科技支撑计划——现代村镇服务业技术集成示范(2006BAJ07B09)。
第一作者简介:高万林,男,1965 年出生,四川广元人,教授,博士,研究方向:农业信息化技术。通信地址:100083 北京市海淀区清华东路17 号中国农业大学东校区信息与电气工程学院,Tel:010-62736755,E-mail:gaowlin@cau.edu.cn。
收稿日期:2013-03-26,修回日期:2015-04-23。
Analysis and Discussion of Agriculture Informatization in Mid Production Process
Gao Wanlin, Zheng Yuan, Tao Hongyan, Li Peipei, Hu Hui(College of Information and Electrical Engineering, China Agricultural University, Beijing 100083)Abstract: Agriculture is the foundation of the national economy. Incessant changes in information technologyare the important role of promoting agriculture development. According to the production process, agriculturalinformation is divided into pre-production, mid-production, and post-production informationization and midproductioninformationization is extremely complex and important. This article discusses the implementationprocess of agriculture informatization in mid- production process from the above three aspects and theirdialectical relationship. This study helps to clarify the process of development of agriculturalinformationization and speed up agricultural science and technology application in agricultural practices.Key words: Agriculture Mid-production Informatization; Production Process Informatization; Growth Process
Informatization; Agricultural Products Management Informatization
0 引言
中国农业的信息化水平还很低,尤其在农业信息资源的开发利用方面,与发达国家差距较大,作为农业信息化重要内容的计算机应用,在总体上处于低水平。农业数据库总量不足,容量普遍较小,标准化程度很低,互通互联操作的比例也很低,计算机应用系统发展不够充分、平稳,没有形成生产经营管理支持系统和农业宏观调控的完整体系[1]。农业信息网络不发达,信息交流方式落后,信息时效性差。信息人才比较缺乏,特别是缺乏既懂农业科学技术又懂现代信息技术的高级人才[2]。信息技术产品和信息服务产业化水平低,不能满足农业生产对信息的需求。
当代世界正由工业化向信息化时代迈进,在计算机技术、多媒体技术、光纤和卫星通信技术的带动下,信息化浪潮席卷全球。农业是生产生命物质的国民经济的基本产业,是受自然因素与社会诸多因素制约的弱质型产业,因此这项产业格外需要信息及信息技术的支持[3-4]。农业信息化就是培育、发展以计算机为主的智能化工具为代表的新的生产力,并使之应用于农业领域的过程[5]。
现代农业是包含农业产前、产中、产后一体化经营的大农业概念。农业信息化按其生产过程可分为:产前信息化、产中信息化、产后信息化,笔者在此主要讨论的是产中信息化,产中信息化就是在生产过程中应用信息技术从而提高农业的生产效率和管理效率,包括生产过程、生长过程以及产品管理的信息化(见图1)。
1 生产过程信息化
农业生产过程信息化是指农业生产领域信息化,包括农业基础设施信息化、农业技术操作全面自动化及农业生产管理过程的信息化,是农业信息化的重要内容之一[6-7]。生产过程的信息化包括农业生产过程中的方方面面,从耕地、播种,到采摘、包装等农业生产的全过程进行监控管理,对种植养殖的全过程进行严格记录[8]。农业信息技术对传统农业的现代化改造和农业产业结构的调整将产生深远的影响。信息技术包括专家系统、传感技术、通信技术、网络技术、卫星遥感系统、全球定位系统等[9],农业信息技术使宏观性农业资源环境的检测管理更加准确、可以及时准确地进行气象和病虫害的预测预报、可以在网上进行农产品买卖,可以使农作物播种、施肥、灌溉、喷药等更加科学、合理、准确,使农作物达到增产增收的效果[10-11]。
从信息化的角度对农产品的生产过程进行电子化、网络化、数字化等形式的监控与管理,有效地将生产过程各阶段的信息加以采集和,对于确保农产品的安全生产具有重要作用[12]。生产过程的信息化能够促进农业产业结构的升级,改变劳动力就业结构[13]。
1.1 农业基础设施信息化
农业基础设施信息化包括农田基本建设信息化;农产品的储存内部环境因素变化的监测、调节和控制等完全使用计算机信息系统运行;畜禽栅舍饲养环境的测控和运作完全实行自控或遥控等。经过30 年以上的发展,中国的农业基础设施信息化建设已初见成效。截至2010 年底,电信网已基本覆盖全国,农村电视机普及超过了100 台/百户,电话接通率已覆盖全国所有行政村;数据库建设发展迅速,已建设大型涉农数据库100 多个,占世界涉农信息数据库总数的10%左右,引入了世界4 个大型农业数据库[14-15]。
1.2 农业技术操作全面信息化
农业技术操作全面信息化包括农作物栽培管理的自动化、农作物病虫害防治信息化、畜禽饲养管理的信息化和自动化等。利用精准农业的手段[16],根据作物生长情况和土壤肥力的空间差异,调节作物管理,实时诊断耕地和作物长势,在充分了解大田生产力的空间变异的基础上,以平衡地力、提高产量为目标,实施定位、定量的精准田间管理,实现高效利用各类农业资源和改善环境这一可持续发展目标;借助于农业专家系统[17-18]中相关资料的全面性和专业性,启用系统中农作物栽培及生产管理系统、病虫害防治系统等实现生产过程的智能化。
1.3 农业管理信息化
农业管理信息化。一是覆盖县、乡、村的信息网络,保证及时了解市场、政策信息;二是研发适合区域农业情况的计算机决策支持系统,对农业生产中的现象、过程进行模拟等;三是通过信息网络作为渠道,获取先进的农业科学技术,达到合理利用农业资源,降低生产成本,改善生态环境,提高农作物产品和质量的目的。
利用虚拟农业的手段模拟农产品生产组织的流程,并根据模拟的结果,对生产方案进行评价,降低生产消耗,提高生产效率。
2 生长过程信息化
生长过程的信息化是对农业生产中生物的生、老、病、死整个过程进行的信息化。生长过程涵盖了从作物从播种发芽开始到收获结果的过程,牲畜甚至农业微生物的从孕育到死亡的过程,对生长过程进行信息化是一个长期并且庞大的工程,同时它也与生产过程的信息化交织重叠,共同完成生产与生长过程的信息化。
2.1 植物生长过程信息化
采用地理信息技术、决策系统技术等,结合农作物生长环境,如地形地貌、土壤类型、化肥农药使用情况等,绘制电子地图,抽取化肥、水分等信息给专家支持系统,可以实现植物生长过程的信息化管理[19-20]。在设施农业中,利用遥感技术和作物生长模型,建立农作物生长动态监测系统,对农产品长势进行监测[21]。在作物生长模型、遥感信息及气象信息的主要农作物长势综合监测评价指标与模型的辅助下,提高农作物生长监测的精细化程度,实现农作物生长的多时效、定量化、全程性的测评与估产,提升作物生长动态监测的定量化和精细化水平[22]。
2.2 动物生长过程信息化
包括畜禽育种及养殖过程、肉蛋奶生产过程、饲料生产过程、养殖场管理、疫情监测及防治等,应用集传感器、智能监测与控制、移动通信等于一体的设施化养殖系统,实现动物生长过程的信息化[19]。对畜禽生长过程实现信息化和自动化,通过埋置于家畜体内的微型电脑及时发出家畜新陈代谢状况,通过计算机模拟运算,判断家畜对于饲养条件的要求,及时自动输送饲喂配方饲料,实现科学饲养;建立作物及牲畜的水肥营养诊断系统,保证其充足的养料[23]。
3 产品管理信息化
农产品管理的信息化,包括农产品的收获过程的智能化管理和利用信息技术对农产品进行管理等。利用现代化手段统计农产品数量并及时跟踪其物流情况,如利用RFID 技术进行农产品数量和信息的记录统计,这也为下一阶段产后信息化的实现做了较好的准备工作。
中国作为农业生产大国,农产品管理显得尤为重要,但是由于当前客观条件的制约,中国的农产品管理仍然处于严重滞后的水平。随着中国经济实力的提升及信息化建设的完善,农产品管理水平亟待提高,这就使得农产品信息化和风险管理面临着严峻的挑战[24]。建立农产品管理信息系统,对农产品分门别类,并进行数量统计和质量检测,将所得的数据存入系统并利用网络资源进行共享,收集和加工管理过程中有关信息,为决策提供支持,给农业管理带来了高质量、高效率、高效益。用计算机信息技术帮助农业计划管理可以增加产值,减少管理费用,减少消耗。同时,在财务管理、作物生产存储管理及制定销售计划等方面提供了很大的帮助[25]。
4 结论与讨论
产中信息化是农业信息化的关键一环,直接关系到农业信息化的发展水平。生产过程信息化、生长过程信息化和产品管理信息化是农业信息化的3 个主要环节,三者紧密联系、相互作用,又相互区别。生产是农业的首要环节,生产过程决定生长过程的效果,生长过程又反过来指导农业生产过程。农业生产的最终结果就是农产品,农产品的产量和质量是农业生产过程和生长过程的效果反映,可根据农产品的产量高低、质量好坏来评价和调节农业生产过程信息化和生长过程信息化。加强农产品的管理,有利于降低损耗和浪费,促进集约型农业的发展。
农业生产过程由于其时间跨度长、不可预知的因素众多,更需要信息化技术的辅助,也是实现农业现代化的重要保证。目前,数字技术、3S 技术、大数据、云计算、物联网等现代信息技术已经服务于社会发展的各个领域,信息技术在农业中的应用使得农业经济增长从依靠物质投入转移到依靠信息劳动上来。产中信息化主要考虑如何通过信息技术科学种(养)以期达到最高产量和最佳品质的问题。开发适应不同地区和不同领域的农业专家系统、农业决策支持系统、环境智能控制系统、地理信息系统、便携式农业信息系统等,加快农业科技运用于农田实践。积极利用现代信息技术,充分发挥农业信息化的作用,积极推进和实现农业现代化。
参考文献
[1] 林毅.浅淡中国农业信息化的现状与发展对策[J].福建论坛:社科教育版,2007(专刊):72-73.
[2] 白硕.论农业信息化与农民增收[J].农村经济,2003(6):57-59.[3] 石元春.农业信息化现状与趋势[J].农产品市场周刊,2005(34):8.[4] 农泽.农业信息化建设的前景[J].农业装备技术,2004(4):1.
[5] 高万林,李桢,于丽娜,等.加快农业信息化建设,促进农业现代化发展[J].农业现代化研究,2010(3):257-261.
[6] 张志慧.中国农业信息化问题初探[J].经济社会体制比较[J].2004(4):108-112.
[7] 潘运国,张连挥,于素华.农业生产领域信息化现状及对策分析[J].农业网络信息,2011(9):5-6,86.
[8] 贺少云.农业生产中自动化信息技术的应用[J].农业经济与科技,2013(4):178-179.
[9] 王辉,程雪,李玉霞.信息技术在农业生产中的应用[J].河北农业科学,2009(7):145-147.
[10] 张瑞玲,张银丽.信息技术在精细农业中的应用[J].安徽农业科学,2007,35(6):1877-1878.
[11] 杨洪伟.以计算机为核心的信息技术在农业领域的应用[J].安徽农业科学,2007,35(2):619-620.
[12] 郑洋.农产品生产过程中的信息采集与机制研究[D].武汉:华中师范大学,2014.
[13] 宋燕.信息化在农业生产中的作用及其发展对策[J].内蒙古科技与经济,2007(3):15,22.
[14] 周婷婷.中国农业信息化发展现状研究综述[J].广西财经学院学报,2015(1):95-102.
[15] 王儒敬.中国农业信息技术发展现状分析与展望[J].2005 年“数字安徽”博士科技论坛,2005.
[16] 谢美峰.海南省农垦集团信息化发展路径与对策研究[D].海口:华南热带农业大学,2007:1-20.
[17] 毕小明.专家系统及其在中国农业中的应用[J].科技广场,2006(5):115-116.
[18] 高大明.网络化、组件化的玉米专家系统的研究与构建[D].太原:太原理工大学,2000.
[19] 郭作玉.用信息化推进农业现代化[J].农机科技推广,2013(5):60-65.
[20] 詹嘉放.信息技术在农业生产产前、产中和产后阶段的应用[J].广东农业科学,2010(2):231-234.
[21] 张红卫,陈怀亮,周官辉,等.农作物生长动态监测技术综述[A].第27 届中国气象学会年会现代农业气象防灾减灾与粮食安全分会场论文集[C],2010.
[22] 李武杰,王文滨,李丛军.农业生态环境监测技术方法研究[J].黑龙江生态工程职业学院学报,2009,22(2):3-4.
[23] 王登辉,高晓云,李焕仁.浅析信息化在现代农业发展中的作用[J].农业科技与信息,2010(21):5-6.